diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S')
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S | 10980 |
1 files changed, 0 insertions, 10980 deletions
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S deleted file mode 100644 index 3b7ea2dc..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S +++ /dev/null @@ -1,10980 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# -# lfptop.s: -# This file is appended to the top of the 060ILSP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located here. -# - - bra.l _facoss_ - short 0x0000 - bra.l _facosd_ - short 0x0000 - bra.l _facosx_ - short 0x0000 - - bra.l _fasins_ - short 0x0000 - bra.l _fasind_ - short 0x0000 - bra.l _fasinx_ - short 0x0000 - - bra.l _fatans_ - short 0x0000 - bra.l _fatand_ - short 0x0000 - bra.l _fatanx_ - short 0x0000 - - bra.l _fatanhs_ - short 0x0000 - bra.l _fatanhd_ - short 0x0000 - bra.l _fatanhx_ - short 0x0000 - - bra.l _fcoss_ - short 0x0000 - bra.l _fcosd_ - short 0x0000 - bra.l _fcosx_ - short 0x0000 - - bra.l _fcoshs_ - short 0x0000 - bra.l _fcoshd_ - short 0x0000 - bra.l _fcoshx_ - short 0x0000 - - bra.l _fetoxs_ - short 0x0000 - bra.l _fetoxd_ - short 0x0000 - bra.l _fetoxx_ - short 0x0000 - - bra.l _fetoxm1s_ - short 0x0000 - bra.l _fetoxm1d_ - short 0x0000 - bra.l _fetoxm1x_ - short 0x0000 - - bra.l _fgetexps_ - short 0x0000 - bra.l _fgetexpd_ - short 0x0000 - bra.l _fgetexpx_ - short 0x0000 - - bra.l _fgetmans_ - short 0x0000 - bra.l _fgetmand_ - short 0x0000 - bra.l _fgetmanx_ - short 0x0000 - - bra.l _flog10s_ - short 0x0000 - bra.l _flog10d_ - short 0x0000 - bra.l _flog10x_ - short 0x0000 - - bra.l _flog2s_ - short 0x0000 - bra.l _flog2d_ - short 0x0000 - bra.l _flog2x_ - short 0x0000 - - bra.l _flogns_ - short 0x0000 - bra.l _flognd_ - short 0x0000 - bra.l _flognx_ - short 0x0000 - - bra.l _flognp1s_ - short 0x0000 - bra.l _flognp1d_ - short 0x0000 - bra.l _flognp1x_ - short 0x0000 - - bra.l _fmods_ - short 0x0000 - bra.l _fmodd_ - short 0x0000 - bra.l _fmodx_ - short 0x0000 - - bra.l _frems_ - short 0x0000 - bra.l _fremd_ - short 0x0000 - bra.l _fremx_ - short 0x0000 - - bra.l _fscales_ - short 0x0000 - bra.l _fscaled_ - short 0x0000 - bra.l _fscalex_ - short 0x0000 - - bra.l _fsins_ - short 0x0000 - bra.l _fsind_ - short 0x0000 - bra.l _fsinx_ - short 0x0000 - - bra.l _fsincoss_ - short 0x0000 - bra.l _fsincosd_ - short 0x0000 - bra.l _fsincosx_ - short 0x0000 - - bra.l _fsinhs_ - short 0x0000 - bra.l _fsinhd_ - short 0x0000 - bra.l _fsinhx_ - short 0x0000 - - bra.l _ftans_ - short 0x0000 - bra.l _ftand_ - short 0x0000 - bra.l _ftanx_ - short 0x0000 - - bra.l _ftanhs_ - short 0x0000 - bra.l _ftanhd_ - short 0x0000 - bra.l _ftanhx_ - short 0x0000 - - bra.l _ftentoxs_ - short 0x0000 - bra.l _ftentoxd_ - short 0x0000 - bra.l _ftentoxx_ - short 0x0000 - - bra.l _ftwotoxs_ - short 0x0000 - bra.l _ftwotoxd_ - short 0x0000 - bra.l _ftwotoxx_ - short 0x0000 - - bra.l _fabss_ - short 0x0000 - bra.l _fabsd_ - short 0x0000 - bra.l _fabsx_ - short 0x0000 - - bra.l _fadds_ - short 0x0000 - bra.l _faddd_ - short 0x0000 - bra.l _faddx_ - short 0x0000 - - bra.l _fdivs_ - short 0x0000 - bra.l _fdivd_ - short 0x0000 - bra.l _fdivx_ - short 0x0000 - - bra.l _fints_ - short 0x0000 - bra.l _fintd_ - short 0x0000 - bra.l _fintx_ - short 0x0000 - - bra.l _fintrzs_ - short 0x0000 - bra.l _fintrzd_ - short 0x0000 - bra.l _fintrzx_ - short 0x0000 - - bra.l _fmuls_ - short 0x0000 - bra.l _fmuld_ - short 0x0000 - bra.l _fmulx_ - short 0x0000 - - bra.l _fnegs_ - short 0x0000 - bra.l _fnegd_ - short 0x0000 - bra.l _fnegx_ - short 0x0000 - - bra.l _fsqrts_ - short 0x0000 - bra.l _fsqrtd_ - short 0x0000 - bra.l _fsqrtx_ - short 0x0000 - - bra.l _fsubs_ - short 0x0000 - bra.l _fsubd_ - short 0x0000 - bra.l _fsubx_ - short 0x0000 - -# leave room for future possible additions - align 0x400 - -# -# This file contains a set of define statements for constants -# in order to promote readability within the corecode itself. -# - -set LOCAL_SIZE, 192 # stack frame size(bytes) -set LV, -LOCAL_SIZE # stack offset - -set EXC_SR, 0x4 # stack status register -set EXC_PC, 0x6 # stack pc -set EXC_VOFF, 0xa # stacked vector offset -set EXC_EA, 0xc # stacked <ea> - -set EXC_FP, 0x0 # frame pointer - -set EXC_AREGS, -68 # offset of all address regs -set EXC_DREGS, -100 # offset of all data regs -set EXC_FPREGS, -36 # offset of all fp regs - -set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 -set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 -set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 -set EXC_A5, EXC_AREGS+(5*4) -set EXC_A4, EXC_AREGS+(4*4) -set EXC_A3, EXC_AREGS+(3*4) -set EXC_A2, EXC_AREGS+(2*4) -set EXC_A1, EXC_AREGS+(1*4) -set EXC_A0, EXC_AREGS+(0*4) -set EXC_D7, EXC_DREGS+(7*4) -set EXC_D6, EXC_DREGS+(6*4) -set EXC_D5, EXC_DREGS+(5*4) -set EXC_D4, EXC_DREGS+(4*4) -set EXC_D3, EXC_DREGS+(3*4) -set EXC_D2, EXC_DREGS+(2*4) -set EXC_D1, EXC_DREGS+(1*4) -set EXC_D0, EXC_DREGS+(0*4) - -set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 -set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 -set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) - -set FP_SCR1, LV+80 # fp scratch 1 -set FP_SCR1_EX, FP_SCR1+0 -set FP_SCR1_SGN, FP_SCR1+2 -set FP_SCR1_HI, FP_SCR1+4 -set FP_SCR1_LO, FP_SCR1+8 - -set FP_SCR0, LV+68 # fp scratch 0 -set FP_SCR0_EX, FP_SCR0+0 -set FP_SCR0_SGN, FP_SCR0+2 -set FP_SCR0_HI, FP_SCR0+4 -set FP_SCR0_LO, FP_SCR0+8 - -set FP_DST, LV+56 # fp destination operand -set FP_DST_EX, FP_DST+0 -set FP_DST_SGN, FP_DST+2 -set FP_DST_HI, FP_DST+4 -set FP_DST_LO, FP_DST+8 - -set FP_SRC, LV+44 # fp source operand -set FP_SRC_EX, FP_SRC+0 -set FP_SRC_SGN, FP_SRC+2 -set FP_SRC_HI, FP_SRC+4 -set FP_SRC_LO, FP_SRC+8 - -set USER_FPIAR, LV+40 # FP instr address register - -set USER_FPSR, LV+36 # FP status register -set FPSR_CC, USER_FPSR+0 # FPSR condition codes -set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte -set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte -set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte - -set USER_FPCR, LV+32 # FP control register -set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable -set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control - -set L_SCR3, LV+28 # integer scratch 3 -set L_SCR2, LV+24 # integer scratch 2 -set L_SCR1, LV+20 # integer scratch 1 - -set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) - -set EXC_TEMP2, LV+24 # temporary space -set EXC_TEMP, LV+16 # temporary space - -set DTAG, LV+15 # destination operand type -set STAG, LV+14 # source operand type - -set SPCOND_FLG, LV+10 # flag: special case (see below) - -set EXC_CC, LV+8 # saved condition codes -set EXC_EXTWPTR, LV+4 # saved current PC (active) -set EXC_EXTWORD, LV+2 # saved extension word -set EXC_CMDREG, LV+2 # saved extension word -set EXC_OPWORD, LV+0 # saved operation word - -################################ - -# Helpful macros - -set FTEMP, 0 # offsets within an -set FTEMP_EX, 0 # extended precision -set FTEMP_SGN, 2 # value saved in memory. -set FTEMP_HI, 4 -set FTEMP_LO, 8 -set FTEMP_GRS, 12 - -set LOCAL, 0 # offsets within an -set LOCAL_EX, 0 # extended precision -set LOCAL_SGN, 2 # value saved in memory. -set LOCAL_HI, 4 -set LOCAL_LO, 8 -set LOCAL_GRS, 12 - -set DST, 0 # offsets within an -set DST_EX, 0 # extended precision -set DST_HI, 4 # value saved in memory. -set DST_LO, 8 - -set SRC, 0 # offsets within an -set SRC_EX, 0 # extended precision -set SRC_HI, 4 # value saved in memory. -set SRC_LO, 8 - -set SGL_LO, 0x3f81 # min sgl prec exponent -set SGL_HI, 0x407e # max sgl prec exponent -set DBL_LO, 0x3c01 # min dbl prec exponent -set DBL_HI, 0x43fe # max dbl prec exponent -set EXT_LO, 0x0 # min ext prec exponent -set EXT_HI, 0x7ffe # max ext prec exponent - -set EXT_BIAS, 0x3fff # extended precision bias -set SGL_BIAS, 0x007f # single precision bias -set DBL_BIAS, 0x03ff # double precision bias - -set NORM, 0x00 # operand type for STAG/DTAG -set ZERO, 0x01 # operand type for STAG/DTAG -set INF, 0x02 # operand type for STAG/DTAG -set QNAN, 0x03 # operand type for STAG/DTAG -set DENORM, 0x04 # operand type for STAG/DTAG -set SNAN, 0x05 # operand type for STAG/DTAG -set UNNORM, 0x06 # operand type for STAG/DTAG - -################## -# FPSR/FPCR bits # -################## -set neg_bit, 0x3 # negative result -set z_bit, 0x2 # zero result -set inf_bit, 0x1 # infinite result -set nan_bit, 0x0 # NAN result - -set q_sn_bit, 0x7 # sign bit of quotient byte - -set bsun_bit, 7 # branch on unordered -set snan_bit, 6 # signalling NAN -set operr_bit, 5 # operand error -set ovfl_bit, 4 # overflow -set unfl_bit, 3 # underflow -set dz_bit, 2 # divide by zero -set inex2_bit, 1 # inexact result 2 -set inex1_bit, 0 # inexact result 1 - -set aiop_bit, 7 # accrued inexact operation bit -set aovfl_bit, 6 # accrued overflow bit -set aunfl_bit, 5 # accrued underflow bit -set adz_bit, 4 # accrued dz bit -set ainex_bit, 3 # accrued inexact bit - -############################# -# FPSR individual bit masks # -############################# -set neg_mask, 0x08000000 # negative bit mask (lw) -set inf_mask, 0x02000000 # infinity bit mask (lw) -set z_mask, 0x04000000 # zero bit mask (lw) -set nan_mask, 0x01000000 # nan bit mask (lw) - -set neg_bmask, 0x08 # negative bit mask (byte) -set inf_bmask, 0x02 # infinity bit mask (byte) -set z_bmask, 0x04 # zero bit mask (byte) -set nan_bmask, 0x01 # nan bit mask (byte) - -set bsun_mask, 0x00008000 # bsun exception mask -set snan_mask, 0x00004000 # snan exception mask -set operr_mask, 0x00002000 # operr exception mask -set ovfl_mask, 0x00001000 # overflow exception mask -set unfl_mask, 0x00000800 # underflow exception mask -set dz_mask, 0x00000400 # dz exception mask -set inex2_mask, 0x00000200 # inex2 exception mask -set inex1_mask, 0x00000100 # inex1 exception mask - -set aiop_mask, 0x00000080 # accrued illegal operation -set aovfl_mask, 0x00000040 # accrued overflow -set aunfl_mask, 0x00000020 # accrued underflow -set adz_mask, 0x00000010 # accrued divide by zero -set ainex_mask, 0x00000008 # accrued inexact - -###################################### -# FPSR combinations used in the FPSP # -###################################### -set dzinf_mask, inf_mask+dz_mask+adz_mask -set opnan_mask, nan_mask+operr_mask+aiop_mask -set nzi_mask, 0x01ffffff #clears N, Z, and I -set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask -set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask -set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask -set inx1a_mask, inex1_mask+ainex_mask -set inx2a_mask, inex2_mask+ainex_mask -set snaniop_mask, nan_mask+snan_mask+aiop_mask -set snaniop2_mask, snan_mask+aiop_mask -set naniop_mask, nan_mask+aiop_mask -set neginf_mask, neg_mask+inf_mask -set infaiop_mask, inf_mask+aiop_mask -set negz_mask, neg_mask+z_mask -set opaop_mask, operr_mask+aiop_mask -set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask -set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask - -######### -# misc. # -######### -set rnd_stky_bit, 29 # stky bit pos in longword - -set sign_bit, 0x7 # sign bit -set signan_bit, 0x6 # signalling nan bit - -set sgl_thresh, 0x3f81 # minimum sgl exponent -set dbl_thresh, 0x3c01 # minimum dbl exponent - -set x_mode, 0x0 # extended precision -set s_mode, 0x4 # single precision -set d_mode, 0x8 # double precision - -set rn_mode, 0x0 # round-to-nearest -set rz_mode, 0x1 # round-to-zero -set rm_mode, 0x2 # round-tp-minus-infinity -set rp_mode, 0x3 # round-to-plus-infinity - -set mantissalen, 64 # length of mantissa in bits - -set BYTE, 1 # len(byte) == 1 byte -set WORD, 2 # len(word) == 2 bytes -set LONG, 4 # len(longword) == 2 bytes - -set BSUN_VEC, 0xc0 # bsun vector offset -set INEX_VEC, 0xc4 # inexact vector offset -set DZ_VEC, 0xc8 # dz vector offset -set UNFL_VEC, 0xcc # unfl vector offset -set OPERR_VEC, 0xd0 # operr vector offset -set OVFL_VEC, 0xd4 # ovfl vector offset -set SNAN_VEC, 0xd8 # snan vector offset - -########################### -# SPecial CONDition FLaGs # -########################### -set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception -set fbsun_flg, 0x02 # flag bit: bsun exception -set mia7_flg, 0x04 # flag bit: (a7)+ <ea> -set mda7_flg, 0x08 # flag bit: -(a7) <ea> -set fmovm_flg, 0x40 # flag bit: fmovm instruction -set immed_flg, 0x80 # flag bit: &<data> <ea> - -set ftrapcc_bit, 0x0 -set fbsun_bit, 0x1 -set mia7_bit, 0x2 -set mda7_bit, 0x3 -set immed_bit, 0x7 - -################################## -# TRANSCENDENTAL "LAST-OP" FLAGS # -################################## -set FMUL_OP, 0x0 # fmul instr performed last -set FDIV_OP, 0x1 # fdiv performed last -set FADD_OP, 0x2 # fadd performed last -set FMOV_OP, 0x3 # fmov performed last - -############# -# CONSTANTS # -############# -T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD -T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL - -PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 -PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -TWOBYPI: - long 0x3FE45F30,0x6DC9C883 - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fsins_ -_fsins_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L0_2s - bsr.l ssin # operand is a NORM - bra.b _L0_6s -_L0_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L0_3s # no - bsr.l src_zero # yes - bra.b _L0_6s -_L0_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L0_4s # no - bsr.l t_operr # yes - bra.b _L0_6s -_L0_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L0_5s # no - bsr.l src_qnan # yes - bra.b _L0_6s -_L0_5s: - bsr.l ssind # operand is a DENORM -_L0_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsind_ -_fsind_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L0_2d - bsr.l ssin # operand is a NORM - bra.b _L0_6d -_L0_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L0_3d # no - bsr.l src_zero # yes - bra.b _L0_6d -_L0_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L0_4d # no - bsr.l t_operr # yes - bra.b _L0_6d -_L0_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L0_5d # no - bsr.l src_qnan # yes - bra.b _L0_6d -_L0_5d: - bsr.l ssind # operand is a DENORM -_L0_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsinx_ -_fsinx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L0_2x - bsr.l ssin # operand is a NORM - bra.b _L0_6x -_L0_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L0_3x # no - bsr.l src_zero # yes - bra.b _L0_6x -_L0_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L0_4x # no - bsr.l t_operr # yes - bra.b _L0_6x -_L0_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L0_5x # no - bsr.l src_qnan # yes - bra.b _L0_6x -_L0_5x: - bsr.l ssind # operand is a DENORM -_L0_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fcoss_ -_fcoss_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L1_2s - bsr.l scos # operand is a NORM - bra.b _L1_6s -_L1_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L1_3s # no - bsr.l ld_pone # yes - bra.b _L1_6s -_L1_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L1_4s # no - bsr.l t_operr # yes - bra.b _L1_6s -_L1_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L1_5s # no - bsr.l src_qnan # yes - bra.b _L1_6s -_L1_5s: - bsr.l scosd # operand is a DENORM -_L1_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcosd_ -_fcosd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L1_2d - bsr.l scos # operand is a NORM - bra.b _L1_6d -_L1_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L1_3d # no - bsr.l ld_pone # yes - bra.b _L1_6d -_L1_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L1_4d # no - bsr.l t_operr # yes - bra.b _L1_6d -_L1_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L1_5d # no - bsr.l src_qnan # yes - bra.b _L1_6d -_L1_5d: - bsr.l scosd # operand is a DENORM -_L1_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcosx_ -_fcosx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L1_2x - bsr.l scos # operand is a NORM - bra.b _L1_6x -_L1_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L1_3x # no - bsr.l ld_pone # yes - bra.b _L1_6x -_L1_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L1_4x # no - bsr.l t_operr # yes - bra.b _L1_6x -_L1_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L1_5x # no - bsr.l src_qnan # yes - bra.b _L1_6x -_L1_5x: - bsr.l scosd # operand is a DENORM -_L1_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fsinhs_ -_fsinhs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L2_2s - bsr.l ssinh # operand is a NORM - bra.b _L2_6s -_L2_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L2_3s # no - bsr.l src_zero # yes - bra.b _L2_6s -_L2_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L2_4s # no - bsr.l src_inf # yes - bra.b _L2_6s -_L2_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L2_5s # no - bsr.l src_qnan # yes - bra.b _L2_6s -_L2_5s: - bsr.l ssinhd # operand is a DENORM -_L2_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsinhd_ -_fsinhd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L2_2d - bsr.l ssinh # operand is a NORM - bra.b _L2_6d -_L2_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L2_3d # no - bsr.l src_zero # yes - bra.b _L2_6d -_L2_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L2_4d # no - bsr.l src_inf # yes - bra.b _L2_6d -_L2_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L2_5d # no - bsr.l src_qnan # yes - bra.b _L2_6d -_L2_5d: - bsr.l ssinhd # operand is a DENORM -_L2_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsinhx_ -_fsinhx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L2_2x - bsr.l ssinh # operand is a NORM - bra.b _L2_6x -_L2_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L2_3x # no - bsr.l src_zero # yes - bra.b _L2_6x -_L2_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L2_4x # no - bsr.l src_inf # yes - bra.b _L2_6x -_L2_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L2_5x # no - bsr.l src_qnan # yes - bra.b _L2_6x -_L2_5x: - bsr.l ssinhd # operand is a DENORM -_L2_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flognp1s_ -_flognp1s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L3_2s - bsr.l slognp1 # operand is a NORM - bra.b _L3_6s -_L3_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L3_3s # no - bsr.l src_zero # yes - bra.b _L3_6s -_L3_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L3_4s # no - bsr.l sopr_inf # yes - bra.b _L3_6s -_L3_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L3_5s # no - bsr.l src_qnan # yes - bra.b _L3_6s -_L3_5s: - bsr.l slognp1d # operand is a DENORM -_L3_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognp1d_ -_flognp1d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L3_2d - bsr.l slognp1 # operand is a NORM - bra.b _L3_6d -_L3_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L3_3d # no - bsr.l src_zero # yes - bra.b _L3_6d -_L3_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L3_4d # no - bsr.l sopr_inf # yes - bra.b _L3_6d -_L3_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L3_5d # no - bsr.l src_qnan # yes - bra.b _L3_6d -_L3_5d: - bsr.l slognp1d # operand is a DENORM -_L3_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognp1x_ -_flognp1x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L3_2x - bsr.l slognp1 # operand is a NORM - bra.b _L3_6x -_L3_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L3_3x # no - bsr.l src_zero # yes - bra.b _L3_6x -_L3_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L3_4x # no - bsr.l sopr_inf # yes - bra.b _L3_6x -_L3_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L3_5x # no - bsr.l src_qnan # yes - bra.b _L3_6x -_L3_5x: - bsr.l slognp1d # operand is a DENORM -_L3_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fetoxm1s_ -_fetoxm1s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L4_2s - bsr.l setoxm1 # operand is a NORM - bra.b _L4_6s -_L4_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L4_3s # no - bsr.l src_zero # yes - bra.b _L4_6s -_L4_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L4_4s # no - bsr.l setoxm1i # yes - bra.b _L4_6s -_L4_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L4_5s # no - bsr.l src_qnan # yes - bra.b _L4_6s -_L4_5s: - bsr.l setoxm1d # operand is a DENORM -_L4_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxm1d_ -_fetoxm1d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L4_2d - bsr.l setoxm1 # operand is a NORM - bra.b _L4_6d -_L4_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L4_3d # no - bsr.l src_zero # yes - bra.b _L4_6d -_L4_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L4_4d # no - bsr.l setoxm1i # yes - bra.b _L4_6d -_L4_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L4_5d # no - bsr.l src_qnan # yes - bra.b _L4_6d -_L4_5d: - bsr.l setoxm1d # operand is a DENORM -_L4_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxm1x_ -_fetoxm1x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L4_2x - bsr.l setoxm1 # operand is a NORM - bra.b _L4_6x -_L4_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L4_3x # no - bsr.l src_zero # yes - bra.b _L4_6x -_L4_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L4_4x # no - bsr.l setoxm1i # yes - bra.b _L4_6x -_L4_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L4_5x # no - bsr.l src_qnan # yes - bra.b _L4_6x -_L4_5x: - bsr.l setoxm1d # operand is a DENORM -_L4_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftanhs_ -_ftanhs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L5_2s - bsr.l stanh # operand is a NORM - bra.b _L5_6s -_L5_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L5_3s # no - bsr.l src_zero # yes - bra.b _L5_6s -_L5_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L5_4s # no - bsr.l src_one # yes - bra.b _L5_6s -_L5_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L5_5s # no - bsr.l src_qnan # yes - bra.b _L5_6s -_L5_5s: - bsr.l stanhd # operand is a DENORM -_L5_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftanhd_ -_ftanhd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L5_2d - bsr.l stanh # operand is a NORM - bra.b _L5_6d -_L5_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L5_3d # no - bsr.l src_zero # yes - bra.b _L5_6d -_L5_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L5_4d # no - bsr.l src_one # yes - bra.b _L5_6d -_L5_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L5_5d # no - bsr.l src_qnan # yes - bra.b _L5_6d -_L5_5d: - bsr.l stanhd # operand is a DENORM -_L5_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftanhx_ -_ftanhx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L5_2x - bsr.l stanh # operand is a NORM - bra.b _L5_6x -_L5_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L5_3x # no - bsr.l src_zero # yes - bra.b _L5_6x -_L5_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L5_4x # no - bsr.l src_one # yes - bra.b _L5_6x -_L5_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L5_5x # no - bsr.l src_qnan # yes - bra.b _L5_6x -_L5_5x: - bsr.l stanhd # operand is a DENORM -_L5_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fatans_ -_fatans_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L6_2s - bsr.l satan # operand is a NORM - bra.b _L6_6s -_L6_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L6_3s # no - bsr.l src_zero # yes - bra.b _L6_6s -_L6_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L6_4s # no - bsr.l spi_2 # yes - bra.b _L6_6s -_L6_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L6_5s # no - bsr.l src_qnan # yes - bra.b _L6_6s -_L6_5s: - bsr.l satand # operand is a DENORM -_L6_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatand_ -_fatand_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L6_2d - bsr.l satan # operand is a NORM - bra.b _L6_6d -_L6_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L6_3d # no - bsr.l src_zero # yes - bra.b _L6_6d -_L6_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L6_4d # no - bsr.l spi_2 # yes - bra.b _L6_6d -_L6_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L6_5d # no - bsr.l src_qnan # yes - bra.b _L6_6d -_L6_5d: - bsr.l satand # operand is a DENORM -_L6_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatanx_ -_fatanx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L6_2x - bsr.l satan # operand is a NORM - bra.b _L6_6x -_L6_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L6_3x # no - bsr.l src_zero # yes - bra.b _L6_6x -_L6_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L6_4x # no - bsr.l spi_2 # yes - bra.b _L6_6x -_L6_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L6_5x # no - bsr.l src_qnan # yes - bra.b _L6_6x -_L6_5x: - bsr.l satand # operand is a DENORM -_L6_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fasins_ -_fasins_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L7_2s - bsr.l sasin # operand is a NORM - bra.b _L7_6s -_L7_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L7_3s # no - bsr.l src_zero # yes - bra.b _L7_6s -_L7_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L7_4s # no - bsr.l t_operr # yes - bra.b _L7_6s -_L7_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L7_5s # no - bsr.l src_qnan # yes - bra.b _L7_6s -_L7_5s: - bsr.l sasind # operand is a DENORM -_L7_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fasind_ -_fasind_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L7_2d - bsr.l sasin # operand is a NORM - bra.b _L7_6d -_L7_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L7_3d # no - bsr.l src_zero # yes - bra.b _L7_6d -_L7_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L7_4d # no - bsr.l t_operr # yes - bra.b _L7_6d -_L7_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L7_5d # no - bsr.l src_qnan # yes - bra.b _L7_6d -_L7_5d: - bsr.l sasind # operand is a DENORM -_L7_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fasinx_ -_fasinx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L7_2x - bsr.l sasin # operand is a NORM - bra.b _L7_6x -_L7_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L7_3x # no - bsr.l src_zero # yes - bra.b _L7_6x -_L7_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L7_4x # no - bsr.l t_operr # yes - bra.b _L7_6x -_L7_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L7_5x # no - bsr.l src_qnan # yes - bra.b _L7_6x -_L7_5x: - bsr.l sasind # operand is a DENORM -_L7_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fatanhs_ -_fatanhs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L8_2s - bsr.l satanh # operand is a NORM - bra.b _L8_6s -_L8_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L8_3s # no - bsr.l src_zero # yes - bra.b _L8_6s -_L8_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L8_4s # no - bsr.l t_operr # yes - bra.b _L8_6s -_L8_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L8_5s # no - bsr.l src_qnan # yes - bra.b _L8_6s -_L8_5s: - bsr.l satanhd # operand is a DENORM -_L8_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatanhd_ -_fatanhd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L8_2d - bsr.l satanh # operand is a NORM - bra.b _L8_6d -_L8_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L8_3d # no - bsr.l src_zero # yes - bra.b _L8_6d -_L8_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L8_4d # no - bsr.l t_operr # yes - bra.b _L8_6d -_L8_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L8_5d # no - bsr.l src_qnan # yes - bra.b _L8_6d -_L8_5d: - bsr.l satanhd # operand is a DENORM -_L8_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatanhx_ -_fatanhx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L8_2x - bsr.l satanh # operand is a NORM - bra.b _L8_6x -_L8_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L8_3x # no - bsr.l src_zero # yes - bra.b _L8_6x -_L8_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L8_4x # no - bsr.l t_operr # yes - bra.b _L8_6x -_L8_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L8_5x # no - bsr.l src_qnan # yes - bra.b _L8_6x -_L8_5x: - bsr.l satanhd # operand is a DENORM -_L8_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftans_ -_ftans_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L9_2s - bsr.l stan # operand is a NORM - bra.b _L9_6s -_L9_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L9_3s # no - bsr.l src_zero # yes - bra.b _L9_6s -_L9_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L9_4s # no - bsr.l t_operr # yes - bra.b _L9_6s -_L9_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L9_5s # no - bsr.l src_qnan # yes - bra.b _L9_6s -_L9_5s: - bsr.l stand # operand is a DENORM -_L9_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftand_ -_ftand_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L9_2d - bsr.l stan # operand is a NORM - bra.b _L9_6d -_L9_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L9_3d # no - bsr.l src_zero # yes - bra.b _L9_6d -_L9_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L9_4d # no - bsr.l t_operr # yes - bra.b _L9_6d -_L9_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L9_5d # no - bsr.l src_qnan # yes - bra.b _L9_6d -_L9_5d: - bsr.l stand # operand is a DENORM -_L9_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftanx_ -_ftanx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L9_2x - bsr.l stan # operand is a NORM - bra.b _L9_6x -_L9_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L9_3x # no - bsr.l src_zero # yes - bra.b _L9_6x -_L9_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L9_4x # no - bsr.l t_operr # yes - bra.b _L9_6x -_L9_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L9_5x # no - bsr.l src_qnan # yes - bra.b _L9_6x -_L9_5x: - bsr.l stand # operand is a DENORM -_L9_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fetoxs_ -_fetoxs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L10_2s - bsr.l setox # operand is a NORM - bra.b _L10_6s -_L10_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L10_3s # no - bsr.l ld_pone # yes - bra.b _L10_6s -_L10_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L10_4s # no - bsr.l szr_inf # yes - bra.b _L10_6s -_L10_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L10_5s # no - bsr.l src_qnan # yes - bra.b _L10_6s -_L10_5s: - bsr.l setoxd # operand is a DENORM -_L10_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxd_ -_fetoxd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L10_2d - bsr.l setox # operand is a NORM - bra.b _L10_6d -_L10_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L10_3d # no - bsr.l ld_pone # yes - bra.b _L10_6d -_L10_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L10_4d # no - bsr.l szr_inf # yes - bra.b _L10_6d -_L10_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L10_5d # no - bsr.l src_qnan # yes - bra.b _L10_6d -_L10_5d: - bsr.l setoxd # operand is a DENORM -_L10_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxx_ -_fetoxx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L10_2x - bsr.l setox # operand is a NORM - bra.b _L10_6x -_L10_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L10_3x # no - bsr.l ld_pone # yes - bra.b _L10_6x -_L10_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L10_4x # no - bsr.l szr_inf # yes - bra.b _L10_6x -_L10_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L10_5x # no - bsr.l src_qnan # yes - bra.b _L10_6x -_L10_5x: - bsr.l setoxd # operand is a DENORM -_L10_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftwotoxs_ -_ftwotoxs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L11_2s - bsr.l stwotox # operand is a NORM - bra.b _L11_6s -_L11_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L11_3s # no - bsr.l ld_pone # yes - bra.b _L11_6s -_L11_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L11_4s # no - bsr.l szr_inf # yes - bra.b _L11_6s -_L11_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L11_5s # no - bsr.l src_qnan # yes - bra.b _L11_6s -_L11_5s: - bsr.l stwotoxd # operand is a DENORM -_L11_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftwotoxd_ -_ftwotoxd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L11_2d - bsr.l stwotox # operand is a NORM - bra.b _L11_6d -_L11_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L11_3d # no - bsr.l ld_pone # yes - bra.b _L11_6d -_L11_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L11_4d # no - bsr.l szr_inf # yes - bra.b _L11_6d -_L11_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L11_5d # no - bsr.l src_qnan # yes - bra.b _L11_6d -_L11_5d: - bsr.l stwotoxd # operand is a DENORM -_L11_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftwotoxx_ -_ftwotoxx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L11_2x - bsr.l stwotox # operand is a NORM - bra.b _L11_6x -_L11_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L11_3x # no - bsr.l ld_pone # yes - bra.b _L11_6x -_L11_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L11_4x # no - bsr.l szr_inf # yes - bra.b _L11_6x -_L11_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L11_5x # no - bsr.l src_qnan # yes - bra.b _L11_6x -_L11_5x: - bsr.l stwotoxd # operand is a DENORM -_L11_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftentoxs_ -_ftentoxs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L12_2s - bsr.l stentox # operand is a NORM - bra.b _L12_6s -_L12_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L12_3s # no - bsr.l ld_pone # yes - bra.b _L12_6s -_L12_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L12_4s # no - bsr.l szr_inf # yes - bra.b _L12_6s -_L12_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L12_5s # no - bsr.l src_qnan # yes - bra.b _L12_6s -_L12_5s: - bsr.l stentoxd # operand is a DENORM -_L12_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftentoxd_ -_ftentoxd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L12_2d - bsr.l stentox # operand is a NORM - bra.b _L12_6d -_L12_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L12_3d # no - bsr.l ld_pone # yes - bra.b _L12_6d -_L12_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L12_4d # no - bsr.l szr_inf # yes - bra.b _L12_6d -_L12_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L12_5d # no - bsr.l src_qnan # yes - bra.b _L12_6d -_L12_5d: - bsr.l stentoxd # operand is a DENORM -_L12_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftentoxx_ -_ftentoxx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L12_2x - bsr.l stentox # operand is a NORM - bra.b _L12_6x -_L12_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L12_3x # no - bsr.l ld_pone # yes - bra.b _L12_6x -_L12_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L12_4x # no - bsr.l szr_inf # yes - bra.b _L12_6x -_L12_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L12_5x # no - bsr.l src_qnan # yes - bra.b _L12_6x -_L12_5x: - bsr.l stentoxd # operand is a DENORM -_L12_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flogns_ -_flogns_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L13_2s - bsr.l slogn # operand is a NORM - bra.b _L13_6s -_L13_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L13_3s # no - bsr.l t_dz2 # yes - bra.b _L13_6s -_L13_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L13_4s # no - bsr.l sopr_inf # yes - bra.b _L13_6s -_L13_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L13_5s # no - bsr.l src_qnan # yes - bra.b _L13_6s -_L13_5s: - bsr.l slognd # operand is a DENORM -_L13_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognd_ -_flognd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L13_2d - bsr.l slogn # operand is a NORM - bra.b _L13_6d -_L13_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L13_3d # no - bsr.l t_dz2 # yes - bra.b _L13_6d -_L13_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L13_4d # no - bsr.l sopr_inf # yes - bra.b _L13_6d -_L13_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L13_5d # no - bsr.l src_qnan # yes - bra.b _L13_6d -_L13_5d: - bsr.l slognd # operand is a DENORM -_L13_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognx_ -_flognx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L13_2x - bsr.l slogn # operand is a NORM - bra.b _L13_6x -_L13_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L13_3x # no - bsr.l t_dz2 # yes - bra.b _L13_6x -_L13_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L13_4x # no - bsr.l sopr_inf # yes - bra.b _L13_6x -_L13_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L13_5x # no - bsr.l src_qnan # yes - bra.b _L13_6x -_L13_5x: - bsr.l slognd # operand is a DENORM -_L13_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flog10s_ -_flog10s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L14_2s - bsr.l slog10 # operand is a NORM - bra.b _L14_6s -_L14_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L14_3s # no - bsr.l t_dz2 # yes - bra.b _L14_6s -_L14_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L14_4s # no - bsr.l sopr_inf # yes - bra.b _L14_6s -_L14_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L14_5s # no - bsr.l src_qnan # yes - bra.b _L14_6s -_L14_5s: - bsr.l slog10d # operand is a DENORM -_L14_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog10d_ -_flog10d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L14_2d - bsr.l slog10 # operand is a NORM - bra.b _L14_6d -_L14_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L14_3d # no - bsr.l t_dz2 # yes - bra.b _L14_6d -_L14_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L14_4d # no - bsr.l sopr_inf # yes - bra.b _L14_6d -_L14_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L14_5d # no - bsr.l src_qnan # yes - bra.b _L14_6d -_L14_5d: - bsr.l slog10d # operand is a DENORM -_L14_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog10x_ -_flog10x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L14_2x - bsr.l slog10 # operand is a NORM - bra.b _L14_6x -_L14_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L14_3x # no - bsr.l t_dz2 # yes - bra.b _L14_6x -_L14_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L14_4x # no - bsr.l sopr_inf # yes - bra.b _L14_6x -_L14_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L14_5x # no - bsr.l src_qnan # yes - bra.b _L14_6x -_L14_5x: - bsr.l slog10d # operand is a DENORM -_L14_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flog2s_ -_flog2s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L15_2s - bsr.l slog2 # operand is a NORM - bra.b _L15_6s -_L15_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L15_3s # no - bsr.l t_dz2 # yes - bra.b _L15_6s -_L15_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L15_4s # no - bsr.l sopr_inf # yes - bra.b _L15_6s -_L15_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L15_5s # no - bsr.l src_qnan # yes - bra.b _L15_6s -_L15_5s: - bsr.l slog2d # operand is a DENORM -_L15_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog2d_ -_flog2d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L15_2d - bsr.l slog2 # operand is a NORM - bra.b _L15_6d -_L15_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L15_3d # no - bsr.l t_dz2 # yes - bra.b _L15_6d -_L15_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L15_4d # no - bsr.l sopr_inf # yes - bra.b _L15_6d -_L15_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L15_5d # no - bsr.l src_qnan # yes - bra.b _L15_6d -_L15_5d: - bsr.l slog2d # operand is a DENORM -_L15_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog2x_ -_flog2x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L15_2x - bsr.l slog2 # operand is a NORM - bra.b _L15_6x -_L15_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L15_3x # no - bsr.l t_dz2 # yes - bra.b _L15_6x -_L15_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L15_4x # no - bsr.l sopr_inf # yes - bra.b _L15_6x -_L15_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L15_5x # no - bsr.l src_qnan # yes - bra.b _L15_6x -_L15_5x: - bsr.l slog2d # operand is a DENORM -_L15_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fcoshs_ -_fcoshs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L16_2s - bsr.l scosh # operand is a NORM - bra.b _L16_6s -_L16_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L16_3s # no - bsr.l ld_pone # yes - bra.b _L16_6s -_L16_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L16_4s # no - bsr.l ld_pinf # yes - bra.b _L16_6s -_L16_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L16_5s # no - bsr.l src_qnan # yes - bra.b _L16_6s -_L16_5s: - bsr.l scoshd # operand is a DENORM -_L16_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcoshd_ -_fcoshd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L16_2d - bsr.l scosh # operand is a NORM - bra.b _L16_6d -_L16_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L16_3d # no - bsr.l ld_pone # yes - bra.b _L16_6d -_L16_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L16_4d # no - bsr.l ld_pinf # yes - bra.b _L16_6d -_L16_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L16_5d # no - bsr.l src_qnan # yes - bra.b _L16_6d -_L16_5d: - bsr.l scoshd # operand is a DENORM -_L16_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcoshx_ -_fcoshx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L16_2x - bsr.l scosh # operand is a NORM - bra.b _L16_6x -_L16_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L16_3x # no - bsr.l ld_pone # yes - bra.b _L16_6x -_L16_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L16_4x # no - bsr.l ld_pinf # yes - bra.b _L16_6x -_L16_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L16_5x # no - bsr.l src_qnan # yes - bra.b _L16_6x -_L16_5x: - bsr.l scoshd # operand is a DENORM -_L16_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _facoss_ -_facoss_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L17_2s - bsr.l sacos # operand is a NORM - bra.b _L17_6s -_L17_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L17_3s # no - bsr.l ld_ppi2 # yes - bra.b _L17_6s -_L17_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L17_4s # no - bsr.l t_operr # yes - bra.b _L17_6s -_L17_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L17_5s # no - bsr.l src_qnan # yes - bra.b _L17_6s -_L17_5s: - bsr.l sacosd # operand is a DENORM -_L17_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _facosd_ -_facosd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L17_2d - bsr.l sacos # operand is a NORM - bra.b _L17_6d -_L17_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L17_3d # no - bsr.l ld_ppi2 # yes - bra.b _L17_6d -_L17_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L17_4d # no - bsr.l t_operr # yes - bra.b _L17_6d -_L17_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L17_5d # no - bsr.l src_qnan # yes - bra.b _L17_6d -_L17_5d: - bsr.l sacosd # operand is a DENORM -_L17_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _facosx_ -_facosx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L17_2x - bsr.l sacos # operand is a NORM - bra.b _L17_6x -_L17_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L17_3x # no - bsr.l ld_ppi2 # yes - bra.b _L17_6x -_L17_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L17_4x # no - bsr.l t_operr # yes - bra.b _L17_6x -_L17_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L17_5x # no - bsr.l src_qnan # yes - bra.b _L17_6x -_L17_5x: - bsr.l sacosd # operand is a DENORM -_L17_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fgetexps_ -_fgetexps_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L18_2s - bsr.l sgetexp # operand is a NORM - bra.b _L18_6s -_L18_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L18_3s # no - bsr.l src_zero # yes - bra.b _L18_6s -_L18_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L18_4s # no - bsr.l t_operr # yes - bra.b _L18_6s -_L18_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L18_5s # no - bsr.l src_qnan # yes - bra.b _L18_6s -_L18_5s: - bsr.l sgetexpd # operand is a DENORM -_L18_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetexpd_ -_fgetexpd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L18_2d - bsr.l sgetexp # operand is a NORM - bra.b _L18_6d -_L18_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L18_3d # no - bsr.l src_zero # yes - bra.b _L18_6d -_L18_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L18_4d # no - bsr.l t_operr # yes - bra.b _L18_6d -_L18_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L18_5d # no - bsr.l src_qnan # yes - bra.b _L18_6d -_L18_5d: - bsr.l sgetexpd # operand is a DENORM -_L18_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetexpx_ -_fgetexpx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L18_2x - bsr.l sgetexp # operand is a NORM - bra.b _L18_6x -_L18_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L18_3x # no - bsr.l src_zero # yes - bra.b _L18_6x -_L18_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L18_4x # no - bsr.l t_operr # yes - bra.b _L18_6x -_L18_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L18_5x # no - bsr.l src_qnan # yes - bra.b _L18_6x -_L18_5x: - bsr.l sgetexpd # operand is a DENORM -_L18_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fgetmans_ -_fgetmans_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L19_2s - bsr.l sgetman # operand is a NORM - bra.b _L19_6s -_L19_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L19_3s # no - bsr.l src_zero # yes - bra.b _L19_6s -_L19_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L19_4s # no - bsr.l t_operr # yes - bra.b _L19_6s -_L19_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L19_5s # no - bsr.l src_qnan # yes - bra.b _L19_6s -_L19_5s: - bsr.l sgetmand # operand is a DENORM -_L19_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetmand_ -_fgetmand_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L19_2d - bsr.l sgetman # operand is a NORM - bra.b _L19_6d -_L19_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L19_3d # no - bsr.l src_zero # yes - bra.b _L19_6d -_L19_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L19_4d # no - bsr.l t_operr # yes - bra.b _L19_6d -_L19_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L19_5d # no - bsr.l src_qnan # yes - bra.b _L19_6d -_L19_5d: - bsr.l sgetmand # operand is a DENORM -_L19_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetmanx_ -_fgetmanx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L19_2x - bsr.l sgetman # operand is a NORM - bra.b _L19_6x -_L19_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L19_3x # no - bsr.l src_zero # yes - bra.b _L19_6x -_L19_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L19_4x # no - bsr.l t_operr # yes - bra.b _L19_6x -_L19_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L19_5x # no - bsr.l src_qnan # yes - bra.b _L19_6x -_L19_5x: - bsr.l sgetmand # operand is a DENORM -_L19_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fsincoss_ -_fsincoss_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L20_2s - bsr.l ssincos # operand is a NORM - bra.b _L20_6s -_L20_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L20_3s # no - bsr.l ssincosz # yes - bra.b _L20_6s -_L20_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L20_4s # no - bsr.l ssincosi # yes - bra.b _L20_6s -_L20_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L20_5s # no - bsr.l ssincosqnan # yes - bra.b _L20_6s -_L20_5s: - bsr.l ssincosd # operand is a DENORM -_L20_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x &0x03,-(%sp) # store off fp0/fp1 - fmovm.x (%sp)+,&0x40 # fp0 now in fp1 - fmovm.x (%sp)+,&0x80 # fp1 now in fp0 - unlk %a6 - rts - - global _fsincosd_ -_fsincosd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L20_2d - bsr.l ssincos # operand is a NORM - bra.b _L20_6d -_L20_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L20_3d # no - bsr.l ssincosz # yes - bra.b _L20_6d -_L20_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L20_4d # no - bsr.l ssincosi # yes - bra.b _L20_6d -_L20_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L20_5d # no - bsr.l ssincosqnan # yes - bra.b _L20_6d -_L20_5d: - bsr.l ssincosd # operand is a DENORM -_L20_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x &0x03,-(%sp) # store off fp0/fp1 - fmovm.x (%sp)+,&0x40 # fp0 now in fp1 - fmovm.x (%sp)+,&0x80 # fp1 now in fp0 - unlk %a6 - rts - - global _fsincosx_ -_fsincosx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L20_2x - bsr.l ssincos # operand is a NORM - bra.b _L20_6x -_L20_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L20_3x # no - bsr.l ssincosz # yes - bra.b _L20_6x -_L20_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L20_4x # no - bsr.l ssincosi # yes - bra.b _L20_6x -_L20_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L20_5x # no - bsr.l ssincosqnan # yes - bra.b _L20_6x -_L20_5x: - bsr.l ssincosd # operand is a DENORM -_L20_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x &0x03,-(%sp) # store off fp0/fp1 - fmovm.x (%sp)+,&0x40 # fp0 now in fp1 - fmovm.x (%sp)+,&0x80 # fp1 now in fp0 - unlk %a6 - rts - - -######################################################################### -# DYADIC TEMPLATE # -######################################################################### - global _frems_ -_frems_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.s 0xc(%a6),%fp0 # load sgl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L21_2s - bsr.l srem_snorm # operand is a NORM - bra.b _L21_6s -_L21_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L21_3s # no - bsr.l srem_szero # yes - bra.b _L21_6s -_L21_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L21_4s # no - bsr.l srem_sinf # yes - bra.b _L21_6s -_L21_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L21_5s # no - bsr.l sop_sqnan # yes - bra.b _L21_6s -_L21_5s: - bsr.l srem_sdnrm # operand is a DENORM -_L21_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fremd_ -_fremd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.d 0x10(%a6),%fp0 # load dbl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L21_2d - bsr.l srem_snorm # operand is a NORM - bra.b _L21_6d -_L21_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L21_3d # no - bsr.l srem_szero # yes - bra.b _L21_6d -_L21_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L21_4d # no - bsr.l srem_sinf # yes - bra.b _L21_6d -_L21_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L21_5d # no - bsr.l sop_sqnan # yes - bra.b _L21_6d -_L21_5d: - bsr.l srem_sdnrm # operand is a DENORM -_L21_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fremx_ -_fremx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_DST(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - lea FP_SRC(%a6),%a0 - mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src - mov.l 0x14+0x4(%a6),0x4(%a0) - mov.l 0x14+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L21_2x - bsr.l srem_snorm # operand is a NORM - bra.b _L21_6x -_L21_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L21_3x # no - bsr.l srem_szero # yes - bra.b _L21_6x -_L21_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L21_4x # no - bsr.l srem_sinf # yes - bra.b _L21_6x -_L21_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L21_5x # no - bsr.l sop_sqnan # yes - bra.b _L21_6x -_L21_5x: - bsr.l srem_sdnrm # operand is a DENORM -_L21_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# DYADIC TEMPLATE # -######################################################################### - global _fmods_ -_fmods_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.s 0xc(%a6),%fp0 # load sgl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L22_2s - bsr.l smod_snorm # operand is a NORM - bra.b _L22_6s -_L22_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L22_3s # no - bsr.l smod_szero # yes - bra.b _L22_6s -_L22_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L22_4s # no - bsr.l smod_sinf # yes - bra.b _L22_6s -_L22_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L22_5s # no - bsr.l sop_sqnan # yes - bra.b _L22_6s -_L22_5s: - bsr.l smod_sdnrm # operand is a DENORM -_L22_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fmodd_ -_fmodd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.d 0x10(%a6),%fp0 # load dbl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L22_2d - bsr.l smod_snorm # operand is a NORM - bra.b _L22_6d -_L22_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L22_3d # no - bsr.l smod_szero # yes - bra.b _L22_6d -_L22_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L22_4d # no - bsr.l smod_sinf # yes - bra.b _L22_6d -_L22_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L22_5d # no - bsr.l sop_sqnan # yes - bra.b _L22_6d -_L22_5d: - bsr.l smod_sdnrm # operand is a DENORM -_L22_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fmodx_ -_fmodx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_DST(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - lea FP_SRC(%a6),%a0 - mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src - mov.l 0x14+0x4(%a6),0x4(%a0) - mov.l 0x14+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L22_2x - bsr.l smod_snorm # operand is a NORM - bra.b _L22_6x -_L22_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L22_3x # no - bsr.l smod_szero # yes - bra.b _L22_6x -_L22_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L22_4x # no - bsr.l smod_sinf # yes - bra.b _L22_6x -_L22_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L22_5x # no - bsr.l sop_sqnan # yes - bra.b _L22_6x -_L22_5x: - bsr.l smod_sdnrm # operand is a DENORM -_L22_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# DYADIC TEMPLATE # -######################################################################### - global _fscales_ -_fscales_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.s 0xc(%a6),%fp0 # load sgl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L23_2s - bsr.l sscale_snorm # operand is a NORM - bra.b _L23_6s -_L23_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L23_3s # no - bsr.l sscale_szero # yes - bra.b _L23_6s -_L23_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L23_4s # no - bsr.l sscale_sinf # yes - bra.b _L23_6s -_L23_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L23_5s # no - bsr.l sop_sqnan # yes - bra.b _L23_6s -_L23_5s: - bsr.l sscale_sdnrm # operand is a DENORM -_L23_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fscaled_ -_fscaled_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.d 0x10(%a6),%fp0 # load dbl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L23_2d - bsr.l sscale_snorm # operand is a NORM - bra.b _L23_6d -_L23_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L23_3d # no - bsr.l sscale_szero # yes - bra.b _L23_6d -_L23_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L23_4d # no - bsr.l sscale_sinf # yes - bra.b _L23_6d -_L23_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L23_5d # no - bsr.l sop_sqnan # yes - bra.b _L23_6d -_L23_5d: - bsr.l sscale_sdnrm # operand is a DENORM -_L23_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fscalex_ -_fscalex_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_DST(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - lea FP_SRC(%a6),%a0 - mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src - mov.l 0x14+0x4(%a6),0x4(%a0) - mov.l 0x14+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L23_2x - bsr.l sscale_snorm # operand is a NORM - bra.b _L23_6x -_L23_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L23_3x # no - bsr.l sscale_szero # yes - bra.b _L23_6x -_L23_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L23_4x # no - bsr.l sscale_sinf # yes - bra.b _L23_6x -_L23_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L23_5x # no - bsr.l sop_sqnan # yes - bra.b _L23_6x -_L23_5x: - bsr.l sscale_sdnrm # operand is a DENORM -_L23_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# ssin(): computes the sine of a normalized input # -# ssind(): computes the sine of a denormalized input # -# scos(): computes the cosine of a normalized input # -# scosd(): computes the cosine of a denormalized input # -# ssincos(): computes the sine and cosine of a normalized input # -# ssincosd(): computes the sine and cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = sin(X) or cos(X) # -# # -# For ssincos(X): # -# fp0 = sin(X) # -# fp1 = cos(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 1 ulp in 64 significant bit, i.e. # -# within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# SIN and COS: # -# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # -# # -# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # -# # -# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 4, so in particular, k = 0,1,2,or 3. # -# Overwrite k by k := k + AdjN. # -# # -# 4. If k is even, go to 6. # -# # -# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # -# Return sgn*cos(r) where cos(r) is approximated by an # -# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # -# s = r*r. # -# Exit. # -# # -# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # -# where sin(r) is approximated by an odd polynomial in r # -# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # -# Exit. # -# # -# 7. If |X| > 1, go to 9. # -# # -# 8. (|X|<2**(-40)) If SIN is invoked, return X; # -# otherwise return 1. # -# # -# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # -# go back to 3. # -# # -# SINCOS: # -# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # -# # -# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 4, so in particular, k = 0,1,2,or 3. # -# # -# 3. If k is even, go to 5. # -# # -# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # -# j1 exclusive or with the l.s.b. of k. # -# sgn1 := (-1)**j1, sgn2 := (-1)**j2. # -# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # -# sin(r) and cos(r) are computed as odd and even # -# polynomials in r, respectively. Exit # -# # -# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # -# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # -# sin(r) and cos(r) are computed as odd and even # -# polynomials in r, respectively. Exit # -# # -# 6. If |X| > 1, go to 8. # -# # -# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # -# # -# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # -# go back to 2. # -# # -######################################################################### - -SINA7: long 0xBD6AAA77,0xCCC994F5 -SINA6: long 0x3DE61209,0x7AAE8DA1 -SINA5: long 0xBE5AE645,0x2A118AE4 -SINA4: long 0x3EC71DE3,0xA5341531 -SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 -SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 -SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 - -COSB8: long 0x3D2AC4D0,0xD6011EE3 -COSB7: long 0xBDA9396F,0x9F45AC19 -COSB6: long 0x3E21EED9,0x0612C972 -COSB5: long 0xBE927E4F,0xB79D9FCF -COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 -COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 -COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E -COSB1: long 0xBF000000 - - set INARG,FP_SCR0 - - set X,FP_SCR0 -# set XDCARE,X+2 - set XFRAC,X+4 - - set RPRIME,FP_SCR0 - set SPRIME,FP_SCR1 - - set POSNEG1,L_SCR1 - set TWOTO63,L_SCR1 - - set ENDFLAG,L_SCR2 - set INT,L_SCR2 - - set ADJN,L_SCR3 - -############################################ - global ssin -ssin: - mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 - bra.b SINBGN - -############################################ - global scos -scos: - mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 - -############################################ -SINBGN: -#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE - - fmov.x (%a0),%fp0 # LOAD INPUT - fmov.x %fp0,X(%a6) # save input at X - -# "COMPACTIFY" X - mov.l (%a0),%d1 # put exp in hi word - mov.w 4(%a0),%d1 # fetch hi(man) - and.l &0x7FFFFFFF,%d1 # strip sign - - cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? - bge.b SOK1 # no - bra.w SINSM # yes; input is very small - -SOK1: - cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? - blt.b SINMAIN # no - bra.w SREDUCEX # yes; input is very large - -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. -SINMAIN: - fmov.x %fp0,%fp1 - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER - - mov.l INT(%a6),%d1 # make a copy of N - asl.l &4,%d1 # N *= 16 - add.l %d1,%a1 # tbl_addr = a1 + (N*16) - -# A1 IS THE ADDRESS OF N*PIBY2 -# ...WHICH IS IN TWO PIECES Y1 & Y2 - fsub.x (%a1)+,%fp0 # X-Y1 - fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 - -SINCONT: -#--continuation from REDUCEX - -#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED - mov.l INT(%a6),%d1 - add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN - ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE - cmp.l %d1,&0 - blt.w COSPOLY - -#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY -#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE -#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS -#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) -#--WHERE T=S*S. -#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION -#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. -SINPOLY: - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.x %fp0,X(%a6) # X IS R - fmul.x %fp0,%fp0 # FP0 IS S - - fmov.d SINA7(%pc),%fp3 - fmov.d SINA6(%pc),%fp2 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS T - - ror.l &1,%d1 - and.l &0x80000000,%d1 -# ...LEAST SIG. BIT OF D0 IN SIGN POSITION - eor.l %d1,X(%a6) # X IS NOW R'= SGN*R - - fmul.x %fp1,%fp3 # TA7 - fmul.x %fp1,%fp2 # TA6 - - fadd.d SINA5(%pc),%fp3 # A5+TA7 - fadd.d SINA4(%pc),%fp2 # A4+TA6 - - fmul.x %fp1,%fp3 # T(A5+TA7) - fmul.x %fp1,%fp2 # T(A4+TA6) - - fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) - fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) - - fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) - - fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) - fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) - fmul.x X(%a6),%fp0 # R'*S - - fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] - - fmul.x %fp1,%fp0 # SIN(R')-R' - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.x X(%a6),%fp0 # last inst - possible exception set - bra t_inx2 - -#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY -#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE -#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS -#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) -#--WHERE T=S*S. -#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION -#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 -#--AND IS THEREFORE STORED AS SINGLE PRECISION. -COSPOLY: - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.x %fp0,%fp0 # FP0 IS S - - fmov.d COSB8(%pc),%fp2 - fmov.d COSB7(%pc),%fp3 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS T - - fmov.x %fp0,X(%a6) # X IS S - ror.l &1,%d1 - and.l &0x80000000,%d1 -# ...LEAST SIG. BIT OF D0 IN SIGN POSITION - - fmul.x %fp1,%fp2 # TB8 - - eor.l %d1,X(%a6) # X IS NOW S'= SGN*S - and.l &0x80000000,%d1 - - fmul.x %fp1,%fp3 # TB7 - - or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE - mov.l %d1,POSNEG1(%a6) - - fadd.d COSB6(%pc),%fp2 # B6+TB8 - fadd.d COSB5(%pc),%fp3 # B5+TB7 - - fmul.x %fp1,%fp2 # T(B6+TB8) - fmul.x %fp1,%fp3 # T(B5+TB7) - - fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) - fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) - - fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) - fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) - - fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) - fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) - - fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) - - fadd.x %fp1,%fp0 - - fmul.x X(%a6),%fp0 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set - bra t_inx2 - -############################################## - -# SINe: Big OR Small? -#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -#--IF |X| < 2**(-40), RETURN X OR 1. -SINBORS: - cmp.l %d1,&0x3FFF8000 - bgt.l SREDUCEX - -SINSM: - mov.l ADJN(%a6),%d1 - cmp.l %d1,&0 - bgt.b COSTINY - -# here, the operation may underflow iff the precision is sgl or dbl. -# extended denorms are handled through another entry point. -SINTINY: -# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE - - fmov.l %d0,%fpcr # restore users round mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - bra t_catch - -COSTINY: - fmov.s &0x3F800000,%fp0 # fp0 = 1.0 - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.s &0x80800000,%fp0 # last inst - possible exception set - bra t_pinx2 - -################################################ - global ssind -#--SIN(X) = X FOR DENORMALIZED X -ssind: - bra t_extdnrm - -############################################ - global scosd -#--COS(X) = 1 FOR DENORMALIZED X -scosd: - fmov.s &0x3F800000,%fp0 # fp0 = 1.0 - bra t_pinx2 - -################################################## - - global ssincos -ssincos: -#--SET ADJN TO 4 - mov.l &4,ADJN(%a6) - - fmov.x (%a0),%fp0 # LOAD INPUT - fmov.x %fp0,X(%a6) - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 # COMPACTIFY X - - cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? - bge.b SCOK1 - bra.w SCSM - -SCOK1: - cmp.l %d1,&0x4004BC7E # |X| < 15 PI? - blt.b SCMAIN - bra.w SREDUCEX - - -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. -SCMAIN: - fmov.x %fp0,%fp1 - - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER - - mov.l INT(%a6),%d1 - asl.l &4,%d1 - add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 - - fsub.x (%a1)+,%fp0 # X-Y1 - fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 - -SCCONT: -#--continuation point from REDUCEX - - mov.l INT(%a6),%d1 - ror.l &1,%d1 - cmp.l %d1,&0 # D0 < 0 IFF N IS ODD - bge.w NEVEN - -SNODD: -#--REGISTERS SAVED SO FAR: D0, A0, FP2. - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,RPRIME(%a6) - fmul.x %fp0,%fp0 # FP0 IS S = R*R - fmov.d SINA7(%pc),%fp1 # A7 - fmov.d COSB8(%pc),%fp2 # B8 - fmul.x %fp0,%fp1 # SA7 - fmul.x %fp0,%fp2 # SB8 - - mov.l %d2,-(%sp) - mov.l %d1,%d2 - ror.l &1,%d2 - and.l &0x80000000,%d2 - eor.l %d1,%d2 - and.l &0x80000000,%d2 - - fadd.d SINA6(%pc),%fp1 # A6+SA7 - fadd.d COSB7(%pc),%fp2 # B7+SB8 - - fmul.x %fp0,%fp1 # S(A6+SA7) - eor.l %d2,RPRIME(%a6) - mov.l (%sp)+,%d2 - fmul.x %fp0,%fp2 # S(B7+SB8) - ror.l &1,%d1 - and.l &0x80000000,%d1 - mov.l &0x3F800000,POSNEG1(%a6) - eor.l %d1,POSNEG1(%a6) - - fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) - fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) - - fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) - fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) - fmov.x %fp0,SPRIME(%a6) - - fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) - eor.l %d1,SPRIME(%a6) - fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) - - fmul.x %fp0,%fp1 # S(A4+...) - fmul.x %fp0,%fp2 # S(B5+...) - - fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) - fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) - - fmul.x %fp0,%fp1 # S(A3+...) - fmul.x %fp0,%fp2 # S(B4+...) - - fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) - fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) - - fmul.x %fp0,%fp1 # S(A2+...) - fmul.x %fp0,%fp2 # S(B3+...) - - fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) - fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) - - fmul.x %fp0,%fp1 # S(A1+...) - fmul.x %fp2,%fp0 # S(B2+...) - - fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) - fadd.s COSB1(%pc),%fp0 # B1+S(B2...) - fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr - fadd.x RPRIME(%a6),%fp1 # COS(X) - bsr sto_cos # store cosine result - fadd.s POSNEG1(%a6),%fp0 # SIN(X) - bra t_inx2 - -NEVEN: -#--REGISTERS SAVED SO FAR: FP2. - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,RPRIME(%a6) - fmul.x %fp0,%fp0 # FP0 IS S = R*R - - fmov.d COSB8(%pc),%fp1 # B8 - fmov.d SINA7(%pc),%fp2 # A7 - - fmul.x %fp0,%fp1 # SB8 - fmov.x %fp0,SPRIME(%a6) - fmul.x %fp0,%fp2 # SA7 - - ror.l &1,%d1 - and.l &0x80000000,%d1 - - fadd.d COSB7(%pc),%fp1 # B7+SB8 - fadd.d SINA6(%pc),%fp2 # A6+SA7 - - eor.l %d1,RPRIME(%a6) - eor.l %d1,SPRIME(%a6) - - fmul.x %fp0,%fp1 # S(B7+SB8) - - or.l &0x3F800000,%d1 - mov.l %d1,POSNEG1(%a6) - - fmul.x %fp0,%fp2 # S(A6+SA7) - - fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) - fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) - - fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) - fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) - - fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) - fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) - - fmul.x %fp0,%fp1 # S(B5+...) - fmul.x %fp0,%fp2 # S(A4+...) - - fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) - fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) - - fmul.x %fp0,%fp1 # S(B4+...) - fmul.x %fp0,%fp2 # S(A3+...) - - fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) - fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) - - fmul.x %fp0,%fp1 # S(B3+...) - fmul.x %fp0,%fp2 # S(A2+...) - - fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) - fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) - - fmul.x %fp0,%fp1 # S(B2+...) - fmul.x %fp2,%fp0 # s(a1+...) - - - fadd.s COSB1(%pc),%fp1 # B1+S(B2...) - fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) - fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr - fadd.s POSNEG1(%a6),%fp1 # COS(X) - bsr sto_cos # store cosine result - fadd.x RPRIME(%a6),%fp0 # SIN(X) - bra t_inx2 - -################################################ - -SCBORS: - cmp.l %d1,&0x3FFF8000 - bgt.w SREDUCEX - -################################################ - -SCSM: -# mov.w &0x0000,XDCARE(%a6) - fmov.s &0x3F800000,%fp1 - - fmov.l %d0,%fpcr - fsub.s &0x00800000,%fp1 - bsr sto_cos # store cosine result - fmov.l %fpcr,%d0 # d0 must have fpcr,too - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 - bra t_catch - -############################################## - - global ssincosd -#--SIN AND COS OF X FOR DENORMALIZED X -ssincosd: - mov.l %d0,-(%sp) # save d0 - fmov.s &0x3F800000,%fp1 - bsr sto_cos # store cosine result - mov.l (%sp)+,%d0 # restore d0 - bra t_extdnrm - -############################################ - -#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. -SREDUCEX: - fmovm.x &0x3c,-(%sp) # save {fp2-fp5} - mov.l %d2,-(%sp) # save d2 - fmov.s &0x00000000,%fp1 # fp1 = 0 - -#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -#--there is a danger of unwanted overflow in first LOOP iteration. In this -#--case, reduce argument by one remainder step to make subsequent reduction -#--safe. - cmp.l %d1,&0x7ffeffff # is arg dangerously large? - bne.b SLOOP # no - -# yes; create 2**16383*PI/2 - mov.w &0x7ffe,FP_SCR0_EX(%a6) - mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - -# create low half of 2**16383*PI/2 at FP_SCR1 - mov.w &0x7fdc,FP_SCR1_EX(%a6) - mov.l &0x85a308d3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - - ftest.x %fp0 # test sign of argument - fblt.w sred_neg - - or.b &0x80,FP_SCR0_EX(%a6) # positive arg - or.b &0x80,FP_SCR1_EX(%a6) -sred_neg: - fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact - fmov.x %fp0,%fp1 # save high result in fp1 - fadd.x FP_SCR1(%a6),%fp0 # low part of reduction - fsub.x %fp0,%fp1 # determine low component of result - fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. - -#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -#--integer quotient will be stored in N -#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) -SLOOP: - fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 - mov.w INARG(%a6),%d1 - mov.l %d1,%a1 # save a copy of D0 - and.l &0x00007FFF,%d1 - sub.l &0x00003FFF,%d1 # d0 = K - cmp.l %d1,&28 - ble.b SLASTLOOP -SCONTLOOP: - sub.l &27,%d1 # d0 = L := K-27 - mov.b &0,ENDFLAG(%a6) - bra.b SWORK -SLASTLOOP: - clr.l %d1 # d0 = L := 0 - mov.b &1,ENDFLAG(%a6) - -SWORK: -#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -#--2**L * (PIby2_1), 2**L * (PIby2_2) - - mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI - sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) - - mov.l &0xA2F9836E,FP_SCR0_HI(%a6) - mov.l &0x4E44152A,FP_SCR0_LO(%a6) - mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) - - fmov.x %fp0,%fp2 - fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) - -#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -#--US THE DESIRED VALUE IN FLOATING POINT. - mov.l %a1,%d2 - swap %d2 - and.l &0x80000000,%d2 - or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL - mov.l %d2,TWOTO63(%a6) - fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED - fsub.s TWOTO63(%a6),%fp2 # fp2 = N -# fint.x %fp2 - -#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - mov.l %d1,%d2 # d2 = L - - add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) - mov.w %d2,FP_SCR0_EX(%a6) - mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 - - add.l &0x00003FDD,%d1 - mov.w %d1,FP_SCR1_EX(%a6) - mov.l &0x85A308D3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 - - mov.b ENDFLAG(%a6),%d1 - -#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -#--P2 = 2**(L) * Piby2_2 - fmov.x %fp2,%fp4 # fp4 = N - fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 - fmov.x %fp2,%fp5 # fp5 = N - fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 - fmov.x %fp4,%fp3 # fp3 = W = N*P1 - -#--we want P+p = W+w but |p| <= half ulp of P -#--Then, we need to compute A := R-P and a := r-p - fadd.x %fp5,%fp3 # fp3 = P - fsub.x %fp3,%fp4 # fp4 = W-P - - fsub.x %fp3,%fp0 # fp0 = A := R - P - fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w - - fmov.x %fp0,%fp3 # fp3 = A - fsub.x %fp4,%fp1 # fp1 = a := r - p - -#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -#--|r| <= half ulp of R. - fadd.x %fp1,%fp0 # fp0 = R := A+a -#--No need to calculate r if this is the last loop - cmp.b %d1,&0 - bgt.w SRESTORE - -#--Need to calculate r - fsub.x %fp0,%fp3 # fp3 = A-R - fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a - bra.w SLOOP - -SRESTORE: - fmov.l %fp2,INT(%a6) - mov.l (%sp)+,%d2 # restore d2 - fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} - - mov.l ADJN(%a6),%d1 - cmp.l %d1,&4 - - blt.w SINCONT - bra.w SCCONT - -######################################################################### -# stan(): computes the tangent of a normalized input # -# stand(): computes the tangent of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = tan(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulp in 64 significant bit, i.e. # -# within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # -# # -# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 2, so in particular, k = 0 or 1. # -# # -# 3. If k is odd, go to 5. # -# # -# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # -# rational function U/V where # -# U = r + r*s*(P1 + s*(P2 + s*P3)), and # -# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # -# Exit. # -# # -# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # -# a rational function U/V where # -# U = r + r*s*(P1 + s*(P2 + s*P3)), and # -# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # -# -Cot(r) = -V/U. Exit. # -# # -# 6. If |X| > 1, go to 8. # -# # -# 7. (|X|<2**(-40)) Tan(X) = X. Exit. # -# # -# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # -# to 2. # -# # -######################################################################### - -TANQ4: - long 0x3EA0B759,0xF50F8688 -TANP3: - long 0xBEF2BAA5,0xA8924F04 - -TANQ3: - long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 - -TANP2: - long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 - -TANQ2: - long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 - -TANP1: - long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 - -TANQ1: - long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 - -INVTWOPI: - long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 - -TWOPI1: - long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 -TWOPI2: - long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 - -#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING -#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT -#--MOST 69 BITS LONG. -# global PITBL -PITBL: - long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 - long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 - long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 - long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 - long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 - long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 - long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 - long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 - long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 - long 0xC0040000,0x90836524,0x88034B96,0x20B00000 - long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 - long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 - long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 - long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 - long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 - long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 - long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 - long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 - long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 - long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 - long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 - long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 - long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 - long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 - long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 - long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 - long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 - long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 - long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 - long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 - long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 - long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 - long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 - long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 - long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 - long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 - long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 - long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 - long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 - long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 - long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 - long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 - long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 - long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 - long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 - long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 - long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 - long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 - long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 - long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 - long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 - long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 - long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 - long 0x40040000,0x90836524,0x88034B96,0xA0B00000 - long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 - long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 - long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 - long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 - long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 - long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 - long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 - long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 - long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 - - set INARG,FP_SCR0 - - set TWOTO63,L_SCR1 - set INT,L_SCR1 - set ENDFLAG,L_SCR2 - - global stan -stan: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? - bge.b TANOK1 - bra.w TANSM -TANOK1: - cmp.l %d1,&0x4004BC7E # |X| < 15 PI? - blt.b TANMAIN - bra.w REDUCEX - -TANMAIN: -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. - fmov.x %fp0,%fp1 - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,%d1 # CONVERT TO INTEGER - - asl.l &4,%d1 - add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 - - fsub.x (%a1)+,%fp0 # X-Y1 - - fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 - - ror.l &5,%d1 - and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 - -TANCONT: - fmovm.x &0x0c,-(%sp) # save fp2,fp3 - - cmp.l %d1,&0 - blt.w NODD - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # S = R*R - - fmov.d TANQ4(%pc),%fp3 - fmov.d TANP3(%pc),%fp2 - - fmul.x %fp1,%fp3 # SQ4 - fmul.x %fp1,%fp2 # SP3 - - fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 - fadd.x TANP2(%pc),%fp2 # P2+SP3 - - fmul.x %fp1,%fp3 # S(Q3+SQ4) - fmul.x %fp1,%fp2 # S(P2+SP3) - - fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) - fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) - - fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) - fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) - - fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) - fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) - - fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) - - fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) - - fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) - - fmovm.x (%sp)+,&0x30 # restore fp2,fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fdiv.x %fp1,%fp0 # last inst - possible exception set - bra t_inx2 - -NODD: - fmov.x %fp0,%fp1 - fmul.x %fp0,%fp0 # S = R*R - - fmov.d TANQ4(%pc),%fp3 - fmov.d TANP3(%pc),%fp2 - - fmul.x %fp0,%fp3 # SQ4 - fmul.x %fp0,%fp2 # SP3 - - fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 - fadd.x TANP2(%pc),%fp2 # P2+SP3 - - fmul.x %fp0,%fp3 # S(Q3+SQ4) - fmul.x %fp0,%fp2 # S(P2+SP3) - - fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) - fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) - - fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) - fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) - - fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) - fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) - - fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) - - fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) - fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) - - fmovm.x (%sp)+,&0x30 # restore fp2,fp3 - - fmov.x %fp1,-(%sp) - eor.l &0x80000000,(%sp) - - fmov.l %d0,%fpcr # restore users round mode,prec - fdiv.x (%sp)+,%fp0 # last inst - possible exception set - bra t_inx2 - -TANBORS: -#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -#--IF |X| < 2**(-40), RETURN X OR 1. - cmp.l %d1,&0x3FFF8000 - bgt.b REDUCEX - -TANSM: - fmov.x %fp0,-(%sp) - fmov.l %d0,%fpcr # restore users round mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%sp)+,%fp0 # last inst - posibble exception set - bra t_catch - - global stand -#--TAN(X) = X FOR DENORMALIZED X -stand: - bra t_extdnrm - -#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. -REDUCEX: - fmovm.x &0x3c,-(%sp) # save {fp2-fp5} - mov.l %d2,-(%sp) # save d2 - fmov.s &0x00000000,%fp1 # fp1 = 0 - -#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -#--there is a danger of unwanted overflow in first LOOP iteration. In this -#--case, reduce argument by one remainder step to make subsequent reduction -#--safe. - cmp.l %d1,&0x7ffeffff # is arg dangerously large? - bne.b LOOP # no - -# yes; create 2**16383*PI/2 - mov.w &0x7ffe,FP_SCR0_EX(%a6) - mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - -# create low half of 2**16383*PI/2 at FP_SCR1 - mov.w &0x7fdc,FP_SCR1_EX(%a6) - mov.l &0x85a308d3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - - ftest.x %fp0 # test sign of argument - fblt.w red_neg - - or.b &0x80,FP_SCR0_EX(%a6) # positive arg - or.b &0x80,FP_SCR1_EX(%a6) -red_neg: - fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact - fmov.x %fp0,%fp1 # save high result in fp1 - fadd.x FP_SCR1(%a6),%fp0 # low part of reduction - fsub.x %fp0,%fp1 # determine low component of result - fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. - -#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -#--integer quotient will be stored in N -#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) -LOOP: - fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 - mov.w INARG(%a6),%d1 - mov.l %d1,%a1 # save a copy of D0 - and.l &0x00007FFF,%d1 - sub.l &0x00003FFF,%d1 # d0 = K - cmp.l %d1,&28 - ble.b LASTLOOP -CONTLOOP: - sub.l &27,%d1 # d0 = L := K-27 - mov.b &0,ENDFLAG(%a6) - bra.b WORK -LASTLOOP: - clr.l %d1 # d0 = L := 0 - mov.b &1,ENDFLAG(%a6) - -WORK: -#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -#--2**L * (PIby2_1), 2**L * (PIby2_2) - - mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI - sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) - - mov.l &0xA2F9836E,FP_SCR0_HI(%a6) - mov.l &0x4E44152A,FP_SCR0_LO(%a6) - mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) - - fmov.x %fp0,%fp2 - fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) - -#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -#--US THE DESIRED VALUE IN FLOATING POINT. - mov.l %a1,%d2 - swap %d2 - and.l &0x80000000,%d2 - or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL - mov.l %d2,TWOTO63(%a6) - fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED - fsub.s TWOTO63(%a6),%fp2 # fp2 = N -# fintrz.x %fp2,%fp2 - -#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - mov.l %d1,%d2 # d2 = L - - add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) - mov.w %d2,FP_SCR0_EX(%a6) - mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 - - add.l &0x00003FDD,%d1 - mov.w %d1,FP_SCR1_EX(%a6) - mov.l &0x85A308D3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 - - mov.b ENDFLAG(%a6),%d1 - -#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -#--P2 = 2**(L) * Piby2_2 - fmov.x %fp2,%fp4 # fp4 = N - fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 - fmov.x %fp2,%fp5 # fp5 = N - fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 - fmov.x %fp4,%fp3 # fp3 = W = N*P1 - -#--we want P+p = W+w but |p| <= half ulp of P -#--Then, we need to compute A := R-P and a := r-p - fadd.x %fp5,%fp3 # fp3 = P - fsub.x %fp3,%fp4 # fp4 = W-P - - fsub.x %fp3,%fp0 # fp0 = A := R - P - fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w - - fmov.x %fp0,%fp3 # fp3 = A - fsub.x %fp4,%fp1 # fp1 = a := r - p - -#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -#--|r| <= half ulp of R. - fadd.x %fp1,%fp0 # fp0 = R := A+a -#--No need to calculate r if this is the last loop - cmp.b %d1,&0 - bgt.w RESTORE - -#--Need to calculate r - fsub.x %fp0,%fp3 # fp3 = A-R - fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a - bra.w LOOP - -RESTORE: - fmov.l %fp2,INT(%a6) - mov.l (%sp)+,%d2 # restore d2 - fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} - - mov.l INT(%a6),%d1 - ror.l &1,%d1 - - bra.w TANCONT - -######################################################################### -# satan(): computes the arctangent of a normalized number # -# satand(): computes the arctangent of a denormalized number # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arctan(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # -# # -# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # -# Note that k = -4, -3,..., or 3. # -# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # -# significant bits of X with a bit-1 attached at the 6-th # -# bit position. Define u to be u = (X-F) / (1 + X*F). # -# # -# Step 3. Approximate arctan(u) by a polynomial poly. # -# # -# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # -# table of values calculated beforehand. Exit. # -# # -# Step 5. If |X| >= 16, go to Step 7. # -# # -# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # -# # -# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # -# polynomial in X'. # -# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # -# # -######################################################################### - -ATANA3: long 0xBFF6687E,0x314987D8 -ATANA2: long 0x4002AC69,0x34A26DB3 -ATANA1: long 0xBFC2476F,0x4E1DA28E - -ATANB6: long 0x3FB34444,0x7F876989 -ATANB5: long 0xBFB744EE,0x7FAF45DB -ATANB4: long 0x3FBC71C6,0x46940220 -ATANB3: long 0xBFC24924,0x921872F9 -ATANB2: long 0x3FC99999,0x99998FA9 -ATANB1: long 0xBFD55555,0x55555555 - -ATANC5: long 0xBFB70BF3,0x98539E6A -ATANC4: long 0x3FBC7187,0x962D1D7D -ATANC3: long 0xBFC24924,0x827107B8 -ATANC2: long 0x3FC99999,0x9996263E -ATANC1: long 0xBFD55555,0x55555536 - -PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 -NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 -NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 - -ATANTBL: - long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 - long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 - long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 - long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 - long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 - long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 - long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 - long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 - long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 - long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 - long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 - long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 - long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 - long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 - long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 - long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 - long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 - long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 - long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 - long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 - long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 - long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 - long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 - long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 - long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 - long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 - long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 - long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 - long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 - long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 - long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 - long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 - long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 - long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 - long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 - long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 - long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 - long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 - long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 - long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 - long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 - long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 - long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 - long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 - long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 - long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 - long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 - long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 - long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 - long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 - long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 - long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 - long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 - long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 - long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 - long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 - long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 - long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 - long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 - long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 - long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 - long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 - long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 - long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 - long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 - long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 - long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 - long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 - long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 - long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 - long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 - long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 - long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 - long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 - long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 - long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 - long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 - long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 - long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 - long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 - long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 - long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 - long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 - long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 - long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 - long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 - long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 - long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 - long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 - long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 - long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 - long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 - long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 - long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 - long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 - long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 - long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 - long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 - long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 - long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 - long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 - long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 - long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 - long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 - long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 - long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 - long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 - long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 - long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 - long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 - long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 - long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 - long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 - long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 - long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 - long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 - long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 - long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 - long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 - long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 - long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 - long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 - long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 - long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 - long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 - long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 - long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 - long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - set XFRACLO,X+8 - - set ATANF,FP_SCR1 - set ATANFHI,ATANF+4 - set ATANFLO,ATANF+8 - - global satan -#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -satan: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? - bge.b ATANOK1 - bra.w ATANSM - -ATANOK1: - cmp.l %d1,&0x4002FFFF # |X| < 16 ? - ble.b ATANMAIN - bra.w ATANBIG - -#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE -#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). -#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN -#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE -#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS -#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR -#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO -#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE -#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL -#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE -#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION -#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION -#--WILL INVOLVE A VERY LONG POLYNOMIAL. - -#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS -#--WE CHOSE F TO BE +-2^K * 1.BBBB1 -#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE -#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE -#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS -#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). - -ATANMAIN: - - and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS - or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 - mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F - - fmov.x %fp0,%fp1 # FP1 IS X - fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 - fsub.x X(%a6),%fp0 # FP0 IS X-F - fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F - fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) - -#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) -#--CREATE ATAN(F) AND STORE IT IN ATANF, AND -#--SAVE REGISTERS FP2. - - mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY - mov.l %d1,%d2 # THE EXP AND 16 BITS OF X - and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION - and.l &0x7FFF0000,%d2 # EXPONENT OF F - sub.l &0x3FFB0000,%d2 # K+4 - asr.l &1,%d2 - add.l %d2,%d1 # THE 7 BITS IDENTIFYING F - asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) - lea ATANTBL(%pc),%a1 - add.l %d1,%a1 # ADDRESS OF ATAN(|F|) - mov.l (%a1)+,ATANF(%a6) - mov.l (%a1)+,ATANFHI(%a6) - mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) - mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN - and.l &0x80000000,%d1 # SIGN(F) - or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) - mov.l (%sp)+,%d2 # RESTORE d2 - -#--THAT'S ALL I HAVE TO DO FOR NOW, -#--BUT ALAS, THE DIVIDE IS STILL CRANKING! - -#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS -#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U -#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. -#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) -#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. -#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT -#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED - - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 - fmov.d ATANA3(%pc),%fp2 - fadd.x %fp1,%fp2 # A3+V - fmul.x %fp1,%fp2 # V*(A3+V) - fmul.x %fp0,%fp1 # U*V - fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) - fmul.d ATANA1(%pc),%fp1 # A1*U*V - fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) - fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - fadd.x ATANF(%a6),%fp0 # ATAN(X) - bra t_inx2 - -ATANBORS: -#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. -#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. - cmp.l %d1,&0x3FFF8000 - bgt.w ATANBIG # I.E. |X| >= 16 - -ATANSM: -#--|X| <= 1/16 -#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE -#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) -#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) -#--WHERE Y = X*X, AND Z = Y*Y. - - cmp.l %d1,&0x3FD78000 - blt.w ATANTINY - -#--COMPUTE POLYNOMIAL - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.x %fp0,%fp0 # FPO IS Y = X*X - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y - - fmov.d ATANB6(%pc),%fp2 - fmov.d ATANB5(%pc),%fp3 - - fmul.x %fp1,%fp2 # Z*B6 - fmul.x %fp1,%fp3 # Z*B5 - - fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 - fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 - - fmul.x %fp1,%fp2 # Z*(B4+Z*B6) - fmul.x %fp3,%fp1 # Z*(B3+Z*B5) - - fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) - fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) - - fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) - fmul.x X(%a6),%fp0 # X*Y - - fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] - - fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - fadd.x X(%a6),%fp0 - bra t_inx2 - -ATANTINY: -#--|X| < 2^(-40), ATAN(X) = X - - fmov.l %d0,%fpcr # restore users rnd mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - - bra t_catch - -ATANBIG: -#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, -#--RETURN SIGN(X)*PI/2 + ATAN(-1/X). - cmp.l %d1,&0x40638000 - bgt.w ATANHUGE - -#--APPROXIMATE ATAN(-1/X) BY -#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' -#--THIS CAN BE RE-WRITTEN AS -#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. - - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.s &0xBF800000,%fp1 # LOAD -1 - fdiv.x %fp0,%fp1 # FP1 IS -1/X - -#--DIVIDE IS STILL CRANKING - - fmov.x %fp1,%fp0 # FP0 IS X' - fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' - fmov.x %fp1,X(%a6) # X IS REALLY X' - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y - - fmov.d ATANC5(%pc),%fp3 - fmov.d ATANC4(%pc),%fp2 - - fmul.x %fp1,%fp3 # Z*C5 - fmul.x %fp1,%fp2 # Z*B4 - - fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 - fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 - - fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED - fmul.x %fp0,%fp2 # Y*(C2+Z*C4) - - fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) - fmul.x X(%a6),%fp0 # X'*Y - - fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] - - fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] -# ... +[Y*(B2+Z*(B4+Z*B6))]) - fadd.x X(%a6),%fp0 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - tst.b (%a0) - bpl.b pos_big - -neg_big: - fadd.x NPIBY2(%pc),%fp0 - bra t_minx2 - -pos_big: - fadd.x PPIBY2(%pc),%fp0 - bra t_pinx2 - -ATANHUGE: -#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY - tst.b (%a0) - bpl.b pos_huge - -neg_huge: - fmov.x NPIBY2(%pc),%fp0 - fmov.l %d0,%fpcr - fadd.x PTINY(%pc),%fp0 - bra t_minx2 - -pos_huge: - fmov.x PPIBY2(%pc),%fp0 - fmov.l %d0,%fpcr - fadd.x NTINY(%pc),%fp0 - bra t_pinx2 - - global satand -#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT -satand: - bra t_extdnrm - -######################################################################### -# sasin(): computes the inverse sine of a normalized input # -# sasind(): computes the inverse sine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arcsin(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ASIN # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate asin(X) by # -# z := sqrt( [1-X][1+X] ) # -# asin(X) = atan( x / z ). # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global sasin -sasin: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ASINBIG - -# This catch is added here for the '060 QSP. Originally, the call to -# satan() would handle this case by causing the exception which would -# not be caught until gen_except(). Now, with the exceptions being -# detected inside of satan(), the exception would have been handled there -# instead of inside sasin() as expected. - cmp.l %d1,&0x3FD78000 - blt.w ASINTINY - -#--THIS IS THE USUAL CASE, |X| < 1 -#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) - -ASINMAIN: - fmov.s &0x3F800000,%fp1 - fsub.x %fp0,%fp1 # 1-X - fmovm.x &0x4,-(%sp) # {fp2} - fmov.s &0x3F800000,%fp2 - fadd.x %fp0,%fp2 # 1+X - fmul.x %fp2,%fp1 # (1+X)(1-X) - fmovm.x (%sp)+,&0x20 # {fp2} - fsqrt.x %fp1 # SQRT([1-X][1+X]) - fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) - fmovm.x &0x01,-(%sp) # save X/SQRT(...) - lea (%sp),%a0 # pass ptr to X/SQRT(...) - bsr satan - add.l &0xc,%sp # clear X/SQRT(...) from stack - bra t_inx2 - -ASINBIG: - fabs.x %fp0 # |X| - fcmp.s %fp0,&0x3F800000 - fbgt t_operr # cause an operr exception - -#--|X| = 1, ASIN(X) = +- PI/2. -ASINONE: - fmov.x PIBY2(%pc),%fp0 - mov.l (%a0),%d1 - and.l &0x80000000,%d1 # SIGN BIT OF X - or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT - mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT - fmov.l %d0,%fpcr - fmul.s (%sp)+,%fp0 - bra t_inx2 - -#--|X| < 2^(-40), ATAN(X) = X -ASINTINY: - fmov.l %d0,%fpcr # restore users rnd mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%a0),%fp0 # last inst - possible exception - bra t_catch - - global sasind -#--ASIN(X) = X FOR DENORMALIZED X -sasind: - bra t_extdnrm - -######################################################################### -# sacos(): computes the inverse cosine of a normalized input # -# sacosd(): computes the inverse cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arccos(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ACOS # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate acos(X) by # -# z := (1-X) / (1+X) # -# acos(X) = 2 * atan( sqrt(z) ). # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global sacos -sacos: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 # pack exp w/ upper 16 fraction - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ACOSBIG - -#--THIS IS THE USUAL CASE, |X| < 1 -#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) - -ACOSMAIN: - fmov.s &0x3F800000,%fp1 - fadd.x %fp0,%fp1 # 1+X - fneg.x %fp0 # -X - fadd.s &0x3F800000,%fp0 # 1-X - fdiv.x %fp1,%fp0 # (1-X)/(1+X) - fsqrt.x %fp0 # SQRT((1-X)/(1+X)) - mov.l %d0,-(%sp) # save original users fpcr - clr.l %d0 - fmovm.x &0x01,-(%sp) # save SQRT(...) to stack - lea (%sp),%a0 # pass ptr to sqrt - bsr satan # ATAN(SQRT([1-X]/[1+X])) - add.l &0xc,%sp # clear SQRT(...) from stack - - fmov.l (%sp)+,%fpcr # restore users round prec,mode - fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) - bra t_pinx2 - -ACOSBIG: - fabs.x %fp0 - fcmp.s %fp0,&0x3F800000 - fbgt t_operr # cause an operr exception - -#--|X| = 1, ACOS(X) = 0 OR PI - tst.b (%a0) # is X positive or negative? - bpl.b ACOSP1 - -#--X = -1 -#Returns PI and inexact exception -ACOSM1: - fmov.x PI(%pc),%fp0 # load PI - fmov.l %d0,%fpcr # load round mode,prec - fadd.s &0x00800000,%fp0 # add a small value - bra t_pinx2 - -ACOSP1: - bra ld_pzero # answer is positive zero - - global sacosd -#--ACOS(X) = PI/2 FOR DENORMALIZED X -sacosd: - fmov.l %d0,%fpcr # load user's rnd mode/prec - fmov.x PIBY2(%pc),%fp0 - bra t_pinx2 - -######################################################################### -# setox(): computes the exponential for a normalized input # -# setoxd(): computes the exponential for a denormalized input # -# setoxm1(): computes the exponential minus 1 for a normalized input # -# setoxm1d(): computes the exponential minus 1 for a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = exp(X) or exp(X)-1 # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 0.85 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM and IMPLEMENTATION **************************************** # -# # -# setoxd # -# ------ # -# Step 1. Set ans := 1.0 # -# # -# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # -# Notes: This will always generate one exception -- inexact. # -# # -# # -# setox # -# ----- # -# # -# Step 1. Filter out extreme cases of input argument. # -# 1.1 If |X| >= 2^(-65), go to Step 1.3. # -# 1.2 Go to Step 7. # -# 1.3 If |X| < 16380 log(2), go to Step 2. # -# 1.4 Go to Step 8. # -# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# -# To avoid the use of floating-point comparisons, a # -# compact representation of |X| is used. This format is a # -# 32-bit integer, the upper (more significant) 16 bits # -# are the sign and biased exponent field of |X|; the # -# lower 16 bits are the 16 most significant fraction # -# (including the explicit bit) bits of |X|. Consequently, # -# the comparisons in Steps 1.1 and 1.3 can be performed # -# by integer comparison. Note also that the constant # -# 16380 log(2) used in Step 1.3 is also in the compact # -# form. Thus taking the branch to Step 2 guarantees # -# |X| < 16380 log(2). There is no harm to have a small # -# number of cases where |X| is less than, but close to, # -# 16380 log(2) and the branch to Step 9 is taken. # -# # -# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # -# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # -# was taken) # -# 2.2 N := round-to-nearest-integer( X * 64/log2 ). # -# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # -# or 63. # -# 2.4 Calculate M = (N - J)/64; so N = 64M + J. # -# 2.5 Calculate the address of the stored value of # -# 2^(J/64). # -# 2.6 Create the value Scale = 2^M. # -# Notes: The calculation in 2.2 is really performed by # -# Z := X * constant # -# N := round-to-nearest-integer(Z) # -# where # -# constant := single-precision( 64/log 2 ). # -# # -# Using a single-precision constant avoids memory # -# access. Another effect of using a single-precision # -# "constant" is that the calculated value Z is # -# # -# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # -# # -# This error has to be considered later in Steps 3 and 4. # -# # -# Step 3. Calculate X - N*log2/64. # -# 3.1 R := X + N*L1, # -# where L1 := single-precision(-log2/64). # -# 3.2 R := R + N*L2, # -# L2 := extended-precision(-log2/64 - L1).# -# Notes: a) The way L1 and L2 are chosen ensures L1+L2 # -# approximate the value -log2/64 to 88 bits of accuracy. # -# b) N*L1 is exact because N is no longer than 22 bits # -# and L1 is no longer than 24 bits. # -# c) The calculation X+N*L1 is also exact due to # -# cancellation. Thus, R is practically X+N(L1+L2) to full # -# 64 bits. # -# d) It is important to estimate how large can |R| be # -# after Step 3.2. # -# # -# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # -# X*64/log2 (1+eps) = N + f, |f| <= 0.5 # -# X*64/log2 - N = f - eps*X 64/log2 # -# X - N*log2/64 = f*log2/64 - eps*X # -# # -# # -# Now |X| <= 16446 log2, thus # -# # -# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # -# <= 0.57 log2/64. # -# This bound will be used in Step 4. # -# # -# Step 4. Approximate exp(R)-1 by a polynomial # -# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: A1 (which is 1/2), A4 # -# and A5 are single precision; A2 and A3 are double # -# precision. # -# b) Even with the restrictions above, # -# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # -# Note that 0.0062 is slightly bigger than 0.57 log2/64. # -# c) To fully utilize the pipeline, p is separated into # -# two independent pieces of roughly equal complexities # -# p = [ R + R*S*(A2 + S*A4) ] + # -# [ S*(A1 + S*(A3 + S*A5)) ] # -# where S = R*R. # -# # -# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # -# ans := T + ( T*p + t) # -# where T and t are the stored values for 2^(J/64). # -# Notes: 2^(J/64) is stored as T and t where T+t approximates # -# 2^(J/64) to roughly 85 bits; T is in extended precision # -# and t is in single precision. Note also that T is # -# rounded to 62 bits so that the last two bits of T are # -# zero. The reason for such a special form is that T-1, # -# T-2, and T-8 will all be exact --- a property that will # -# give much more accurate computation of the function # -# EXPM1. # -# # -# Step 6. Reconstruction of exp(X) # -# exp(X) = 2^M * 2^(J/64) * exp(R). # -# 6.1 If AdjFlag = 0, go to 6.3 # -# 6.2 ans := ans * AdjScale # -# 6.3 Restore the user FPCR # -# 6.4 Return ans := ans * Scale. Exit. # -# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # -# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # -# neither overflow nor underflow. If AdjFlag = 1, that # -# means that # -# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # -# Hence, exp(X) may overflow or underflow or neither. # -# When that is the case, AdjScale = 2^(M1) where M1 is # -# approximately M. Thus 6.2 will never cause # -# over/underflow. Possible exception in 6.4 is overflow # -# or underflow. The inexact exception is not generated in # -# 6.4. Although one can argue that the inexact flag # -# should always be raised, to simulate that exception # -# cost to much than the flag is worth in practical uses. # -# # -# Step 7. Return 1 + X. # -# 7.1 ans := X # -# 7.2 Restore user FPCR. # -# 7.3 Return ans := 1 + ans. Exit # -# Notes: For non-zero X, the inexact exception will always be # -# raised by 7.3. That is the only exception raised by 7.3.# -# Note also that we use the FMOVEM instruction to move X # -# in Step 7.1 to avoid unnecessary trapping. (Although # -# the FMOVEM may not seem relevant since X is normalized, # -# the precaution will be useful in the library version of # -# this code where the separate entry for denormalized # -# inputs will be done away with.) # -# # -# Step 8. Handle exp(X) where |X| >= 16380log2. # -# 8.1 If |X| > 16480 log2, go to Step 9. # -# (mimic 2.2 - 2.6) # -# 8.2 N := round-to-integer( X * 64/log2 ) # -# 8.3 Calculate J = N mod 64, J = 0,1,...,63 # -# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # -# AdjFlag := 1. # -# 8.5 Calculate the address of the stored value # -# 2^(J/64). # -# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # -# 8.7 Go to Step 3. # -# Notes: Refer to notes for 2.2 - 2.6. # -# # -# Step 9. Handle exp(X), |X| > 16480 log2. # -# 9.1 If X < 0, go to 9.3 # -# 9.2 ans := Huge, go to 9.4 # -# 9.3 ans := Tiny. # -# 9.4 Restore user FPCR. # -# 9.5 Return ans := ans * ans. Exit. # -# Notes: Exp(X) will surely overflow or underflow, depending on # -# X's sign. "Huge" and "Tiny" are respectively large/tiny # -# extended-precision numbers whose square over/underflow # -# with an inexact result. Thus, 9.5 always raises the # -# inexact together with either overflow or underflow. # -# # -# setoxm1d # -# -------- # -# # -# Step 1. Set ans := 0 # -# # -# Step 2. Return ans := X + ans. Exit. # -# Notes: This will return X with the appropriate rounding # -# precision prescribed by the user FPCR. # -# # -# setoxm1 # -# ------- # -# # -# Step 1. Check |X| # -# 1.1 If |X| >= 1/4, go to Step 1.3. # -# 1.2 Go to Step 7. # -# 1.3 If |X| < 70 log(2), go to Step 2. # -# 1.4 Go to Step 10. # -# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# -# However, it is conceivable |X| can be small very often # -# because EXPM1 is intended to evaluate exp(X)-1 # -# accurately when |X| is small. For further details on # -# the comparisons, see the notes on Step 1 of setox. # -# # -# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # -# 2.1 N := round-to-nearest-integer( X * 64/log2 ). # -# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # -# or 63. # -# 2.3 Calculate M = (N - J)/64; so N = 64M + J. # -# 2.4 Calculate the address of the stored value of # -# 2^(J/64). # -# 2.5 Create the values Sc = 2^M and # -# OnebySc := -2^(-M). # -# Notes: See the notes on Step 2 of setox. # -# # -# Step 3. Calculate X - N*log2/64. # -# 3.1 R := X + N*L1, # -# where L1 := single-precision(-log2/64). # -# 3.2 R := R + N*L2, # -# L2 := extended-precision(-log2/64 - L1).# -# Notes: Applying the analysis of Step 3 of setox in this case # -# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # -# this case). # -# # -# Step 4. Approximate exp(R)-1 by a polynomial # -# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: A1 (which is 1/2), A5 # -# and A6 are single precision; A2, A3 and A4 are double # -# precision. # -# b) Even with the restriction above, # -# |p - (exp(R)-1)| < |R| * 2^(-72.7) # -# for all |R| <= 0.0055. # -# c) To fully utilize the pipeline, p is separated into # -# two independent pieces of roughly equal complexity # -# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # -# [ R + S*(A1 + S*(A3 + S*A5)) ] # -# where S = R*R. # -# # -# Step 5. Compute 2^(J/64)*p by # -# p := T*p # -# where T and t are the stored values for 2^(J/64). # -# Notes: 2^(J/64) is stored as T and t where T+t approximates # -# 2^(J/64) to roughly 85 bits; T is in extended precision # -# and t is in single precision. Note also that T is # -# rounded to 62 bits so that the last two bits of T are # -# zero. The reason for such a special form is that T-1, # -# T-2, and T-8 will all be exact --- a property that will # -# be exploited in Step 6 below. The total relative error # -# in p is no bigger than 2^(-67.7) compared to the final # -# result. # -# # -# Step 6. Reconstruction of exp(X)-1 # -# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # -# 6.1 If M <= 63, go to Step 6.3. # -# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # -# 6.3 If M >= -3, go to 6.5. # -# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # -# 6.5 ans := (T + OnebySc) + (p + t). # -# 6.6 Restore user FPCR. # -# 6.7 Return ans := Sc * ans. Exit. # -# Notes: The various arrangements of the expressions give # -# accurate evaluations. # -# # -# Step 7. exp(X)-1 for |X| < 1/4. # -# 7.1 If |X| >= 2^(-65), go to Step 9. # -# 7.2 Go to Step 8. # -# # -# Step 8. Calculate exp(X)-1, |X| < 2^(-65). # -# 8.1 If |X| < 2^(-16312), goto 8.3 # -# 8.2 Restore FPCR; return ans := X - 2^(-16382). # -# Exit. # -# 8.3 X := X * 2^(140). # -# 8.4 Restore FPCR; ans := ans - 2^(-16382). # -# Return ans := ans*2^(140). Exit # -# Notes: The idea is to return "X - tiny" under the user # -# precision and rounding modes. To avoid unnecessary # -# inefficiency, we stay away from denormalized numbers # -# the best we can. For |X| >= 2^(-16312), the # -# straightforward 8.2 generates the inexact exception as # -# the case warrants. # -# # -# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # -# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: B1 (which is 1/2), B9 # -# to B12 are single precision; B3 to B8 are double # -# precision; and B2 is double extended. # -# b) Even with the restriction above, # -# |p - (exp(X)-1)| < |X| 2^(-70.6) # -# for all |X| <= 0.251. # -# Note that 0.251 is slightly bigger than 1/4. # -# c) To fully preserve accuracy, the polynomial is # -# computed as # -# X + ( S*B1 + Q ) where S = X*X and # -# Q = X*S*(B2 + X*(B3 + ... + X*B12)) # -# d) To fully utilize the pipeline, Q is separated into # -# two independent pieces of roughly equal complexity # -# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # -# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # -# # -# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # -# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # -# practical purposes. Therefore, go to Step 1 of setox. # -# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # -# purposes. # -# ans := -1 # -# Restore user FPCR # -# Return ans := ans + 2^(-126). Exit. # -# Notes: 10.2 will always create an inexact and return -1 + tiny # -# in the user rounding precision and mode. # -# # -######################################################################### - -L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 - -EEXPA3: long 0x3FA55555,0x55554CC1 -EEXPA2: long 0x3FC55555,0x55554A54 - -EM1A4: long 0x3F811111,0x11174385 -EM1A3: long 0x3FA55555,0x55554F5A - -EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 - -EM1B8: long 0x3EC71DE3,0xA5774682 -EM1B7: long 0x3EFA01A0,0x19D7CB68 - -EM1B6: long 0x3F2A01A0,0x1A019DF3 -EM1B5: long 0x3F56C16C,0x16C170E2 - -EM1B4: long 0x3F811111,0x11111111 -EM1B3: long 0x3FA55555,0x55555555 - -EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB - long 0x00000000 - -TWO140: long 0x48B00000,0x00000000 -TWON140: - long 0x37300000,0x00000000 - -EEXPTBL: - long 0x3FFF0000,0x80000000,0x00000000,0x00000000 - long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B - long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 - long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 - long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C - long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F - long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 - long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF - long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF - long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA - long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 - long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 - long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 - long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 - long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D - long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 - long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD - long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 - long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 - long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D - long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 - long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C - long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 - long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 - long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 - long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA - long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A - long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC - long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC - long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 - long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 - long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A - long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 - long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 - long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC - long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 - long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 - long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 - long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 - long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B - long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 - long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E - long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 - long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D - long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 - long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C - long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 - long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 - long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F - long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F - long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 - long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 - long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B - long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 - long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A - long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 - long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 - long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B - long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 - long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 - long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 - long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 - long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 - long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A - - set ADJFLAG,L_SCR2 - set SCALE,FP_SCR0 - set ADJSCALE,FP_SCR1 - set SC,FP_SCR0 - set ONEBYSC,FP_SCR1 - - global setox -setox: -#--entry point for EXP(X), here X is finite, non-zero, and not NaN's - -#--Step 1. - mov.l (%a0),%d1 # load part of input X - and.l &0x7FFF0000,%d1 # biased expo. of X - cmp.l %d1,&0x3FBE0000 # 2^(-65) - bge.b EXPC1 # normal case - bra EXPSM - -EXPC1: -#--The case |X| >= 2^(-65) - mov.w 4(%a0),%d1 # expo. and partial sig. of |X| - cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits - blt.b EXPMAIN # normal case - bra EEXPBIG - -EXPMAIN: -#--Step 2. -#--This is the normal branch: 2^(-65) <= |X| < 16380 log2. - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - mov.l &0,ADJFLAG(%a6) - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M) - mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB - -EXPCONT1: -#--Step 3. -#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) - fmov.x %fp0,%fp2 - fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) - fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 - fadd.x %fp1,%fp0 # X + N*L1 - fadd.x %fp2,%fp0 # fp0 is R, reduced arg. - -#--Step 4. -#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) -#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # fp1 IS S = R*R - - fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 - - fmul.x %fp1,%fp2 # fp2 IS S*A5 - fmov.x %fp1,%fp3 - fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 - - fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 - fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 - - fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) - mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended - mov.l &0x80000000,SCALE+4(%a6) - clr.l SCALE+8(%a6) - - fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) - - fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) - fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) - - fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) - fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), - - fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) - fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 - -#--Step 5 -#--final reconstruction process -#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) - - fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - fadd.s (%a1),%fp0 # accurate 2^(J/64) - - fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... - mov.l ADJFLAG(%a6),%d1 - -#--Step 6 - tst.l %d1 - beq.b NORMAL -ADJUST: - fmul.x ADJSCALE(%a6),%fp0 -NORMAL: - fmov.l %d0,%fpcr # restore user FPCR - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x SCALE(%a6),%fp0 # multiply 2^(M) - bra t_catch - -EXPSM: -#--Step 7 - fmovm.x (%a0),&0x80 # load X - fmov.l %d0,%fpcr - fadd.s &0x3F800000,%fp0 # 1+X in user mode - bra t_pinx2 - -EEXPBIG: -#--Step 8 - cmp.l %d1,&0x400CB27C # 16480 log2 - bgt.b EXP2BIG -#--Steps 8.2 -- 8.6 - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - mov.l &1,ADJFLAG(%a6) - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is K - mov.l %d1,L_SCR1(%a6) # save K temporarily - asr.l &1,%d1 # D0 is M1 - sub.l %d1,L_SCR1(%a6) # a1 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M1) - mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) - mov.l &0x80000000,ADJSCALE+4(%a6) - clr.l ADJSCALE+8(%a6) - mov.l L_SCR1(%a6),%d1 # D0 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M) - bra.w EXPCONT1 # go back to Step 3 - -EXP2BIG: -#--Step 9 - tst.b (%a0) # is X positive or negative? - bmi t_unfl2 - bra t_ovfl2 - - global setoxd -setoxd: -#--entry point for EXP(X), X is denormalized - mov.l (%a0),-(%sp) - andi.l &0x80000000,(%sp) - ori.l &0x00800000,(%sp) # sign(X)*2^(-126) - - fmov.s &0x3F800000,%fp0 - - fmov.l %d0,%fpcr - fadd.s (%sp)+,%fp0 - bra t_pinx2 - - global setoxm1 -setoxm1: -#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN - -#--Step 1. -#--Step 1.1 - mov.l (%a0),%d1 # load part of input X - and.l &0x7FFF0000,%d1 # biased expo. of X - cmp.l %d1,&0x3FFD0000 # 1/4 - bge.b EM1CON1 # |X| >= 1/4 - bra EM1SM - -EM1CON1: -#--Step 1.3 -#--The case |X| >= 1/4 - mov.w 4(%a0),%d1 # expo. and partial sig. of |X| - cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits - ble.b EM1MAIN # 1/4 <= |X| <= 70log2 - bra EM1BIG - -EM1MAIN: -#--Step 2. -#--This is the case: 1/4 <= |X| <= 70 log2. - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is M - mov.l %d1,L_SCR1(%a6) # save a copy of M - -#--Step 3. -#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -#--a0 points to 2^(J/64), D0 and a1 both contain M - fmov.x %fp0,%fp2 - fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) - fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 - fadd.x %fp1,%fp0 # X + N*L1 - fadd.x %fp2,%fp0 # fp0 is R, reduced arg. - add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M - -#--Step 4. -#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) -#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # fp1 IS S = R*R - - fmov.s &0x3950097B,%fp2 # fp2 IS a6 - - fmul.x %fp1,%fp2 # fp2 IS S*A6 - fmov.x %fp1,%fp3 - fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 - - fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 - fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 - mov.w %d1,SC(%a6) # SC is 2^(M) in extended - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - - fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) - mov.l L_SCR1(%a6),%d1 # D0 is M - neg.w %d1 # D0 is -M - fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) - add.w &0x3FFF,%d1 # biased expo. of 2^(-M) - fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) - fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) - - fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) - or.w &0x8000,%d1 # signed/expo. of -2^(-M) - mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) - mov.l &0x80000000,ONEBYSC+4(%a6) - clr.l ONEBYSC+8(%a6) - fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) - - fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) - fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) - - fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 - - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - -#--Step 5 -#--Compute 2^(J/64)*p - - fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) - -#--Step 6 -#--Step 6.1 - mov.l L_SCR1(%a6),%d1 # retrieve M - cmp.l %d1,&63 - ble.b MLE63 -#--Step 6.2 M >= 64 - fmov.s 12(%a1),%fp1 # fp1 is t - fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc - fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released - fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) - bra EM1SCALE -MLE63: -#--Step 6.3 M <= 63 - cmp.l %d1,&-3 - bge.b MGEN3 -MLTN3: -#--Step 6.4 M <= -4 - fadd.s 12(%a1),%fp0 # p+t - fadd.x (%a1),%fp0 # T+(p+t) - fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) - bra EM1SCALE -MGEN3: -#--Step 6.5 -3 <= M <= 63 - fmov.x (%a1)+,%fp1 # fp1 is T - fadd.s (%a1),%fp0 # fp0 is p+t - fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc - fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) - -EM1SCALE: -#--Step 6.6 - fmov.l %d0,%fpcr - fmul.x SC(%a6),%fp0 - bra t_inx2 - -EM1SM: -#--Step 7 |X| < 1/4. - cmp.l %d1,&0x3FBE0000 # 2^(-65) - bge.b EM1POLY - -EM1TINY: -#--Step 8 |X| < 2^(-65) - cmp.l %d1,&0x00330000 # 2^(-16312) - blt.b EM12TINY -#--Step 8.2 - mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - fmov.x (%a0),%fp0 - fmov.l %d0,%fpcr - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x SC(%a6),%fp0 - bra t_catch - -EM12TINY: -#--Step 8.3 - fmov.x (%a0),%fp0 - fmul.d TWO140(%pc),%fp0 - mov.l &0x80010000,SC(%a6) - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - fadd.x SC(%a6),%fp0 - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.d TWON140(%pc),%fp0 - bra t_catch - -EM1POLY: -#--Step 9 exp(X)-1 by a simple polynomial - fmov.x (%a0),%fp0 # fp0 is X - fmul.x %fp0,%fp0 # fp0 is S := X*X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 - fmul.x %fp0,%fp1 # fp1 is S*B12 - fmov.s &0x310F8290,%fp2 # fp2 is B11 - fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 - - fmul.x %fp0,%fp2 # fp2 is S*B11 - fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... - - fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... - fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B9+... - fmul.x %fp0,%fp1 # fp1 is S*(B8+... - - fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... - fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B7+... - fmul.x %fp0,%fp1 # fp1 is S*(B6+... - - fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... - fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B5+... - fmul.x %fp0,%fp1 # fp1 is S*(B4+... - - fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... - fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B3+... - fmul.x %fp0,%fp1 # fp1 is S*(B2+... - - fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) - fmul.x (%a0),%fp1 # fp1 is X*S*(B2... - - fmul.s &0x3F000000,%fp0 # fp0 is S*B1 - fadd.x %fp2,%fp1 # fp1 is Q - - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - - fadd.x %fp1,%fp0 # fp0 is S*B1+Q - - fmov.l %d0,%fpcr - fadd.x (%a0),%fp0 - bra t_inx2 - -EM1BIG: -#--Step 10 |X| > 70 log2 - mov.l (%a0),%d1 - cmp.l %d1,&0 - bgt.w EXPC1 -#--Step 10.2 - fmov.s &0xBF800000,%fp0 # fp0 is -1 - fmov.l %d0,%fpcr - fadd.s &0x00800000,%fp0 # -1 + 2^(-126) - bra t_minx2 - - global setoxm1d -setoxm1d: -#--entry point for EXPM1(X), here X is denormalized -#--Step 0. - bra t_extdnrm - -######################################################################### -# sgetexp(): returns the exponent portion of the input argument. # -# The exponent bias is removed and the exponent value is # -# returned as an extended precision number in fp0. # -# sgetexpd(): handles denormalized numbers. # -# # -# sgetman(): extracts the mantissa of the input argument. The # -# mantissa is converted to an extended precision number w/ # -# an exponent of $3fff and is returned in fp0. The range of # -# the result is [1.0 - 2.0). # -# sgetmand(): handles denormalized numbers. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# # -# OUTPUT ************************************************************** # -# fp0 = exponent(X) or mantissa(X) # -# # -######################################################################### - - global sgetexp -sgetexp: - mov.w SRC_EX(%a0),%d0 # get the exponent - bclr &0xf,%d0 # clear the sign bit - subi.w &0x3fff,%d0 # subtract off the bias - fmov.w %d0,%fp0 # return exp in fp0 - blt.b sgetexpn # it's negative - rts - -sgetexpn: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - - global sgetexpd -sgetexpd: - bsr.l norm # normalize - neg.w %d0 # new exp = -(shft amt) - subi.w &0x3fff,%d0 # subtract off the bias - fmov.w %d0,%fp0 # return exp in fp0 - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - - global sgetman -sgetman: - mov.w SRC_EX(%a0),%d0 # get the exp - ori.w &0x7fff,%d0 # clear old exp - bclr &0xe,%d0 # make it the new exp +-3fff - -# here, we build the result in a tmp location so as not to disturb the input - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 - bmi.b sgetmann # it's negative - rts - -sgetmann: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# For denormalized numbers, shift the mantissa until the j-bit = 1, -# then load the exponent with +/1 $3fff. -# - global sgetmand -sgetmand: - bsr.l norm # normalize exponent - bra.b sgetman - -######################################################################### -# scosh(): computes the hyperbolic cosine of a normalized input # -# scoshd(): computes the hyperbolic cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = cosh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# COSH # -# 1. If |X| > 16380 log2, go to 3. # -# # -# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # -# y = |X|, z = exp(Y), and # -# cosh(X) = (1/2)*( z + 1/z ). # -# Exit. # -# # -# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # -# # -# 4. (16380 log2 < |X| <= 16480 log2) # -# cosh(X) = sign(X) * exp(|X|)/2. # -# However, invoking exp(|X|) may cause premature # -# overflow. Thus, we calculate sinh(X) as follows: # -# Y := |X| # -# Fact := 2**(16380) # -# Y' := Y - 16381 log2 # -# cosh(X) := Fact * exp(Y'). # -# Exit. # -# # -# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # -# Huge*Huge to generate overflow and an infinity with # -# the appropriate sign. Huge is the largest finite number # -# in extended format. Exit. # -# # -######################################################################### - -TWO16380: - long 0x7FFB0000,0x80000000,0x00000000,0x00000000 - - global scosh -scosh: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x400CB167 - bgt.b COSHBIG - -#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) - - fabs.x %fp0 # |X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save |X| to stack - lea (%sp),%a0 # pass ptr to |X| - bsr setox # FP0 IS EXP(|X|) - add.l &0xc,%sp # erase |X| from stack - fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) - mov.l (%sp)+,%d0 - - fmov.s &0x3E800000,%fp1 # (1/4) - fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) - - fmov.l %d0,%fpcr - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x %fp1,%fp0 - bra t_catch - -COSHBIG: - cmp.l %d1,&0x400CB2B3 - bgt.b COSHHUGE - - fabs.x %fp0 - fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) - fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save fp0 to stack - lea (%sp),%a0 # pass ptr to fp0 - bsr setox - add.l &0xc,%sp # clear fp0 from stack - mov.l (%sp)+,%d0 - - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x TWO16380(%pc),%fp0 - bra t_catch - -COSHHUGE: - bra t_ovfl2 - - global scoshd -#--COSH(X) = 1 FOR DENORMALIZED X -scoshd: - fmov.s &0x3F800000,%fp0 - - fmov.l %d0,%fpcr - fadd.s &0x00800000,%fp0 - bra t_pinx2 - -######################################################################### -# ssinh(): computes the hyperbolic sine of a normalized input # -# ssinhd(): computes the hyperbolic sine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = sinh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# SINH # -# 1. If |X| > 16380 log2, go to 3. # -# # -# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # -# y = |X|, sgn = sign(X), and z = expm1(Y), # -# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # -# Exit. # -# # -# 3. If |X| > 16480 log2, go to 5. # -# # -# 4. (16380 log2 < |X| <= 16480 log2) # -# sinh(X) = sign(X) * exp(|X|)/2. # -# However, invoking exp(|X|) may cause premature overflow. # -# Thus, we calculate sinh(X) as follows: # -# Y := |X| # -# sgn := sign(X) # -# sgnFact := sgn * 2**(16380) # -# Y' := Y - 16381 log2 # -# sinh(X) := sgnFact * exp(Y'). # -# Exit. # -# # -# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # -# sign(X)*Huge*Huge to generate overflow and an infinity with # -# the appropriate sign. Huge is the largest finite number in # -# extended format. Exit. # -# # -######################################################################### - - global ssinh -ssinh: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - mov.l %d1,%a1 # save (compacted) operand - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x400CB167 - bgt.b SINHBIG - -#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) - - fabs.x %fp0 # Y = |X| - - movm.l &0x8040,-(%sp) # {a1/d0} - fmovm.x &0x01,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - clr.l %d0 - bsr setoxm1 # FP0 IS Z = EXPM1(Y) - add.l &0xc,%sp # clear Y from stack - fmov.l &0,%fpcr - movm.l (%sp)+,&0x0201 # {a1/d0} - - fmov.x %fp0,%fp1 - fadd.s &0x3F800000,%fp1 # 1+Z - fmov.x %fp0,-(%sp) - fdiv.x %fp1,%fp0 # Z/(1+Z) - mov.l %a1,%d1 - and.l &0x80000000,%d1 - or.l &0x3F000000,%d1 - fadd.x (%sp)+,%fp0 - mov.l %d1,-(%sp) - - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set - bra t_catch - -SINHBIG: - cmp.l %d1,&0x400CB2B3 - bgt t_ovfl - fabs.x %fp0 - fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) - mov.l &0,-(%sp) - mov.l &0x80000000,-(%sp) - mov.l %a1,%d1 - and.l &0x80000000,%d1 - or.l &0x7FFB0000,%d1 - mov.l %d1,-(%sp) # EXTENDED FMT - fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save fp0 on stack - lea (%sp),%a0 # pass ptr to fp0 - bsr setox - add.l &0xc,%sp # clear fp0 from stack - - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x (%sp)+,%fp0 # possible exception - bra t_catch - - global ssinhd -#--SINH(X) = X FOR DENORMALIZED X -ssinhd: - bra t_extdnrm - -######################################################################### -# stanh(): computes the hyperbolic tangent of a normalized input # -# stanhd(): computes the hyperbolic tangent of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = tanh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# TANH # -# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # -# # -# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # -# sgn := sign(X), y := 2|X|, z := expm1(Y), and # -# tanh(X) = sgn*( z/(2+z) ). # -# Exit. # -# # -# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # -# go to 7. # -# # -# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # -# # -# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # -# sgn := sign(X), y := 2|X|, z := exp(Y), # -# tanh(X) = sgn - [ sgn*2/(1+z) ]. # -# Exit. # -# # -# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # -# calculate Tanh(X) by # -# sgn := sign(X), Tiny := 2**(-126), # -# tanh(X) := sgn - sgn*Tiny. # -# Exit. # -# # -# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # -# # -######################################################################### - - set X,FP_SCR0 - set XFRAC,X+4 - - set SGN,L_SCR3 - - set V,FP_SCR0 - - global stanh -stanh: - fmov.x (%a0),%fp0 # LOAD INPUT - - fmov.x %fp0,X(%a6) - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - mov.l %d1,X(%a6) - and.l &0x7FFFFFFF,%d1 - cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? - blt.w TANHBORS # yes - cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? - bgt.w TANHBORS # yes - -#--THIS IS THE USUAL CASE -#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). - - mov.l X(%a6),%d1 - mov.l %d1,SGN(%a6) - and.l &0x7FFF0000,%d1 - add.l &0x00010000,%d1 # EXPONENT OF 2|X| - mov.l %d1,X(%a6) - and.l &0x80000000,SGN(%a6) - fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x1,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - bsr setoxm1 # FP0 IS Z = EXPM1(Y) - add.l &0xc,%sp # clear Y from stack - mov.l (%sp)+,%d0 - - fmov.x %fp0,%fp1 - fadd.s &0x40000000,%fp1 # Z+2 - mov.l SGN(%a6),%d1 - fmov.x %fp1,V(%a6) - eor.l %d1,V(%a6) - - fmov.l %d0,%fpcr # restore users round prec,mode - fdiv.x V(%a6),%fp0 - bra t_inx2 - -TANHBORS: - cmp.l %d1,&0x3FFF8000 - blt.w TANHSM - - cmp.l %d1,&0x40048AA1 - bgt.w TANHHUGE - -#-- (5/2) LOG2 < |X| < 50 LOG2, -#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), -#--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. - - mov.l X(%a6),%d1 - mov.l %d1,SGN(%a6) - and.l &0x7FFF0000,%d1 - add.l &0x00010000,%d1 # EXPO OF 2|X| - mov.l %d1,X(%a6) # Y = 2|X| - and.l &0x80000000,SGN(%a6) - mov.l SGN(%a6),%d1 - fmov.x X(%a6),%fp0 # Y = 2|X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - bsr setox # FP0 IS EXP(Y) - add.l &0xc,%sp # clear Y from stack - mov.l (%sp)+,%d0 - mov.l SGN(%a6),%d1 - fadd.s &0x3F800000,%fp0 # EXP(Y)+1 - - eor.l &0xC0000000,%d1 # -SIGN(X)*2 - fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT - fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] - - mov.l SGN(%a6),%d1 - or.l &0x3F800000,%d1 # SGN - fmov.s %d1,%fp0 # SGN IN SGL FMT - - fmov.l %d0,%fpcr # restore users round prec,mode - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x %fp1,%fp0 - bra t_inx2 - -TANHSM: - fmov.l %d0,%fpcr # restore users round prec,mode - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - bra t_catch - -#---RETURN SGN(X) - SGN(X)EPS -TANHHUGE: - mov.l X(%a6),%d1 - and.l &0x80000000,%d1 - or.l &0x3F800000,%d1 - fmov.s %d1,%fp0 - and.l &0x80000000,%d1 - eor.l &0x80800000,%d1 # -SIGN(X)*EPS - - fmov.l %d0,%fpcr # restore users round prec,mode - fadd.s %d1,%fp0 - bra t_inx2 - - global stanhd -#--TANH(X) = X FOR DENORMALIZED X -stanhd: - bra t_extdnrm - -######################################################################### -# slogn(): computes the natural logarithm of a normalized input # -# slognd(): computes the natural logarithm of a denormalized input # -# slognp1(): computes the log(1+X) of a normalized input # -# slognp1d(): computes the log(1+X) of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = log(X) or log(1+X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# LOGN: # -# Step 1. If |X-1| < 1/16, approximate log(X) by an odd # -# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # -# move on to Step 2. # -# # -# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # -# seven significant bits of Y plus 2**(-7), i.e. # -# F = 1.xxxxxx1 in base 2 where the six "x" match those # -# of Y. Note that |Y-F| <= 2**(-7). # -# # -# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # -# polynomial in u, log(1+u) = poly. # -# # -# Step 4. Reconstruct # -# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # -# by k*log(2) + (log(F) + poly). The values of log(F) are # -# calculated beforehand and stored in the program. # -# # -# lognp1: # -# Step 1: If |X| < 1/16, approximate log(1+X) by an odd # -# polynomial in u where u = 2X/(2+X). Otherwise, move on # -# to Step 2. # -# # -# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # -# in Step 2 of the algorithm for LOGN and compute # -# log(1+X) as k*log(2) + log(F) + poly where poly # -# approximates log(1+u), u = (Y-F)/F. # -# # -# Implementation Notes: # -# Note 1. There are 64 different possible values for F, thus 64 # -# log(F)'s need to be tabulated. Moreover, the values of # -# 1/F are also tabulated so that the division in (Y-F)/F # -# can be performed by a multiplication. # -# # -# Note 2. In Step 2 of lognp1, in order to preserved accuracy, # -# the value Y-F has to be calculated carefully when # -# 1/2 <= X < 3/2. # -# # -# Note 3. To fully exploit the pipeline, polynomials are usually # -# separated into two parts evaluated independently before # -# being added up. # -# # -######################################################################### -LOGOF2: - long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -one: - long 0x3F800000 -zero: - long 0x00000000 -infty: - long 0x7F800000 -negone: - long 0xBF800000 - -LOGA6: - long 0x3FC2499A,0xB5E4040B -LOGA5: - long 0xBFC555B5,0x848CB7DB - -LOGA4: - long 0x3FC99999,0x987D8730 -LOGA3: - long 0xBFCFFFFF,0xFF6F7E97 - -LOGA2: - long 0x3FD55555,0x555555A4 -LOGA1: - long 0xBFE00000,0x00000008 - -LOGB5: - long 0x3F175496,0xADD7DAD6 -LOGB4: - long 0x3F3C71C2,0xFE80C7E0 - -LOGB3: - long 0x3F624924,0x928BCCFF -LOGB2: - long 0x3F899999,0x999995EC - -LOGB1: - long 0x3FB55555,0x55555555 -TWO: - long 0x40000000,0x00000000 - -LTHOLD: - long 0x3f990000,0x80000000,0x00000000,0x00000000 - -LOGTBL: - long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 - long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 - long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 - long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 - long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 - long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 - long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 - long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 - long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 - long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 - long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 - long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 - long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 - long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 - long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 - long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 - long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 - long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 - long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 - long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 - long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 - long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 - long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 - long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 - long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 - long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 - long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 - long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 - long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 - long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 - long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 - long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 - long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 - long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 - long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 - long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 - long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 - long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 - long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 - long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 - long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 - long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 - long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 - long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 - long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 - long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 - long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 - long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 - long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 - long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 - long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 - long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 - long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 - long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 - long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 - long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 - long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 - long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 - long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 - long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 - long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 - long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 - long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 - long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 - long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 - long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 - long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 - long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 - long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 - long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 - long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 - long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 - long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 - long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 - long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 - long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 - long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 - long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 - long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 - long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 - long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 - long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 - long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 - long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 - long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 - long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 - long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 - long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 - long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 - long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 - long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 - long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 - long 0x3FFE0000,0x94458094,0x45809446,0x00000000 - long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 - long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 - long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 - long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 - long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 - long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 - long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 - long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 - long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 - long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 - long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 - long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 - long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 - long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 - long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 - long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 - long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 - long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 - long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 - long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 - long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 - long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 - long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 - long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 - long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 - long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 - long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 - long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 - long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 - long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 - long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 - long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 - long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 - long 0x3FFE0000,0x80808080,0x80808081,0x00000000 - long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 - - set ADJK,L_SCR1 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - - set F,FP_SCR1 - set FFRAC,F+4 - - set KLOG2,FP_SCR0 - - set SAVEU,FP_SCR0 - - global slogn -#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S -slogn: - fmov.x (%a0),%fp0 # LOAD INPUT - mov.l &0x00000000,ADJK(%a6) - -LOGBGN: -#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS -#--A FINITE, NON-ZERO, NORMALIZED NUMBER. - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - - mov.l (%a0),X(%a6) - mov.l 4(%a0),X+4(%a6) - mov.l 8(%a0),X+8(%a6) - - cmp.l %d1,&0 # CHECK IF X IS NEGATIVE - blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID -# X IS POSITIVE, CHECK IF X IS NEAR 1 - cmp.l %d1,&0x3ffef07d # IS X < 15/16? - blt.b LOGMAIN # YES - cmp.l %d1,&0x3fff8841 # IS X > 17/16? - ble.w LOGNEAR1 # NO - -LOGMAIN: -#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 - -#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. -#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. -#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) -#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). -#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING -#--LOG(1+U) CAN BE VERY EFFICIENT. -#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO -#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. - -#--GET K, Y, F, AND ADDRESS OF 1/F. - asr.l &8,%d1 - asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X - sub.l &0x3FFF,%d1 # THIS IS K - add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. - lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) - fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT - -#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F - mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X - mov.l XFRAC(%a6),FFRAC(%a6) - and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y - or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT - mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT - add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F - - fmov.x X(%a6),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # Y-F - fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY -#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K -#--REGISTERS SAVED: FPCR, FP1, FP2 - -LP1CONT1: -#--AN RE-ENTRY POINT FOR LOGNP1 - fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F - fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY - fmov.x %fp0,%fp2 - fmul.x %fp2,%fp2 # FP2 IS V=U*U - fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 - -#--LOG(1+U) IS APPROXIMATED BY -#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS -#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] - - fmov.x %fp2,%fp3 - fmov.x %fp2,%fp1 - - fmul.d LOGA6(%pc),%fp1 # V*A6 - fmul.d LOGA5(%pc),%fp2 # V*A5 - - fadd.d LOGA4(%pc),%fp1 # A4+V*A6 - fadd.d LOGA3(%pc),%fp2 # A3+V*A5 - - fmul.x %fp3,%fp1 # V*(A4+V*A6) - fmul.x %fp3,%fp2 # V*(A3+V*A5) - - fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) - fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) - - fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) - add.l &16,%a0 # ADDRESS OF LOG(F) - fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) - - fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) - fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) - - fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) - fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 - fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) - - fmov.l %d0,%fpcr - fadd.x KLOG2(%a6),%fp0 # FINAL ADD - bra t_inx2 - - -LOGNEAR1: - -# if the input is exactly equal to one, then exit through ld_pzero. -# if these 2 lines weren't here, the correct answer would be returned -# but the INEX2 bit would be set. - fcmp.b %fp0,&0x1 # is it equal to one? - fbeq.l ld_pzero # yes - -#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. - fmov.x %fp0,%fp1 - fsub.s one(%pc),%fp1 # FP1 IS X-1 - fadd.s one(%pc),%fp0 # FP0 IS X+1 - fadd.x %fp1,%fp1 # FP1 IS 2(X-1) -#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL -#--IN U, U = 2(X-1)/(X+1) = FP1/FP0 - -LP1CONT2: -#--THIS IS AN RE-ENTRY POINT FOR LOGNP1 - fdiv.x %fp0,%fp1 # FP1 IS U - fmovm.x &0xc,-(%sp) # SAVE FP2-3 -#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 -#--LET V=U*U, W=V*V, CALCULATE -#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY -#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) - fmov.x %fp1,%fp0 - fmul.x %fp0,%fp0 # FP0 IS V - fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS W - - fmov.d LOGB5(%pc),%fp3 - fmov.d LOGB4(%pc),%fp2 - - fmul.x %fp1,%fp3 # W*B5 - fmul.x %fp1,%fp2 # W*B4 - - fadd.d LOGB3(%pc),%fp3 # B3+W*B5 - fadd.d LOGB2(%pc),%fp2 # B2+W*B4 - - fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED - - fmul.x %fp0,%fp2 # V*(B2+W*B4) - - fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) - fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V - - fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED - fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED - - fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) - - fmov.l %d0,%fpcr - fadd.x SAVEU(%a6),%fp0 - bra t_inx2 - -#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID -LOGNEG: - bra t_operr - - global slognd -slognd: -#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT - - mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 - -#----normalize the input value by left shifting k bits (k to be determined -#----below), adjusting exponent and storing -k to ADJK -#----the value TWOTO100 is no longer needed. -#----Note that this code assumes the denormalized input is NON-ZERO. - - movm.l &0x3f00,-(%sp) # save some registers {d2-d7} - mov.l (%a0),%d3 # D3 is exponent of smallest norm. # - mov.l 4(%a0),%d4 - mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) - clr.l %d2 # D2 used for holding K - - tst.l %d4 - bne.b Hi_not0 - -Hi_0: - mov.l %d5,%d4 - clr.l %d5 - mov.l &32,%d2 - clr.l %d6 - bfffo %d4{&0:&32},%d6 - lsl.l %d6,%d4 - add.l %d6,%d2 # (D3,D4,D5) is normalized - - mov.l %d3,X(%a6) - mov.l %d4,XFRAC(%a6) - mov.l %d5,XFRAC+4(%a6) - neg.l %d2 - mov.l %d2,ADJK(%a6) - fmov.x X(%a6),%fp0 - movm.l (%sp)+,&0xfc # restore registers {d2-d7} - lea X(%a6),%a0 - bra.w LOGBGN # begin regular log(X) - -Hi_not0: - clr.l %d6 - bfffo %d4{&0:&32},%d6 # find first 1 - mov.l %d6,%d2 # get k - lsl.l %d6,%d4 - mov.l %d5,%d7 # a copy of D5 - lsl.l %d6,%d5 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d4 # (D3,D4,D5) normalized - - mov.l %d3,X(%a6) - mov.l %d4,XFRAC(%a6) - mov.l %d5,XFRAC+4(%a6) - neg.l %d2 - mov.l %d2,ADJK(%a6) - fmov.x X(%a6),%fp0 - movm.l (%sp)+,&0xfc # restore registers {d2-d7} - lea X(%a6),%a0 - bra.w LOGBGN # begin regular log(X) - - global slognp1 -#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S -slognp1: - fmov.x (%a0),%fp0 # LOAD INPUT - fabs.x %fp0 # test magnitude - fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold - fbgt.w LP1REAL # if greater, continue - fmov.l %d0,%fpcr - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%a0),%fp0 # return signed argument - bra t_catch - -LP1REAL: - fmov.x (%a0),%fp0 # LOAD INPUT - mov.l &0x00000000,ADJK(%a6) - fmov.x %fp0,%fp1 # FP1 IS INPUT Z - fadd.s one(%pc),%fp0 # X := ROUND(1+Z) - fmov.x %fp0,X(%a6) - mov.w XFRAC(%a6),XDCARE(%a6) - mov.l X(%a6),%d1 - cmp.l %d1,&0 - ble.w LP1NEG0 # LOG OF ZERO OR -VE - cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? - blt.w LOGMAIN - cmp.l %d1,&0x3fffc000 - bgt.w LOGMAIN -#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, -#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, -#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). - -LP1NEAR1: -#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) - cmp.l %d1,&0x3ffef07d - blt.w LP1CARE - cmp.l %d1,&0x3fff8841 - bgt.w LP1CARE - -LP1ONE16: -#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) -#--WHERE U = 2Z/(2+Z) = 2Z/(1+X). - fadd.x %fp1,%fp1 # FP1 IS 2Z - fadd.s one(%pc),%fp0 # FP0 IS 1+X -#--U = FP1/FP0 - bra.w LP1CONT2 - -LP1CARE: -#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE -#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST -#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], -#--THERE ARE ONLY TWO CASES. -#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z -#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z -#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF -#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. - - mov.l XFRAC(%a6),FFRAC(%a6) - and.l &0xFE000000,FFRAC(%a6) - or.l &0x01000000,FFRAC(%a6) # F OBTAINED - cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 - bge.b KISZERO - -KISNEG1: - fmov.s TWO(%pc),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # 2-F - mov.l FFRAC(%a6),%d1 - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F - fadd.x %fp1,%fp1 # GET 2Z - fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} - fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z - lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F - add.l %d1,%a0 - fmov.s negone(%pc),%fp1 # FP1 IS K = -1 - bra.w LP1CONT1 - -KISZERO: - fmov.s one(%pc),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # 1-F - mov.l FFRAC(%a6),%d1 - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 - fadd.x %fp1,%fp0 # FP0 IS Y-F - fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} - lea LOGTBL(%pc),%a0 - add.l %d1,%a0 # A0 IS ADDRESS OF 1/F - fmov.s zero(%pc),%fp1 # FP1 IS K = 0 - bra.w LP1CONT1 - -LP1NEG0: -#--FPCR SAVED. D0 IS X IN COMPACT FORM. - cmp.l %d1,&0 - blt.b LP1NEG -LP1ZERO: - fmov.s negone(%pc),%fp0 - - fmov.l %d0,%fpcr - bra t_dz - -LP1NEG: - fmov.s zero(%pc),%fp0 - - fmov.l %d0,%fpcr - bra t_operr - - global slognp1d -#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT -# Simply return the denorm -slognp1d: - bra t_extdnrm - -######################################################################### -# satanh(): computes the inverse hyperbolic tangent of a norm input # -# satanhd(): computes the inverse hyperbolic tangent of a denorm input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arctanh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ATANH # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate atanh(X) by # -# sgn := sign(X) # -# y := |X| # -# z := 2y/(1-y) # -# atanh(X) := sgn * (1/2) * logp1(z) # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) Generate infinity with an appropriate sign and # -# divide-by-zero by # -# sgn := sign(X) # -# atan(X) := sgn / (+0). # -# Exit. # -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global satanh -satanh: - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ATANHBIG - -#--THIS IS THE USUAL CASE, |X| < 1 -#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). - - fabs.x (%a0),%fp0 # Y = |X| - fmov.x %fp0,%fp1 - fneg.x %fp1 # -Y - fadd.x %fp0,%fp0 # 2Y - fadd.s &0x3F800000,%fp1 # 1-Y - fdiv.x %fp1,%fp0 # 2Y/(1-Y) - mov.l (%a0),%d1 - and.l &0x80000000,%d1 - or.l &0x3F000000,%d1 # SIGN(X)*HALF - mov.l %d1,-(%sp) - - mov.l %d0,-(%sp) # save rnd prec,mode - clr.l %d0 # pass ext prec,RN - fmovm.x &0x01,-(%sp) # save Z on stack - lea (%sp),%a0 # pass ptr to Z - bsr slognp1 # LOG1P(Z) - add.l &0xc,%sp # clear Z from stack - - mov.l (%sp)+,%d0 # fetch old prec,mode - fmov.l %d0,%fpcr # load it - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.s (%sp)+,%fp0 - bra t_catch - -ATANHBIG: - fabs.x (%a0),%fp0 # |X| - fcmp.s %fp0,&0x3F800000 - fbgt t_operr - bra t_dz - - global satanhd -#--ATANH(X) = X FOR DENORMALIZED X -satanhd: - bra t_extdnrm - -######################################################################### -# slog10(): computes the base-10 logarithm of a normalized input # -# slog10d(): computes the base-10 logarithm of a denormalized input # -# slog2(): computes the base-2 logarithm of a normalized input # -# slog2d(): computes the base-2 logarithm of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = log_10(X) or log_2(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 1.7 ulps in 64 significant bit, # -# i.e. within 0.5003 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# slog10d: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # -# Notes: Even if X is denormalized, log(X) is always normalized. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L10. # -# # -# slog10: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L10. # -# # -# sLog2d: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # -# Notes: Even if X is denormalized, log(X) is always normalized. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(2)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L2. # -# # -# sLog2: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. If X is not an integer power of two, i.e., X != 2^k, # -# go to Step 3. # -# # -# Step 2. Return k. # -# 2.1 Get integer k, X = 2^k. # -# 2.2 Restore the user FPCR. # -# 2.3 Return ans := convert-to-double-extended(k). # -# # -# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # -# # -# Step 4. Compute log_2(X) = log(X) * (1/log(2)). # -# 4.1 Restore the user FPCR # -# 4.2 Return ans := Y * INV_L2. # -# # -######################################################################### - -INV_L10: - long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 - -INV_L2: - long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 - - global slog10 -#--entry point for Log10(X), X is normalized -slog10: - fmov.b &0x1,%fp0 - fcmp.x %fp0,(%a0) # if operand == 1, - fbeq.l ld_pzero # return an EXACT zero - - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slogn # log(X), X normal. - fmov.l (%sp)+,%fpcr - fmul.x INV_L10(%pc),%fp0 - bra t_inx2 - - global slog10d -#--entry point for Log10(X), X is denormalized -slog10d: - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slognd # log(X), X denorm. - fmov.l (%sp)+,%fpcr - fmul.x INV_L10(%pc),%fp0 - bra t_minx2 - - global slog2 -#--entry point for Log2(X), X is normalized -slog2: - mov.l (%a0),%d1 - blt.w invalid - - mov.l 8(%a0),%d1 - bne.b continue # X is not 2^k - - mov.l 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - bne.b continue - -#--X = 2^k. - mov.w (%a0),%d1 - and.l &0x00007FFF,%d1 - sub.l &0x3FFF,%d1 - beq.l ld_pzero - fmov.l %d0,%fpcr - fmov.l %d1,%fp0 - bra t_inx2 - -continue: - mov.l %d0,-(%sp) - clr.l %d0 - bsr slogn # log(X), X normal. - fmov.l (%sp)+,%fpcr - fmul.x INV_L2(%pc),%fp0 - bra t_inx2 - -invalid: - bra t_operr - - global slog2d -#--entry point for Log2(X), X is denormalized -slog2d: - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slognd # log(X), X denorm. - fmov.l (%sp)+,%fpcr - fmul.x INV_L2(%pc),%fp0 - bra t_minx2 - -######################################################################### -# stwotox(): computes 2**X for a normalized input # -# stwotoxd(): computes 2**X for a denormalized input # -# stentox(): computes 10**X for a normalized input # -# stentoxd(): computes 10**X for a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = 2**X or 10**X # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# twotox # -# 1. If |X| > 16480, go to ExpBig. # -# # -# 2. If |X| < 2**(-70), go to ExpSm. # -# # -# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # -# decompose N as # -# N = 64(M + M') + j, j = 0,1,2,...,63. # -# # -# 4. Overwrite r := r * log2. Then # -# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # -# Go to expr to compute that expression. # -# # -# tentox # -# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # -# # -# 2. If |X| < 2**(-70), go to ExpSm. # -# # -# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # -# N := round-to-int(y). Decompose N as # -# N = 64(M + M') + j, j = 0,1,2,...,63. # -# # -# 4. Define r as # -# r := ((X - N*L1)-N*L2) * L10 # -# where L1, L2 are the leading and trailing parts of # -# log_10(2)/64 and L10 is the natural log of 10. Then # -# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # -# Go to expr to compute that expression. # -# # -# expr # -# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # -# # -# 2. Overwrite Fact1 and Fact2 by # -# Fact1 := 2**(M) * Fact1 # -# Fact2 := 2**(M) * Fact2 # -# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # -# # -# 3. Calculate P where 1 + P approximates exp(r): # -# P = r + r*r*(A1+r*(A2+...+r*A5)). # -# # -# 4. Let AdjFact := 2**(M'). Return # -# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # -# Exit. # -# # -# ExpBig # -# 1. Generate overflow by Huge * Huge if X > 0; otherwise, # -# generate underflow by Tiny * Tiny. # -# # -# ExpSm # -# 1. Return 1 + X. # -# # -######################################################################### - -L2TEN64: - long 0x406A934F,0x0979A371 # 64LOG10/LOG2 -L10TWO1: - long 0x3F734413,0x509F8000 # LOG2/64LOG10 - -L10TWO2: - long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 - -LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 - -LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -EXPA5: long 0x3F56C16D,0x6F7BD0B2 -EXPA4: long 0x3F811112,0x302C712C -EXPA3: long 0x3FA55555,0x55554CC1 -EXPA2: long 0x3FC55555,0x55554A54 -EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 - -TEXPTBL: - long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 - long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA - long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 - long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 - long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA - long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C - long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 - long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA - long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 - long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 - long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 - long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 - long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D - long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 - long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B - long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 - long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A - long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B - long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF - long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA - long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD - long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E - long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B - long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB - long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB - long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 - long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C - long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 - long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 - long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 - long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F - long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C - long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB - long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB - long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C - long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA - long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD - long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 - long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A - long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 - long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB - long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 - long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C - long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 - long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 - long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE - long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 - long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 - long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A - long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 - long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 - long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 - long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 - long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE - long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 - long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F - long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A - long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A - long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC - long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F - long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A - long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 - long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B - long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 - - set INT,L_SCR1 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - - set ADJFACT,FP_SCR0 - - set FACT1,FP_SCR0 - set FACT1HI,FACT1+4 - set FACT1LOW,FACT1+8 - - set FACT2,FP_SCR1 - set FACT2HI,FACT2+4 - set FACT2LOW,FACT2+8 - - global stwotox -#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -stwotox: - fmovm.x (%a0),&0x80 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? - bge.b TWOOK1 - bra.w EXPBORS - -TWOOK1: - cmp.l %d1,&0x400D80C0 # |X| > 16480? - ble.b TWOMAIN - bra.w EXPBORS - -TWOMAIN: -#--USUAL CASE, 2^(-70) <= |X| <= 16480 - - fmov.x %fp0,%fp1 - fmul.s &0x42800000,%fp1 # 64 * X - fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) - mov.l %d2,-(%sp) - lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) - fmov.l INT(%a6),%fp1 # N --> FLOATING FMT - mov.l INT(%a6),%d1 - mov.l %d1,%d2 - and.l &0x3F,%d1 # D0 IS J - asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) - add.l %d1,%a1 # ADDRESS FOR 2^(J/64) - asr.l &6,%d2 # d2 IS L, N = 64L + J - mov.l %d2,%d1 - asr.l &1,%d1 # D0 IS M - sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J - add.l &0x3FFF,%d2 - -#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -#--ADJFACT = 2^(M'). -#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.s &0x3C800000,%fp1 # (1/64)*N - mov.l (%a1)+,FACT1(%a6) - mov.l (%a1)+,FACT1HI(%a6) - mov.l (%a1)+,FACT1LOW(%a6) - mov.w (%a1)+,FACT2(%a6) - - fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) - - mov.w (%a1)+,FACT2HI(%a6) - clr.w FACT2HI+2(%a6) - clr.l FACT2LOW(%a6) - add.w %d1,FACT1(%a6) - fmul.x LOG2(%pc),%fp0 # FP0 IS R - add.w %d1,FACT2(%a6) - - bra.w expr - -EXPBORS: -#--FPCR, D0 SAVED - cmp.l %d1,&0x3FFF8000 - bgt.b TEXPBIG - -#--|X| IS SMALL, RETURN 1 + X - - fmov.l %d0,%fpcr # restore users round prec,mode - fadd.s &0x3F800000,%fp0 # RETURN 1 + X - bra t_pinx2 - -TEXPBIG: -#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW -#--REGISTERS SAVE SO FAR ARE FPCR AND D0 - mov.l X(%a6),%d1 - cmp.l %d1,&0 - blt.b EXPNEG - - bra t_ovfl2 # t_ovfl expects positive value - -EXPNEG: - bra t_unfl2 # t_unfl expects positive value - - global stwotoxd -stwotoxd: -#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT - - fmov.l %d0,%fpcr # set user's rounding mode/precision - fmov.s &0x3F800000,%fp0 # RETURN 1 + X - mov.l (%a0),%d1 - or.l &0x00800001,%d1 - fadd.s %d1,%fp0 - bra t_pinx2 - - global stentox -#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -stentox: - fmovm.x (%a0),&0x80 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? - bge.b TENOK1 - bra.w EXPBORS - -TENOK1: - cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? - ble.b TENMAIN - bra.w EXPBORS - -TENMAIN: -#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 - - fmov.x %fp0,%fp1 - fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 - fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) - mov.l %d2,-(%sp) - lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) - fmov.l INT(%a6),%fp1 # N --> FLOATING FMT - mov.l INT(%a6),%d1 - mov.l %d1,%d2 - and.l &0x3F,%d1 # D0 IS J - asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) - add.l %d1,%a1 # ADDRESS FOR 2^(J/64) - asr.l &6,%d2 # d2 IS L, N = 64L + J - mov.l %d2,%d1 - asr.l &1,%d1 # D0 IS M - sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J - add.l &0x3FFF,%d2 - -#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -#--ADJFACT = 2^(M'). -#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.x %fp1,%fp2 - - fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD - mov.l (%a1)+,FACT1(%a6) - - fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL - - mov.l (%a1)+,FACT1HI(%a6) - mov.l (%a1)+,FACT1LOW(%a6) - fsub.x %fp1,%fp0 # X - N L_LEAD - mov.w (%a1)+,FACT2(%a6) - - fsub.x %fp2,%fp0 # X - N L_TRAIL - - mov.w (%a1)+,FACT2HI(%a6) - clr.w FACT2HI+2(%a6) - clr.l FACT2LOW(%a6) - - fmul.x LOG10(%pc),%fp0 # FP0 IS R - add.w %d1,FACT1(%a6) - add.w %d1,FACT2(%a6) - -expr: -#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. -#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). -#--FP0 IS R. THE FOLLOWING CODE COMPUTES -#-- 2**(M'+M) * 2**(J/64) * EXP(R) - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS S = R*R - - fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 - fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 - - fmul.x %fp1,%fp2 # FP2 IS S*A5 - fmul.x %fp1,%fp3 # FP3 IS S*A4 - - fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 - fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 - - fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) - fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) - - fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) - fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) - - fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) - fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) - fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - -#--FINAL RECONSTRUCTION PROCESS -#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) - - fmul.x FACT1(%a6),%fp0 - fadd.x FACT2(%a6),%fp0 - fadd.x FACT1(%a6),%fp0 - - fmov.l %d0,%fpcr # restore users round prec,mode - mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT - mov.l (%sp)+,%d2 - mov.l &0x80000000,ADJFACT+4(%a6) - clr.l ADJFACT+8(%a6) - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT - bra t_catch - - global stentoxd -stentoxd: -#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT - - fmov.l %d0,%fpcr # set user's rounding mode/precision - fmov.s &0x3F800000,%fp0 # RETURN 1 + X - mov.l (%a0),%d1 - or.l &0x00800001,%d1 - fadd.s %d1,%fp0 - bra t_pinx2 - -######################################################################### -# sscale(): computes the destination operand scaled by the source # -# operand. If the absoulute value of the source operand is # -# >= 2^14, an overflow or underflow is returned. # -# # -# INPUT *************************************************************** # -# a0 = pointer to double-extended source operand X # -# a1 = pointer to double-extended destination operand Y # -# # -# OUTPUT ************************************************************** # -# fp0 = scale(X,Y) # -# # -######################################################################### - -set SIGN, L_SCR1 - - global sscale -sscale: - mov.l %d0,-(%sp) # store off ctrl bits for now - - mov.w DST_EX(%a1),%d1 # get dst exponent - smi.b SIGN(%a6) # use SIGN to hold dst sign - andi.l &0x00007fff,%d1 # strip sign from dst exp - - mov.w SRC_EX(%a0),%d0 # check src bounds - andi.w &0x7fff,%d0 # clr src sign bit - cmpi.w %d0,&0x3fff # is src ~ ZERO? - blt.w src_small # yes - cmpi.w %d0,&0x400c # no; is src too big? - bgt.w src_out # yes - -# -# Source is within 2^14 range. -# -src_ok: - fintrz.x SRC(%a0),%fp0 # calc int of src - fmov.l %fp0,%d0 # int src to d0 -# don't want any accrued bits from the fintrz showing up later since -# we may need to read the fpsr for the last fp op in t_catch2(). - fmov.l &0x0,%fpsr - - tst.b DST_HI(%a1) # is dst denormalized? - bmi.b sok_norm - -# the dst is a DENORM. normalize the DENORM and add the adjustment to -# the src value. then, jump to the norm part of the routine. -sok_dnrm: - mov.l %d0,-(%sp) # save src for now - - mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy - mov.l DST_HI(%a1),FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 # pass ptr to DENORM - bsr.l norm # normalize the DENORM - neg.l %d0 - add.l (%sp)+,%d0 # add adjustment to src - - fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM - - cmpi.w %d0,&-0x3fff # is the shft amt really low? - bge.b sok_norm2 # thank goodness no - -# the multiply factor that we're trying to create should be a denorm -# for the multiply to work. therefore, we're going to actually do a -# multiply with a denorm which will cause an unimplemented data type -# exception to be put into the machine which will be caught and corrected -# later. we don't do this with the DENORMs above because this method -# is slower. but, don't fret, I don't see it being used much either. - fmov.l (%sp)+,%fpcr # restore user fpcr - mov.l &0x80000000,%d1 # load normalized mantissa - subi.l &-0x3fff,%d0 # how many should we shift? - neg.l %d0 # make it positive - cmpi.b %d0,&0x20 # is it > 32? - bge.b sok_dnrm_32 # yes - lsr.l %d0,%d1 # no; bit stays in upper lw - clr.l -(%sp) # insert zero low mantissa - mov.l %d1,-(%sp) # insert new high mantissa - clr.l -(%sp) # make zero exponent - bra.b sok_norm_cont -sok_dnrm_32: - subi.b &0x20,%d0 # get shift count - lsr.l %d0,%d1 # make low mantissa longword - mov.l %d1,-(%sp) # insert new low mantissa - clr.l -(%sp) # insert zero high mantissa - clr.l -(%sp) # make zero exponent - bra.b sok_norm_cont - -# the src will force the dst to a DENORM value or worse. so, let's -# create an fp multiply that will create the result. -sok_norm: - fmovm.x DST(%a1),&0x80 # load fp0 with normalized src -sok_norm2: - fmov.l (%sp)+,%fpcr # restore user fpcr - - addi.w &0x3fff,%d0 # turn src amt into exp value - swap %d0 # put exponent in high word - clr.l -(%sp) # insert new exponent - mov.l &0x80000000,-(%sp) # insert new high mantissa - mov.l %d0,-(%sp) # insert new lo mantissa - -sok_norm_cont: - fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x (%sp)+,%fp0 # do the multiply - bra t_catch2 # catch any exceptions - -# -# Source is outside of 2^14 range. Test the sign and branch -# to the appropriate exception handler. -# -src_out: - mov.l (%sp)+,%d0 # restore ctrl bits - exg %a0,%a1 # swap src,dst ptrs - tst.b SRC_EX(%a1) # is src negative? - bmi t_unfl # yes; underflow - bra t_ovfl_sc # no; overflow - -# -# The source input is below 1, so we check for denormalized numbers -# and set unfl. -# -src_small: - tst.b DST_HI(%a1) # is dst denormalized? - bpl.b ssmall_done # yes - - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr # no; load control bits - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x DST(%a1),%fp0 # simply return dest - bra t_catch2 -ssmall_done: - mov.l (%sp)+,%d0 # load control bits into d1 - mov.l %a1,%a0 # pass ptr to dst - bra t_resdnrm - -######################################################################### -# smod(): computes the fp MOD of the input values X,Y. # -# srem(): computes the fp (IEEE) REM of the input values X,Y. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input X # -# a1 = pointer to extended precision input Y # -# d0 = round precision,mode # -# # -# The input operands X and Y can be either normalized or # -# denormalized. # -# # -# OUTPUT ************************************************************** # -# fp0 = FREM(X,Y) or FMOD(X,Y) # -# # -# ALGORITHM *********************************************************** # -# # -# Step 1. Save and strip signs of X and Y: signX := sign(X), # -# signY := sign(Y), X := |X|, Y := |Y|, # -# signQ := signX EOR signY. Record whether MOD or REM # -# is requested. # -# # -# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # -# If (L < 0) then # -# R := X, go to Step 4. # -# else # -# R := 2^(-L)X, j := L. # -# endif # -# # -# Step 3. Perform MOD(X,Y) # -# 3.1 If R = Y, go to Step 9. # -# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # -# 3.3 If j = 0, go to Step 4. # -# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # -# Step 3.1. # -# # -# Step 4. At this point, R = X - QY = MOD(X,Y). Set # -# Last_Subtract := false (used in Step 7 below). If # -# MOD is requested, go to Step 6. # -# # -# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # -# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # -# Step 6. # -# 5.2 If R > Y/2, then { set Last_Subtract := true, # -# Q := Q + 1, Y := signY*Y }. Go to Step 6. # -# 5.3 This is the tricky case of R = Y/2. If Q is odd, # -# then { Q := Q + 1, signX := -signX }. # -# # -# Step 6. R := signX*R. # -# # -# Step 7. If Last_Subtract = true, R := R - Y. # -# # -# Step 8. Return signQ, last 7 bits of Q, and R as required. # -# # -# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # -# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # -# R := 0. Return signQ, last 7 bits of Q, and R. # -# # -######################################################################### - - set Mod_Flag,L_SCR3 - set Sc_Flag,L_SCR3+1 - - set SignY,L_SCR2 - set SignX,L_SCR2+2 - set SignQ,L_SCR3+2 - - set Y,FP_SCR0 - set Y_Hi,Y+4 - set Y_Lo,Y+8 - - set R,FP_SCR1 - set R_Hi,R+4 - set R_Lo,R+8 - -Scale: - long 0x00010000,0x80000000,0x00000000,0x00000000 - - global smod -smod: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) # save ctrl bits - clr.b Mod_Flag(%a6) - bra.b Mod_Rem - - global srem -srem: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) # save ctrl bits - mov.b &0x1,Mod_Flag(%a6) - -Mod_Rem: -#..Save sign of X and Y - movm.l &0x3f00,-(%sp) # save data registers - mov.w SRC_EX(%a0),%d3 - mov.w %d3,SignY(%a6) - and.l &0x00007FFF,%d3 # Y := |Y| - -# - mov.l SRC_HI(%a0),%d4 - mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| - - tst.l %d3 - bne.b Y_Normal - - mov.l &0x00003FFE,%d3 # $3FFD + 1 - tst.l %d4 - bne.b HiY_not0 - -HiY_0: - mov.l %d5,%d4 - clr.l %d5 - sub.l &32,%d3 - clr.l %d6 - bfffo %d4{&0:&32},%d6 - lsl.l %d6,%d4 - sub.l %d6,%d3 # (D3,D4,D5) is normalized -# ...with bias $7FFD - bra.b Chk_X - -HiY_not0: - clr.l %d6 - bfffo %d4{&0:&32},%d6 - sub.l %d6,%d3 - lsl.l %d6,%d4 - mov.l %d5,%d7 # a copy of D5 - lsl.l %d6,%d5 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d4 # (D3,D4,D5) normalized -# ...with bias $7FFD - bra.b Chk_X - -Y_Normal: - add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized -# ...with bias $7FFD - -Chk_X: - mov.w DST_EX(%a1),%d0 - mov.w %d0,SignX(%a6) - mov.w SignY(%a6),%d1 - eor.l %d0,%d1 - and.l &0x00008000,%d1 - mov.w %d1,SignQ(%a6) # sign(Q) obtained - and.l &0x00007FFF,%d0 - mov.l DST_HI(%a1),%d1 - mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| - tst.l %d0 - bne.b X_Normal - mov.l &0x00003FFE,%d0 - tst.l %d1 - bne.b HiX_not0 - -HiX_0: - mov.l %d2,%d1 - clr.l %d2 - sub.l &32,%d0 - clr.l %d6 - bfffo %d1{&0:&32},%d6 - lsl.l %d6,%d1 - sub.l %d6,%d0 # (D0,D1,D2) is normalized -# ...with bias $7FFD - bra.b Init - -HiX_not0: - clr.l %d6 - bfffo %d1{&0:&32},%d6 - sub.l %d6,%d0 - lsl.l %d6,%d1 - mov.l %d2,%d7 # a copy of D2 - lsl.l %d6,%d2 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d1 # (D0,D1,D2) normalized -# ...with bias $7FFD - bra.b Init - -X_Normal: - add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized -# ...with bias $7FFD - -Init: -# - mov.l %d3,L_SCR1(%a6) # save biased exp(Y) - mov.l %d0,-(%sp) # save biased exp(X) - sub.l %d3,%d0 # L := expo(X)-expo(Y) - - clr.l %d6 # D6 := carry <- 0 - clr.l %d3 # D3 is Q - mov.l &0,%a1 # A1 is k; j+k=L, Q=0 - -#..(Carry,D1,D2) is R - tst.l %d0 - bge.b Mod_Loop_pre - -#..expo(X) < expo(Y). Thus X = mod(X,Y) -# - mov.l (%sp)+,%d0 # restore d0 - bra.w Get_Mod - -Mod_Loop_pre: - addq.l &0x4,%sp # erase exp(X) -#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L -Mod_Loop: - tst.l %d6 # test carry bit - bgt.b R_GT_Y - -#..At this point carry = 0, R = (D1,D2), Y = (D4,D5) - cmp.l %d1,%d4 # compare hi(R) and hi(Y) - bne.b R_NE_Y - cmp.l %d2,%d5 # compare lo(R) and lo(Y) - bne.b R_NE_Y - -#..At this point, R = Y - bra.w Rem_is_0 - -R_NE_Y: -#..use the borrow of the previous compare - bcs.b R_LT_Y # borrow is set iff R < Y - -R_GT_Y: -#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 -#..and Y < (D1,D2) < 2Y. Either way, perform R - Y - sub.l %d5,%d2 # lo(R) - lo(Y) - subx.l %d4,%d1 # hi(R) - hi(Y) - clr.l %d6 # clear carry - addq.l &1,%d3 # Q := Q + 1 - -R_LT_Y: -#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. - tst.l %d0 # see if j = 0. - beq.b PostLoop - - add.l %d3,%d3 # Q := 2Q - add.l %d2,%d2 # lo(R) = 2lo(R) - roxl.l &1,%d1 # hi(R) = 2hi(R) + carry - scs %d6 # set Carry if 2(R) overflows - addq.l &1,%a1 # k := k+1 - subq.l &1,%d0 # j := j - 1 -#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. - - bra.b Mod_Loop - -PostLoop: -#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. - -#..normalize R. - mov.l L_SCR1(%a6),%d0 # new biased expo of R - tst.l %d1 - bne.b HiR_not0 - -HiR_0: - mov.l %d2,%d1 - clr.l %d2 - sub.l &32,%d0 - clr.l %d6 - bfffo %d1{&0:&32},%d6 - lsl.l %d6,%d1 - sub.l %d6,%d0 # (D0,D1,D2) is normalized -# ...with bias $7FFD - bra.b Get_Mod - -HiR_not0: - clr.l %d6 - bfffo %d1{&0:&32},%d6 - bmi.b Get_Mod # already normalized - sub.l %d6,%d0 - lsl.l %d6,%d1 - mov.l %d2,%d7 # a copy of D2 - lsl.l %d6,%d2 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d1 # (D0,D1,D2) normalized - -# -Get_Mod: - cmp.l %d0,&0x000041FE - bge.b No_Scale -Do_Scale: - mov.w %d0,R(%a6) - mov.l %d1,R_Hi(%a6) - mov.l %d2,R_Lo(%a6) - mov.l L_SCR1(%a6),%d6 - mov.w %d6,Y(%a6) - mov.l %d4,Y_Hi(%a6) - mov.l %d5,Y_Lo(%a6) - fmov.x R(%a6),%fp0 # no exception - mov.b &1,Sc_Flag(%a6) - bra.b ModOrRem -No_Scale: - mov.l %d1,R_Hi(%a6) - mov.l %d2,R_Lo(%a6) - sub.l &0x3FFE,%d0 - mov.w %d0,R(%a6) - mov.l L_SCR1(%a6),%d6 - sub.l &0x3FFE,%d6 - mov.l %d6,L_SCR1(%a6) - fmov.x R(%a6),%fp0 - mov.w %d6,Y(%a6) - mov.l %d4,Y_Hi(%a6) - mov.l %d5,Y_Lo(%a6) - clr.b Sc_Flag(%a6) - -# -ModOrRem: - tst.b Mod_Flag(%a6) - beq.b Fix_Sign - - mov.l L_SCR1(%a6),%d6 # new biased expo(Y) - subq.l &1,%d6 # biased expo(Y/2) - cmp.l %d0,%d6 - blt.b Fix_Sign - bgt.b Last_Sub - - cmp.l %d1,%d4 - bne.b Not_EQ - cmp.l %d2,%d5 - bne.b Not_EQ - bra.w Tie_Case - -Not_EQ: - bcs.b Fix_Sign - -Last_Sub: -# - fsub.x Y(%a6),%fp0 # no exceptions - addq.l &1,%d3 # Q := Q + 1 - -# -Fix_Sign: -#..Get sign of X - mov.w SignX(%a6),%d6 - bge.b Get_Q - fneg.x %fp0 - -#..Get Q -# -Get_Q: - clr.l %d6 - mov.w SignQ(%a6),%d6 # D6 is sign(Q) - mov.l &8,%d7 - lsr.l %d7,%d6 - and.l &0x0000007F,%d3 # 7 bits of Q - or.l %d6,%d3 # sign and bits of Q -# swap %d3 -# fmov.l %fpsr,%d6 -# and.l &0xFF00FFFF,%d6 -# or.l %d3,%d6 -# fmov.l %d6,%fpsr # put Q in fpsr - mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr - -# -Restore: - movm.l (%sp)+,&0xfc # {%d2-%d7} - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr - tst.b Sc_Flag(%a6) - beq.b Finish - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x Scale(%pc),%fp0 # may cause underflow - bra t_catch2 -# the '040 package did this apparently to see if the dst operand for the -# preceding fmul was a denorm. but, it better not have been since the -# algorithm just got done playing with fp0 and expected no exceptions -# as a result. trust me... -# bra t_avoid_unsupp # check for denorm as a -# ;result of the scaling - -Finish: - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x %fp0,%fp0 # capture exceptions & round - bra t_catch2 - -Rem_is_0: -#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) - addq.l &1,%d3 - cmp.l %d0,&8 # D0 is j - bge.b Q_Big - - lsl.l %d0,%d3 - bra.b Set_R_0 - -Q_Big: - clr.l %d3 - -Set_R_0: - fmov.s &0x00000000,%fp0 - clr.b Sc_Flag(%a6) - bra.w Fix_Sign - -Tie_Case: -#..Check parity of Q - mov.l %d3,%d6 - and.l &0x00000001,%d6 - tst.l %d6 - beq.w Fix_Sign # Q is even - -#..Q is odd, Q := Q + 1, signX := -signX - addq.l &1,%d3 - mov.w SignX(%a6),%d6 - eor.l &0x00008000,%d6 - mov.w %d6,SignX(%a6) - bra.w Fix_Sign - -######################################################################### -# XDEF **************************************************************** # -# tag(): return the optype of the input ext fp number # -# # -# This routine is used by the 060FPLSP. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# If it's an unnormalized zero, alter the operand and force it # -# to be a normal zero. # -# # -######################################################################### - - global tag -tag: - mov.w FTEMP_EX(%a0), %d0 # extract exponent - andi.w &0x7fff, %d0 # strip off sign - cmpi.w %d0, &0x7fff # is (EXP == MAX)? - beq.b inf_or_nan_x -not_inf_or_nan_x: - btst &0x7,FTEMP_HI(%a0) - beq.b not_norm_x -is_norm_x: - mov.b &NORM, %d0 - rts -not_norm_x: - tst.w %d0 # is exponent = 0? - bne.b is_unnorm_x -not_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_denorm_x - tst.l FTEMP_LO(%a0) - bne.b is_denorm_x -is_zero_x: - mov.b &ZERO, %d0 - rts -is_denorm_x: - mov.b &DENORM, %d0 - rts -is_unnorm_x: - bsr.l unnorm_fix # convert to norm,denorm,or zero - rts -is_unnorm_reg_x: - mov.b &UNNORM, %d0 - rts -inf_or_nan_x: - tst.l FTEMP_LO(%a0) - bne.b is_nan_x - mov.l FTEMP_HI(%a0), %d0 - and.l &0x7fffffff, %d0 # msb is a don't care! - bne.b is_nan_x -is_inf_x: - mov.b &INF, %d0 - rts -is_nan_x: - mov.b &QNAN, %d0 - rts - -############################################################# - -qnan: long 0x7fff0000, 0xffffffff, 0xffffffff - -######################################################################### -# XDEF **************************************************************** # -# t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. # -# t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. # -# # -# These rouitnes are used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand. # -# # -# OUTPUT ************************************************************** # -# fp0 = default DZ result. # -# # -# ALGORITHM *********************************************************** # -# Transcendental emulation for the 060FPLSP has detected that # -# a DZ exception should occur for the instruction. If DZ is disabled, # -# return the default result. # -# If DZ is enabled, the dst operand should be returned unscathed # -# in fp0 while fp1 is used to create a DZ exception so that the # -# operating system can log that such an event occurred. # -# # -######################################################################### - - global t_dz -t_dz: - tst.b SRC_EX(%a0) # check sign for neg or pos - bpl.b dz_pinf # branch if pos sign - - global t_dz2 -t_dz2: - ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ - - btst &dz_bit,FPCR_ENABLE(%a6) - bne.b dz_minf_ena - -# dz is disabled. return a -INF. - fmov.s &0xff800000,%fp0 # return -INF - rts - -# dz is enabled. create a dz exception so the user can record it -# but use fp1 instead. return the dst operand unscathed in fp0. -dz_minf_ena: - fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed - fmov.l USER_FPCR(%a6),%fpcr - fmov.s &0xbf800000,%fp1 # load -1 - fdiv.s &0x00000000,%fp1 # -1 / 0 - rts - -dz_pinf: - ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ - - btst &dz_bit,FPCR_ENABLE(%a6) - bne.b dz_pinf_ena - -# dz is disabled. return a +INF. - fmov.s &0x7f800000,%fp0 # return +INF - rts - -# dz is enabled. create a dz exception so the user can record it -# but use fp1 instead. return the dst operand unscathed in fp0. -dz_pinf_ena: - fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed - fmov.l USER_FPCR(%a6),%fpcr - fmov.s &0x3f800000,%fp1 # load +1 - fdiv.s &0x00000000,%fp1 # +1 / 0 - rts - -######################################################################### -# XDEF **************************************************************** # -# t_operr(): Handle 060FPLSP OPERR exception during emulation. # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# fp1 = source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# fp1 = unchanged # -# # -# ALGORITHM *********************************************************** # -# An operand error should occur as the result of transcendental # -# emulation in the 060FPLSP. If OPERR is disabled, just return a NAN # -# in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 # -# and the source operand in fp1. Use fp2 to create an OPERR exception # -# so that the operating system can log the event. # -# # -######################################################################### - - global t_operr -t_operr: - ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP - - btst &operr_bit,FPCR_ENABLE(%a6) - bne.b operr_ena - -# operr is disabled. return a QNAN in fp0 - fmovm.x qnan(%pc),&0x80 # return QNAN - rts - -# operr is enabled. create an operr exception so the user can record it -# but use fp2 instead. return the dst operand unscathed in fp0. -operr_ena: - fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x &0x04,-(%sp) # save fp2 - fmov.s &0x7f800000,%fp2 # load +INF - fmul.s &0x00000000,%fp2 # +INF x 0 - fmovm.x (%sp)+,&0x20 # restore fp2 - rts - -pls_huge: - long 0x7ffe0000,0xffffffff,0xffffffff -mns_huge: - long 0xfffe0000,0xffffffff,0xffffffff -pls_tiny: - long 0x00000000,0x80000000,0x00000000 -mns_tiny: - long 0x80000000,0x80000000,0x00000000 - -######################################################################### -# XDEF **************************************************************** # -# t_unfl(): Handle 060FPLSP underflow exception during emulation. # -# t_unfl2(): Handle 060FPLSP underflow exception during # -# emulation. result always positive. # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default underflow result # -# # -# ALGORITHM *********************************************************** # -# An underflow should occur as the result of transcendental # -# emulation in the 060FPLSP. Create an underflow by using "fmul" # -# and two very small numbers of appropriate sign so the operating # -# system can log the event. # -# # -######################################################################### - - global t_unfl -t_unfl: - tst.b SRC_EX(%a0) - bpl.b unf_pos - - global t_unfl2 -t_unfl2: - ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX - - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x mns_tiny(%pc),&0x80 - fmul.x pls_tiny(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts -unf_pos: - ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX - - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x pls_tiny(%pc),&0x80 - fmul.x %fp0,%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# t_ovfl(): Handle 060FPLSP overflow exception during emulation. # -# (monadic) # -# t_ovfl2(): Handle 060FPLSP overflow exception during # -# emulation. result always positive. (dyadic) # -# t_ovfl_sc(): Handle 060FPLSP overflow exception during # -# emulation for "fscale". # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default underflow result # -# # -# ALGORITHM *********************************************************** # -# An overflow should occur as the result of transcendental # -# emulation in the 060FPLSP. Create an overflow by using "fmul" # -# and two very lareg numbers of appropriate sign so the operating # -# system can log the event. # -# For t_ovfl_sc() we take special care not to lose the INEX2 bit. # -# # -######################################################################### - - global t_ovfl_sc -t_ovfl_sc: - ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX - - mov.b %d0,%d1 # fetch rnd prec,mode - andi.b &0xc0,%d1 # extract prec - beq.w ovfl_work - -# dst op is a DENORM. we have to normalize the mantissa to see if the -# result would be inexact for the given precision. make a copy of the -# dst so we don't screw up the version passed to us. - mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) - mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) - mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 - movm.l &0xc080,-(%sp) # save d0-d1/a0 - bsr.l norm # normalize mantissa - movm.l (%sp)+,&0x0103 # restore d0-d1/a0 - - cmpi.b %d1,&0x40 # is precision sgl? - bne.b ovfl_sc_dbl # no; dbl -ovfl_sc_sgl: - tst.l LOCAL_LO(%a0) # is lo lw of sgl set? - bne.b ovfl_sc_inx # yes - tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? - bne.b ovfl_sc_inx # yes - bra.w ovfl_work # don't set INEX2 -ovfl_sc_dbl: - mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of - andi.l &0x7ff,%d1 # dbl mantissa set? - beq.w ovfl_work # no; don't set INEX2 -ovfl_sc_inx: - ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 - bra.b ovfl_work # continue - - global t_ovfl -t_ovfl: - ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX -ovfl_work: - tst.b SRC_EX(%a0) - bpl.b ovfl_p -ovfl_m: - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x mns_huge(%pc),&0x80 - fmul.x pls_huge(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - ori.b &neg_mask,%d0 - mov.b %d0,FPSR_CC(%a6) - rts -ovfl_p: - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x pls_huge(%pc),&0x80 - fmul.x pls_huge(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts - - global t_ovfl2 -t_ovfl2: - ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x pls_huge(%pc),&0x80 - fmul.x pls_huge(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # -# emulation. # -# t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # -# emulation. # -# # -# These routines are used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# fp0 = default underflow or overflow result # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# If an overflow or underflow occurred during the last # -# instruction of transcendental 060FPLSP emulation, then it has already # -# occurred and has been logged. Now we need to see if an inexact # -# exception should occur. # -# # -######################################################################### - - global t_catch2 -t_catch2: - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - bra.b inx2_work - - global t_catch -t_catch: - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - -######################################################################### -# XDEF **************************************************************** # -# t_inx2(): Handle inexact 060FPLSP exception during emulation. # -# t_pinx2(): Handle inexact 060FPLSP exception for "+" results. # -# t_minx2(): Handle inexact 060FPLSP exception for "-" results. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# fp0 = default result # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# The last instruction of transcendental emulation for the # -# 060FPLSP should be inexact. So, if inexact is enabled, then we create # -# the event here by adding a large and very small number together # -# so that the operating system can log the event. # -# Must check, too, if the result was zero, in which case we just # -# set the FPSR bits and return. # -# # -######################################################################### - - global t_inx2 -t_inx2: - fblt.w t_minx2 - fbeq.w inx2_zero - - global t_pinx2 -t_pinx2: - ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX - bra.b inx2_work - - global t_minx2 -t_minx2: - ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) - -inx2_work: - btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? - bne.b inx2_work_ena # yes - rts -inx2_work_ena: - fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions - fmov.s &0x3f800000,%fp1 # load +1 - fadd.x pls_tiny(%pc),%fp1 # cause exception - rts - -inx2_zero: - mov.b &z_bmask,FPSR_CC(%a6) - ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX - rts - -######################################################################### -# XDEF **************************************************************** # -# t_extdnrm(): Handle DENORM inputs in 060FPLSP. # -# t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# For all functions that have a denormalized input and that # -# f(x)=x, this is the entry point. # -# DENORM value is moved using "fmove" which triggers an exception # -# if enabled so the operating system can log the event. # -# # -######################################################################### - - global t_extdnrm -t_extdnrm: - fmov.l USER_FPCR(%a6),%fpcr - fmov.x SRC_EX(%a0),%fp0 - fmov.l %fpsr,%d0 - ori.l &unfinx_mask,%d0 - or.l %d0,USER_FPSR(%a6) - rts - - global t_resdnrm -t_resdnrm: - fmov.l USER_FPCR(%a6),%fpcr - fmov.x SRC_EX(%a0),%fp0 - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - rts - -########################################## - -# -# sto_cos: -# This is used by fsincos library emulation. The correct -# values are already in fp0 and fp1 so we do nothing here. -# - global sto_cos -sto_cos: - rts - -########################################## - -# -# dst_qnan --- force result when destination is a NaN -# - global dst_qnan -dst_qnan: - fmov.x DST(%a1),%fp0 - tst.b DST_EX(%a1) - bmi.b dst_qnan_m -dst_qnan_p: - mov.b &nan_bmask,FPSR_CC(%a6) - rts -dst_qnan_m: - mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) - rts - -# -# src_qnan --- force result when source is a NaN -# - global src_qnan -src_qnan: - fmov.x SRC(%a0),%fp0 - tst.b SRC_EX(%a0) - bmi.b src_qnan_m -src_qnan_p: - mov.b &nan_bmask,FPSR_CC(%a6) - rts -src_qnan_m: - mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) - rts - -########################################## - -# -# Native instruction support -# -# Some systems may need entry points even for 68060 native -# instructions. These routines are provided for -# convenience. -# - global _fadds_ -_fadds_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src - rts - - global _faddd_ -_faddd_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src - rts - - global _faddx_ -_faddx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fadd.x 0x10(%sp),%fp0 # fadd w/ ext src - rts - - global _fsubs_ -_fsubs_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src - rts - - global _fsubd_ -_fsubd_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src - rts - - global _fsubx_ -_fsubx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fsub.x 0x10(%sp),%fp0 # fsub w/ ext src - rts - - global _fmuls_ -_fmuls_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src - rts - - global _fmuld_ -_fmuld_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src - rts - - global _fmulx_ -_fmulx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fmul.x 0x10(%sp),%fp0 # fmul w/ ext src - rts - - global _fdivs_ -_fdivs_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src - rts - - global _fdivd_ -_fdivd_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src - rts - - global _fdivx_ -_fdivx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src - rts - - global _fabss_ -_fabss_: - fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src - rts - - global _fabsd_ -_fabsd_: - fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src - rts - - global _fabsx_ -_fabsx_: - fabs.x 0x4(%sp),%fp0 # fabs w/ ext src - rts - - global _fnegs_ -_fnegs_: - fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src - rts - - global _fnegd_ -_fnegd_: - fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src - rts - - global _fnegx_ -_fnegx_: - fneg.x 0x4(%sp),%fp0 # fneg w/ ext src - rts - - global _fsqrts_ -_fsqrts_: - fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src - rts - - global _fsqrtd_ -_fsqrtd_: - fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src - rts - - global _fsqrtx_ -_fsqrtx_: - fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src - rts - - global _fints_ -_fints_: - fint.s 0x4(%sp),%fp0 # fint w/ sgl src - rts - - global _fintd_ -_fintd_: - fint.d 0x4(%sp),%fp0 # fint w/ dbl src - rts - - global _fintx_ -_fintx_: - fint.x 0x4(%sp),%fp0 # fint w/ ext src - rts - - global _fintrzs_ -_fintrzs_: - fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src - rts - - global _fintrzd_ -_fintrzd_: - fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src - rts - - global _fintrzx_ -_fintrzx_: - fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src - rts - -######################################################################## - -######################################################################### -# src_zero(): Return signed zero according to sign of src operand. # -######################################################################### - global src_zero -src_zero: - tst.b SRC_EX(%a0) # get sign of src operand - bmi.b ld_mzero # if neg, load neg zero - -# -# ld_pzero(): return a positive zero. -# - global ld_pzero -ld_pzero: - fmov.s &0x00000000,%fp0 # load +0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -# ld_mzero(): return a negative zero. - global ld_mzero -ld_mzero: - fmov.s &0x80000000,%fp0 # load -0 - mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits - rts - -######################################################################### -# dst_zero(): Return signed zero according to sign of dst operand. # -######################################################################### - global dst_zero -dst_zero: - tst.b DST_EX(%a1) # get sign of dst operand - bmi.b ld_mzero # if neg, load neg zero - bra.b ld_pzero # load positive zero - -######################################################################### -# src_inf(): Return signed inf according to sign of src operand. # -######################################################################### - global src_inf -src_inf: - tst.b SRC_EX(%a0) # get sign of src operand - bmi.b ld_minf # if negative branch - -# -# ld_pinf(): return a positive infinity. -# - global ld_pinf -ld_pinf: - fmov.s &0x7f800000,%fp0 # load +INF - mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit - rts - -# -# ld_minf():return a negative infinity. -# - global ld_minf -ld_minf: - fmov.s &0xff800000,%fp0 # load -INF - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# dst_inf(): Return signed inf according to sign of dst operand. # -######################################################################### - global dst_inf -dst_inf: - tst.b DST_EX(%a1) # get sign of dst operand - bmi.b ld_minf # if negative branch - bra.b ld_pinf - - global szr_inf -################################################################# -# szr_inf(): Return +ZERO for a negative src operand or # -# +INF for a positive src operand. # -# Routine used for fetox, ftwotox, and ftentox. # -################################################################# -szr_inf: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_pzero - bra.b ld_pinf - -######################################################################### -# sopr_inf(): Return +INF for a positive src operand or # -# jump to operand error routine for a negative src operand. # -# Routine used for flogn, flognp1, flog10, and flog2. # -######################################################################### - global sopr_inf -sopr_inf: - tst.b SRC_EX(%a0) # check sign of source - bmi.w t_operr - bra.b ld_pinf - -################################################################# -# setoxm1i(): Return minus one for a negative src operand or # -# positive infinity for a positive src operand. # -# Routine used for fetoxm1. # -################################################################# - global setoxm1i -setoxm1i: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mone - bra.b ld_pinf - -######################################################################### -# src_one(): Return signed one according to sign of src operand. # -######################################################################### - global src_one -src_one: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mone - -# -# ld_pone(): return positive one. -# - global ld_pone -ld_pone: - fmov.s &0x3f800000,%fp0 # load +1 - clr.b FPSR_CC(%a6) - rts - -# -# ld_mone(): return negative one. -# - global ld_mone -ld_mone: - fmov.s &0xbf800000,%fp0 # load -1 - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 -mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 - -################################################################# -# spi_2(): Return signed PI/2 according to sign of src operand. # -################################################################# - global spi_2 -spi_2: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mpi2 - -# -# ld_ppi2(): return positive PI/2. -# - global ld_ppi2 -ld_ppi2: - fmov.l %d0,%fpcr - fmov.x ppiby2(%pc),%fp0 # load +pi/2 - bra.w t_pinx2 # set INEX2 - -# -# ld_mpi2(): return negative PI/2. -# - global ld_mpi2 -ld_mpi2: - fmov.l %d0,%fpcr - fmov.x mpiby2(%pc),%fp0 # load -pi/2 - bra.w t_minx2 # set INEX2 - -#################################################### -# The following routines give support for fsincos. # -#################################################### - -# -# ssincosz(): When the src operand is ZERO, store a one in the -# cosine register and return a ZERO in fp0 w/ the same sign -# as the src operand. -# - global ssincosz -ssincosz: - fmov.s &0x3f800000,%fp1 - tst.b SRC_EX(%a0) # test sign - bpl.b sincoszp - fmov.s &0x80000000,%fp0 # return sin result in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) - rts -sincoszp: - fmov.s &0x00000000,%fp0 # return sin result in fp0 - mov.b &z_bmask,FPSR_CC(%a6) - rts - -# -# ssincosi(): When the src operand is INF, store a QNAN in the cosine -# register and jump to the operand error routine for negative -# src operands. -# - global ssincosi -ssincosi: - fmov.x qnan(%pc),%fp1 # load NAN - bra.w t_operr - -# -# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine -# register and branch to the src QNAN routine. -# - global ssincosqnan -ssincosqnan: - fmov.x LOCAL_EX(%a0),%fp1 - bra.w src_qnan - -######################################################################## - - global smod_sdnrm - global smod_snorm -smod_sdnrm: -smod_snorm: - mov.b DTAG(%a6),%d1 - beq.l smod - cmpi.b %d1,&ZERO - beq.w smod_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l smod - bra.l dst_qnan - - global smod_szero -smod_szero: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&ZERO - beq.l t_operr - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l t_operr - bra.l dst_qnan - - global smod_sinf -smod_sinf: - mov.b DTAG(%a6),%d1 - beq.l smod_fpn - cmpi.b %d1,&ZERO - beq.l smod_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l smod_fpn - bra.l dst_qnan - -smod_zro: -srem_zro: - mov.b SRC_EX(%a0),%d1 # get src sign - mov.b DST_EX(%a1),%d0 # get dst sign - eor.b %d0,%d1 # get qbyte sign - andi.b &0x80,%d1 - mov.b %d1,FPSR_QBYTE(%a6) - tst.b %d0 - bpl.w ld_pzero - bra.w ld_mzero - -smod_fpn: -srem_fpn: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) - mov.b SRC_EX(%a0),%d1 # get src sign - mov.b DST_EX(%a1),%d0 # get dst sign - eor.b %d0,%d1 # get qbyte sign - andi.b &0x80,%d1 - mov.b %d1,FPSR_QBYTE(%a6) - cmpi.b DTAG(%a6),&DENORM - bne.b smod_nrm - lea DST(%a1),%a0 - mov.l (%sp)+,%d0 - bra t_resdnrm -smod_nrm: - fmov.l (%sp)+,%fpcr - fmov.x DST(%a1),%fp0 - tst.b DST_EX(%a1) - bmi.b smod_nrm_neg - rts - -smod_nrm_neg: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code - rts - -######################################################################### - global srem_snorm - global srem_sdnrm -srem_sdnrm: -srem_snorm: - mov.b DTAG(%a6),%d1 - beq.l srem - cmpi.b %d1,&ZERO - beq.w srem_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l srem - bra.l dst_qnan - - global srem_szero -srem_szero: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&ZERO - beq.l t_operr - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l t_operr - bra.l dst_qnan - - global srem_sinf -srem_sinf: - mov.b DTAG(%a6),%d1 - beq.w srem_fpn - cmpi.b %d1,&ZERO - beq.w srem_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l srem_fpn - bra.l dst_qnan - -######################################################################### - - global sscale_snorm - global sscale_sdnrm -sscale_snorm: -sscale_sdnrm: - mov.b DTAG(%a6),%d1 - beq.l sscale - cmpi.b %d1,&ZERO - beq.l dst_zero - cmpi.b %d1,&INF - beq.l dst_inf - cmpi.b %d1,&DENORM - beq.l sscale - bra.l dst_qnan - - global sscale_szero -sscale_szero: - mov.b DTAG(%a6),%d1 - beq.l sscale - cmpi.b %d1,&ZERO - beq.l dst_zero - cmpi.b %d1,&INF - beq.l dst_inf - cmpi.b %d1,&DENORM - beq.l sscale - bra.l dst_qnan - - global sscale_sinf -sscale_sinf: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l t_operr - -######################################################################## - - global sop_sqnan -sop_sqnan: - mov.b DTAG(%a6),%d1 - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l src_qnan - -######################################################################### -# norm(): normalize the mantissa of an extended precision input. the # -# input operand should not be normalized already. # -# # -# XDEF **************************************************************** # -# norm() # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# a0 = pointer fp extended precision operand to normalize # -# # -# OUTPUT ************************************************************** # -# d0 = number of bit positions the mantissa was shifted # -# a0 = the input operand's mantissa is normalized; the exponent # -# is unchanged. # -# # -######################################################################### - global norm -norm: - mov.l %d2, -(%sp) # create some temp regs - mov.l %d3, -(%sp) - - mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) - mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) - - bfffo %d0{&0:&32}, %d2 # how many places to shift? - beq.b norm_lo # hi(man) is all zeroes! - -norm_hi: - lsl.l %d2, %d0 # left shift hi(man) - bfextu %d1{&0:%d2}, %d3 # extract lo bits - - or.l %d3, %d0 # create hi(man) - lsl.l %d2, %d1 # create lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - mov.l %d1, FTEMP_LO(%a0) # store new lo(man) - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -norm_lo: - bfffo %d1{&0:&32}, %d2 # how many places to shift? - lsl.l %d2, %d1 # shift lo(man) - add.l &32, %d2 # add 32 to shft amount - - mov.l %d1, FTEMP_HI(%a0) # store hi(man) - clr.l FTEMP_LO(%a0) # lo(man) is now zero - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -######################################################################### -# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # -# - returns corresponding optype tag # -# # -# XDEF **************************************************************** # -# unnorm_fix() # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa # -# # -# INPUT *************************************************************** # -# a0 = pointer to unnormalized extended precision number # -# # -# OUTPUT ************************************************************** # -# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # -# a0 = input operand has been converted to a norm, denorm, or # -# zero; both the exponent and mantissa are changed. # -# # -######################################################################### - - global unnorm_fix -unnorm_fix: - bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? - bne.b unnorm_shift # hi(man) is not all zeroes - -# -# hi(man) is all zeroes so see if any bits in lo(man) are set -# -unnorm_chk_lo: - bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? - beq.w unnorm_zero # yes - - add.w &32, %d0 # no; fix shift distance - -# -# d0 = # shifts needed for complete normalization -# -unnorm_shift: - clr.l %d1 # clear top word - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 # strip off sgn - - cmp.w %d0, %d1 # will denorm push exp < 0? - bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 - -# -# exponent would not go < 0. therefore, number stays normalized -# - sub.w %d0, %d1 # shift exponent value - mov.w FTEMP_EX(%a0), %d0 # load old exponent - and.w &0x8000, %d0 # save old sign - or.w %d0, %d1 # {sgn,new exp} - mov.w %d1, FTEMP_EX(%a0) # insert new exponent - - bsr.l norm # normalize UNNORM - - mov.b &NORM, %d0 # return new optype tag - rts - -# -# exponent would go < 0, so only denormalize until exp = 0 -# -unnorm_nrm_zero: - cmp.b %d1, &32 # is exp <= 32? - bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent - - bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) - mov.l %d0, FTEMP_HI(%a0) # save new hi(man) - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # extract new lo(man) - mov.l %d0, FTEMP_LO(%a0) # save new lo(man) - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# only mantissa bits set are in lo(man) -# -unnorm_nrm_zero_lrg: - sub.w &32, %d1 # adjust shft amt by 32 - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # left shift lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - clr.l FTEMP_LO(%a0) # lo(man) = 0 - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# whole mantissa is zero so this UNNORM is actually a zero -# -unnorm_zero: - and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero - - mov.b &ZERO, %d0 # fix optype tag - rts |