diff options
Diffstat (limited to 'ANDROID_3.4.5/include/linux/edac.h')
-rw-r--r-- | ANDROID_3.4.5/include/linux/edac.h | 476 |
1 files changed, 0 insertions, 476 deletions
diff --git a/ANDROID_3.4.5/include/linux/edac.h b/ANDROID_3.4.5/include/linux/edac.h deleted file mode 100644 index c621d762..00000000 --- a/ANDROID_3.4.5/include/linux/edac.h +++ /dev/null @@ -1,476 +0,0 @@ -/* - * Generic EDAC defs - * - * Author: Dave Jiang <djiang@mvista.com> - * - * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under - * the terms of the GNU General Public License version 2. This program - * is licensed "as is" without any warranty of any kind, whether express - * or implied. - * - */ -#ifndef _LINUX_EDAC_H_ -#define _LINUX_EDAC_H_ - -#include <linux/atomic.h> -#include <linux/kobject.h> -#include <linux/completion.h> -#include <linux/workqueue.h> - -struct device; - -#define EDAC_OPSTATE_INVAL -1 -#define EDAC_OPSTATE_POLL 0 -#define EDAC_OPSTATE_NMI 1 -#define EDAC_OPSTATE_INT 2 - -extern int edac_op_state; -extern int edac_err_assert; -extern atomic_t edac_handlers; -extern struct bus_type edac_subsys; - -extern int edac_handler_set(void); -extern void edac_atomic_assert_error(void); -extern struct bus_type *edac_get_sysfs_subsys(void); -extern void edac_put_sysfs_subsys(void); - -static inline void opstate_init(void) -{ - switch (edac_op_state) { - case EDAC_OPSTATE_POLL: - case EDAC_OPSTATE_NMI: - break; - default: - edac_op_state = EDAC_OPSTATE_POLL; - } - return; -} - -#define EDAC_MC_LABEL_LEN 31 -#define MC_PROC_NAME_MAX_LEN 7 - -/* memory devices */ -enum dev_type { - DEV_UNKNOWN = 0, - DEV_X1, - DEV_X2, - DEV_X4, - DEV_X8, - DEV_X16, - DEV_X32, /* Do these parts exist? */ - DEV_X64 /* Do these parts exist? */ -}; - -#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) -#define DEV_FLAG_X1 BIT(DEV_X1) -#define DEV_FLAG_X2 BIT(DEV_X2) -#define DEV_FLAG_X4 BIT(DEV_X4) -#define DEV_FLAG_X8 BIT(DEV_X8) -#define DEV_FLAG_X16 BIT(DEV_X16) -#define DEV_FLAG_X32 BIT(DEV_X32) -#define DEV_FLAG_X64 BIT(DEV_X64) - -/** - * enum mem_type - memory types. For a more detailed reference, please see - * http://en.wikipedia.org/wiki/DRAM - * - * @MEM_EMPTY Empty csrow - * @MEM_RESERVED: Reserved csrow type - * @MEM_UNKNOWN: Unknown csrow type - * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. - * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. - * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. - * @MEM_SDR: SDR - Single data rate SDRAM - * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory - * They use 3 pins for chip select: Pins 0 and 2 are - * for rank 0; pins 1 and 3 are for rank 1, if the memory - * is dual-rank. - * @MEM_RDR: Registered SDR SDRAM - * @MEM_DDR: Double data rate SDRAM - * http://en.wikipedia.org/wiki/DDR_SDRAM - * @MEM_RDDR: Registered Double data rate SDRAM - * This is a variant of the DDR memories. - * A registered memory has a buffer inside it, hiding - * part of the memory details to the memory controller. - * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. - * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. - * Those memories are labed as "PC2-" instead of "PC" to - * differenciate from DDR. - * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 - * and JESD206. - * Those memories are accessed per DIMM slot, and not by - * a chip select signal. - * @MEM_RDDR2: Registered DDR2 RAM - * This is a variant of the DDR2 memories. - * @MEM_XDR: Rambus XDR - * It is an evolution of the original RAMBUS memories, - * created to compete with DDR2. Weren't used on any - * x86 arch, but cell_edac PPC memory controller uses it. - * @MEM_DDR3: DDR3 RAM - * @MEM_RDDR3: Registered DDR3 RAM - * This is a variant of the DDR3 memories. - */ -enum mem_type { - MEM_EMPTY = 0, - MEM_RESERVED, - MEM_UNKNOWN, - MEM_FPM, - MEM_EDO, - MEM_BEDO, - MEM_SDR, - MEM_RDR, - MEM_DDR, - MEM_RDDR, - MEM_RMBS, - MEM_DDR2, - MEM_FB_DDR2, - MEM_RDDR2, - MEM_XDR, - MEM_DDR3, - MEM_RDDR3, -}; - -#define MEM_FLAG_EMPTY BIT(MEM_EMPTY) -#define MEM_FLAG_RESERVED BIT(MEM_RESERVED) -#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) -#define MEM_FLAG_FPM BIT(MEM_FPM) -#define MEM_FLAG_EDO BIT(MEM_EDO) -#define MEM_FLAG_BEDO BIT(MEM_BEDO) -#define MEM_FLAG_SDR BIT(MEM_SDR) -#define MEM_FLAG_RDR BIT(MEM_RDR) -#define MEM_FLAG_DDR BIT(MEM_DDR) -#define MEM_FLAG_RDDR BIT(MEM_RDDR) -#define MEM_FLAG_RMBS BIT(MEM_RMBS) -#define MEM_FLAG_DDR2 BIT(MEM_DDR2) -#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) -#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) -#define MEM_FLAG_XDR BIT(MEM_XDR) -#define MEM_FLAG_DDR3 BIT(MEM_DDR3) -#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) - -/* chipset Error Detection and Correction capabilities and mode */ -enum edac_type { - EDAC_UNKNOWN = 0, /* Unknown if ECC is available */ - EDAC_NONE, /* Doesn't support ECC */ - EDAC_RESERVED, /* Reserved ECC type */ - EDAC_PARITY, /* Detects parity errors */ - EDAC_EC, /* Error Checking - no correction */ - EDAC_SECDED, /* Single bit error correction, Double detection */ - EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */ - EDAC_S4ECD4ED, /* Chipkill x4 devices */ - EDAC_S8ECD8ED, /* Chipkill x8 devices */ - EDAC_S16ECD16ED, /* Chipkill x16 devices */ -}; - -#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) -#define EDAC_FLAG_NONE BIT(EDAC_NONE) -#define EDAC_FLAG_PARITY BIT(EDAC_PARITY) -#define EDAC_FLAG_EC BIT(EDAC_EC) -#define EDAC_FLAG_SECDED BIT(EDAC_SECDED) -#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) -#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) -#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) -#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) - -/* scrubbing capabilities */ -enum scrub_type { - SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */ - SCRUB_NONE, /* No scrubber */ - SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */ - SCRUB_SW_SRC, /* Software scrub only errors */ - SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */ - SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */ - SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */ - SCRUB_HW_SRC, /* Hardware scrub only errors */ - SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */ - SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */ -}; - -#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) -#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) -#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) -#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) -#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) -#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) -#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) -#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) - -/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ - -/* EDAC internal operation states */ -#define OP_ALLOC 0x100 -#define OP_RUNNING_POLL 0x201 -#define OP_RUNNING_INTERRUPT 0x202 -#define OP_RUNNING_POLL_INTR 0x203 -#define OP_OFFLINE 0x300 - -/* - * Concepts used at the EDAC subsystem - * - * There are several things to be aware of that aren't at all obvious: - * - * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. - * - * These are some of the many terms that are thrown about that don't always - * mean what people think they mean (Inconceivable!). In the interest of - * creating a common ground for discussion, terms and their definitions - * will be established. - * - * Memory devices: The individual DRAM chips on a memory stick. These - * devices commonly output 4 and 8 bits each (x4, x8). - * Grouping several of these in parallel provides the - * number of bits that the memory controller expects: - * typically 72 bits, in order to provide 64 bits + - * 8 bits of ECC data. - * - * Memory Stick: A printed circuit board that aggregates multiple - * memory devices in parallel. In general, this is the - * Field Replaceable Unit (FRU) which gets replaced, in - * the case of excessive errors. Most often it is also - * called DIMM (Dual Inline Memory Module). - * - * Memory Socket: A physical connector on the motherboard that accepts - * a single memory stick. Also called as "slot" on several - * datasheets. - * - * Channel: A memory controller channel, responsible to communicate - * with a group of DIMMs. Each channel has its own - * independent control (command) and data bus, and can - * be used independently or grouped with other channels. - * - * Branch: It is typically the highest hierarchy on a - * Fully-Buffered DIMM memory controller. - * Typically, it contains two channels. - * Two channels at the same branch can be used in single - * mode or in lockstep mode. - * When lockstep is enabled, the cacheline is doubled, - * but it generally brings some performance penalty. - * Also, it is generally not possible to point to just one - * memory stick when an error occurs, as the error - * correction code is calculated using two DIMMs instead - * of one. Due to that, it is capable of correcting more - * errors than on single mode. - * - * Single-channel: The data accessed by the memory controller is contained - * into one dimm only. E. g. if the data is 64 bits-wide, - * the data flows to the CPU using one 64 bits parallel - * access. - * Typically used with SDR, DDR, DDR2 and DDR3 memories. - * FB-DIMM and RAMBUS use a different concept for channel, - * so this concept doesn't apply there. - * - * Double-channel: The data size accessed by the memory controller is - * interlaced into two dimms, accessed at the same time. - * E. g. if the DIMM is 64 bits-wide (72 bits with ECC), - * the data flows to the CPU using a 128 bits parallel - * access. - * - * Chip-select row: This is the name of the DRAM signal used to select the - * DRAM ranks to be accessed. Common chip-select rows for - * single channel are 64 bits, for dual channel 128 bits. - * It may not be visible by the memory controller, as some - * DIMM types have a memory buffer that can hide direct - * access to it from the Memory Controller. - * - * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory. - * Motherboards commonly drive two chip-select pins to - * a memory stick. A single-ranked stick, will occupy - * only one of those rows. The other will be unused. - * - * Double-Ranked stick: A double-ranked stick has two chip-select rows which - * access different sets of memory devices. The two - * rows cannot be accessed concurrently. - * - * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. - * A double-sided stick has two chip-select rows which - * access different sets of memory devices. The two - * rows cannot be accessed concurrently. "Double-sided" - * is irrespective of the memory devices being mounted - * on both sides of the memory stick. - * - * Socket set: All of the memory sticks that are required for - * a single memory access or all of the memory sticks - * spanned by a chip-select row. A single socket set - * has two chip-select rows and if double-sided sticks - * are used these will occupy those chip-select rows. - * - * Bank: This term is avoided because it is unclear when - * needing to distinguish between chip-select rows and - * socket sets. - * - * Controller pages: - * - * Physical pages: - * - * Virtual pages: - * - * - * STRUCTURE ORGANIZATION AND CHOICES - * - * - * - * PS - I enjoyed writing all that about as much as you enjoyed reading it. - */ - -/** - * struct rank_info - contains the information for one DIMM rank - * - * @chan_idx: channel number where the rank is (typically, 0 or 1) - * @ce_count: number of correctable errors for this rank - * @label: DIMM label. Different ranks for the same DIMM should be - * filled, on userspace, with the same label. - * FIXME: The core currently won't enforce it. - * @csrow: A pointer to the chip select row structure (the parent - * structure). The location of the rank is given by - * the (csrow->csrow_idx, chan_idx) vector. - */ -struct rank_info { - int chan_idx; - u32 ce_count; - char label[EDAC_MC_LABEL_LEN + 1]; - struct csrow_info *csrow; /* the parent */ -}; - -struct csrow_info { - unsigned long first_page; /* first page number in dimm */ - unsigned long last_page; /* last page number in dimm */ - unsigned long page_mask; /* used for interleaving - - * 0UL for non intlv - */ - u32 nr_pages; /* number of pages in csrow */ - u32 grain; /* granularity of reported error in bytes */ - int csrow_idx; /* the chip-select row */ - enum dev_type dtype; /* memory device type */ - u32 ue_count; /* Uncorrectable Errors for this csrow */ - u32 ce_count; /* Correctable Errors for this csrow */ - enum mem_type mtype; /* memory csrow type */ - enum edac_type edac_mode; /* EDAC mode for this csrow */ - struct mem_ctl_info *mci; /* the parent */ - - struct kobject kobj; /* sysfs kobject for this csrow */ - - /* channel information for this csrow */ - u32 nr_channels; - struct rank_info *channels; -}; - -struct mcidev_sysfs_group { - const char *name; /* group name */ - const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */ -}; - -struct mcidev_sysfs_group_kobj { - struct list_head list; /* list for all instances within a mc */ - - struct kobject kobj; /* kobj for the group */ - - const struct mcidev_sysfs_group *grp; /* group description table */ - struct mem_ctl_info *mci; /* the parent */ -}; - -/* mcidev_sysfs_attribute structure - * used for driver sysfs attributes and in mem_ctl_info - * sysfs top level entries - */ -struct mcidev_sysfs_attribute { - /* It should use either attr or grp */ - struct attribute attr; - const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */ - - /* Ops for show/store values at the attribute - not used on group */ - ssize_t (*show)(struct mem_ctl_info *,char *); - ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); -}; - -/* MEMORY controller information structure - */ -struct mem_ctl_info { - struct list_head link; /* for global list of mem_ctl_info structs */ - - struct module *owner; /* Module owner of this control struct */ - - unsigned long mtype_cap; /* memory types supported by mc */ - unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ - unsigned long edac_cap; /* configuration capabilities - this is - * closely related to edac_ctl_cap. The - * difference is that the controller may be - * capable of s4ecd4ed which would be listed - * in edac_ctl_cap, but if channels aren't - * capable of s4ecd4ed then the edac_cap would - * not have that capability. - */ - unsigned long scrub_cap; /* chipset scrub capabilities */ - enum scrub_type scrub_mode; /* current scrub mode */ - - /* Translates sdram memory scrub rate given in bytes/sec to the - internal representation and configures whatever else needs - to be configured. - */ - int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); - - /* Get the current sdram memory scrub rate from the internal - representation and converts it to the closest matching - bandwidth in bytes/sec. - */ - int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); - - - /* pointer to edac checking routine */ - void (*edac_check) (struct mem_ctl_info * mci); - - /* - * Remaps memory pages: controller pages to physical pages. - * For most MC's, this will be NULL. - */ - /* FIXME - why not send the phys page to begin with? */ - unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, - unsigned long page); - int mc_idx; - int nr_csrows; - struct csrow_info *csrows; - /* - * FIXME - what about controllers on other busses? - IDs must be - * unique. dev pointer should be sufficiently unique, but - * BUS:SLOT.FUNC numbers may not be unique. - */ - struct device *dev; - const char *mod_name; - const char *mod_ver; - const char *ctl_name; - const char *dev_name; - char proc_name[MC_PROC_NAME_MAX_LEN + 1]; - void *pvt_info; - u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */ - u32 ce_noinfo_count; /* Correctable Errors w/o info */ - u32 ue_count; /* Total Uncorrectable Errors for this MC */ - u32 ce_count; /* Total Correctable Errors for this MC */ - unsigned long start_time; /* mci load start time (in jiffies) */ - - struct completion complete; - - /* edac sysfs device control */ - struct kobject edac_mci_kobj; - - /* list for all grp instances within a mc */ - struct list_head grp_kobj_list; - - /* Additional top controller level attributes, but specified - * by the low level driver. - * - * Set by the low level driver to provide attributes at the - * controller level, same level as 'ue_count' and 'ce_count' above. - * An array of structures, NULL terminated - * - * If attributes are desired, then set to array of attributes - * If no attributes are desired, leave NULL - */ - const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; - - /* work struct for this MC */ - struct delayed_work work; - - /* the internal state of this controller instance */ - int op_state; -}; - -#endif |