diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/m68k/ifpsp060/src | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/m68k/ifpsp060/src')
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC | 12 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S | 10980 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S | 24785 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S | 1456 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S | 932 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S | 4299 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S | 6386 | ||||
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S | 14745 |
8 files changed, 0 insertions, 63595 deletions
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC deleted file mode 100644 index 6be5cff2..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC +++ /dev/null @@ -1,12 +0,0 @@ -This is the original source code from Motorola for the 68060 processor -support code, providing emulation for rarely used m68k instructions -not implemented in the 68060 silicon. - -The code provided here will not assemble out of the box using the GNU -assembler, however it is being included in order to comply with the -GNU General Public License. - -You don't need to actually assemble these files in order to compile a -workin m68k kernel, the precompiled .sa files in arch/m68k/ifpsp060 -are sufficient and were generated from these source files by -Motorola. diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S deleted file mode 100644 index 3b7ea2dc..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S +++ /dev/null @@ -1,10980 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# -# lfptop.s: -# This file is appended to the top of the 060ILSP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located here. -# - - bra.l _facoss_ - short 0x0000 - bra.l _facosd_ - short 0x0000 - bra.l _facosx_ - short 0x0000 - - bra.l _fasins_ - short 0x0000 - bra.l _fasind_ - short 0x0000 - bra.l _fasinx_ - short 0x0000 - - bra.l _fatans_ - short 0x0000 - bra.l _fatand_ - short 0x0000 - bra.l _fatanx_ - short 0x0000 - - bra.l _fatanhs_ - short 0x0000 - bra.l _fatanhd_ - short 0x0000 - bra.l _fatanhx_ - short 0x0000 - - bra.l _fcoss_ - short 0x0000 - bra.l _fcosd_ - short 0x0000 - bra.l _fcosx_ - short 0x0000 - - bra.l _fcoshs_ - short 0x0000 - bra.l _fcoshd_ - short 0x0000 - bra.l _fcoshx_ - short 0x0000 - - bra.l _fetoxs_ - short 0x0000 - bra.l _fetoxd_ - short 0x0000 - bra.l _fetoxx_ - short 0x0000 - - bra.l _fetoxm1s_ - short 0x0000 - bra.l _fetoxm1d_ - short 0x0000 - bra.l _fetoxm1x_ - short 0x0000 - - bra.l _fgetexps_ - short 0x0000 - bra.l _fgetexpd_ - short 0x0000 - bra.l _fgetexpx_ - short 0x0000 - - bra.l _fgetmans_ - short 0x0000 - bra.l _fgetmand_ - short 0x0000 - bra.l _fgetmanx_ - short 0x0000 - - bra.l _flog10s_ - short 0x0000 - bra.l _flog10d_ - short 0x0000 - bra.l _flog10x_ - short 0x0000 - - bra.l _flog2s_ - short 0x0000 - bra.l _flog2d_ - short 0x0000 - bra.l _flog2x_ - short 0x0000 - - bra.l _flogns_ - short 0x0000 - bra.l _flognd_ - short 0x0000 - bra.l _flognx_ - short 0x0000 - - bra.l _flognp1s_ - short 0x0000 - bra.l _flognp1d_ - short 0x0000 - bra.l _flognp1x_ - short 0x0000 - - bra.l _fmods_ - short 0x0000 - bra.l _fmodd_ - short 0x0000 - bra.l _fmodx_ - short 0x0000 - - bra.l _frems_ - short 0x0000 - bra.l _fremd_ - short 0x0000 - bra.l _fremx_ - short 0x0000 - - bra.l _fscales_ - short 0x0000 - bra.l _fscaled_ - short 0x0000 - bra.l _fscalex_ - short 0x0000 - - bra.l _fsins_ - short 0x0000 - bra.l _fsind_ - short 0x0000 - bra.l _fsinx_ - short 0x0000 - - bra.l _fsincoss_ - short 0x0000 - bra.l _fsincosd_ - short 0x0000 - bra.l _fsincosx_ - short 0x0000 - - bra.l _fsinhs_ - short 0x0000 - bra.l _fsinhd_ - short 0x0000 - bra.l _fsinhx_ - short 0x0000 - - bra.l _ftans_ - short 0x0000 - bra.l _ftand_ - short 0x0000 - bra.l _ftanx_ - short 0x0000 - - bra.l _ftanhs_ - short 0x0000 - bra.l _ftanhd_ - short 0x0000 - bra.l _ftanhx_ - short 0x0000 - - bra.l _ftentoxs_ - short 0x0000 - bra.l _ftentoxd_ - short 0x0000 - bra.l _ftentoxx_ - short 0x0000 - - bra.l _ftwotoxs_ - short 0x0000 - bra.l _ftwotoxd_ - short 0x0000 - bra.l _ftwotoxx_ - short 0x0000 - - bra.l _fabss_ - short 0x0000 - bra.l _fabsd_ - short 0x0000 - bra.l _fabsx_ - short 0x0000 - - bra.l _fadds_ - short 0x0000 - bra.l _faddd_ - short 0x0000 - bra.l _faddx_ - short 0x0000 - - bra.l _fdivs_ - short 0x0000 - bra.l _fdivd_ - short 0x0000 - bra.l _fdivx_ - short 0x0000 - - bra.l _fints_ - short 0x0000 - bra.l _fintd_ - short 0x0000 - bra.l _fintx_ - short 0x0000 - - bra.l _fintrzs_ - short 0x0000 - bra.l _fintrzd_ - short 0x0000 - bra.l _fintrzx_ - short 0x0000 - - bra.l _fmuls_ - short 0x0000 - bra.l _fmuld_ - short 0x0000 - bra.l _fmulx_ - short 0x0000 - - bra.l _fnegs_ - short 0x0000 - bra.l _fnegd_ - short 0x0000 - bra.l _fnegx_ - short 0x0000 - - bra.l _fsqrts_ - short 0x0000 - bra.l _fsqrtd_ - short 0x0000 - bra.l _fsqrtx_ - short 0x0000 - - bra.l _fsubs_ - short 0x0000 - bra.l _fsubd_ - short 0x0000 - bra.l _fsubx_ - short 0x0000 - -# leave room for future possible additions - align 0x400 - -# -# This file contains a set of define statements for constants -# in order to promote readability within the corecode itself. -# - -set LOCAL_SIZE, 192 # stack frame size(bytes) -set LV, -LOCAL_SIZE # stack offset - -set EXC_SR, 0x4 # stack status register -set EXC_PC, 0x6 # stack pc -set EXC_VOFF, 0xa # stacked vector offset -set EXC_EA, 0xc # stacked <ea> - -set EXC_FP, 0x0 # frame pointer - -set EXC_AREGS, -68 # offset of all address regs -set EXC_DREGS, -100 # offset of all data regs -set EXC_FPREGS, -36 # offset of all fp regs - -set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 -set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 -set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 -set EXC_A5, EXC_AREGS+(5*4) -set EXC_A4, EXC_AREGS+(4*4) -set EXC_A3, EXC_AREGS+(3*4) -set EXC_A2, EXC_AREGS+(2*4) -set EXC_A1, EXC_AREGS+(1*4) -set EXC_A0, EXC_AREGS+(0*4) -set EXC_D7, EXC_DREGS+(7*4) -set EXC_D6, EXC_DREGS+(6*4) -set EXC_D5, EXC_DREGS+(5*4) -set EXC_D4, EXC_DREGS+(4*4) -set EXC_D3, EXC_DREGS+(3*4) -set EXC_D2, EXC_DREGS+(2*4) -set EXC_D1, EXC_DREGS+(1*4) -set EXC_D0, EXC_DREGS+(0*4) - -set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 -set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 -set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) - -set FP_SCR1, LV+80 # fp scratch 1 -set FP_SCR1_EX, FP_SCR1+0 -set FP_SCR1_SGN, FP_SCR1+2 -set FP_SCR1_HI, FP_SCR1+4 -set FP_SCR1_LO, FP_SCR1+8 - -set FP_SCR0, LV+68 # fp scratch 0 -set FP_SCR0_EX, FP_SCR0+0 -set FP_SCR0_SGN, FP_SCR0+2 -set FP_SCR0_HI, FP_SCR0+4 -set FP_SCR0_LO, FP_SCR0+8 - -set FP_DST, LV+56 # fp destination operand -set FP_DST_EX, FP_DST+0 -set FP_DST_SGN, FP_DST+2 -set FP_DST_HI, FP_DST+4 -set FP_DST_LO, FP_DST+8 - -set FP_SRC, LV+44 # fp source operand -set FP_SRC_EX, FP_SRC+0 -set FP_SRC_SGN, FP_SRC+2 -set FP_SRC_HI, FP_SRC+4 -set FP_SRC_LO, FP_SRC+8 - -set USER_FPIAR, LV+40 # FP instr address register - -set USER_FPSR, LV+36 # FP status register -set FPSR_CC, USER_FPSR+0 # FPSR condition codes -set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte -set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte -set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte - -set USER_FPCR, LV+32 # FP control register -set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable -set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control - -set L_SCR3, LV+28 # integer scratch 3 -set L_SCR2, LV+24 # integer scratch 2 -set L_SCR1, LV+20 # integer scratch 1 - -set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) - -set EXC_TEMP2, LV+24 # temporary space -set EXC_TEMP, LV+16 # temporary space - -set DTAG, LV+15 # destination operand type -set STAG, LV+14 # source operand type - -set SPCOND_FLG, LV+10 # flag: special case (see below) - -set EXC_CC, LV+8 # saved condition codes -set EXC_EXTWPTR, LV+4 # saved current PC (active) -set EXC_EXTWORD, LV+2 # saved extension word -set EXC_CMDREG, LV+2 # saved extension word -set EXC_OPWORD, LV+0 # saved operation word - -################################ - -# Helpful macros - -set FTEMP, 0 # offsets within an -set FTEMP_EX, 0 # extended precision -set FTEMP_SGN, 2 # value saved in memory. -set FTEMP_HI, 4 -set FTEMP_LO, 8 -set FTEMP_GRS, 12 - -set LOCAL, 0 # offsets within an -set LOCAL_EX, 0 # extended precision -set LOCAL_SGN, 2 # value saved in memory. -set LOCAL_HI, 4 -set LOCAL_LO, 8 -set LOCAL_GRS, 12 - -set DST, 0 # offsets within an -set DST_EX, 0 # extended precision -set DST_HI, 4 # value saved in memory. -set DST_LO, 8 - -set SRC, 0 # offsets within an -set SRC_EX, 0 # extended precision -set SRC_HI, 4 # value saved in memory. -set SRC_LO, 8 - -set SGL_LO, 0x3f81 # min sgl prec exponent -set SGL_HI, 0x407e # max sgl prec exponent -set DBL_LO, 0x3c01 # min dbl prec exponent -set DBL_HI, 0x43fe # max dbl prec exponent -set EXT_LO, 0x0 # min ext prec exponent -set EXT_HI, 0x7ffe # max ext prec exponent - -set EXT_BIAS, 0x3fff # extended precision bias -set SGL_BIAS, 0x007f # single precision bias -set DBL_BIAS, 0x03ff # double precision bias - -set NORM, 0x00 # operand type for STAG/DTAG -set ZERO, 0x01 # operand type for STAG/DTAG -set INF, 0x02 # operand type for STAG/DTAG -set QNAN, 0x03 # operand type for STAG/DTAG -set DENORM, 0x04 # operand type for STAG/DTAG -set SNAN, 0x05 # operand type for STAG/DTAG -set UNNORM, 0x06 # operand type for STAG/DTAG - -################## -# FPSR/FPCR bits # -################## -set neg_bit, 0x3 # negative result -set z_bit, 0x2 # zero result -set inf_bit, 0x1 # infinite result -set nan_bit, 0x0 # NAN result - -set q_sn_bit, 0x7 # sign bit of quotient byte - -set bsun_bit, 7 # branch on unordered -set snan_bit, 6 # signalling NAN -set operr_bit, 5 # operand error -set ovfl_bit, 4 # overflow -set unfl_bit, 3 # underflow -set dz_bit, 2 # divide by zero -set inex2_bit, 1 # inexact result 2 -set inex1_bit, 0 # inexact result 1 - -set aiop_bit, 7 # accrued inexact operation bit -set aovfl_bit, 6 # accrued overflow bit -set aunfl_bit, 5 # accrued underflow bit -set adz_bit, 4 # accrued dz bit -set ainex_bit, 3 # accrued inexact bit - -############################# -# FPSR individual bit masks # -############################# -set neg_mask, 0x08000000 # negative bit mask (lw) -set inf_mask, 0x02000000 # infinity bit mask (lw) -set z_mask, 0x04000000 # zero bit mask (lw) -set nan_mask, 0x01000000 # nan bit mask (lw) - -set neg_bmask, 0x08 # negative bit mask (byte) -set inf_bmask, 0x02 # infinity bit mask (byte) -set z_bmask, 0x04 # zero bit mask (byte) -set nan_bmask, 0x01 # nan bit mask (byte) - -set bsun_mask, 0x00008000 # bsun exception mask -set snan_mask, 0x00004000 # snan exception mask -set operr_mask, 0x00002000 # operr exception mask -set ovfl_mask, 0x00001000 # overflow exception mask -set unfl_mask, 0x00000800 # underflow exception mask -set dz_mask, 0x00000400 # dz exception mask -set inex2_mask, 0x00000200 # inex2 exception mask -set inex1_mask, 0x00000100 # inex1 exception mask - -set aiop_mask, 0x00000080 # accrued illegal operation -set aovfl_mask, 0x00000040 # accrued overflow -set aunfl_mask, 0x00000020 # accrued underflow -set adz_mask, 0x00000010 # accrued divide by zero -set ainex_mask, 0x00000008 # accrued inexact - -###################################### -# FPSR combinations used in the FPSP # -###################################### -set dzinf_mask, inf_mask+dz_mask+adz_mask -set opnan_mask, nan_mask+operr_mask+aiop_mask -set nzi_mask, 0x01ffffff #clears N, Z, and I -set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask -set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask -set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask -set inx1a_mask, inex1_mask+ainex_mask -set inx2a_mask, inex2_mask+ainex_mask -set snaniop_mask, nan_mask+snan_mask+aiop_mask -set snaniop2_mask, snan_mask+aiop_mask -set naniop_mask, nan_mask+aiop_mask -set neginf_mask, neg_mask+inf_mask -set infaiop_mask, inf_mask+aiop_mask -set negz_mask, neg_mask+z_mask -set opaop_mask, operr_mask+aiop_mask -set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask -set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask - -######### -# misc. # -######### -set rnd_stky_bit, 29 # stky bit pos in longword - -set sign_bit, 0x7 # sign bit -set signan_bit, 0x6 # signalling nan bit - -set sgl_thresh, 0x3f81 # minimum sgl exponent -set dbl_thresh, 0x3c01 # minimum dbl exponent - -set x_mode, 0x0 # extended precision -set s_mode, 0x4 # single precision -set d_mode, 0x8 # double precision - -set rn_mode, 0x0 # round-to-nearest -set rz_mode, 0x1 # round-to-zero -set rm_mode, 0x2 # round-tp-minus-infinity -set rp_mode, 0x3 # round-to-plus-infinity - -set mantissalen, 64 # length of mantissa in bits - -set BYTE, 1 # len(byte) == 1 byte -set WORD, 2 # len(word) == 2 bytes -set LONG, 4 # len(longword) == 2 bytes - -set BSUN_VEC, 0xc0 # bsun vector offset -set INEX_VEC, 0xc4 # inexact vector offset -set DZ_VEC, 0xc8 # dz vector offset -set UNFL_VEC, 0xcc # unfl vector offset -set OPERR_VEC, 0xd0 # operr vector offset -set OVFL_VEC, 0xd4 # ovfl vector offset -set SNAN_VEC, 0xd8 # snan vector offset - -########################### -# SPecial CONDition FLaGs # -########################### -set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception -set fbsun_flg, 0x02 # flag bit: bsun exception -set mia7_flg, 0x04 # flag bit: (a7)+ <ea> -set mda7_flg, 0x08 # flag bit: -(a7) <ea> -set fmovm_flg, 0x40 # flag bit: fmovm instruction -set immed_flg, 0x80 # flag bit: &<data> <ea> - -set ftrapcc_bit, 0x0 -set fbsun_bit, 0x1 -set mia7_bit, 0x2 -set mda7_bit, 0x3 -set immed_bit, 0x7 - -################################## -# TRANSCENDENTAL "LAST-OP" FLAGS # -################################## -set FMUL_OP, 0x0 # fmul instr performed last -set FDIV_OP, 0x1 # fdiv performed last -set FADD_OP, 0x2 # fadd performed last -set FMOV_OP, 0x3 # fmov performed last - -############# -# CONSTANTS # -############# -T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD -T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL - -PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 -PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -TWOBYPI: - long 0x3FE45F30,0x6DC9C883 - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fsins_ -_fsins_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L0_2s - bsr.l ssin # operand is a NORM - bra.b _L0_6s -_L0_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L0_3s # no - bsr.l src_zero # yes - bra.b _L0_6s -_L0_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L0_4s # no - bsr.l t_operr # yes - bra.b _L0_6s -_L0_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L0_5s # no - bsr.l src_qnan # yes - bra.b _L0_6s -_L0_5s: - bsr.l ssind # operand is a DENORM -_L0_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsind_ -_fsind_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L0_2d - bsr.l ssin # operand is a NORM - bra.b _L0_6d -_L0_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L0_3d # no - bsr.l src_zero # yes - bra.b _L0_6d -_L0_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L0_4d # no - bsr.l t_operr # yes - bra.b _L0_6d -_L0_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L0_5d # no - bsr.l src_qnan # yes - bra.b _L0_6d -_L0_5d: - bsr.l ssind # operand is a DENORM -_L0_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsinx_ -_fsinx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L0_2x - bsr.l ssin # operand is a NORM - bra.b _L0_6x -_L0_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L0_3x # no - bsr.l src_zero # yes - bra.b _L0_6x -_L0_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L0_4x # no - bsr.l t_operr # yes - bra.b _L0_6x -_L0_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L0_5x # no - bsr.l src_qnan # yes - bra.b _L0_6x -_L0_5x: - bsr.l ssind # operand is a DENORM -_L0_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fcoss_ -_fcoss_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L1_2s - bsr.l scos # operand is a NORM - bra.b _L1_6s -_L1_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L1_3s # no - bsr.l ld_pone # yes - bra.b _L1_6s -_L1_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L1_4s # no - bsr.l t_operr # yes - bra.b _L1_6s -_L1_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L1_5s # no - bsr.l src_qnan # yes - bra.b _L1_6s -_L1_5s: - bsr.l scosd # operand is a DENORM -_L1_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcosd_ -_fcosd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L1_2d - bsr.l scos # operand is a NORM - bra.b _L1_6d -_L1_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L1_3d # no - bsr.l ld_pone # yes - bra.b _L1_6d -_L1_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L1_4d # no - bsr.l t_operr # yes - bra.b _L1_6d -_L1_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L1_5d # no - bsr.l src_qnan # yes - bra.b _L1_6d -_L1_5d: - bsr.l scosd # operand is a DENORM -_L1_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcosx_ -_fcosx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L1_2x - bsr.l scos # operand is a NORM - bra.b _L1_6x -_L1_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L1_3x # no - bsr.l ld_pone # yes - bra.b _L1_6x -_L1_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L1_4x # no - bsr.l t_operr # yes - bra.b _L1_6x -_L1_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L1_5x # no - bsr.l src_qnan # yes - bra.b _L1_6x -_L1_5x: - bsr.l scosd # operand is a DENORM -_L1_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fsinhs_ -_fsinhs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L2_2s - bsr.l ssinh # operand is a NORM - bra.b _L2_6s -_L2_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L2_3s # no - bsr.l src_zero # yes - bra.b _L2_6s -_L2_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L2_4s # no - bsr.l src_inf # yes - bra.b _L2_6s -_L2_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L2_5s # no - bsr.l src_qnan # yes - bra.b _L2_6s -_L2_5s: - bsr.l ssinhd # operand is a DENORM -_L2_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsinhd_ -_fsinhd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L2_2d - bsr.l ssinh # operand is a NORM - bra.b _L2_6d -_L2_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L2_3d # no - bsr.l src_zero # yes - bra.b _L2_6d -_L2_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L2_4d # no - bsr.l src_inf # yes - bra.b _L2_6d -_L2_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L2_5d # no - bsr.l src_qnan # yes - bra.b _L2_6d -_L2_5d: - bsr.l ssinhd # operand is a DENORM -_L2_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fsinhx_ -_fsinhx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L2_2x - bsr.l ssinh # operand is a NORM - bra.b _L2_6x -_L2_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L2_3x # no - bsr.l src_zero # yes - bra.b _L2_6x -_L2_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L2_4x # no - bsr.l src_inf # yes - bra.b _L2_6x -_L2_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L2_5x # no - bsr.l src_qnan # yes - bra.b _L2_6x -_L2_5x: - bsr.l ssinhd # operand is a DENORM -_L2_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flognp1s_ -_flognp1s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L3_2s - bsr.l slognp1 # operand is a NORM - bra.b _L3_6s -_L3_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L3_3s # no - bsr.l src_zero # yes - bra.b _L3_6s -_L3_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L3_4s # no - bsr.l sopr_inf # yes - bra.b _L3_6s -_L3_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L3_5s # no - bsr.l src_qnan # yes - bra.b _L3_6s -_L3_5s: - bsr.l slognp1d # operand is a DENORM -_L3_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognp1d_ -_flognp1d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L3_2d - bsr.l slognp1 # operand is a NORM - bra.b _L3_6d -_L3_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L3_3d # no - bsr.l src_zero # yes - bra.b _L3_6d -_L3_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L3_4d # no - bsr.l sopr_inf # yes - bra.b _L3_6d -_L3_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L3_5d # no - bsr.l src_qnan # yes - bra.b _L3_6d -_L3_5d: - bsr.l slognp1d # operand is a DENORM -_L3_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognp1x_ -_flognp1x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L3_2x - bsr.l slognp1 # operand is a NORM - bra.b _L3_6x -_L3_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L3_3x # no - bsr.l src_zero # yes - bra.b _L3_6x -_L3_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L3_4x # no - bsr.l sopr_inf # yes - bra.b _L3_6x -_L3_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L3_5x # no - bsr.l src_qnan # yes - bra.b _L3_6x -_L3_5x: - bsr.l slognp1d # operand is a DENORM -_L3_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fetoxm1s_ -_fetoxm1s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L4_2s - bsr.l setoxm1 # operand is a NORM - bra.b _L4_6s -_L4_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L4_3s # no - bsr.l src_zero # yes - bra.b _L4_6s -_L4_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L4_4s # no - bsr.l setoxm1i # yes - bra.b _L4_6s -_L4_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L4_5s # no - bsr.l src_qnan # yes - bra.b _L4_6s -_L4_5s: - bsr.l setoxm1d # operand is a DENORM -_L4_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxm1d_ -_fetoxm1d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L4_2d - bsr.l setoxm1 # operand is a NORM - bra.b _L4_6d -_L4_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L4_3d # no - bsr.l src_zero # yes - bra.b _L4_6d -_L4_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L4_4d # no - bsr.l setoxm1i # yes - bra.b _L4_6d -_L4_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L4_5d # no - bsr.l src_qnan # yes - bra.b _L4_6d -_L4_5d: - bsr.l setoxm1d # operand is a DENORM -_L4_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxm1x_ -_fetoxm1x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L4_2x - bsr.l setoxm1 # operand is a NORM - bra.b _L4_6x -_L4_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L4_3x # no - bsr.l src_zero # yes - bra.b _L4_6x -_L4_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L4_4x # no - bsr.l setoxm1i # yes - bra.b _L4_6x -_L4_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L4_5x # no - bsr.l src_qnan # yes - bra.b _L4_6x -_L4_5x: - bsr.l setoxm1d # operand is a DENORM -_L4_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftanhs_ -_ftanhs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L5_2s - bsr.l stanh # operand is a NORM - bra.b _L5_6s -_L5_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L5_3s # no - bsr.l src_zero # yes - bra.b _L5_6s -_L5_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L5_4s # no - bsr.l src_one # yes - bra.b _L5_6s -_L5_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L5_5s # no - bsr.l src_qnan # yes - bra.b _L5_6s -_L5_5s: - bsr.l stanhd # operand is a DENORM -_L5_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftanhd_ -_ftanhd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L5_2d - bsr.l stanh # operand is a NORM - bra.b _L5_6d -_L5_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L5_3d # no - bsr.l src_zero # yes - bra.b _L5_6d -_L5_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L5_4d # no - bsr.l src_one # yes - bra.b _L5_6d -_L5_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L5_5d # no - bsr.l src_qnan # yes - bra.b _L5_6d -_L5_5d: - bsr.l stanhd # operand is a DENORM -_L5_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftanhx_ -_ftanhx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L5_2x - bsr.l stanh # operand is a NORM - bra.b _L5_6x -_L5_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L5_3x # no - bsr.l src_zero # yes - bra.b _L5_6x -_L5_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L5_4x # no - bsr.l src_one # yes - bra.b _L5_6x -_L5_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L5_5x # no - bsr.l src_qnan # yes - bra.b _L5_6x -_L5_5x: - bsr.l stanhd # operand is a DENORM -_L5_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fatans_ -_fatans_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L6_2s - bsr.l satan # operand is a NORM - bra.b _L6_6s -_L6_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L6_3s # no - bsr.l src_zero # yes - bra.b _L6_6s -_L6_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L6_4s # no - bsr.l spi_2 # yes - bra.b _L6_6s -_L6_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L6_5s # no - bsr.l src_qnan # yes - bra.b _L6_6s -_L6_5s: - bsr.l satand # operand is a DENORM -_L6_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatand_ -_fatand_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L6_2d - bsr.l satan # operand is a NORM - bra.b _L6_6d -_L6_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L6_3d # no - bsr.l src_zero # yes - bra.b _L6_6d -_L6_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L6_4d # no - bsr.l spi_2 # yes - bra.b _L6_6d -_L6_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L6_5d # no - bsr.l src_qnan # yes - bra.b _L6_6d -_L6_5d: - bsr.l satand # operand is a DENORM -_L6_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatanx_ -_fatanx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L6_2x - bsr.l satan # operand is a NORM - bra.b _L6_6x -_L6_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L6_3x # no - bsr.l src_zero # yes - bra.b _L6_6x -_L6_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L6_4x # no - bsr.l spi_2 # yes - bra.b _L6_6x -_L6_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L6_5x # no - bsr.l src_qnan # yes - bra.b _L6_6x -_L6_5x: - bsr.l satand # operand is a DENORM -_L6_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fasins_ -_fasins_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L7_2s - bsr.l sasin # operand is a NORM - bra.b _L7_6s -_L7_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L7_3s # no - bsr.l src_zero # yes - bra.b _L7_6s -_L7_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L7_4s # no - bsr.l t_operr # yes - bra.b _L7_6s -_L7_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L7_5s # no - bsr.l src_qnan # yes - bra.b _L7_6s -_L7_5s: - bsr.l sasind # operand is a DENORM -_L7_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fasind_ -_fasind_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L7_2d - bsr.l sasin # operand is a NORM - bra.b _L7_6d -_L7_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L7_3d # no - bsr.l src_zero # yes - bra.b _L7_6d -_L7_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L7_4d # no - bsr.l t_operr # yes - bra.b _L7_6d -_L7_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L7_5d # no - bsr.l src_qnan # yes - bra.b _L7_6d -_L7_5d: - bsr.l sasind # operand is a DENORM -_L7_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fasinx_ -_fasinx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L7_2x - bsr.l sasin # operand is a NORM - bra.b _L7_6x -_L7_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L7_3x # no - bsr.l src_zero # yes - bra.b _L7_6x -_L7_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L7_4x # no - bsr.l t_operr # yes - bra.b _L7_6x -_L7_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L7_5x # no - bsr.l src_qnan # yes - bra.b _L7_6x -_L7_5x: - bsr.l sasind # operand is a DENORM -_L7_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fatanhs_ -_fatanhs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L8_2s - bsr.l satanh # operand is a NORM - bra.b _L8_6s -_L8_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L8_3s # no - bsr.l src_zero # yes - bra.b _L8_6s -_L8_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L8_4s # no - bsr.l t_operr # yes - bra.b _L8_6s -_L8_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L8_5s # no - bsr.l src_qnan # yes - bra.b _L8_6s -_L8_5s: - bsr.l satanhd # operand is a DENORM -_L8_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatanhd_ -_fatanhd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L8_2d - bsr.l satanh # operand is a NORM - bra.b _L8_6d -_L8_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L8_3d # no - bsr.l src_zero # yes - bra.b _L8_6d -_L8_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L8_4d # no - bsr.l t_operr # yes - bra.b _L8_6d -_L8_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L8_5d # no - bsr.l src_qnan # yes - bra.b _L8_6d -_L8_5d: - bsr.l satanhd # operand is a DENORM -_L8_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fatanhx_ -_fatanhx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L8_2x - bsr.l satanh # operand is a NORM - bra.b _L8_6x -_L8_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L8_3x # no - bsr.l src_zero # yes - bra.b _L8_6x -_L8_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L8_4x # no - bsr.l t_operr # yes - bra.b _L8_6x -_L8_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L8_5x # no - bsr.l src_qnan # yes - bra.b _L8_6x -_L8_5x: - bsr.l satanhd # operand is a DENORM -_L8_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftans_ -_ftans_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L9_2s - bsr.l stan # operand is a NORM - bra.b _L9_6s -_L9_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L9_3s # no - bsr.l src_zero # yes - bra.b _L9_6s -_L9_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L9_4s # no - bsr.l t_operr # yes - bra.b _L9_6s -_L9_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L9_5s # no - bsr.l src_qnan # yes - bra.b _L9_6s -_L9_5s: - bsr.l stand # operand is a DENORM -_L9_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftand_ -_ftand_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L9_2d - bsr.l stan # operand is a NORM - bra.b _L9_6d -_L9_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L9_3d # no - bsr.l src_zero # yes - bra.b _L9_6d -_L9_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L9_4d # no - bsr.l t_operr # yes - bra.b _L9_6d -_L9_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L9_5d # no - bsr.l src_qnan # yes - bra.b _L9_6d -_L9_5d: - bsr.l stand # operand is a DENORM -_L9_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftanx_ -_ftanx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L9_2x - bsr.l stan # operand is a NORM - bra.b _L9_6x -_L9_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L9_3x # no - bsr.l src_zero # yes - bra.b _L9_6x -_L9_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L9_4x # no - bsr.l t_operr # yes - bra.b _L9_6x -_L9_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L9_5x # no - bsr.l src_qnan # yes - bra.b _L9_6x -_L9_5x: - bsr.l stand # operand is a DENORM -_L9_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fetoxs_ -_fetoxs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L10_2s - bsr.l setox # operand is a NORM - bra.b _L10_6s -_L10_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L10_3s # no - bsr.l ld_pone # yes - bra.b _L10_6s -_L10_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L10_4s # no - bsr.l szr_inf # yes - bra.b _L10_6s -_L10_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L10_5s # no - bsr.l src_qnan # yes - bra.b _L10_6s -_L10_5s: - bsr.l setoxd # operand is a DENORM -_L10_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxd_ -_fetoxd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L10_2d - bsr.l setox # operand is a NORM - bra.b _L10_6d -_L10_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L10_3d # no - bsr.l ld_pone # yes - bra.b _L10_6d -_L10_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L10_4d # no - bsr.l szr_inf # yes - bra.b _L10_6d -_L10_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L10_5d # no - bsr.l src_qnan # yes - bra.b _L10_6d -_L10_5d: - bsr.l setoxd # operand is a DENORM -_L10_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fetoxx_ -_fetoxx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L10_2x - bsr.l setox # operand is a NORM - bra.b _L10_6x -_L10_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L10_3x # no - bsr.l ld_pone # yes - bra.b _L10_6x -_L10_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L10_4x # no - bsr.l szr_inf # yes - bra.b _L10_6x -_L10_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L10_5x # no - bsr.l src_qnan # yes - bra.b _L10_6x -_L10_5x: - bsr.l setoxd # operand is a DENORM -_L10_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftwotoxs_ -_ftwotoxs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L11_2s - bsr.l stwotox # operand is a NORM - bra.b _L11_6s -_L11_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L11_3s # no - bsr.l ld_pone # yes - bra.b _L11_6s -_L11_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L11_4s # no - bsr.l szr_inf # yes - bra.b _L11_6s -_L11_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L11_5s # no - bsr.l src_qnan # yes - bra.b _L11_6s -_L11_5s: - bsr.l stwotoxd # operand is a DENORM -_L11_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftwotoxd_ -_ftwotoxd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L11_2d - bsr.l stwotox # operand is a NORM - bra.b _L11_6d -_L11_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L11_3d # no - bsr.l ld_pone # yes - bra.b _L11_6d -_L11_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L11_4d # no - bsr.l szr_inf # yes - bra.b _L11_6d -_L11_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L11_5d # no - bsr.l src_qnan # yes - bra.b _L11_6d -_L11_5d: - bsr.l stwotoxd # operand is a DENORM -_L11_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftwotoxx_ -_ftwotoxx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L11_2x - bsr.l stwotox # operand is a NORM - bra.b _L11_6x -_L11_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L11_3x # no - bsr.l ld_pone # yes - bra.b _L11_6x -_L11_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L11_4x # no - bsr.l szr_inf # yes - bra.b _L11_6x -_L11_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L11_5x # no - bsr.l src_qnan # yes - bra.b _L11_6x -_L11_5x: - bsr.l stwotoxd # operand is a DENORM -_L11_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _ftentoxs_ -_ftentoxs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L12_2s - bsr.l stentox # operand is a NORM - bra.b _L12_6s -_L12_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L12_3s # no - bsr.l ld_pone # yes - bra.b _L12_6s -_L12_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L12_4s # no - bsr.l szr_inf # yes - bra.b _L12_6s -_L12_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L12_5s # no - bsr.l src_qnan # yes - bra.b _L12_6s -_L12_5s: - bsr.l stentoxd # operand is a DENORM -_L12_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftentoxd_ -_ftentoxd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L12_2d - bsr.l stentox # operand is a NORM - bra.b _L12_6d -_L12_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L12_3d # no - bsr.l ld_pone # yes - bra.b _L12_6d -_L12_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L12_4d # no - bsr.l szr_inf # yes - bra.b _L12_6d -_L12_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L12_5d # no - bsr.l src_qnan # yes - bra.b _L12_6d -_L12_5d: - bsr.l stentoxd # operand is a DENORM -_L12_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _ftentoxx_ -_ftentoxx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L12_2x - bsr.l stentox # operand is a NORM - bra.b _L12_6x -_L12_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L12_3x # no - bsr.l ld_pone # yes - bra.b _L12_6x -_L12_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L12_4x # no - bsr.l szr_inf # yes - bra.b _L12_6x -_L12_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L12_5x # no - bsr.l src_qnan # yes - bra.b _L12_6x -_L12_5x: - bsr.l stentoxd # operand is a DENORM -_L12_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flogns_ -_flogns_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L13_2s - bsr.l slogn # operand is a NORM - bra.b _L13_6s -_L13_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L13_3s # no - bsr.l t_dz2 # yes - bra.b _L13_6s -_L13_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L13_4s # no - bsr.l sopr_inf # yes - bra.b _L13_6s -_L13_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L13_5s # no - bsr.l src_qnan # yes - bra.b _L13_6s -_L13_5s: - bsr.l slognd # operand is a DENORM -_L13_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognd_ -_flognd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L13_2d - bsr.l slogn # operand is a NORM - bra.b _L13_6d -_L13_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L13_3d # no - bsr.l t_dz2 # yes - bra.b _L13_6d -_L13_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L13_4d # no - bsr.l sopr_inf # yes - bra.b _L13_6d -_L13_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L13_5d # no - bsr.l src_qnan # yes - bra.b _L13_6d -_L13_5d: - bsr.l slognd # operand is a DENORM -_L13_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flognx_ -_flognx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L13_2x - bsr.l slogn # operand is a NORM - bra.b _L13_6x -_L13_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L13_3x # no - bsr.l t_dz2 # yes - bra.b _L13_6x -_L13_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L13_4x # no - bsr.l sopr_inf # yes - bra.b _L13_6x -_L13_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L13_5x # no - bsr.l src_qnan # yes - bra.b _L13_6x -_L13_5x: - bsr.l slognd # operand is a DENORM -_L13_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flog10s_ -_flog10s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L14_2s - bsr.l slog10 # operand is a NORM - bra.b _L14_6s -_L14_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L14_3s # no - bsr.l t_dz2 # yes - bra.b _L14_6s -_L14_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L14_4s # no - bsr.l sopr_inf # yes - bra.b _L14_6s -_L14_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L14_5s # no - bsr.l src_qnan # yes - bra.b _L14_6s -_L14_5s: - bsr.l slog10d # operand is a DENORM -_L14_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog10d_ -_flog10d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L14_2d - bsr.l slog10 # operand is a NORM - bra.b _L14_6d -_L14_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L14_3d # no - bsr.l t_dz2 # yes - bra.b _L14_6d -_L14_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L14_4d # no - bsr.l sopr_inf # yes - bra.b _L14_6d -_L14_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L14_5d # no - bsr.l src_qnan # yes - bra.b _L14_6d -_L14_5d: - bsr.l slog10d # operand is a DENORM -_L14_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog10x_ -_flog10x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L14_2x - bsr.l slog10 # operand is a NORM - bra.b _L14_6x -_L14_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L14_3x # no - bsr.l t_dz2 # yes - bra.b _L14_6x -_L14_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L14_4x # no - bsr.l sopr_inf # yes - bra.b _L14_6x -_L14_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L14_5x # no - bsr.l src_qnan # yes - bra.b _L14_6x -_L14_5x: - bsr.l slog10d # operand is a DENORM -_L14_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _flog2s_ -_flog2s_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L15_2s - bsr.l slog2 # operand is a NORM - bra.b _L15_6s -_L15_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L15_3s # no - bsr.l t_dz2 # yes - bra.b _L15_6s -_L15_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L15_4s # no - bsr.l sopr_inf # yes - bra.b _L15_6s -_L15_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L15_5s # no - bsr.l src_qnan # yes - bra.b _L15_6s -_L15_5s: - bsr.l slog2d # operand is a DENORM -_L15_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog2d_ -_flog2d_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L15_2d - bsr.l slog2 # operand is a NORM - bra.b _L15_6d -_L15_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L15_3d # no - bsr.l t_dz2 # yes - bra.b _L15_6d -_L15_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L15_4d # no - bsr.l sopr_inf # yes - bra.b _L15_6d -_L15_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L15_5d # no - bsr.l src_qnan # yes - bra.b _L15_6d -_L15_5d: - bsr.l slog2d # operand is a DENORM -_L15_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _flog2x_ -_flog2x_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L15_2x - bsr.l slog2 # operand is a NORM - bra.b _L15_6x -_L15_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L15_3x # no - bsr.l t_dz2 # yes - bra.b _L15_6x -_L15_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L15_4x # no - bsr.l sopr_inf # yes - bra.b _L15_6x -_L15_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L15_5x # no - bsr.l src_qnan # yes - bra.b _L15_6x -_L15_5x: - bsr.l slog2d # operand is a DENORM -_L15_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fcoshs_ -_fcoshs_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L16_2s - bsr.l scosh # operand is a NORM - bra.b _L16_6s -_L16_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L16_3s # no - bsr.l ld_pone # yes - bra.b _L16_6s -_L16_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L16_4s # no - bsr.l ld_pinf # yes - bra.b _L16_6s -_L16_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L16_5s # no - bsr.l src_qnan # yes - bra.b _L16_6s -_L16_5s: - bsr.l scoshd # operand is a DENORM -_L16_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcoshd_ -_fcoshd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L16_2d - bsr.l scosh # operand is a NORM - bra.b _L16_6d -_L16_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L16_3d # no - bsr.l ld_pone # yes - bra.b _L16_6d -_L16_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L16_4d # no - bsr.l ld_pinf # yes - bra.b _L16_6d -_L16_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L16_5d # no - bsr.l src_qnan # yes - bra.b _L16_6d -_L16_5d: - bsr.l scoshd # operand is a DENORM -_L16_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fcoshx_ -_fcoshx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L16_2x - bsr.l scosh # operand is a NORM - bra.b _L16_6x -_L16_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L16_3x # no - bsr.l ld_pone # yes - bra.b _L16_6x -_L16_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L16_4x # no - bsr.l ld_pinf # yes - bra.b _L16_6x -_L16_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L16_5x # no - bsr.l src_qnan # yes - bra.b _L16_6x -_L16_5x: - bsr.l scoshd # operand is a DENORM -_L16_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _facoss_ -_facoss_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L17_2s - bsr.l sacos # operand is a NORM - bra.b _L17_6s -_L17_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L17_3s # no - bsr.l ld_ppi2 # yes - bra.b _L17_6s -_L17_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L17_4s # no - bsr.l t_operr # yes - bra.b _L17_6s -_L17_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L17_5s # no - bsr.l src_qnan # yes - bra.b _L17_6s -_L17_5s: - bsr.l sacosd # operand is a DENORM -_L17_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _facosd_ -_facosd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L17_2d - bsr.l sacos # operand is a NORM - bra.b _L17_6d -_L17_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L17_3d # no - bsr.l ld_ppi2 # yes - bra.b _L17_6d -_L17_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L17_4d # no - bsr.l t_operr # yes - bra.b _L17_6d -_L17_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L17_5d # no - bsr.l src_qnan # yes - bra.b _L17_6d -_L17_5d: - bsr.l sacosd # operand is a DENORM -_L17_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _facosx_ -_facosx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L17_2x - bsr.l sacos # operand is a NORM - bra.b _L17_6x -_L17_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L17_3x # no - bsr.l ld_ppi2 # yes - bra.b _L17_6x -_L17_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L17_4x # no - bsr.l t_operr # yes - bra.b _L17_6x -_L17_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L17_5x # no - bsr.l src_qnan # yes - bra.b _L17_6x -_L17_5x: - bsr.l sacosd # operand is a DENORM -_L17_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fgetexps_ -_fgetexps_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L18_2s - bsr.l sgetexp # operand is a NORM - bra.b _L18_6s -_L18_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L18_3s # no - bsr.l src_zero # yes - bra.b _L18_6s -_L18_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L18_4s # no - bsr.l t_operr # yes - bra.b _L18_6s -_L18_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L18_5s # no - bsr.l src_qnan # yes - bra.b _L18_6s -_L18_5s: - bsr.l sgetexpd # operand is a DENORM -_L18_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetexpd_ -_fgetexpd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L18_2d - bsr.l sgetexp # operand is a NORM - bra.b _L18_6d -_L18_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L18_3d # no - bsr.l src_zero # yes - bra.b _L18_6d -_L18_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L18_4d # no - bsr.l t_operr # yes - bra.b _L18_6d -_L18_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L18_5d # no - bsr.l src_qnan # yes - bra.b _L18_6d -_L18_5d: - bsr.l sgetexpd # operand is a DENORM -_L18_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetexpx_ -_fgetexpx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L18_2x - bsr.l sgetexp # operand is a NORM - bra.b _L18_6x -_L18_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L18_3x # no - bsr.l src_zero # yes - bra.b _L18_6x -_L18_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L18_4x # no - bsr.l t_operr # yes - bra.b _L18_6x -_L18_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L18_5x # no - bsr.l src_qnan # yes - bra.b _L18_6x -_L18_5x: - bsr.l sgetexpd # operand is a DENORM -_L18_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fgetmans_ -_fgetmans_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L19_2s - bsr.l sgetman # operand is a NORM - bra.b _L19_6s -_L19_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L19_3s # no - bsr.l src_zero # yes - bra.b _L19_6s -_L19_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L19_4s # no - bsr.l t_operr # yes - bra.b _L19_6s -_L19_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L19_5s # no - bsr.l src_qnan # yes - bra.b _L19_6s -_L19_5s: - bsr.l sgetmand # operand is a DENORM -_L19_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetmand_ -_fgetmand_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L19_2d - bsr.l sgetman # operand is a NORM - bra.b _L19_6d -_L19_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L19_3d # no - bsr.l src_zero # yes - bra.b _L19_6d -_L19_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L19_4d # no - bsr.l t_operr # yes - bra.b _L19_6d -_L19_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L19_5d # no - bsr.l src_qnan # yes - bra.b _L19_6d -_L19_5d: - bsr.l sgetmand # operand is a DENORM -_L19_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fgetmanx_ -_fgetmanx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L19_2x - bsr.l sgetman # operand is a NORM - bra.b _L19_6x -_L19_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L19_3x # no - bsr.l src_zero # yes - bra.b _L19_6x -_L19_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L19_4x # no - bsr.l t_operr # yes - bra.b _L19_6x -_L19_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L19_5x # no - bsr.l src_qnan # yes - bra.b _L19_6x -_L19_5x: - bsr.l sgetmand # operand is a DENORM -_L19_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# MONADIC TEMPLATE # -######################################################################### - global _fsincoss_ -_fsincoss_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L20_2s - bsr.l ssincos # operand is a NORM - bra.b _L20_6s -_L20_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L20_3s # no - bsr.l ssincosz # yes - bra.b _L20_6s -_L20_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L20_4s # no - bsr.l ssincosi # yes - bra.b _L20_6s -_L20_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L20_5s # no - bsr.l ssincosqnan # yes - bra.b _L20_6s -_L20_5s: - bsr.l ssincosd # operand is a DENORM -_L20_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x &0x03,-(%sp) # store off fp0/fp1 - fmovm.x (%sp)+,&0x40 # fp0 now in fp1 - fmovm.x (%sp)+,&0x80 # fp1 now in fp0 - unlk %a6 - rts - - global _fsincosd_ -_fsincosd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl input - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - mov.b %d1,STAG(%a6) - tst.b %d1 - bne.b _L20_2d - bsr.l ssincos # operand is a NORM - bra.b _L20_6d -_L20_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L20_3d # no - bsr.l ssincosz # yes - bra.b _L20_6d -_L20_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L20_4d # no - bsr.l ssincosi # yes - bra.b _L20_6d -_L20_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L20_5d # no - bsr.l ssincosqnan # yes - bra.b _L20_6d -_L20_5d: - bsr.l ssincosd # operand is a DENORM -_L20_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x &0x03,-(%sp) # store off fp0/fp1 - fmovm.x (%sp)+,&0x40 # fp0 now in fp1 - fmovm.x (%sp)+,&0x80 # fp1 now in fp0 - unlk %a6 - rts - - global _fsincosx_ -_fsincosx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_SRC(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.b %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - tst.b %d1 - bne.b _L20_2x - bsr.l ssincos # operand is a NORM - bra.b _L20_6x -_L20_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L20_3x # no - bsr.l ssincosz # yes - bra.b _L20_6x -_L20_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L20_4x # no - bsr.l ssincosi # yes - bra.b _L20_6x -_L20_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L20_5x # no - bsr.l ssincosqnan # yes - bra.b _L20_6x -_L20_5x: - bsr.l ssincosd # operand is a DENORM -_L20_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x &0x03,-(%sp) # store off fp0/fp1 - fmovm.x (%sp)+,&0x40 # fp0 now in fp1 - fmovm.x (%sp)+,&0x80 # fp1 now in fp0 - unlk %a6 - rts - - -######################################################################### -# DYADIC TEMPLATE # -######################################################################### - global _frems_ -_frems_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.s 0xc(%a6),%fp0 # load sgl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L21_2s - bsr.l srem_snorm # operand is a NORM - bra.b _L21_6s -_L21_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L21_3s # no - bsr.l srem_szero # yes - bra.b _L21_6s -_L21_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L21_4s # no - bsr.l srem_sinf # yes - bra.b _L21_6s -_L21_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L21_5s # no - bsr.l sop_sqnan # yes - bra.b _L21_6s -_L21_5s: - bsr.l srem_sdnrm # operand is a DENORM -_L21_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fremd_ -_fremd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.d 0x10(%a6),%fp0 # load dbl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L21_2d - bsr.l srem_snorm # operand is a NORM - bra.b _L21_6d -_L21_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L21_3d # no - bsr.l srem_szero # yes - bra.b _L21_6d -_L21_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L21_4d # no - bsr.l srem_sinf # yes - bra.b _L21_6d -_L21_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L21_5d # no - bsr.l sop_sqnan # yes - bra.b _L21_6d -_L21_5d: - bsr.l srem_sdnrm # operand is a DENORM -_L21_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fremx_ -_fremx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_DST(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - lea FP_SRC(%a6),%a0 - mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src - mov.l 0x14+0x4(%a6),0x4(%a0) - mov.l 0x14+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L21_2x - bsr.l srem_snorm # operand is a NORM - bra.b _L21_6x -_L21_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L21_3x # no - bsr.l srem_szero # yes - bra.b _L21_6x -_L21_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L21_4x # no - bsr.l srem_sinf # yes - bra.b _L21_6x -_L21_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L21_5x # no - bsr.l sop_sqnan # yes - bra.b _L21_6x -_L21_5x: - bsr.l srem_sdnrm # operand is a DENORM -_L21_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# DYADIC TEMPLATE # -######################################################################### - global _fmods_ -_fmods_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.s 0xc(%a6),%fp0 # load sgl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L22_2s - bsr.l smod_snorm # operand is a NORM - bra.b _L22_6s -_L22_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L22_3s # no - bsr.l smod_szero # yes - bra.b _L22_6s -_L22_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L22_4s # no - bsr.l smod_sinf # yes - bra.b _L22_6s -_L22_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L22_5s # no - bsr.l sop_sqnan # yes - bra.b _L22_6s -_L22_5s: - bsr.l smod_sdnrm # operand is a DENORM -_L22_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fmodd_ -_fmodd_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.d 0x10(%a6),%fp0 # load dbl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L22_2d - bsr.l smod_snorm # operand is a NORM - bra.b _L22_6d -_L22_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L22_3d # no - bsr.l smod_szero # yes - bra.b _L22_6d -_L22_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L22_4d # no - bsr.l smod_sinf # yes - bra.b _L22_6d -_L22_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L22_5d # no - bsr.l sop_sqnan # yes - bra.b _L22_6d -_L22_5d: - bsr.l smod_sdnrm # operand is a DENORM -_L22_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fmodx_ -_fmodx_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_DST(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - lea FP_SRC(%a6),%a0 - mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src - mov.l 0x14+0x4(%a6),0x4(%a0) - mov.l 0x14+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L22_2x - bsr.l smod_snorm # operand is a NORM - bra.b _L22_6x -_L22_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L22_3x # no - bsr.l smod_szero # yes - bra.b _L22_6x -_L22_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L22_4x # no - bsr.l smod_sinf # yes - bra.b _L22_6x -_L22_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L22_5x # no - bsr.l sop_sqnan # yes - bra.b _L22_6x -_L22_5x: - bsr.l smod_sdnrm # operand is a DENORM -_L22_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# DYADIC TEMPLATE # -######################################################################### - global _fscales_ -_fscales_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.s 0x8(%a6),%fp0 # load sgl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.s 0xc(%a6),%fp0 # load sgl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L23_2s - bsr.l sscale_snorm # operand is a NORM - bra.b _L23_6s -_L23_2s: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L23_3s # no - bsr.l sscale_szero # yes - bra.b _L23_6s -_L23_3s: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L23_4s # no - bsr.l sscale_sinf # yes - bra.b _L23_6s -_L23_4s: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L23_5s # no - bsr.l sop_sqnan # yes - bra.b _L23_6s -_L23_5s: - bsr.l sscale_sdnrm # operand is a DENORM -_L23_6s: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fscaled_ -_fscaled_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - fmov.d 0x8(%a6),%fp0 # load dbl dst - fmov.x %fp0,FP_DST(%a6) - lea FP_DST(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - fmov.d 0x10(%a6),%fp0 # load dbl src - fmov.x %fp0,FP_SRC(%a6) - lea FP_SRC(%a6),%a0 - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L23_2d - bsr.l sscale_snorm # operand is a NORM - bra.b _L23_6d -_L23_2d: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L23_3d # no - bsr.l sscale_szero # yes - bra.b _L23_6d -_L23_3d: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L23_4d # no - bsr.l sscale_sinf # yes - bra.b _L23_6d -_L23_4d: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L23_5d # no - bsr.l sop_sqnan # yes - bra.b _L23_6d -_L23_5d: - bsr.l sscale_sdnrm # operand is a DENORM -_L23_6d: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - global _fscalex_ -_fscalex_: - link %a6,&-LOCAL_SIZE - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 - - fmov.l &0x0,%fpcr # zero FPCR - -# -# copy, convert, and tag input argument -# - lea FP_DST(%a6),%a0 - mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst - mov.l 0x8+0x4(%a6),0x4(%a0) - mov.l 0x8+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,DTAG(%a6) - - lea FP_SRC(%a6),%a0 - mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src - mov.l 0x14+0x4(%a6),0x4(%a0) - mov.l 0x14+0x8(%a6),0x8(%a0) - bsr.l tag # fetch operand type - mov.b %d0,STAG(%a6) - mov.l %d0,%d1 - - andi.l &0x00ff00ff,USER_FPSR(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec - - lea FP_SRC(%a6),%a0 # pass ptr to src - lea FP_DST(%a6),%a1 # pass ptr to dst - - tst.b %d1 - bne.b _L23_2x - bsr.l sscale_snorm # operand is a NORM - bra.b _L23_6x -_L23_2x: - cmpi.b %d1,&ZERO # is operand a ZERO? - bne.b _L23_3x # no - bsr.l sscale_szero # yes - bra.b _L23_6x -_L23_3x: - cmpi.b %d1,&INF # is operand an INF? - bne.b _L23_4x # no - bsr.l sscale_sinf # yes - bra.b _L23_6x -_L23_4x: - cmpi.b %d1,&QNAN # is operand a QNAN? - bne.b _L23_5x # no - bsr.l sop_sqnan # yes - bra.b _L23_6x -_L23_5x: - bsr.l sscale_sdnrm # operand is a DENORM -_L23_6x: - -# -# Result is now in FP0 -# - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs - fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 - unlk %a6 - rts - - -######################################################################### -# ssin(): computes the sine of a normalized input # -# ssind(): computes the sine of a denormalized input # -# scos(): computes the cosine of a normalized input # -# scosd(): computes the cosine of a denormalized input # -# ssincos(): computes the sine and cosine of a normalized input # -# ssincosd(): computes the sine and cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = sin(X) or cos(X) # -# # -# For ssincos(X): # -# fp0 = sin(X) # -# fp1 = cos(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 1 ulp in 64 significant bit, i.e. # -# within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# SIN and COS: # -# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # -# # -# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # -# # -# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 4, so in particular, k = 0,1,2,or 3. # -# Overwrite k by k := k + AdjN. # -# # -# 4. If k is even, go to 6. # -# # -# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # -# Return sgn*cos(r) where cos(r) is approximated by an # -# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # -# s = r*r. # -# Exit. # -# # -# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # -# where sin(r) is approximated by an odd polynomial in r # -# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # -# Exit. # -# # -# 7. If |X| > 1, go to 9. # -# # -# 8. (|X|<2**(-40)) If SIN is invoked, return X; # -# otherwise return 1. # -# # -# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # -# go back to 3. # -# # -# SINCOS: # -# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # -# # -# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 4, so in particular, k = 0,1,2,or 3. # -# # -# 3. If k is even, go to 5. # -# # -# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # -# j1 exclusive or with the l.s.b. of k. # -# sgn1 := (-1)**j1, sgn2 := (-1)**j2. # -# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # -# sin(r) and cos(r) are computed as odd and even # -# polynomials in r, respectively. Exit # -# # -# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # -# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # -# sin(r) and cos(r) are computed as odd and even # -# polynomials in r, respectively. Exit # -# # -# 6. If |X| > 1, go to 8. # -# # -# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # -# # -# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # -# go back to 2. # -# # -######################################################################### - -SINA7: long 0xBD6AAA77,0xCCC994F5 -SINA6: long 0x3DE61209,0x7AAE8DA1 -SINA5: long 0xBE5AE645,0x2A118AE4 -SINA4: long 0x3EC71DE3,0xA5341531 -SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 -SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 -SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 - -COSB8: long 0x3D2AC4D0,0xD6011EE3 -COSB7: long 0xBDA9396F,0x9F45AC19 -COSB6: long 0x3E21EED9,0x0612C972 -COSB5: long 0xBE927E4F,0xB79D9FCF -COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 -COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 -COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E -COSB1: long 0xBF000000 - - set INARG,FP_SCR0 - - set X,FP_SCR0 -# set XDCARE,X+2 - set XFRAC,X+4 - - set RPRIME,FP_SCR0 - set SPRIME,FP_SCR1 - - set POSNEG1,L_SCR1 - set TWOTO63,L_SCR1 - - set ENDFLAG,L_SCR2 - set INT,L_SCR2 - - set ADJN,L_SCR3 - -############################################ - global ssin -ssin: - mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 - bra.b SINBGN - -############################################ - global scos -scos: - mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 - -############################################ -SINBGN: -#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE - - fmov.x (%a0),%fp0 # LOAD INPUT - fmov.x %fp0,X(%a6) # save input at X - -# "COMPACTIFY" X - mov.l (%a0),%d1 # put exp in hi word - mov.w 4(%a0),%d1 # fetch hi(man) - and.l &0x7FFFFFFF,%d1 # strip sign - - cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? - bge.b SOK1 # no - bra.w SINSM # yes; input is very small - -SOK1: - cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? - blt.b SINMAIN # no - bra.w SREDUCEX # yes; input is very large - -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. -SINMAIN: - fmov.x %fp0,%fp1 - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER - - mov.l INT(%a6),%d1 # make a copy of N - asl.l &4,%d1 # N *= 16 - add.l %d1,%a1 # tbl_addr = a1 + (N*16) - -# A1 IS THE ADDRESS OF N*PIBY2 -# ...WHICH IS IN TWO PIECES Y1 & Y2 - fsub.x (%a1)+,%fp0 # X-Y1 - fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 - -SINCONT: -#--continuation from REDUCEX - -#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED - mov.l INT(%a6),%d1 - add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN - ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE - cmp.l %d1,&0 - blt.w COSPOLY - -#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY -#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE -#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS -#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) -#--WHERE T=S*S. -#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION -#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. -SINPOLY: - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.x %fp0,X(%a6) # X IS R - fmul.x %fp0,%fp0 # FP0 IS S - - fmov.d SINA7(%pc),%fp3 - fmov.d SINA6(%pc),%fp2 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS T - - ror.l &1,%d1 - and.l &0x80000000,%d1 -# ...LEAST SIG. BIT OF D0 IN SIGN POSITION - eor.l %d1,X(%a6) # X IS NOW R'= SGN*R - - fmul.x %fp1,%fp3 # TA7 - fmul.x %fp1,%fp2 # TA6 - - fadd.d SINA5(%pc),%fp3 # A5+TA7 - fadd.d SINA4(%pc),%fp2 # A4+TA6 - - fmul.x %fp1,%fp3 # T(A5+TA7) - fmul.x %fp1,%fp2 # T(A4+TA6) - - fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) - fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) - - fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) - - fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) - fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) - fmul.x X(%a6),%fp0 # R'*S - - fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] - - fmul.x %fp1,%fp0 # SIN(R')-R' - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.x X(%a6),%fp0 # last inst - possible exception set - bra t_inx2 - -#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY -#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE -#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS -#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) -#--WHERE T=S*S. -#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION -#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 -#--AND IS THEREFORE STORED AS SINGLE PRECISION. -COSPOLY: - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.x %fp0,%fp0 # FP0 IS S - - fmov.d COSB8(%pc),%fp2 - fmov.d COSB7(%pc),%fp3 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS T - - fmov.x %fp0,X(%a6) # X IS S - ror.l &1,%d1 - and.l &0x80000000,%d1 -# ...LEAST SIG. BIT OF D0 IN SIGN POSITION - - fmul.x %fp1,%fp2 # TB8 - - eor.l %d1,X(%a6) # X IS NOW S'= SGN*S - and.l &0x80000000,%d1 - - fmul.x %fp1,%fp3 # TB7 - - or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE - mov.l %d1,POSNEG1(%a6) - - fadd.d COSB6(%pc),%fp2 # B6+TB8 - fadd.d COSB5(%pc),%fp3 # B5+TB7 - - fmul.x %fp1,%fp2 # T(B6+TB8) - fmul.x %fp1,%fp3 # T(B5+TB7) - - fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) - fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) - - fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) - fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) - - fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) - fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) - - fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) - - fadd.x %fp1,%fp0 - - fmul.x X(%a6),%fp0 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set - bra t_inx2 - -############################################## - -# SINe: Big OR Small? -#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -#--IF |X| < 2**(-40), RETURN X OR 1. -SINBORS: - cmp.l %d1,&0x3FFF8000 - bgt.l SREDUCEX - -SINSM: - mov.l ADJN(%a6),%d1 - cmp.l %d1,&0 - bgt.b COSTINY - -# here, the operation may underflow iff the precision is sgl or dbl. -# extended denorms are handled through another entry point. -SINTINY: -# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE - - fmov.l %d0,%fpcr # restore users round mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - bra t_catch - -COSTINY: - fmov.s &0x3F800000,%fp0 # fp0 = 1.0 - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.s &0x80800000,%fp0 # last inst - possible exception set - bra t_pinx2 - -################################################ - global ssind -#--SIN(X) = X FOR DENORMALIZED X -ssind: - bra t_extdnrm - -############################################ - global scosd -#--COS(X) = 1 FOR DENORMALIZED X -scosd: - fmov.s &0x3F800000,%fp0 # fp0 = 1.0 - bra t_pinx2 - -################################################## - - global ssincos -ssincos: -#--SET ADJN TO 4 - mov.l &4,ADJN(%a6) - - fmov.x (%a0),%fp0 # LOAD INPUT - fmov.x %fp0,X(%a6) - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 # COMPACTIFY X - - cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? - bge.b SCOK1 - bra.w SCSM - -SCOK1: - cmp.l %d1,&0x4004BC7E # |X| < 15 PI? - blt.b SCMAIN - bra.w SREDUCEX - - -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. -SCMAIN: - fmov.x %fp0,%fp1 - - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER - - mov.l INT(%a6),%d1 - asl.l &4,%d1 - add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 - - fsub.x (%a1)+,%fp0 # X-Y1 - fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 - -SCCONT: -#--continuation point from REDUCEX - - mov.l INT(%a6),%d1 - ror.l &1,%d1 - cmp.l %d1,&0 # D0 < 0 IFF N IS ODD - bge.w NEVEN - -SNODD: -#--REGISTERS SAVED SO FAR: D0, A0, FP2. - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,RPRIME(%a6) - fmul.x %fp0,%fp0 # FP0 IS S = R*R - fmov.d SINA7(%pc),%fp1 # A7 - fmov.d COSB8(%pc),%fp2 # B8 - fmul.x %fp0,%fp1 # SA7 - fmul.x %fp0,%fp2 # SB8 - - mov.l %d2,-(%sp) - mov.l %d1,%d2 - ror.l &1,%d2 - and.l &0x80000000,%d2 - eor.l %d1,%d2 - and.l &0x80000000,%d2 - - fadd.d SINA6(%pc),%fp1 # A6+SA7 - fadd.d COSB7(%pc),%fp2 # B7+SB8 - - fmul.x %fp0,%fp1 # S(A6+SA7) - eor.l %d2,RPRIME(%a6) - mov.l (%sp)+,%d2 - fmul.x %fp0,%fp2 # S(B7+SB8) - ror.l &1,%d1 - and.l &0x80000000,%d1 - mov.l &0x3F800000,POSNEG1(%a6) - eor.l %d1,POSNEG1(%a6) - - fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) - fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) - - fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) - fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) - fmov.x %fp0,SPRIME(%a6) - - fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) - eor.l %d1,SPRIME(%a6) - fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) - - fmul.x %fp0,%fp1 # S(A4+...) - fmul.x %fp0,%fp2 # S(B5+...) - - fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) - fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) - - fmul.x %fp0,%fp1 # S(A3+...) - fmul.x %fp0,%fp2 # S(B4+...) - - fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) - fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) - - fmul.x %fp0,%fp1 # S(A2+...) - fmul.x %fp0,%fp2 # S(B3+...) - - fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) - fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) - - fmul.x %fp0,%fp1 # S(A1+...) - fmul.x %fp2,%fp0 # S(B2+...) - - fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) - fadd.s COSB1(%pc),%fp0 # B1+S(B2...) - fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr - fadd.x RPRIME(%a6),%fp1 # COS(X) - bsr sto_cos # store cosine result - fadd.s POSNEG1(%a6),%fp0 # SIN(X) - bra t_inx2 - -NEVEN: -#--REGISTERS SAVED SO FAR: FP2. - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,RPRIME(%a6) - fmul.x %fp0,%fp0 # FP0 IS S = R*R - - fmov.d COSB8(%pc),%fp1 # B8 - fmov.d SINA7(%pc),%fp2 # A7 - - fmul.x %fp0,%fp1 # SB8 - fmov.x %fp0,SPRIME(%a6) - fmul.x %fp0,%fp2 # SA7 - - ror.l &1,%d1 - and.l &0x80000000,%d1 - - fadd.d COSB7(%pc),%fp1 # B7+SB8 - fadd.d SINA6(%pc),%fp2 # A6+SA7 - - eor.l %d1,RPRIME(%a6) - eor.l %d1,SPRIME(%a6) - - fmul.x %fp0,%fp1 # S(B7+SB8) - - or.l &0x3F800000,%d1 - mov.l %d1,POSNEG1(%a6) - - fmul.x %fp0,%fp2 # S(A6+SA7) - - fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) - fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) - - fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) - fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) - - fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) - fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) - - fmul.x %fp0,%fp1 # S(B5+...) - fmul.x %fp0,%fp2 # S(A4+...) - - fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) - fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) - - fmul.x %fp0,%fp1 # S(B4+...) - fmul.x %fp0,%fp2 # S(A3+...) - - fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) - fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) - - fmul.x %fp0,%fp1 # S(B3+...) - fmul.x %fp0,%fp2 # S(A2+...) - - fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) - fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) - - fmul.x %fp0,%fp1 # S(B2+...) - fmul.x %fp2,%fp0 # s(a1+...) - - - fadd.s COSB1(%pc),%fp1 # B1+S(B2...) - fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) - fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr - fadd.s POSNEG1(%a6),%fp1 # COS(X) - bsr sto_cos # store cosine result - fadd.x RPRIME(%a6),%fp0 # SIN(X) - bra t_inx2 - -################################################ - -SCBORS: - cmp.l %d1,&0x3FFF8000 - bgt.w SREDUCEX - -################################################ - -SCSM: -# mov.w &0x0000,XDCARE(%a6) - fmov.s &0x3F800000,%fp1 - - fmov.l %d0,%fpcr - fsub.s &0x00800000,%fp1 - bsr sto_cos # store cosine result - fmov.l %fpcr,%d0 # d0 must have fpcr,too - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 - bra t_catch - -############################################## - - global ssincosd -#--SIN AND COS OF X FOR DENORMALIZED X -ssincosd: - mov.l %d0,-(%sp) # save d0 - fmov.s &0x3F800000,%fp1 - bsr sto_cos # store cosine result - mov.l (%sp)+,%d0 # restore d0 - bra t_extdnrm - -############################################ - -#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. -SREDUCEX: - fmovm.x &0x3c,-(%sp) # save {fp2-fp5} - mov.l %d2,-(%sp) # save d2 - fmov.s &0x00000000,%fp1 # fp1 = 0 - -#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -#--there is a danger of unwanted overflow in first LOOP iteration. In this -#--case, reduce argument by one remainder step to make subsequent reduction -#--safe. - cmp.l %d1,&0x7ffeffff # is arg dangerously large? - bne.b SLOOP # no - -# yes; create 2**16383*PI/2 - mov.w &0x7ffe,FP_SCR0_EX(%a6) - mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - -# create low half of 2**16383*PI/2 at FP_SCR1 - mov.w &0x7fdc,FP_SCR1_EX(%a6) - mov.l &0x85a308d3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - - ftest.x %fp0 # test sign of argument - fblt.w sred_neg - - or.b &0x80,FP_SCR0_EX(%a6) # positive arg - or.b &0x80,FP_SCR1_EX(%a6) -sred_neg: - fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact - fmov.x %fp0,%fp1 # save high result in fp1 - fadd.x FP_SCR1(%a6),%fp0 # low part of reduction - fsub.x %fp0,%fp1 # determine low component of result - fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. - -#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -#--integer quotient will be stored in N -#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) -SLOOP: - fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 - mov.w INARG(%a6),%d1 - mov.l %d1,%a1 # save a copy of D0 - and.l &0x00007FFF,%d1 - sub.l &0x00003FFF,%d1 # d0 = K - cmp.l %d1,&28 - ble.b SLASTLOOP -SCONTLOOP: - sub.l &27,%d1 # d0 = L := K-27 - mov.b &0,ENDFLAG(%a6) - bra.b SWORK -SLASTLOOP: - clr.l %d1 # d0 = L := 0 - mov.b &1,ENDFLAG(%a6) - -SWORK: -#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -#--2**L * (PIby2_1), 2**L * (PIby2_2) - - mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI - sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) - - mov.l &0xA2F9836E,FP_SCR0_HI(%a6) - mov.l &0x4E44152A,FP_SCR0_LO(%a6) - mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) - - fmov.x %fp0,%fp2 - fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) - -#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -#--US THE DESIRED VALUE IN FLOATING POINT. - mov.l %a1,%d2 - swap %d2 - and.l &0x80000000,%d2 - or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL - mov.l %d2,TWOTO63(%a6) - fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED - fsub.s TWOTO63(%a6),%fp2 # fp2 = N -# fint.x %fp2 - -#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - mov.l %d1,%d2 # d2 = L - - add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) - mov.w %d2,FP_SCR0_EX(%a6) - mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 - - add.l &0x00003FDD,%d1 - mov.w %d1,FP_SCR1_EX(%a6) - mov.l &0x85A308D3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 - - mov.b ENDFLAG(%a6),%d1 - -#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -#--P2 = 2**(L) * Piby2_2 - fmov.x %fp2,%fp4 # fp4 = N - fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 - fmov.x %fp2,%fp5 # fp5 = N - fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 - fmov.x %fp4,%fp3 # fp3 = W = N*P1 - -#--we want P+p = W+w but |p| <= half ulp of P -#--Then, we need to compute A := R-P and a := r-p - fadd.x %fp5,%fp3 # fp3 = P - fsub.x %fp3,%fp4 # fp4 = W-P - - fsub.x %fp3,%fp0 # fp0 = A := R - P - fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w - - fmov.x %fp0,%fp3 # fp3 = A - fsub.x %fp4,%fp1 # fp1 = a := r - p - -#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -#--|r| <= half ulp of R. - fadd.x %fp1,%fp0 # fp0 = R := A+a -#--No need to calculate r if this is the last loop - cmp.b %d1,&0 - bgt.w SRESTORE - -#--Need to calculate r - fsub.x %fp0,%fp3 # fp3 = A-R - fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a - bra.w SLOOP - -SRESTORE: - fmov.l %fp2,INT(%a6) - mov.l (%sp)+,%d2 # restore d2 - fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} - - mov.l ADJN(%a6),%d1 - cmp.l %d1,&4 - - blt.w SINCONT - bra.w SCCONT - -######################################################################### -# stan(): computes the tangent of a normalized input # -# stand(): computes the tangent of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = tan(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulp in 64 significant bit, i.e. # -# within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # -# # -# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 2, so in particular, k = 0 or 1. # -# # -# 3. If k is odd, go to 5. # -# # -# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # -# rational function U/V where # -# U = r + r*s*(P1 + s*(P2 + s*P3)), and # -# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # -# Exit. # -# # -# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # -# a rational function U/V where # -# U = r + r*s*(P1 + s*(P2 + s*P3)), and # -# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # -# -Cot(r) = -V/U. Exit. # -# # -# 6. If |X| > 1, go to 8. # -# # -# 7. (|X|<2**(-40)) Tan(X) = X. Exit. # -# # -# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # -# to 2. # -# # -######################################################################### - -TANQ4: - long 0x3EA0B759,0xF50F8688 -TANP3: - long 0xBEF2BAA5,0xA8924F04 - -TANQ3: - long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 - -TANP2: - long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 - -TANQ2: - long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 - -TANP1: - long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 - -TANQ1: - long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 - -INVTWOPI: - long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 - -TWOPI1: - long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 -TWOPI2: - long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 - -#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING -#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT -#--MOST 69 BITS LONG. -# global PITBL -PITBL: - long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 - long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 - long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 - long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 - long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 - long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 - long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 - long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 - long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 - long 0xC0040000,0x90836524,0x88034B96,0x20B00000 - long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 - long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 - long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 - long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 - long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 - long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 - long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 - long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 - long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 - long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 - long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 - long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 - long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 - long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 - long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 - long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 - long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 - long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 - long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 - long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 - long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 - long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 - long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 - long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 - long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 - long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 - long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 - long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 - long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 - long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 - long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 - long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 - long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 - long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 - long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 - long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 - long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 - long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 - long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 - long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 - long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 - long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 - long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 - long 0x40040000,0x90836524,0x88034B96,0xA0B00000 - long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 - long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 - long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 - long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 - long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 - long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 - long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 - long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 - long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 - - set INARG,FP_SCR0 - - set TWOTO63,L_SCR1 - set INT,L_SCR1 - set ENDFLAG,L_SCR2 - - global stan -stan: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? - bge.b TANOK1 - bra.w TANSM -TANOK1: - cmp.l %d1,&0x4004BC7E # |X| < 15 PI? - blt.b TANMAIN - bra.w REDUCEX - -TANMAIN: -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. - fmov.x %fp0,%fp1 - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,%d1 # CONVERT TO INTEGER - - asl.l &4,%d1 - add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 - - fsub.x (%a1)+,%fp0 # X-Y1 - - fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 - - ror.l &5,%d1 - and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 - -TANCONT: - fmovm.x &0x0c,-(%sp) # save fp2,fp3 - - cmp.l %d1,&0 - blt.w NODD - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # S = R*R - - fmov.d TANQ4(%pc),%fp3 - fmov.d TANP3(%pc),%fp2 - - fmul.x %fp1,%fp3 # SQ4 - fmul.x %fp1,%fp2 # SP3 - - fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 - fadd.x TANP2(%pc),%fp2 # P2+SP3 - - fmul.x %fp1,%fp3 # S(Q3+SQ4) - fmul.x %fp1,%fp2 # S(P2+SP3) - - fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) - fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) - - fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) - fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) - - fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) - fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) - - fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) - - fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) - - fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) - - fmovm.x (%sp)+,&0x30 # restore fp2,fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fdiv.x %fp1,%fp0 # last inst - possible exception set - bra t_inx2 - -NODD: - fmov.x %fp0,%fp1 - fmul.x %fp0,%fp0 # S = R*R - - fmov.d TANQ4(%pc),%fp3 - fmov.d TANP3(%pc),%fp2 - - fmul.x %fp0,%fp3 # SQ4 - fmul.x %fp0,%fp2 # SP3 - - fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 - fadd.x TANP2(%pc),%fp2 # P2+SP3 - - fmul.x %fp0,%fp3 # S(Q3+SQ4) - fmul.x %fp0,%fp2 # S(P2+SP3) - - fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) - fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) - - fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) - fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) - - fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) - fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) - - fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) - - fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) - fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) - - fmovm.x (%sp)+,&0x30 # restore fp2,fp3 - - fmov.x %fp1,-(%sp) - eor.l &0x80000000,(%sp) - - fmov.l %d0,%fpcr # restore users round mode,prec - fdiv.x (%sp)+,%fp0 # last inst - possible exception set - bra t_inx2 - -TANBORS: -#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -#--IF |X| < 2**(-40), RETURN X OR 1. - cmp.l %d1,&0x3FFF8000 - bgt.b REDUCEX - -TANSM: - fmov.x %fp0,-(%sp) - fmov.l %d0,%fpcr # restore users round mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%sp)+,%fp0 # last inst - posibble exception set - bra t_catch - - global stand -#--TAN(X) = X FOR DENORMALIZED X -stand: - bra t_extdnrm - -#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. -REDUCEX: - fmovm.x &0x3c,-(%sp) # save {fp2-fp5} - mov.l %d2,-(%sp) # save d2 - fmov.s &0x00000000,%fp1 # fp1 = 0 - -#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -#--there is a danger of unwanted overflow in first LOOP iteration. In this -#--case, reduce argument by one remainder step to make subsequent reduction -#--safe. - cmp.l %d1,&0x7ffeffff # is arg dangerously large? - bne.b LOOP # no - -# yes; create 2**16383*PI/2 - mov.w &0x7ffe,FP_SCR0_EX(%a6) - mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - -# create low half of 2**16383*PI/2 at FP_SCR1 - mov.w &0x7fdc,FP_SCR1_EX(%a6) - mov.l &0x85a308d3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - - ftest.x %fp0 # test sign of argument - fblt.w red_neg - - or.b &0x80,FP_SCR0_EX(%a6) # positive arg - or.b &0x80,FP_SCR1_EX(%a6) -red_neg: - fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact - fmov.x %fp0,%fp1 # save high result in fp1 - fadd.x FP_SCR1(%a6),%fp0 # low part of reduction - fsub.x %fp0,%fp1 # determine low component of result - fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. - -#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -#--integer quotient will be stored in N -#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) -LOOP: - fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 - mov.w INARG(%a6),%d1 - mov.l %d1,%a1 # save a copy of D0 - and.l &0x00007FFF,%d1 - sub.l &0x00003FFF,%d1 # d0 = K - cmp.l %d1,&28 - ble.b LASTLOOP -CONTLOOP: - sub.l &27,%d1 # d0 = L := K-27 - mov.b &0,ENDFLAG(%a6) - bra.b WORK -LASTLOOP: - clr.l %d1 # d0 = L := 0 - mov.b &1,ENDFLAG(%a6) - -WORK: -#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -#--2**L * (PIby2_1), 2**L * (PIby2_2) - - mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI - sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) - - mov.l &0xA2F9836E,FP_SCR0_HI(%a6) - mov.l &0x4E44152A,FP_SCR0_LO(%a6) - mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) - - fmov.x %fp0,%fp2 - fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) - -#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -#--US THE DESIRED VALUE IN FLOATING POINT. - mov.l %a1,%d2 - swap %d2 - and.l &0x80000000,%d2 - or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL - mov.l %d2,TWOTO63(%a6) - fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED - fsub.s TWOTO63(%a6),%fp2 # fp2 = N -# fintrz.x %fp2,%fp2 - -#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - mov.l %d1,%d2 # d2 = L - - add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) - mov.w %d2,FP_SCR0_EX(%a6) - mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 - - add.l &0x00003FDD,%d1 - mov.w %d1,FP_SCR1_EX(%a6) - mov.l &0x85A308D3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 - - mov.b ENDFLAG(%a6),%d1 - -#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -#--P2 = 2**(L) * Piby2_2 - fmov.x %fp2,%fp4 # fp4 = N - fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 - fmov.x %fp2,%fp5 # fp5 = N - fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 - fmov.x %fp4,%fp3 # fp3 = W = N*P1 - -#--we want P+p = W+w but |p| <= half ulp of P -#--Then, we need to compute A := R-P and a := r-p - fadd.x %fp5,%fp3 # fp3 = P - fsub.x %fp3,%fp4 # fp4 = W-P - - fsub.x %fp3,%fp0 # fp0 = A := R - P - fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w - - fmov.x %fp0,%fp3 # fp3 = A - fsub.x %fp4,%fp1 # fp1 = a := r - p - -#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -#--|r| <= half ulp of R. - fadd.x %fp1,%fp0 # fp0 = R := A+a -#--No need to calculate r if this is the last loop - cmp.b %d1,&0 - bgt.w RESTORE - -#--Need to calculate r - fsub.x %fp0,%fp3 # fp3 = A-R - fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a - bra.w LOOP - -RESTORE: - fmov.l %fp2,INT(%a6) - mov.l (%sp)+,%d2 # restore d2 - fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} - - mov.l INT(%a6),%d1 - ror.l &1,%d1 - - bra.w TANCONT - -######################################################################### -# satan(): computes the arctangent of a normalized number # -# satand(): computes the arctangent of a denormalized number # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arctan(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # -# # -# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # -# Note that k = -4, -3,..., or 3. # -# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # -# significant bits of X with a bit-1 attached at the 6-th # -# bit position. Define u to be u = (X-F) / (1 + X*F). # -# # -# Step 3. Approximate arctan(u) by a polynomial poly. # -# # -# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # -# table of values calculated beforehand. Exit. # -# # -# Step 5. If |X| >= 16, go to Step 7. # -# # -# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # -# # -# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # -# polynomial in X'. # -# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # -# # -######################################################################### - -ATANA3: long 0xBFF6687E,0x314987D8 -ATANA2: long 0x4002AC69,0x34A26DB3 -ATANA1: long 0xBFC2476F,0x4E1DA28E - -ATANB6: long 0x3FB34444,0x7F876989 -ATANB5: long 0xBFB744EE,0x7FAF45DB -ATANB4: long 0x3FBC71C6,0x46940220 -ATANB3: long 0xBFC24924,0x921872F9 -ATANB2: long 0x3FC99999,0x99998FA9 -ATANB1: long 0xBFD55555,0x55555555 - -ATANC5: long 0xBFB70BF3,0x98539E6A -ATANC4: long 0x3FBC7187,0x962D1D7D -ATANC3: long 0xBFC24924,0x827107B8 -ATANC2: long 0x3FC99999,0x9996263E -ATANC1: long 0xBFD55555,0x55555536 - -PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 -NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 -NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 - -ATANTBL: - long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 - long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 - long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 - long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 - long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 - long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 - long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 - long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 - long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 - long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 - long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 - long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 - long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 - long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 - long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 - long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 - long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 - long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 - long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 - long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 - long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 - long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 - long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 - long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 - long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 - long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 - long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 - long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 - long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 - long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 - long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 - long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 - long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 - long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 - long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 - long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 - long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 - long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 - long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 - long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 - long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 - long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 - long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 - long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 - long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 - long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 - long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 - long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 - long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 - long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 - long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 - long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 - long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 - long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 - long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 - long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 - long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 - long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 - long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 - long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 - long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 - long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 - long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 - long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 - long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 - long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 - long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 - long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 - long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 - long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 - long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 - long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 - long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 - long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 - long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 - long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 - long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 - long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 - long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 - long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 - long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 - long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 - long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 - long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 - long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 - long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 - long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 - long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 - long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 - long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 - long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 - long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 - long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 - long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 - long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 - long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 - long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 - long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 - long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 - long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 - long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 - long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 - long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 - long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 - long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 - long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 - long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 - long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 - long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 - long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 - long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 - long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 - long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 - long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 - long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 - long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 - long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 - long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 - long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 - long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 - long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 - long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 - long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 - long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 - long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 - long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 - long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 - long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - set XFRACLO,X+8 - - set ATANF,FP_SCR1 - set ATANFHI,ATANF+4 - set ATANFLO,ATANF+8 - - global satan -#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -satan: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? - bge.b ATANOK1 - bra.w ATANSM - -ATANOK1: - cmp.l %d1,&0x4002FFFF # |X| < 16 ? - ble.b ATANMAIN - bra.w ATANBIG - -#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE -#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). -#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN -#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE -#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS -#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR -#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO -#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE -#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL -#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE -#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION -#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION -#--WILL INVOLVE A VERY LONG POLYNOMIAL. - -#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS -#--WE CHOSE F TO BE +-2^K * 1.BBBB1 -#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE -#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE -#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS -#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). - -ATANMAIN: - - and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS - or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 - mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F - - fmov.x %fp0,%fp1 # FP1 IS X - fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 - fsub.x X(%a6),%fp0 # FP0 IS X-F - fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F - fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) - -#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) -#--CREATE ATAN(F) AND STORE IT IN ATANF, AND -#--SAVE REGISTERS FP2. - - mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY - mov.l %d1,%d2 # THE EXP AND 16 BITS OF X - and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION - and.l &0x7FFF0000,%d2 # EXPONENT OF F - sub.l &0x3FFB0000,%d2 # K+4 - asr.l &1,%d2 - add.l %d2,%d1 # THE 7 BITS IDENTIFYING F - asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) - lea ATANTBL(%pc),%a1 - add.l %d1,%a1 # ADDRESS OF ATAN(|F|) - mov.l (%a1)+,ATANF(%a6) - mov.l (%a1)+,ATANFHI(%a6) - mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) - mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN - and.l &0x80000000,%d1 # SIGN(F) - or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) - mov.l (%sp)+,%d2 # RESTORE d2 - -#--THAT'S ALL I HAVE TO DO FOR NOW, -#--BUT ALAS, THE DIVIDE IS STILL CRANKING! - -#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS -#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U -#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. -#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) -#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. -#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT -#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED - - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 - fmov.d ATANA3(%pc),%fp2 - fadd.x %fp1,%fp2 # A3+V - fmul.x %fp1,%fp2 # V*(A3+V) - fmul.x %fp0,%fp1 # U*V - fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) - fmul.d ATANA1(%pc),%fp1 # A1*U*V - fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) - fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - fadd.x ATANF(%a6),%fp0 # ATAN(X) - bra t_inx2 - -ATANBORS: -#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. -#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. - cmp.l %d1,&0x3FFF8000 - bgt.w ATANBIG # I.E. |X| >= 16 - -ATANSM: -#--|X| <= 1/16 -#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE -#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) -#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) -#--WHERE Y = X*X, AND Z = Y*Y. - - cmp.l %d1,&0x3FD78000 - blt.w ATANTINY - -#--COMPUTE POLYNOMIAL - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.x %fp0,%fp0 # FPO IS Y = X*X - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y - - fmov.d ATANB6(%pc),%fp2 - fmov.d ATANB5(%pc),%fp3 - - fmul.x %fp1,%fp2 # Z*B6 - fmul.x %fp1,%fp3 # Z*B5 - - fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 - fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 - - fmul.x %fp1,%fp2 # Z*(B4+Z*B6) - fmul.x %fp3,%fp1 # Z*(B3+Z*B5) - - fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) - fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) - - fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) - fmul.x X(%a6),%fp0 # X*Y - - fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] - - fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - fadd.x X(%a6),%fp0 - bra t_inx2 - -ATANTINY: -#--|X| < 2^(-40), ATAN(X) = X - - fmov.l %d0,%fpcr # restore users rnd mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - - bra t_catch - -ATANBIG: -#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, -#--RETURN SIGN(X)*PI/2 + ATAN(-1/X). - cmp.l %d1,&0x40638000 - bgt.w ATANHUGE - -#--APPROXIMATE ATAN(-1/X) BY -#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' -#--THIS CAN BE RE-WRITTEN AS -#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. - - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.s &0xBF800000,%fp1 # LOAD -1 - fdiv.x %fp0,%fp1 # FP1 IS -1/X - -#--DIVIDE IS STILL CRANKING - - fmov.x %fp1,%fp0 # FP0 IS X' - fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' - fmov.x %fp1,X(%a6) # X IS REALLY X' - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y - - fmov.d ATANC5(%pc),%fp3 - fmov.d ATANC4(%pc),%fp2 - - fmul.x %fp1,%fp3 # Z*C5 - fmul.x %fp1,%fp2 # Z*B4 - - fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 - fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 - - fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED - fmul.x %fp0,%fp2 # Y*(C2+Z*C4) - - fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) - fmul.x X(%a6),%fp0 # X'*Y - - fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] - - fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] -# ... +[Y*(B2+Z*(B4+Z*B6))]) - fadd.x X(%a6),%fp0 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - tst.b (%a0) - bpl.b pos_big - -neg_big: - fadd.x NPIBY2(%pc),%fp0 - bra t_minx2 - -pos_big: - fadd.x PPIBY2(%pc),%fp0 - bra t_pinx2 - -ATANHUGE: -#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY - tst.b (%a0) - bpl.b pos_huge - -neg_huge: - fmov.x NPIBY2(%pc),%fp0 - fmov.l %d0,%fpcr - fadd.x PTINY(%pc),%fp0 - bra t_minx2 - -pos_huge: - fmov.x PPIBY2(%pc),%fp0 - fmov.l %d0,%fpcr - fadd.x NTINY(%pc),%fp0 - bra t_pinx2 - - global satand -#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT -satand: - bra t_extdnrm - -######################################################################### -# sasin(): computes the inverse sine of a normalized input # -# sasind(): computes the inverse sine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arcsin(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ASIN # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate asin(X) by # -# z := sqrt( [1-X][1+X] ) # -# asin(X) = atan( x / z ). # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global sasin -sasin: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ASINBIG - -# This catch is added here for the '060 QSP. Originally, the call to -# satan() would handle this case by causing the exception which would -# not be caught until gen_except(). Now, with the exceptions being -# detected inside of satan(), the exception would have been handled there -# instead of inside sasin() as expected. - cmp.l %d1,&0x3FD78000 - blt.w ASINTINY - -#--THIS IS THE USUAL CASE, |X| < 1 -#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) - -ASINMAIN: - fmov.s &0x3F800000,%fp1 - fsub.x %fp0,%fp1 # 1-X - fmovm.x &0x4,-(%sp) # {fp2} - fmov.s &0x3F800000,%fp2 - fadd.x %fp0,%fp2 # 1+X - fmul.x %fp2,%fp1 # (1+X)(1-X) - fmovm.x (%sp)+,&0x20 # {fp2} - fsqrt.x %fp1 # SQRT([1-X][1+X]) - fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) - fmovm.x &0x01,-(%sp) # save X/SQRT(...) - lea (%sp),%a0 # pass ptr to X/SQRT(...) - bsr satan - add.l &0xc,%sp # clear X/SQRT(...) from stack - bra t_inx2 - -ASINBIG: - fabs.x %fp0 # |X| - fcmp.s %fp0,&0x3F800000 - fbgt t_operr # cause an operr exception - -#--|X| = 1, ASIN(X) = +- PI/2. -ASINONE: - fmov.x PIBY2(%pc),%fp0 - mov.l (%a0),%d1 - and.l &0x80000000,%d1 # SIGN BIT OF X - or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT - mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT - fmov.l %d0,%fpcr - fmul.s (%sp)+,%fp0 - bra t_inx2 - -#--|X| < 2^(-40), ATAN(X) = X -ASINTINY: - fmov.l %d0,%fpcr # restore users rnd mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%a0),%fp0 # last inst - possible exception - bra t_catch - - global sasind -#--ASIN(X) = X FOR DENORMALIZED X -sasind: - bra t_extdnrm - -######################################################################### -# sacos(): computes the inverse cosine of a normalized input # -# sacosd(): computes the inverse cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arccos(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ACOS # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate acos(X) by # -# z := (1-X) / (1+X) # -# acos(X) = 2 * atan( sqrt(z) ). # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global sacos -sacos: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 # pack exp w/ upper 16 fraction - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ACOSBIG - -#--THIS IS THE USUAL CASE, |X| < 1 -#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) - -ACOSMAIN: - fmov.s &0x3F800000,%fp1 - fadd.x %fp0,%fp1 # 1+X - fneg.x %fp0 # -X - fadd.s &0x3F800000,%fp0 # 1-X - fdiv.x %fp1,%fp0 # (1-X)/(1+X) - fsqrt.x %fp0 # SQRT((1-X)/(1+X)) - mov.l %d0,-(%sp) # save original users fpcr - clr.l %d0 - fmovm.x &0x01,-(%sp) # save SQRT(...) to stack - lea (%sp),%a0 # pass ptr to sqrt - bsr satan # ATAN(SQRT([1-X]/[1+X])) - add.l &0xc,%sp # clear SQRT(...) from stack - - fmov.l (%sp)+,%fpcr # restore users round prec,mode - fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) - bra t_pinx2 - -ACOSBIG: - fabs.x %fp0 - fcmp.s %fp0,&0x3F800000 - fbgt t_operr # cause an operr exception - -#--|X| = 1, ACOS(X) = 0 OR PI - tst.b (%a0) # is X positive or negative? - bpl.b ACOSP1 - -#--X = -1 -#Returns PI and inexact exception -ACOSM1: - fmov.x PI(%pc),%fp0 # load PI - fmov.l %d0,%fpcr # load round mode,prec - fadd.s &0x00800000,%fp0 # add a small value - bra t_pinx2 - -ACOSP1: - bra ld_pzero # answer is positive zero - - global sacosd -#--ACOS(X) = PI/2 FOR DENORMALIZED X -sacosd: - fmov.l %d0,%fpcr # load user's rnd mode/prec - fmov.x PIBY2(%pc),%fp0 - bra t_pinx2 - -######################################################################### -# setox(): computes the exponential for a normalized input # -# setoxd(): computes the exponential for a denormalized input # -# setoxm1(): computes the exponential minus 1 for a normalized input # -# setoxm1d(): computes the exponential minus 1 for a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = exp(X) or exp(X)-1 # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 0.85 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM and IMPLEMENTATION **************************************** # -# # -# setoxd # -# ------ # -# Step 1. Set ans := 1.0 # -# # -# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # -# Notes: This will always generate one exception -- inexact. # -# # -# # -# setox # -# ----- # -# # -# Step 1. Filter out extreme cases of input argument. # -# 1.1 If |X| >= 2^(-65), go to Step 1.3. # -# 1.2 Go to Step 7. # -# 1.3 If |X| < 16380 log(2), go to Step 2. # -# 1.4 Go to Step 8. # -# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# -# To avoid the use of floating-point comparisons, a # -# compact representation of |X| is used. This format is a # -# 32-bit integer, the upper (more significant) 16 bits # -# are the sign and biased exponent field of |X|; the # -# lower 16 bits are the 16 most significant fraction # -# (including the explicit bit) bits of |X|. Consequently, # -# the comparisons in Steps 1.1 and 1.3 can be performed # -# by integer comparison. Note also that the constant # -# 16380 log(2) used in Step 1.3 is also in the compact # -# form. Thus taking the branch to Step 2 guarantees # -# |X| < 16380 log(2). There is no harm to have a small # -# number of cases where |X| is less than, but close to, # -# 16380 log(2) and the branch to Step 9 is taken. # -# # -# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # -# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # -# was taken) # -# 2.2 N := round-to-nearest-integer( X * 64/log2 ). # -# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # -# or 63. # -# 2.4 Calculate M = (N - J)/64; so N = 64M + J. # -# 2.5 Calculate the address of the stored value of # -# 2^(J/64). # -# 2.6 Create the value Scale = 2^M. # -# Notes: The calculation in 2.2 is really performed by # -# Z := X * constant # -# N := round-to-nearest-integer(Z) # -# where # -# constant := single-precision( 64/log 2 ). # -# # -# Using a single-precision constant avoids memory # -# access. Another effect of using a single-precision # -# "constant" is that the calculated value Z is # -# # -# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # -# # -# This error has to be considered later in Steps 3 and 4. # -# # -# Step 3. Calculate X - N*log2/64. # -# 3.1 R := X + N*L1, # -# where L1 := single-precision(-log2/64). # -# 3.2 R := R + N*L2, # -# L2 := extended-precision(-log2/64 - L1).# -# Notes: a) The way L1 and L2 are chosen ensures L1+L2 # -# approximate the value -log2/64 to 88 bits of accuracy. # -# b) N*L1 is exact because N is no longer than 22 bits # -# and L1 is no longer than 24 bits. # -# c) The calculation X+N*L1 is also exact due to # -# cancellation. Thus, R is practically X+N(L1+L2) to full # -# 64 bits. # -# d) It is important to estimate how large can |R| be # -# after Step 3.2. # -# # -# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # -# X*64/log2 (1+eps) = N + f, |f| <= 0.5 # -# X*64/log2 - N = f - eps*X 64/log2 # -# X - N*log2/64 = f*log2/64 - eps*X # -# # -# # -# Now |X| <= 16446 log2, thus # -# # -# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # -# <= 0.57 log2/64. # -# This bound will be used in Step 4. # -# # -# Step 4. Approximate exp(R)-1 by a polynomial # -# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: A1 (which is 1/2), A4 # -# and A5 are single precision; A2 and A3 are double # -# precision. # -# b) Even with the restrictions above, # -# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # -# Note that 0.0062 is slightly bigger than 0.57 log2/64. # -# c) To fully utilize the pipeline, p is separated into # -# two independent pieces of roughly equal complexities # -# p = [ R + R*S*(A2 + S*A4) ] + # -# [ S*(A1 + S*(A3 + S*A5)) ] # -# where S = R*R. # -# # -# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # -# ans := T + ( T*p + t) # -# where T and t are the stored values for 2^(J/64). # -# Notes: 2^(J/64) is stored as T and t where T+t approximates # -# 2^(J/64) to roughly 85 bits; T is in extended precision # -# and t is in single precision. Note also that T is # -# rounded to 62 bits so that the last two bits of T are # -# zero. The reason for such a special form is that T-1, # -# T-2, and T-8 will all be exact --- a property that will # -# give much more accurate computation of the function # -# EXPM1. # -# # -# Step 6. Reconstruction of exp(X) # -# exp(X) = 2^M * 2^(J/64) * exp(R). # -# 6.1 If AdjFlag = 0, go to 6.3 # -# 6.2 ans := ans * AdjScale # -# 6.3 Restore the user FPCR # -# 6.4 Return ans := ans * Scale. Exit. # -# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # -# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # -# neither overflow nor underflow. If AdjFlag = 1, that # -# means that # -# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # -# Hence, exp(X) may overflow or underflow or neither. # -# When that is the case, AdjScale = 2^(M1) where M1 is # -# approximately M. Thus 6.2 will never cause # -# over/underflow. Possible exception in 6.4 is overflow # -# or underflow. The inexact exception is not generated in # -# 6.4. Although one can argue that the inexact flag # -# should always be raised, to simulate that exception # -# cost to much than the flag is worth in practical uses. # -# # -# Step 7. Return 1 + X. # -# 7.1 ans := X # -# 7.2 Restore user FPCR. # -# 7.3 Return ans := 1 + ans. Exit # -# Notes: For non-zero X, the inexact exception will always be # -# raised by 7.3. That is the only exception raised by 7.3.# -# Note also that we use the FMOVEM instruction to move X # -# in Step 7.1 to avoid unnecessary trapping. (Although # -# the FMOVEM may not seem relevant since X is normalized, # -# the precaution will be useful in the library version of # -# this code where the separate entry for denormalized # -# inputs will be done away with.) # -# # -# Step 8. Handle exp(X) where |X| >= 16380log2. # -# 8.1 If |X| > 16480 log2, go to Step 9. # -# (mimic 2.2 - 2.6) # -# 8.2 N := round-to-integer( X * 64/log2 ) # -# 8.3 Calculate J = N mod 64, J = 0,1,...,63 # -# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # -# AdjFlag := 1. # -# 8.5 Calculate the address of the stored value # -# 2^(J/64). # -# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # -# 8.7 Go to Step 3. # -# Notes: Refer to notes for 2.2 - 2.6. # -# # -# Step 9. Handle exp(X), |X| > 16480 log2. # -# 9.1 If X < 0, go to 9.3 # -# 9.2 ans := Huge, go to 9.4 # -# 9.3 ans := Tiny. # -# 9.4 Restore user FPCR. # -# 9.5 Return ans := ans * ans. Exit. # -# Notes: Exp(X) will surely overflow or underflow, depending on # -# X's sign. "Huge" and "Tiny" are respectively large/tiny # -# extended-precision numbers whose square over/underflow # -# with an inexact result. Thus, 9.5 always raises the # -# inexact together with either overflow or underflow. # -# # -# setoxm1d # -# -------- # -# # -# Step 1. Set ans := 0 # -# # -# Step 2. Return ans := X + ans. Exit. # -# Notes: This will return X with the appropriate rounding # -# precision prescribed by the user FPCR. # -# # -# setoxm1 # -# ------- # -# # -# Step 1. Check |X| # -# 1.1 If |X| >= 1/4, go to Step 1.3. # -# 1.2 Go to Step 7. # -# 1.3 If |X| < 70 log(2), go to Step 2. # -# 1.4 Go to Step 10. # -# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# -# However, it is conceivable |X| can be small very often # -# because EXPM1 is intended to evaluate exp(X)-1 # -# accurately when |X| is small. For further details on # -# the comparisons, see the notes on Step 1 of setox. # -# # -# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # -# 2.1 N := round-to-nearest-integer( X * 64/log2 ). # -# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # -# or 63. # -# 2.3 Calculate M = (N - J)/64; so N = 64M + J. # -# 2.4 Calculate the address of the stored value of # -# 2^(J/64). # -# 2.5 Create the values Sc = 2^M and # -# OnebySc := -2^(-M). # -# Notes: See the notes on Step 2 of setox. # -# # -# Step 3. Calculate X - N*log2/64. # -# 3.1 R := X + N*L1, # -# where L1 := single-precision(-log2/64). # -# 3.2 R := R + N*L2, # -# L2 := extended-precision(-log2/64 - L1).# -# Notes: Applying the analysis of Step 3 of setox in this case # -# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # -# this case). # -# # -# Step 4. Approximate exp(R)-1 by a polynomial # -# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: A1 (which is 1/2), A5 # -# and A6 are single precision; A2, A3 and A4 are double # -# precision. # -# b) Even with the restriction above, # -# |p - (exp(R)-1)| < |R| * 2^(-72.7) # -# for all |R| <= 0.0055. # -# c) To fully utilize the pipeline, p is separated into # -# two independent pieces of roughly equal complexity # -# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # -# [ R + S*(A1 + S*(A3 + S*A5)) ] # -# where S = R*R. # -# # -# Step 5. Compute 2^(J/64)*p by # -# p := T*p # -# where T and t are the stored values for 2^(J/64). # -# Notes: 2^(J/64) is stored as T and t where T+t approximates # -# 2^(J/64) to roughly 85 bits; T is in extended precision # -# and t is in single precision. Note also that T is # -# rounded to 62 bits so that the last two bits of T are # -# zero. The reason for such a special form is that T-1, # -# T-2, and T-8 will all be exact --- a property that will # -# be exploited in Step 6 below. The total relative error # -# in p is no bigger than 2^(-67.7) compared to the final # -# result. # -# # -# Step 6. Reconstruction of exp(X)-1 # -# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # -# 6.1 If M <= 63, go to Step 6.3. # -# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # -# 6.3 If M >= -3, go to 6.5. # -# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # -# 6.5 ans := (T + OnebySc) + (p + t). # -# 6.6 Restore user FPCR. # -# 6.7 Return ans := Sc * ans. Exit. # -# Notes: The various arrangements of the expressions give # -# accurate evaluations. # -# # -# Step 7. exp(X)-1 for |X| < 1/4. # -# 7.1 If |X| >= 2^(-65), go to Step 9. # -# 7.2 Go to Step 8. # -# # -# Step 8. Calculate exp(X)-1, |X| < 2^(-65). # -# 8.1 If |X| < 2^(-16312), goto 8.3 # -# 8.2 Restore FPCR; return ans := X - 2^(-16382). # -# Exit. # -# 8.3 X := X * 2^(140). # -# 8.4 Restore FPCR; ans := ans - 2^(-16382). # -# Return ans := ans*2^(140). Exit # -# Notes: The idea is to return "X - tiny" under the user # -# precision and rounding modes. To avoid unnecessary # -# inefficiency, we stay away from denormalized numbers # -# the best we can. For |X| >= 2^(-16312), the # -# straightforward 8.2 generates the inexact exception as # -# the case warrants. # -# # -# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # -# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: B1 (which is 1/2), B9 # -# to B12 are single precision; B3 to B8 are double # -# precision; and B2 is double extended. # -# b) Even with the restriction above, # -# |p - (exp(X)-1)| < |X| 2^(-70.6) # -# for all |X| <= 0.251. # -# Note that 0.251 is slightly bigger than 1/4. # -# c) To fully preserve accuracy, the polynomial is # -# computed as # -# X + ( S*B1 + Q ) where S = X*X and # -# Q = X*S*(B2 + X*(B3 + ... + X*B12)) # -# d) To fully utilize the pipeline, Q is separated into # -# two independent pieces of roughly equal complexity # -# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # -# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # -# # -# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # -# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # -# practical purposes. Therefore, go to Step 1 of setox. # -# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # -# purposes. # -# ans := -1 # -# Restore user FPCR # -# Return ans := ans + 2^(-126). Exit. # -# Notes: 10.2 will always create an inexact and return -1 + tiny # -# in the user rounding precision and mode. # -# # -######################################################################### - -L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 - -EEXPA3: long 0x3FA55555,0x55554CC1 -EEXPA2: long 0x3FC55555,0x55554A54 - -EM1A4: long 0x3F811111,0x11174385 -EM1A3: long 0x3FA55555,0x55554F5A - -EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 - -EM1B8: long 0x3EC71DE3,0xA5774682 -EM1B7: long 0x3EFA01A0,0x19D7CB68 - -EM1B6: long 0x3F2A01A0,0x1A019DF3 -EM1B5: long 0x3F56C16C,0x16C170E2 - -EM1B4: long 0x3F811111,0x11111111 -EM1B3: long 0x3FA55555,0x55555555 - -EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB - long 0x00000000 - -TWO140: long 0x48B00000,0x00000000 -TWON140: - long 0x37300000,0x00000000 - -EEXPTBL: - long 0x3FFF0000,0x80000000,0x00000000,0x00000000 - long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B - long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 - long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 - long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C - long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F - long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 - long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF - long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF - long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA - long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 - long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 - long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 - long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 - long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D - long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 - long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD - long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 - long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 - long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D - long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 - long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C - long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 - long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 - long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 - long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA - long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A - long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC - long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC - long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 - long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 - long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A - long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 - long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 - long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC - long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 - long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 - long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 - long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 - long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B - long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 - long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E - long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 - long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D - long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 - long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C - long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 - long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 - long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F - long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F - long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 - long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 - long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B - long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 - long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A - long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 - long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 - long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B - long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 - long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 - long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 - long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 - long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 - long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A - - set ADJFLAG,L_SCR2 - set SCALE,FP_SCR0 - set ADJSCALE,FP_SCR1 - set SC,FP_SCR0 - set ONEBYSC,FP_SCR1 - - global setox -setox: -#--entry point for EXP(X), here X is finite, non-zero, and not NaN's - -#--Step 1. - mov.l (%a0),%d1 # load part of input X - and.l &0x7FFF0000,%d1 # biased expo. of X - cmp.l %d1,&0x3FBE0000 # 2^(-65) - bge.b EXPC1 # normal case - bra EXPSM - -EXPC1: -#--The case |X| >= 2^(-65) - mov.w 4(%a0),%d1 # expo. and partial sig. of |X| - cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits - blt.b EXPMAIN # normal case - bra EEXPBIG - -EXPMAIN: -#--Step 2. -#--This is the normal branch: 2^(-65) <= |X| < 16380 log2. - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - mov.l &0,ADJFLAG(%a6) - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M) - mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB - -EXPCONT1: -#--Step 3. -#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) - fmov.x %fp0,%fp2 - fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) - fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 - fadd.x %fp1,%fp0 # X + N*L1 - fadd.x %fp2,%fp0 # fp0 is R, reduced arg. - -#--Step 4. -#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) -#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # fp1 IS S = R*R - - fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 - - fmul.x %fp1,%fp2 # fp2 IS S*A5 - fmov.x %fp1,%fp3 - fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 - - fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 - fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 - - fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) - mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended - mov.l &0x80000000,SCALE+4(%a6) - clr.l SCALE+8(%a6) - - fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) - - fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) - fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) - - fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) - fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), - - fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) - fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 - -#--Step 5 -#--final reconstruction process -#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) - - fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - fadd.s (%a1),%fp0 # accurate 2^(J/64) - - fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... - mov.l ADJFLAG(%a6),%d1 - -#--Step 6 - tst.l %d1 - beq.b NORMAL -ADJUST: - fmul.x ADJSCALE(%a6),%fp0 -NORMAL: - fmov.l %d0,%fpcr # restore user FPCR - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x SCALE(%a6),%fp0 # multiply 2^(M) - bra t_catch - -EXPSM: -#--Step 7 - fmovm.x (%a0),&0x80 # load X - fmov.l %d0,%fpcr - fadd.s &0x3F800000,%fp0 # 1+X in user mode - bra t_pinx2 - -EEXPBIG: -#--Step 8 - cmp.l %d1,&0x400CB27C # 16480 log2 - bgt.b EXP2BIG -#--Steps 8.2 -- 8.6 - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - mov.l &1,ADJFLAG(%a6) - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is K - mov.l %d1,L_SCR1(%a6) # save K temporarily - asr.l &1,%d1 # D0 is M1 - sub.l %d1,L_SCR1(%a6) # a1 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M1) - mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) - mov.l &0x80000000,ADJSCALE+4(%a6) - clr.l ADJSCALE+8(%a6) - mov.l L_SCR1(%a6),%d1 # D0 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M) - bra.w EXPCONT1 # go back to Step 3 - -EXP2BIG: -#--Step 9 - tst.b (%a0) # is X positive or negative? - bmi t_unfl2 - bra t_ovfl2 - - global setoxd -setoxd: -#--entry point for EXP(X), X is denormalized - mov.l (%a0),-(%sp) - andi.l &0x80000000,(%sp) - ori.l &0x00800000,(%sp) # sign(X)*2^(-126) - - fmov.s &0x3F800000,%fp0 - - fmov.l %d0,%fpcr - fadd.s (%sp)+,%fp0 - bra t_pinx2 - - global setoxm1 -setoxm1: -#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN - -#--Step 1. -#--Step 1.1 - mov.l (%a0),%d1 # load part of input X - and.l &0x7FFF0000,%d1 # biased expo. of X - cmp.l %d1,&0x3FFD0000 # 1/4 - bge.b EM1CON1 # |X| >= 1/4 - bra EM1SM - -EM1CON1: -#--Step 1.3 -#--The case |X| >= 1/4 - mov.w 4(%a0),%d1 # expo. and partial sig. of |X| - cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits - ble.b EM1MAIN # 1/4 <= |X| <= 70log2 - bra EM1BIG - -EM1MAIN: -#--Step 2. -#--This is the case: 1/4 <= |X| <= 70 log2. - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is M - mov.l %d1,L_SCR1(%a6) # save a copy of M - -#--Step 3. -#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -#--a0 points to 2^(J/64), D0 and a1 both contain M - fmov.x %fp0,%fp2 - fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) - fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 - fadd.x %fp1,%fp0 # X + N*L1 - fadd.x %fp2,%fp0 # fp0 is R, reduced arg. - add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M - -#--Step 4. -#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) -#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # fp1 IS S = R*R - - fmov.s &0x3950097B,%fp2 # fp2 IS a6 - - fmul.x %fp1,%fp2 # fp2 IS S*A6 - fmov.x %fp1,%fp3 - fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 - - fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 - fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 - mov.w %d1,SC(%a6) # SC is 2^(M) in extended - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - - fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) - mov.l L_SCR1(%a6),%d1 # D0 is M - neg.w %d1 # D0 is -M - fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) - add.w &0x3FFF,%d1 # biased expo. of 2^(-M) - fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) - fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) - - fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) - or.w &0x8000,%d1 # signed/expo. of -2^(-M) - mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) - mov.l &0x80000000,ONEBYSC+4(%a6) - clr.l ONEBYSC+8(%a6) - fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) - - fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) - fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) - - fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 - - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - -#--Step 5 -#--Compute 2^(J/64)*p - - fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) - -#--Step 6 -#--Step 6.1 - mov.l L_SCR1(%a6),%d1 # retrieve M - cmp.l %d1,&63 - ble.b MLE63 -#--Step 6.2 M >= 64 - fmov.s 12(%a1),%fp1 # fp1 is t - fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc - fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released - fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) - bra EM1SCALE -MLE63: -#--Step 6.3 M <= 63 - cmp.l %d1,&-3 - bge.b MGEN3 -MLTN3: -#--Step 6.4 M <= -4 - fadd.s 12(%a1),%fp0 # p+t - fadd.x (%a1),%fp0 # T+(p+t) - fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) - bra EM1SCALE -MGEN3: -#--Step 6.5 -3 <= M <= 63 - fmov.x (%a1)+,%fp1 # fp1 is T - fadd.s (%a1),%fp0 # fp0 is p+t - fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc - fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) - -EM1SCALE: -#--Step 6.6 - fmov.l %d0,%fpcr - fmul.x SC(%a6),%fp0 - bra t_inx2 - -EM1SM: -#--Step 7 |X| < 1/4. - cmp.l %d1,&0x3FBE0000 # 2^(-65) - bge.b EM1POLY - -EM1TINY: -#--Step 8 |X| < 2^(-65) - cmp.l %d1,&0x00330000 # 2^(-16312) - blt.b EM12TINY -#--Step 8.2 - mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - fmov.x (%a0),%fp0 - fmov.l %d0,%fpcr - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x SC(%a6),%fp0 - bra t_catch - -EM12TINY: -#--Step 8.3 - fmov.x (%a0),%fp0 - fmul.d TWO140(%pc),%fp0 - mov.l &0x80010000,SC(%a6) - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - fadd.x SC(%a6),%fp0 - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.d TWON140(%pc),%fp0 - bra t_catch - -EM1POLY: -#--Step 9 exp(X)-1 by a simple polynomial - fmov.x (%a0),%fp0 # fp0 is X - fmul.x %fp0,%fp0 # fp0 is S := X*X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 - fmul.x %fp0,%fp1 # fp1 is S*B12 - fmov.s &0x310F8290,%fp2 # fp2 is B11 - fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 - - fmul.x %fp0,%fp2 # fp2 is S*B11 - fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... - - fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... - fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B9+... - fmul.x %fp0,%fp1 # fp1 is S*(B8+... - - fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... - fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B7+... - fmul.x %fp0,%fp1 # fp1 is S*(B6+... - - fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... - fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B5+... - fmul.x %fp0,%fp1 # fp1 is S*(B4+... - - fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... - fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B3+... - fmul.x %fp0,%fp1 # fp1 is S*(B2+... - - fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) - fmul.x (%a0),%fp1 # fp1 is X*S*(B2... - - fmul.s &0x3F000000,%fp0 # fp0 is S*B1 - fadd.x %fp2,%fp1 # fp1 is Q - - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - - fadd.x %fp1,%fp0 # fp0 is S*B1+Q - - fmov.l %d0,%fpcr - fadd.x (%a0),%fp0 - bra t_inx2 - -EM1BIG: -#--Step 10 |X| > 70 log2 - mov.l (%a0),%d1 - cmp.l %d1,&0 - bgt.w EXPC1 -#--Step 10.2 - fmov.s &0xBF800000,%fp0 # fp0 is -1 - fmov.l %d0,%fpcr - fadd.s &0x00800000,%fp0 # -1 + 2^(-126) - bra t_minx2 - - global setoxm1d -setoxm1d: -#--entry point for EXPM1(X), here X is denormalized -#--Step 0. - bra t_extdnrm - -######################################################################### -# sgetexp(): returns the exponent portion of the input argument. # -# The exponent bias is removed and the exponent value is # -# returned as an extended precision number in fp0. # -# sgetexpd(): handles denormalized numbers. # -# # -# sgetman(): extracts the mantissa of the input argument. The # -# mantissa is converted to an extended precision number w/ # -# an exponent of $3fff and is returned in fp0. The range of # -# the result is [1.0 - 2.0). # -# sgetmand(): handles denormalized numbers. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# # -# OUTPUT ************************************************************** # -# fp0 = exponent(X) or mantissa(X) # -# # -######################################################################### - - global sgetexp -sgetexp: - mov.w SRC_EX(%a0),%d0 # get the exponent - bclr &0xf,%d0 # clear the sign bit - subi.w &0x3fff,%d0 # subtract off the bias - fmov.w %d0,%fp0 # return exp in fp0 - blt.b sgetexpn # it's negative - rts - -sgetexpn: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - - global sgetexpd -sgetexpd: - bsr.l norm # normalize - neg.w %d0 # new exp = -(shft amt) - subi.w &0x3fff,%d0 # subtract off the bias - fmov.w %d0,%fp0 # return exp in fp0 - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - - global sgetman -sgetman: - mov.w SRC_EX(%a0),%d0 # get the exp - ori.w &0x7fff,%d0 # clear old exp - bclr &0xe,%d0 # make it the new exp +-3fff - -# here, we build the result in a tmp location so as not to disturb the input - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 - bmi.b sgetmann # it's negative - rts - -sgetmann: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# For denormalized numbers, shift the mantissa until the j-bit = 1, -# then load the exponent with +/1 $3fff. -# - global sgetmand -sgetmand: - bsr.l norm # normalize exponent - bra.b sgetman - -######################################################################### -# scosh(): computes the hyperbolic cosine of a normalized input # -# scoshd(): computes the hyperbolic cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = cosh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# COSH # -# 1. If |X| > 16380 log2, go to 3. # -# # -# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # -# y = |X|, z = exp(Y), and # -# cosh(X) = (1/2)*( z + 1/z ). # -# Exit. # -# # -# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # -# # -# 4. (16380 log2 < |X| <= 16480 log2) # -# cosh(X) = sign(X) * exp(|X|)/2. # -# However, invoking exp(|X|) may cause premature # -# overflow. Thus, we calculate sinh(X) as follows: # -# Y := |X| # -# Fact := 2**(16380) # -# Y' := Y - 16381 log2 # -# cosh(X) := Fact * exp(Y'). # -# Exit. # -# # -# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # -# Huge*Huge to generate overflow and an infinity with # -# the appropriate sign. Huge is the largest finite number # -# in extended format. Exit. # -# # -######################################################################### - -TWO16380: - long 0x7FFB0000,0x80000000,0x00000000,0x00000000 - - global scosh -scosh: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x400CB167 - bgt.b COSHBIG - -#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) - - fabs.x %fp0 # |X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save |X| to stack - lea (%sp),%a0 # pass ptr to |X| - bsr setox # FP0 IS EXP(|X|) - add.l &0xc,%sp # erase |X| from stack - fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) - mov.l (%sp)+,%d0 - - fmov.s &0x3E800000,%fp1 # (1/4) - fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) - - fmov.l %d0,%fpcr - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x %fp1,%fp0 - bra t_catch - -COSHBIG: - cmp.l %d1,&0x400CB2B3 - bgt.b COSHHUGE - - fabs.x %fp0 - fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) - fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save fp0 to stack - lea (%sp),%a0 # pass ptr to fp0 - bsr setox - add.l &0xc,%sp # clear fp0 from stack - mov.l (%sp)+,%d0 - - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x TWO16380(%pc),%fp0 - bra t_catch - -COSHHUGE: - bra t_ovfl2 - - global scoshd -#--COSH(X) = 1 FOR DENORMALIZED X -scoshd: - fmov.s &0x3F800000,%fp0 - - fmov.l %d0,%fpcr - fadd.s &0x00800000,%fp0 - bra t_pinx2 - -######################################################################### -# ssinh(): computes the hyperbolic sine of a normalized input # -# ssinhd(): computes the hyperbolic sine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = sinh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# SINH # -# 1. If |X| > 16380 log2, go to 3. # -# # -# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # -# y = |X|, sgn = sign(X), and z = expm1(Y), # -# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # -# Exit. # -# # -# 3. If |X| > 16480 log2, go to 5. # -# # -# 4. (16380 log2 < |X| <= 16480 log2) # -# sinh(X) = sign(X) * exp(|X|)/2. # -# However, invoking exp(|X|) may cause premature overflow. # -# Thus, we calculate sinh(X) as follows: # -# Y := |X| # -# sgn := sign(X) # -# sgnFact := sgn * 2**(16380) # -# Y' := Y - 16381 log2 # -# sinh(X) := sgnFact * exp(Y'). # -# Exit. # -# # -# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # -# sign(X)*Huge*Huge to generate overflow and an infinity with # -# the appropriate sign. Huge is the largest finite number in # -# extended format. Exit. # -# # -######################################################################### - - global ssinh -ssinh: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - mov.l %d1,%a1 # save (compacted) operand - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x400CB167 - bgt.b SINHBIG - -#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) - - fabs.x %fp0 # Y = |X| - - movm.l &0x8040,-(%sp) # {a1/d0} - fmovm.x &0x01,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - clr.l %d0 - bsr setoxm1 # FP0 IS Z = EXPM1(Y) - add.l &0xc,%sp # clear Y from stack - fmov.l &0,%fpcr - movm.l (%sp)+,&0x0201 # {a1/d0} - - fmov.x %fp0,%fp1 - fadd.s &0x3F800000,%fp1 # 1+Z - fmov.x %fp0,-(%sp) - fdiv.x %fp1,%fp0 # Z/(1+Z) - mov.l %a1,%d1 - and.l &0x80000000,%d1 - or.l &0x3F000000,%d1 - fadd.x (%sp)+,%fp0 - mov.l %d1,-(%sp) - - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set - bra t_catch - -SINHBIG: - cmp.l %d1,&0x400CB2B3 - bgt t_ovfl - fabs.x %fp0 - fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) - mov.l &0,-(%sp) - mov.l &0x80000000,-(%sp) - mov.l %a1,%d1 - and.l &0x80000000,%d1 - or.l &0x7FFB0000,%d1 - mov.l %d1,-(%sp) # EXTENDED FMT - fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save fp0 on stack - lea (%sp),%a0 # pass ptr to fp0 - bsr setox - add.l &0xc,%sp # clear fp0 from stack - - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x (%sp)+,%fp0 # possible exception - bra t_catch - - global ssinhd -#--SINH(X) = X FOR DENORMALIZED X -ssinhd: - bra t_extdnrm - -######################################################################### -# stanh(): computes the hyperbolic tangent of a normalized input # -# stanhd(): computes the hyperbolic tangent of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = tanh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# TANH # -# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # -# # -# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # -# sgn := sign(X), y := 2|X|, z := expm1(Y), and # -# tanh(X) = sgn*( z/(2+z) ). # -# Exit. # -# # -# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # -# go to 7. # -# # -# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # -# # -# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # -# sgn := sign(X), y := 2|X|, z := exp(Y), # -# tanh(X) = sgn - [ sgn*2/(1+z) ]. # -# Exit. # -# # -# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # -# calculate Tanh(X) by # -# sgn := sign(X), Tiny := 2**(-126), # -# tanh(X) := sgn - sgn*Tiny. # -# Exit. # -# # -# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # -# # -######################################################################### - - set X,FP_SCR0 - set XFRAC,X+4 - - set SGN,L_SCR3 - - set V,FP_SCR0 - - global stanh -stanh: - fmov.x (%a0),%fp0 # LOAD INPUT - - fmov.x %fp0,X(%a6) - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - mov.l %d1,X(%a6) - and.l &0x7FFFFFFF,%d1 - cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? - blt.w TANHBORS # yes - cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? - bgt.w TANHBORS # yes - -#--THIS IS THE USUAL CASE -#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). - - mov.l X(%a6),%d1 - mov.l %d1,SGN(%a6) - and.l &0x7FFF0000,%d1 - add.l &0x00010000,%d1 # EXPONENT OF 2|X| - mov.l %d1,X(%a6) - and.l &0x80000000,SGN(%a6) - fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x1,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - bsr setoxm1 # FP0 IS Z = EXPM1(Y) - add.l &0xc,%sp # clear Y from stack - mov.l (%sp)+,%d0 - - fmov.x %fp0,%fp1 - fadd.s &0x40000000,%fp1 # Z+2 - mov.l SGN(%a6),%d1 - fmov.x %fp1,V(%a6) - eor.l %d1,V(%a6) - - fmov.l %d0,%fpcr # restore users round prec,mode - fdiv.x V(%a6),%fp0 - bra t_inx2 - -TANHBORS: - cmp.l %d1,&0x3FFF8000 - blt.w TANHSM - - cmp.l %d1,&0x40048AA1 - bgt.w TANHHUGE - -#-- (5/2) LOG2 < |X| < 50 LOG2, -#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), -#--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. - - mov.l X(%a6),%d1 - mov.l %d1,SGN(%a6) - and.l &0x7FFF0000,%d1 - add.l &0x00010000,%d1 # EXPO OF 2|X| - mov.l %d1,X(%a6) # Y = 2|X| - and.l &0x80000000,SGN(%a6) - mov.l SGN(%a6),%d1 - fmov.x X(%a6),%fp0 # Y = 2|X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - bsr setox # FP0 IS EXP(Y) - add.l &0xc,%sp # clear Y from stack - mov.l (%sp)+,%d0 - mov.l SGN(%a6),%d1 - fadd.s &0x3F800000,%fp0 # EXP(Y)+1 - - eor.l &0xC0000000,%d1 # -SIGN(X)*2 - fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT - fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] - - mov.l SGN(%a6),%d1 - or.l &0x3F800000,%d1 # SGN - fmov.s %d1,%fp0 # SGN IN SGL FMT - - fmov.l %d0,%fpcr # restore users round prec,mode - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x %fp1,%fp0 - bra t_inx2 - -TANHSM: - fmov.l %d0,%fpcr # restore users round prec,mode - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - bra t_catch - -#---RETURN SGN(X) - SGN(X)EPS -TANHHUGE: - mov.l X(%a6),%d1 - and.l &0x80000000,%d1 - or.l &0x3F800000,%d1 - fmov.s %d1,%fp0 - and.l &0x80000000,%d1 - eor.l &0x80800000,%d1 # -SIGN(X)*EPS - - fmov.l %d0,%fpcr # restore users round prec,mode - fadd.s %d1,%fp0 - bra t_inx2 - - global stanhd -#--TANH(X) = X FOR DENORMALIZED X -stanhd: - bra t_extdnrm - -######################################################################### -# slogn(): computes the natural logarithm of a normalized input # -# slognd(): computes the natural logarithm of a denormalized input # -# slognp1(): computes the log(1+X) of a normalized input # -# slognp1d(): computes the log(1+X) of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = log(X) or log(1+X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# LOGN: # -# Step 1. If |X-1| < 1/16, approximate log(X) by an odd # -# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # -# move on to Step 2. # -# # -# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # -# seven significant bits of Y plus 2**(-7), i.e. # -# F = 1.xxxxxx1 in base 2 where the six "x" match those # -# of Y. Note that |Y-F| <= 2**(-7). # -# # -# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # -# polynomial in u, log(1+u) = poly. # -# # -# Step 4. Reconstruct # -# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # -# by k*log(2) + (log(F) + poly). The values of log(F) are # -# calculated beforehand and stored in the program. # -# # -# lognp1: # -# Step 1: If |X| < 1/16, approximate log(1+X) by an odd # -# polynomial in u where u = 2X/(2+X). Otherwise, move on # -# to Step 2. # -# # -# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # -# in Step 2 of the algorithm for LOGN and compute # -# log(1+X) as k*log(2) + log(F) + poly where poly # -# approximates log(1+u), u = (Y-F)/F. # -# # -# Implementation Notes: # -# Note 1. There are 64 different possible values for F, thus 64 # -# log(F)'s need to be tabulated. Moreover, the values of # -# 1/F are also tabulated so that the division in (Y-F)/F # -# can be performed by a multiplication. # -# # -# Note 2. In Step 2 of lognp1, in order to preserved accuracy, # -# the value Y-F has to be calculated carefully when # -# 1/2 <= X < 3/2. # -# # -# Note 3. To fully exploit the pipeline, polynomials are usually # -# separated into two parts evaluated independently before # -# being added up. # -# # -######################################################################### -LOGOF2: - long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -one: - long 0x3F800000 -zero: - long 0x00000000 -infty: - long 0x7F800000 -negone: - long 0xBF800000 - -LOGA6: - long 0x3FC2499A,0xB5E4040B -LOGA5: - long 0xBFC555B5,0x848CB7DB - -LOGA4: - long 0x3FC99999,0x987D8730 -LOGA3: - long 0xBFCFFFFF,0xFF6F7E97 - -LOGA2: - long 0x3FD55555,0x555555A4 -LOGA1: - long 0xBFE00000,0x00000008 - -LOGB5: - long 0x3F175496,0xADD7DAD6 -LOGB4: - long 0x3F3C71C2,0xFE80C7E0 - -LOGB3: - long 0x3F624924,0x928BCCFF -LOGB2: - long 0x3F899999,0x999995EC - -LOGB1: - long 0x3FB55555,0x55555555 -TWO: - long 0x40000000,0x00000000 - -LTHOLD: - long 0x3f990000,0x80000000,0x00000000,0x00000000 - -LOGTBL: - long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 - long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 - long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 - long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 - long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 - long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 - long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 - long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 - long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 - long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 - long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 - long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 - long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 - long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 - long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 - long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 - long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 - long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 - long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 - long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 - long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 - long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 - long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 - long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 - long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 - long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 - long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 - long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 - long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 - long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 - long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 - long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 - long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 - long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 - long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 - long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 - long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 - long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 - long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 - long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 - long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 - long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 - long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 - long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 - long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 - long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 - long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 - long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 - long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 - long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 - long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 - long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 - long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 - long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 - long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 - long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 - long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 - long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 - long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 - long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 - long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 - long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 - long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 - long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 - long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 - long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 - long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 - long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 - long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 - long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 - long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 - long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 - long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 - long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 - long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 - long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 - long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 - long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 - long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 - long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 - long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 - long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 - long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 - long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 - long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 - long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 - long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 - long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 - long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 - long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 - long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 - long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 - long 0x3FFE0000,0x94458094,0x45809446,0x00000000 - long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 - long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 - long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 - long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 - long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 - long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 - long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 - long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 - long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 - long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 - long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 - long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 - long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 - long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 - long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 - long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 - long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 - long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 - long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 - long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 - long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 - long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 - long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 - long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 - long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 - long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 - long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 - long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 - long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 - long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 - long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 - long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 - long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 - long 0x3FFE0000,0x80808080,0x80808081,0x00000000 - long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 - - set ADJK,L_SCR1 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - - set F,FP_SCR1 - set FFRAC,F+4 - - set KLOG2,FP_SCR0 - - set SAVEU,FP_SCR0 - - global slogn -#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S -slogn: - fmov.x (%a0),%fp0 # LOAD INPUT - mov.l &0x00000000,ADJK(%a6) - -LOGBGN: -#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS -#--A FINITE, NON-ZERO, NORMALIZED NUMBER. - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - - mov.l (%a0),X(%a6) - mov.l 4(%a0),X+4(%a6) - mov.l 8(%a0),X+8(%a6) - - cmp.l %d1,&0 # CHECK IF X IS NEGATIVE - blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID -# X IS POSITIVE, CHECK IF X IS NEAR 1 - cmp.l %d1,&0x3ffef07d # IS X < 15/16? - blt.b LOGMAIN # YES - cmp.l %d1,&0x3fff8841 # IS X > 17/16? - ble.w LOGNEAR1 # NO - -LOGMAIN: -#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 - -#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. -#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. -#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) -#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). -#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING -#--LOG(1+U) CAN BE VERY EFFICIENT. -#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO -#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. - -#--GET K, Y, F, AND ADDRESS OF 1/F. - asr.l &8,%d1 - asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X - sub.l &0x3FFF,%d1 # THIS IS K - add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. - lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) - fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT - -#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F - mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X - mov.l XFRAC(%a6),FFRAC(%a6) - and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y - or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT - mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT - add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F - - fmov.x X(%a6),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # Y-F - fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY -#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K -#--REGISTERS SAVED: FPCR, FP1, FP2 - -LP1CONT1: -#--AN RE-ENTRY POINT FOR LOGNP1 - fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F - fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY - fmov.x %fp0,%fp2 - fmul.x %fp2,%fp2 # FP2 IS V=U*U - fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 - -#--LOG(1+U) IS APPROXIMATED BY -#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS -#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] - - fmov.x %fp2,%fp3 - fmov.x %fp2,%fp1 - - fmul.d LOGA6(%pc),%fp1 # V*A6 - fmul.d LOGA5(%pc),%fp2 # V*A5 - - fadd.d LOGA4(%pc),%fp1 # A4+V*A6 - fadd.d LOGA3(%pc),%fp2 # A3+V*A5 - - fmul.x %fp3,%fp1 # V*(A4+V*A6) - fmul.x %fp3,%fp2 # V*(A3+V*A5) - - fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) - fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) - - fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) - add.l &16,%a0 # ADDRESS OF LOG(F) - fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) - - fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) - fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) - - fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) - fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 - fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) - - fmov.l %d0,%fpcr - fadd.x KLOG2(%a6),%fp0 # FINAL ADD - bra t_inx2 - - -LOGNEAR1: - -# if the input is exactly equal to one, then exit through ld_pzero. -# if these 2 lines weren't here, the correct answer would be returned -# but the INEX2 bit would be set. - fcmp.b %fp0,&0x1 # is it equal to one? - fbeq.l ld_pzero # yes - -#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. - fmov.x %fp0,%fp1 - fsub.s one(%pc),%fp1 # FP1 IS X-1 - fadd.s one(%pc),%fp0 # FP0 IS X+1 - fadd.x %fp1,%fp1 # FP1 IS 2(X-1) -#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL -#--IN U, U = 2(X-1)/(X+1) = FP1/FP0 - -LP1CONT2: -#--THIS IS AN RE-ENTRY POINT FOR LOGNP1 - fdiv.x %fp0,%fp1 # FP1 IS U - fmovm.x &0xc,-(%sp) # SAVE FP2-3 -#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 -#--LET V=U*U, W=V*V, CALCULATE -#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY -#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) - fmov.x %fp1,%fp0 - fmul.x %fp0,%fp0 # FP0 IS V - fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS W - - fmov.d LOGB5(%pc),%fp3 - fmov.d LOGB4(%pc),%fp2 - - fmul.x %fp1,%fp3 # W*B5 - fmul.x %fp1,%fp2 # W*B4 - - fadd.d LOGB3(%pc),%fp3 # B3+W*B5 - fadd.d LOGB2(%pc),%fp2 # B2+W*B4 - - fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED - - fmul.x %fp0,%fp2 # V*(B2+W*B4) - - fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) - fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V - - fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED - fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED - - fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) - - fmov.l %d0,%fpcr - fadd.x SAVEU(%a6),%fp0 - bra t_inx2 - -#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID -LOGNEG: - bra t_operr - - global slognd -slognd: -#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT - - mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 - -#----normalize the input value by left shifting k bits (k to be determined -#----below), adjusting exponent and storing -k to ADJK -#----the value TWOTO100 is no longer needed. -#----Note that this code assumes the denormalized input is NON-ZERO. - - movm.l &0x3f00,-(%sp) # save some registers {d2-d7} - mov.l (%a0),%d3 # D3 is exponent of smallest norm. # - mov.l 4(%a0),%d4 - mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) - clr.l %d2 # D2 used for holding K - - tst.l %d4 - bne.b Hi_not0 - -Hi_0: - mov.l %d5,%d4 - clr.l %d5 - mov.l &32,%d2 - clr.l %d6 - bfffo %d4{&0:&32},%d6 - lsl.l %d6,%d4 - add.l %d6,%d2 # (D3,D4,D5) is normalized - - mov.l %d3,X(%a6) - mov.l %d4,XFRAC(%a6) - mov.l %d5,XFRAC+4(%a6) - neg.l %d2 - mov.l %d2,ADJK(%a6) - fmov.x X(%a6),%fp0 - movm.l (%sp)+,&0xfc # restore registers {d2-d7} - lea X(%a6),%a0 - bra.w LOGBGN # begin regular log(X) - -Hi_not0: - clr.l %d6 - bfffo %d4{&0:&32},%d6 # find first 1 - mov.l %d6,%d2 # get k - lsl.l %d6,%d4 - mov.l %d5,%d7 # a copy of D5 - lsl.l %d6,%d5 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d4 # (D3,D4,D5) normalized - - mov.l %d3,X(%a6) - mov.l %d4,XFRAC(%a6) - mov.l %d5,XFRAC+4(%a6) - neg.l %d2 - mov.l %d2,ADJK(%a6) - fmov.x X(%a6),%fp0 - movm.l (%sp)+,&0xfc # restore registers {d2-d7} - lea X(%a6),%a0 - bra.w LOGBGN # begin regular log(X) - - global slognp1 -#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S -slognp1: - fmov.x (%a0),%fp0 # LOAD INPUT - fabs.x %fp0 # test magnitude - fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold - fbgt.w LP1REAL # if greater, continue - fmov.l %d0,%fpcr - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%a0),%fp0 # return signed argument - bra t_catch - -LP1REAL: - fmov.x (%a0),%fp0 # LOAD INPUT - mov.l &0x00000000,ADJK(%a6) - fmov.x %fp0,%fp1 # FP1 IS INPUT Z - fadd.s one(%pc),%fp0 # X := ROUND(1+Z) - fmov.x %fp0,X(%a6) - mov.w XFRAC(%a6),XDCARE(%a6) - mov.l X(%a6),%d1 - cmp.l %d1,&0 - ble.w LP1NEG0 # LOG OF ZERO OR -VE - cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? - blt.w LOGMAIN - cmp.l %d1,&0x3fffc000 - bgt.w LOGMAIN -#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, -#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, -#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). - -LP1NEAR1: -#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) - cmp.l %d1,&0x3ffef07d - blt.w LP1CARE - cmp.l %d1,&0x3fff8841 - bgt.w LP1CARE - -LP1ONE16: -#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) -#--WHERE U = 2Z/(2+Z) = 2Z/(1+X). - fadd.x %fp1,%fp1 # FP1 IS 2Z - fadd.s one(%pc),%fp0 # FP0 IS 1+X -#--U = FP1/FP0 - bra.w LP1CONT2 - -LP1CARE: -#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE -#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST -#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], -#--THERE ARE ONLY TWO CASES. -#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z -#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z -#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF -#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. - - mov.l XFRAC(%a6),FFRAC(%a6) - and.l &0xFE000000,FFRAC(%a6) - or.l &0x01000000,FFRAC(%a6) # F OBTAINED - cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 - bge.b KISZERO - -KISNEG1: - fmov.s TWO(%pc),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # 2-F - mov.l FFRAC(%a6),%d1 - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F - fadd.x %fp1,%fp1 # GET 2Z - fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} - fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z - lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F - add.l %d1,%a0 - fmov.s negone(%pc),%fp1 # FP1 IS K = -1 - bra.w LP1CONT1 - -KISZERO: - fmov.s one(%pc),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # 1-F - mov.l FFRAC(%a6),%d1 - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 - fadd.x %fp1,%fp0 # FP0 IS Y-F - fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} - lea LOGTBL(%pc),%a0 - add.l %d1,%a0 # A0 IS ADDRESS OF 1/F - fmov.s zero(%pc),%fp1 # FP1 IS K = 0 - bra.w LP1CONT1 - -LP1NEG0: -#--FPCR SAVED. D0 IS X IN COMPACT FORM. - cmp.l %d1,&0 - blt.b LP1NEG -LP1ZERO: - fmov.s negone(%pc),%fp0 - - fmov.l %d0,%fpcr - bra t_dz - -LP1NEG: - fmov.s zero(%pc),%fp0 - - fmov.l %d0,%fpcr - bra t_operr - - global slognp1d -#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT -# Simply return the denorm -slognp1d: - bra t_extdnrm - -######################################################################### -# satanh(): computes the inverse hyperbolic tangent of a norm input # -# satanhd(): computes the inverse hyperbolic tangent of a denorm input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arctanh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ATANH # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate atanh(X) by # -# sgn := sign(X) # -# y := |X| # -# z := 2y/(1-y) # -# atanh(X) := sgn * (1/2) * logp1(z) # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) Generate infinity with an appropriate sign and # -# divide-by-zero by # -# sgn := sign(X) # -# atan(X) := sgn / (+0). # -# Exit. # -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global satanh -satanh: - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ATANHBIG - -#--THIS IS THE USUAL CASE, |X| < 1 -#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). - - fabs.x (%a0),%fp0 # Y = |X| - fmov.x %fp0,%fp1 - fneg.x %fp1 # -Y - fadd.x %fp0,%fp0 # 2Y - fadd.s &0x3F800000,%fp1 # 1-Y - fdiv.x %fp1,%fp0 # 2Y/(1-Y) - mov.l (%a0),%d1 - and.l &0x80000000,%d1 - or.l &0x3F000000,%d1 # SIGN(X)*HALF - mov.l %d1,-(%sp) - - mov.l %d0,-(%sp) # save rnd prec,mode - clr.l %d0 # pass ext prec,RN - fmovm.x &0x01,-(%sp) # save Z on stack - lea (%sp),%a0 # pass ptr to Z - bsr slognp1 # LOG1P(Z) - add.l &0xc,%sp # clear Z from stack - - mov.l (%sp)+,%d0 # fetch old prec,mode - fmov.l %d0,%fpcr # load it - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.s (%sp)+,%fp0 - bra t_catch - -ATANHBIG: - fabs.x (%a0),%fp0 # |X| - fcmp.s %fp0,&0x3F800000 - fbgt t_operr - bra t_dz - - global satanhd -#--ATANH(X) = X FOR DENORMALIZED X -satanhd: - bra t_extdnrm - -######################################################################### -# slog10(): computes the base-10 logarithm of a normalized input # -# slog10d(): computes the base-10 logarithm of a denormalized input # -# slog2(): computes the base-2 logarithm of a normalized input # -# slog2d(): computes the base-2 logarithm of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = log_10(X) or log_2(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 1.7 ulps in 64 significant bit, # -# i.e. within 0.5003 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# slog10d: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # -# Notes: Even if X is denormalized, log(X) is always normalized. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L10. # -# # -# slog10: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L10. # -# # -# sLog2d: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # -# Notes: Even if X is denormalized, log(X) is always normalized. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(2)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L2. # -# # -# sLog2: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. If X is not an integer power of two, i.e., X != 2^k, # -# go to Step 3. # -# # -# Step 2. Return k. # -# 2.1 Get integer k, X = 2^k. # -# 2.2 Restore the user FPCR. # -# 2.3 Return ans := convert-to-double-extended(k). # -# # -# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # -# # -# Step 4. Compute log_2(X) = log(X) * (1/log(2)). # -# 4.1 Restore the user FPCR # -# 4.2 Return ans := Y * INV_L2. # -# # -######################################################################### - -INV_L10: - long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 - -INV_L2: - long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 - - global slog10 -#--entry point for Log10(X), X is normalized -slog10: - fmov.b &0x1,%fp0 - fcmp.x %fp0,(%a0) # if operand == 1, - fbeq.l ld_pzero # return an EXACT zero - - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slogn # log(X), X normal. - fmov.l (%sp)+,%fpcr - fmul.x INV_L10(%pc),%fp0 - bra t_inx2 - - global slog10d -#--entry point for Log10(X), X is denormalized -slog10d: - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slognd # log(X), X denorm. - fmov.l (%sp)+,%fpcr - fmul.x INV_L10(%pc),%fp0 - bra t_minx2 - - global slog2 -#--entry point for Log2(X), X is normalized -slog2: - mov.l (%a0),%d1 - blt.w invalid - - mov.l 8(%a0),%d1 - bne.b continue # X is not 2^k - - mov.l 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - bne.b continue - -#--X = 2^k. - mov.w (%a0),%d1 - and.l &0x00007FFF,%d1 - sub.l &0x3FFF,%d1 - beq.l ld_pzero - fmov.l %d0,%fpcr - fmov.l %d1,%fp0 - bra t_inx2 - -continue: - mov.l %d0,-(%sp) - clr.l %d0 - bsr slogn # log(X), X normal. - fmov.l (%sp)+,%fpcr - fmul.x INV_L2(%pc),%fp0 - bra t_inx2 - -invalid: - bra t_operr - - global slog2d -#--entry point for Log2(X), X is denormalized -slog2d: - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slognd # log(X), X denorm. - fmov.l (%sp)+,%fpcr - fmul.x INV_L2(%pc),%fp0 - bra t_minx2 - -######################################################################### -# stwotox(): computes 2**X for a normalized input # -# stwotoxd(): computes 2**X for a denormalized input # -# stentox(): computes 10**X for a normalized input # -# stentoxd(): computes 10**X for a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = 2**X or 10**X # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# twotox # -# 1. If |X| > 16480, go to ExpBig. # -# # -# 2. If |X| < 2**(-70), go to ExpSm. # -# # -# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # -# decompose N as # -# N = 64(M + M') + j, j = 0,1,2,...,63. # -# # -# 4. Overwrite r := r * log2. Then # -# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # -# Go to expr to compute that expression. # -# # -# tentox # -# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # -# # -# 2. If |X| < 2**(-70), go to ExpSm. # -# # -# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # -# N := round-to-int(y). Decompose N as # -# N = 64(M + M') + j, j = 0,1,2,...,63. # -# # -# 4. Define r as # -# r := ((X - N*L1)-N*L2) * L10 # -# where L1, L2 are the leading and trailing parts of # -# log_10(2)/64 and L10 is the natural log of 10. Then # -# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # -# Go to expr to compute that expression. # -# # -# expr # -# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # -# # -# 2. Overwrite Fact1 and Fact2 by # -# Fact1 := 2**(M) * Fact1 # -# Fact2 := 2**(M) * Fact2 # -# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # -# # -# 3. Calculate P where 1 + P approximates exp(r): # -# P = r + r*r*(A1+r*(A2+...+r*A5)). # -# # -# 4. Let AdjFact := 2**(M'). Return # -# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # -# Exit. # -# # -# ExpBig # -# 1. Generate overflow by Huge * Huge if X > 0; otherwise, # -# generate underflow by Tiny * Tiny. # -# # -# ExpSm # -# 1. Return 1 + X. # -# # -######################################################################### - -L2TEN64: - long 0x406A934F,0x0979A371 # 64LOG10/LOG2 -L10TWO1: - long 0x3F734413,0x509F8000 # LOG2/64LOG10 - -L10TWO2: - long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 - -LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 - -LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -EXPA5: long 0x3F56C16D,0x6F7BD0B2 -EXPA4: long 0x3F811112,0x302C712C -EXPA3: long 0x3FA55555,0x55554CC1 -EXPA2: long 0x3FC55555,0x55554A54 -EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 - -TEXPTBL: - long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 - long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA - long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 - long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 - long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA - long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C - long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 - long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA - long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 - long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 - long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 - long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 - long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D - long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 - long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B - long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 - long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A - long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B - long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF - long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA - long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD - long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E - long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B - long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB - long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB - long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 - long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C - long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 - long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 - long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 - long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F - long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C - long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB - long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB - long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C - long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA - long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD - long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 - long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A - long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 - long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB - long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 - long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C - long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 - long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 - long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE - long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 - long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 - long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A - long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 - long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 - long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 - long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 - long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE - long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 - long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F - long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A - long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A - long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC - long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F - long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A - long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 - long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B - long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 - - set INT,L_SCR1 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - - set ADJFACT,FP_SCR0 - - set FACT1,FP_SCR0 - set FACT1HI,FACT1+4 - set FACT1LOW,FACT1+8 - - set FACT2,FP_SCR1 - set FACT2HI,FACT2+4 - set FACT2LOW,FACT2+8 - - global stwotox -#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -stwotox: - fmovm.x (%a0),&0x80 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? - bge.b TWOOK1 - bra.w EXPBORS - -TWOOK1: - cmp.l %d1,&0x400D80C0 # |X| > 16480? - ble.b TWOMAIN - bra.w EXPBORS - -TWOMAIN: -#--USUAL CASE, 2^(-70) <= |X| <= 16480 - - fmov.x %fp0,%fp1 - fmul.s &0x42800000,%fp1 # 64 * X - fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) - mov.l %d2,-(%sp) - lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) - fmov.l INT(%a6),%fp1 # N --> FLOATING FMT - mov.l INT(%a6),%d1 - mov.l %d1,%d2 - and.l &0x3F,%d1 # D0 IS J - asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) - add.l %d1,%a1 # ADDRESS FOR 2^(J/64) - asr.l &6,%d2 # d2 IS L, N = 64L + J - mov.l %d2,%d1 - asr.l &1,%d1 # D0 IS M - sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J - add.l &0x3FFF,%d2 - -#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -#--ADJFACT = 2^(M'). -#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.s &0x3C800000,%fp1 # (1/64)*N - mov.l (%a1)+,FACT1(%a6) - mov.l (%a1)+,FACT1HI(%a6) - mov.l (%a1)+,FACT1LOW(%a6) - mov.w (%a1)+,FACT2(%a6) - - fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) - - mov.w (%a1)+,FACT2HI(%a6) - clr.w FACT2HI+2(%a6) - clr.l FACT2LOW(%a6) - add.w %d1,FACT1(%a6) - fmul.x LOG2(%pc),%fp0 # FP0 IS R - add.w %d1,FACT2(%a6) - - bra.w expr - -EXPBORS: -#--FPCR, D0 SAVED - cmp.l %d1,&0x3FFF8000 - bgt.b TEXPBIG - -#--|X| IS SMALL, RETURN 1 + X - - fmov.l %d0,%fpcr # restore users round prec,mode - fadd.s &0x3F800000,%fp0 # RETURN 1 + X - bra t_pinx2 - -TEXPBIG: -#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW -#--REGISTERS SAVE SO FAR ARE FPCR AND D0 - mov.l X(%a6),%d1 - cmp.l %d1,&0 - blt.b EXPNEG - - bra t_ovfl2 # t_ovfl expects positive value - -EXPNEG: - bra t_unfl2 # t_unfl expects positive value - - global stwotoxd -stwotoxd: -#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT - - fmov.l %d0,%fpcr # set user's rounding mode/precision - fmov.s &0x3F800000,%fp0 # RETURN 1 + X - mov.l (%a0),%d1 - or.l &0x00800001,%d1 - fadd.s %d1,%fp0 - bra t_pinx2 - - global stentox -#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -stentox: - fmovm.x (%a0),&0x80 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? - bge.b TENOK1 - bra.w EXPBORS - -TENOK1: - cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? - ble.b TENMAIN - bra.w EXPBORS - -TENMAIN: -#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 - - fmov.x %fp0,%fp1 - fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 - fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) - mov.l %d2,-(%sp) - lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) - fmov.l INT(%a6),%fp1 # N --> FLOATING FMT - mov.l INT(%a6),%d1 - mov.l %d1,%d2 - and.l &0x3F,%d1 # D0 IS J - asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) - add.l %d1,%a1 # ADDRESS FOR 2^(J/64) - asr.l &6,%d2 # d2 IS L, N = 64L + J - mov.l %d2,%d1 - asr.l &1,%d1 # D0 IS M - sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J - add.l &0x3FFF,%d2 - -#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -#--ADJFACT = 2^(M'). -#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.x %fp1,%fp2 - - fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD - mov.l (%a1)+,FACT1(%a6) - - fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL - - mov.l (%a1)+,FACT1HI(%a6) - mov.l (%a1)+,FACT1LOW(%a6) - fsub.x %fp1,%fp0 # X - N L_LEAD - mov.w (%a1)+,FACT2(%a6) - - fsub.x %fp2,%fp0 # X - N L_TRAIL - - mov.w (%a1)+,FACT2HI(%a6) - clr.w FACT2HI+2(%a6) - clr.l FACT2LOW(%a6) - - fmul.x LOG10(%pc),%fp0 # FP0 IS R - add.w %d1,FACT1(%a6) - add.w %d1,FACT2(%a6) - -expr: -#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. -#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). -#--FP0 IS R. THE FOLLOWING CODE COMPUTES -#-- 2**(M'+M) * 2**(J/64) * EXP(R) - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS S = R*R - - fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 - fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 - - fmul.x %fp1,%fp2 # FP2 IS S*A5 - fmul.x %fp1,%fp3 # FP3 IS S*A4 - - fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 - fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 - - fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) - fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) - - fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) - fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) - - fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) - fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) - fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - -#--FINAL RECONSTRUCTION PROCESS -#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) - - fmul.x FACT1(%a6),%fp0 - fadd.x FACT2(%a6),%fp0 - fadd.x FACT1(%a6),%fp0 - - fmov.l %d0,%fpcr # restore users round prec,mode - mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT - mov.l (%sp)+,%d2 - mov.l &0x80000000,ADJFACT+4(%a6) - clr.l ADJFACT+8(%a6) - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT - bra t_catch - - global stentoxd -stentoxd: -#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT - - fmov.l %d0,%fpcr # set user's rounding mode/precision - fmov.s &0x3F800000,%fp0 # RETURN 1 + X - mov.l (%a0),%d1 - or.l &0x00800001,%d1 - fadd.s %d1,%fp0 - bra t_pinx2 - -######################################################################### -# sscale(): computes the destination operand scaled by the source # -# operand. If the absoulute value of the source operand is # -# >= 2^14, an overflow or underflow is returned. # -# # -# INPUT *************************************************************** # -# a0 = pointer to double-extended source operand X # -# a1 = pointer to double-extended destination operand Y # -# # -# OUTPUT ************************************************************** # -# fp0 = scale(X,Y) # -# # -######################################################################### - -set SIGN, L_SCR1 - - global sscale -sscale: - mov.l %d0,-(%sp) # store off ctrl bits for now - - mov.w DST_EX(%a1),%d1 # get dst exponent - smi.b SIGN(%a6) # use SIGN to hold dst sign - andi.l &0x00007fff,%d1 # strip sign from dst exp - - mov.w SRC_EX(%a0),%d0 # check src bounds - andi.w &0x7fff,%d0 # clr src sign bit - cmpi.w %d0,&0x3fff # is src ~ ZERO? - blt.w src_small # yes - cmpi.w %d0,&0x400c # no; is src too big? - bgt.w src_out # yes - -# -# Source is within 2^14 range. -# -src_ok: - fintrz.x SRC(%a0),%fp0 # calc int of src - fmov.l %fp0,%d0 # int src to d0 -# don't want any accrued bits from the fintrz showing up later since -# we may need to read the fpsr for the last fp op in t_catch2(). - fmov.l &0x0,%fpsr - - tst.b DST_HI(%a1) # is dst denormalized? - bmi.b sok_norm - -# the dst is a DENORM. normalize the DENORM and add the adjustment to -# the src value. then, jump to the norm part of the routine. -sok_dnrm: - mov.l %d0,-(%sp) # save src for now - - mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy - mov.l DST_HI(%a1),FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 # pass ptr to DENORM - bsr.l norm # normalize the DENORM - neg.l %d0 - add.l (%sp)+,%d0 # add adjustment to src - - fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM - - cmpi.w %d0,&-0x3fff # is the shft amt really low? - bge.b sok_norm2 # thank goodness no - -# the multiply factor that we're trying to create should be a denorm -# for the multiply to work. therefore, we're going to actually do a -# multiply with a denorm which will cause an unimplemented data type -# exception to be put into the machine which will be caught and corrected -# later. we don't do this with the DENORMs above because this method -# is slower. but, don't fret, I don't see it being used much either. - fmov.l (%sp)+,%fpcr # restore user fpcr - mov.l &0x80000000,%d1 # load normalized mantissa - subi.l &-0x3fff,%d0 # how many should we shift? - neg.l %d0 # make it positive - cmpi.b %d0,&0x20 # is it > 32? - bge.b sok_dnrm_32 # yes - lsr.l %d0,%d1 # no; bit stays in upper lw - clr.l -(%sp) # insert zero low mantissa - mov.l %d1,-(%sp) # insert new high mantissa - clr.l -(%sp) # make zero exponent - bra.b sok_norm_cont -sok_dnrm_32: - subi.b &0x20,%d0 # get shift count - lsr.l %d0,%d1 # make low mantissa longword - mov.l %d1,-(%sp) # insert new low mantissa - clr.l -(%sp) # insert zero high mantissa - clr.l -(%sp) # make zero exponent - bra.b sok_norm_cont - -# the src will force the dst to a DENORM value or worse. so, let's -# create an fp multiply that will create the result. -sok_norm: - fmovm.x DST(%a1),&0x80 # load fp0 with normalized src -sok_norm2: - fmov.l (%sp)+,%fpcr # restore user fpcr - - addi.w &0x3fff,%d0 # turn src amt into exp value - swap %d0 # put exponent in high word - clr.l -(%sp) # insert new exponent - mov.l &0x80000000,-(%sp) # insert new high mantissa - mov.l %d0,-(%sp) # insert new lo mantissa - -sok_norm_cont: - fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x (%sp)+,%fp0 # do the multiply - bra t_catch2 # catch any exceptions - -# -# Source is outside of 2^14 range. Test the sign and branch -# to the appropriate exception handler. -# -src_out: - mov.l (%sp)+,%d0 # restore ctrl bits - exg %a0,%a1 # swap src,dst ptrs - tst.b SRC_EX(%a1) # is src negative? - bmi t_unfl # yes; underflow - bra t_ovfl_sc # no; overflow - -# -# The source input is below 1, so we check for denormalized numbers -# and set unfl. -# -src_small: - tst.b DST_HI(%a1) # is dst denormalized? - bpl.b ssmall_done # yes - - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr # no; load control bits - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x DST(%a1),%fp0 # simply return dest - bra t_catch2 -ssmall_done: - mov.l (%sp)+,%d0 # load control bits into d1 - mov.l %a1,%a0 # pass ptr to dst - bra t_resdnrm - -######################################################################### -# smod(): computes the fp MOD of the input values X,Y. # -# srem(): computes the fp (IEEE) REM of the input values X,Y. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input X # -# a1 = pointer to extended precision input Y # -# d0 = round precision,mode # -# # -# The input operands X and Y can be either normalized or # -# denormalized. # -# # -# OUTPUT ************************************************************** # -# fp0 = FREM(X,Y) or FMOD(X,Y) # -# # -# ALGORITHM *********************************************************** # -# # -# Step 1. Save and strip signs of X and Y: signX := sign(X), # -# signY := sign(Y), X := |X|, Y := |Y|, # -# signQ := signX EOR signY. Record whether MOD or REM # -# is requested. # -# # -# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # -# If (L < 0) then # -# R := X, go to Step 4. # -# else # -# R := 2^(-L)X, j := L. # -# endif # -# # -# Step 3. Perform MOD(X,Y) # -# 3.1 If R = Y, go to Step 9. # -# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # -# 3.3 If j = 0, go to Step 4. # -# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # -# Step 3.1. # -# # -# Step 4. At this point, R = X - QY = MOD(X,Y). Set # -# Last_Subtract := false (used in Step 7 below). If # -# MOD is requested, go to Step 6. # -# # -# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # -# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # -# Step 6. # -# 5.2 If R > Y/2, then { set Last_Subtract := true, # -# Q := Q + 1, Y := signY*Y }. Go to Step 6. # -# 5.3 This is the tricky case of R = Y/2. If Q is odd, # -# then { Q := Q + 1, signX := -signX }. # -# # -# Step 6. R := signX*R. # -# # -# Step 7. If Last_Subtract = true, R := R - Y. # -# # -# Step 8. Return signQ, last 7 bits of Q, and R as required. # -# # -# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # -# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # -# R := 0. Return signQ, last 7 bits of Q, and R. # -# # -######################################################################### - - set Mod_Flag,L_SCR3 - set Sc_Flag,L_SCR3+1 - - set SignY,L_SCR2 - set SignX,L_SCR2+2 - set SignQ,L_SCR3+2 - - set Y,FP_SCR0 - set Y_Hi,Y+4 - set Y_Lo,Y+8 - - set R,FP_SCR1 - set R_Hi,R+4 - set R_Lo,R+8 - -Scale: - long 0x00010000,0x80000000,0x00000000,0x00000000 - - global smod -smod: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) # save ctrl bits - clr.b Mod_Flag(%a6) - bra.b Mod_Rem - - global srem -srem: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) # save ctrl bits - mov.b &0x1,Mod_Flag(%a6) - -Mod_Rem: -#..Save sign of X and Y - movm.l &0x3f00,-(%sp) # save data registers - mov.w SRC_EX(%a0),%d3 - mov.w %d3,SignY(%a6) - and.l &0x00007FFF,%d3 # Y := |Y| - -# - mov.l SRC_HI(%a0),%d4 - mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| - - tst.l %d3 - bne.b Y_Normal - - mov.l &0x00003FFE,%d3 # $3FFD + 1 - tst.l %d4 - bne.b HiY_not0 - -HiY_0: - mov.l %d5,%d4 - clr.l %d5 - sub.l &32,%d3 - clr.l %d6 - bfffo %d4{&0:&32},%d6 - lsl.l %d6,%d4 - sub.l %d6,%d3 # (D3,D4,D5) is normalized -# ...with bias $7FFD - bra.b Chk_X - -HiY_not0: - clr.l %d6 - bfffo %d4{&0:&32},%d6 - sub.l %d6,%d3 - lsl.l %d6,%d4 - mov.l %d5,%d7 # a copy of D5 - lsl.l %d6,%d5 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d4 # (D3,D4,D5) normalized -# ...with bias $7FFD - bra.b Chk_X - -Y_Normal: - add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized -# ...with bias $7FFD - -Chk_X: - mov.w DST_EX(%a1),%d0 - mov.w %d0,SignX(%a6) - mov.w SignY(%a6),%d1 - eor.l %d0,%d1 - and.l &0x00008000,%d1 - mov.w %d1,SignQ(%a6) # sign(Q) obtained - and.l &0x00007FFF,%d0 - mov.l DST_HI(%a1),%d1 - mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| - tst.l %d0 - bne.b X_Normal - mov.l &0x00003FFE,%d0 - tst.l %d1 - bne.b HiX_not0 - -HiX_0: - mov.l %d2,%d1 - clr.l %d2 - sub.l &32,%d0 - clr.l %d6 - bfffo %d1{&0:&32},%d6 - lsl.l %d6,%d1 - sub.l %d6,%d0 # (D0,D1,D2) is normalized -# ...with bias $7FFD - bra.b Init - -HiX_not0: - clr.l %d6 - bfffo %d1{&0:&32},%d6 - sub.l %d6,%d0 - lsl.l %d6,%d1 - mov.l %d2,%d7 # a copy of D2 - lsl.l %d6,%d2 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d1 # (D0,D1,D2) normalized -# ...with bias $7FFD - bra.b Init - -X_Normal: - add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized -# ...with bias $7FFD - -Init: -# - mov.l %d3,L_SCR1(%a6) # save biased exp(Y) - mov.l %d0,-(%sp) # save biased exp(X) - sub.l %d3,%d0 # L := expo(X)-expo(Y) - - clr.l %d6 # D6 := carry <- 0 - clr.l %d3 # D3 is Q - mov.l &0,%a1 # A1 is k; j+k=L, Q=0 - -#..(Carry,D1,D2) is R - tst.l %d0 - bge.b Mod_Loop_pre - -#..expo(X) < expo(Y). Thus X = mod(X,Y) -# - mov.l (%sp)+,%d0 # restore d0 - bra.w Get_Mod - -Mod_Loop_pre: - addq.l &0x4,%sp # erase exp(X) -#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L -Mod_Loop: - tst.l %d6 # test carry bit - bgt.b R_GT_Y - -#..At this point carry = 0, R = (D1,D2), Y = (D4,D5) - cmp.l %d1,%d4 # compare hi(R) and hi(Y) - bne.b R_NE_Y - cmp.l %d2,%d5 # compare lo(R) and lo(Y) - bne.b R_NE_Y - -#..At this point, R = Y - bra.w Rem_is_0 - -R_NE_Y: -#..use the borrow of the previous compare - bcs.b R_LT_Y # borrow is set iff R < Y - -R_GT_Y: -#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 -#..and Y < (D1,D2) < 2Y. Either way, perform R - Y - sub.l %d5,%d2 # lo(R) - lo(Y) - subx.l %d4,%d1 # hi(R) - hi(Y) - clr.l %d6 # clear carry - addq.l &1,%d3 # Q := Q + 1 - -R_LT_Y: -#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. - tst.l %d0 # see if j = 0. - beq.b PostLoop - - add.l %d3,%d3 # Q := 2Q - add.l %d2,%d2 # lo(R) = 2lo(R) - roxl.l &1,%d1 # hi(R) = 2hi(R) + carry - scs %d6 # set Carry if 2(R) overflows - addq.l &1,%a1 # k := k+1 - subq.l &1,%d0 # j := j - 1 -#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. - - bra.b Mod_Loop - -PostLoop: -#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. - -#..normalize R. - mov.l L_SCR1(%a6),%d0 # new biased expo of R - tst.l %d1 - bne.b HiR_not0 - -HiR_0: - mov.l %d2,%d1 - clr.l %d2 - sub.l &32,%d0 - clr.l %d6 - bfffo %d1{&0:&32},%d6 - lsl.l %d6,%d1 - sub.l %d6,%d0 # (D0,D1,D2) is normalized -# ...with bias $7FFD - bra.b Get_Mod - -HiR_not0: - clr.l %d6 - bfffo %d1{&0:&32},%d6 - bmi.b Get_Mod # already normalized - sub.l %d6,%d0 - lsl.l %d6,%d1 - mov.l %d2,%d7 # a copy of D2 - lsl.l %d6,%d2 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d1 # (D0,D1,D2) normalized - -# -Get_Mod: - cmp.l %d0,&0x000041FE - bge.b No_Scale -Do_Scale: - mov.w %d0,R(%a6) - mov.l %d1,R_Hi(%a6) - mov.l %d2,R_Lo(%a6) - mov.l L_SCR1(%a6),%d6 - mov.w %d6,Y(%a6) - mov.l %d4,Y_Hi(%a6) - mov.l %d5,Y_Lo(%a6) - fmov.x R(%a6),%fp0 # no exception - mov.b &1,Sc_Flag(%a6) - bra.b ModOrRem -No_Scale: - mov.l %d1,R_Hi(%a6) - mov.l %d2,R_Lo(%a6) - sub.l &0x3FFE,%d0 - mov.w %d0,R(%a6) - mov.l L_SCR1(%a6),%d6 - sub.l &0x3FFE,%d6 - mov.l %d6,L_SCR1(%a6) - fmov.x R(%a6),%fp0 - mov.w %d6,Y(%a6) - mov.l %d4,Y_Hi(%a6) - mov.l %d5,Y_Lo(%a6) - clr.b Sc_Flag(%a6) - -# -ModOrRem: - tst.b Mod_Flag(%a6) - beq.b Fix_Sign - - mov.l L_SCR1(%a6),%d6 # new biased expo(Y) - subq.l &1,%d6 # biased expo(Y/2) - cmp.l %d0,%d6 - blt.b Fix_Sign - bgt.b Last_Sub - - cmp.l %d1,%d4 - bne.b Not_EQ - cmp.l %d2,%d5 - bne.b Not_EQ - bra.w Tie_Case - -Not_EQ: - bcs.b Fix_Sign - -Last_Sub: -# - fsub.x Y(%a6),%fp0 # no exceptions - addq.l &1,%d3 # Q := Q + 1 - -# -Fix_Sign: -#..Get sign of X - mov.w SignX(%a6),%d6 - bge.b Get_Q - fneg.x %fp0 - -#..Get Q -# -Get_Q: - clr.l %d6 - mov.w SignQ(%a6),%d6 # D6 is sign(Q) - mov.l &8,%d7 - lsr.l %d7,%d6 - and.l &0x0000007F,%d3 # 7 bits of Q - or.l %d6,%d3 # sign and bits of Q -# swap %d3 -# fmov.l %fpsr,%d6 -# and.l &0xFF00FFFF,%d6 -# or.l %d3,%d6 -# fmov.l %d6,%fpsr # put Q in fpsr - mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr - -# -Restore: - movm.l (%sp)+,&0xfc # {%d2-%d7} - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr - tst.b Sc_Flag(%a6) - beq.b Finish - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x Scale(%pc),%fp0 # may cause underflow - bra t_catch2 -# the '040 package did this apparently to see if the dst operand for the -# preceding fmul was a denorm. but, it better not have been since the -# algorithm just got done playing with fp0 and expected no exceptions -# as a result. trust me... -# bra t_avoid_unsupp # check for denorm as a -# ;result of the scaling - -Finish: - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x %fp0,%fp0 # capture exceptions & round - bra t_catch2 - -Rem_is_0: -#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) - addq.l &1,%d3 - cmp.l %d0,&8 # D0 is j - bge.b Q_Big - - lsl.l %d0,%d3 - bra.b Set_R_0 - -Q_Big: - clr.l %d3 - -Set_R_0: - fmov.s &0x00000000,%fp0 - clr.b Sc_Flag(%a6) - bra.w Fix_Sign - -Tie_Case: -#..Check parity of Q - mov.l %d3,%d6 - and.l &0x00000001,%d6 - tst.l %d6 - beq.w Fix_Sign # Q is even - -#..Q is odd, Q := Q + 1, signX := -signX - addq.l &1,%d3 - mov.w SignX(%a6),%d6 - eor.l &0x00008000,%d6 - mov.w %d6,SignX(%a6) - bra.w Fix_Sign - -######################################################################### -# XDEF **************************************************************** # -# tag(): return the optype of the input ext fp number # -# # -# This routine is used by the 060FPLSP. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# If it's an unnormalized zero, alter the operand and force it # -# to be a normal zero. # -# # -######################################################################### - - global tag -tag: - mov.w FTEMP_EX(%a0), %d0 # extract exponent - andi.w &0x7fff, %d0 # strip off sign - cmpi.w %d0, &0x7fff # is (EXP == MAX)? - beq.b inf_or_nan_x -not_inf_or_nan_x: - btst &0x7,FTEMP_HI(%a0) - beq.b not_norm_x -is_norm_x: - mov.b &NORM, %d0 - rts -not_norm_x: - tst.w %d0 # is exponent = 0? - bne.b is_unnorm_x -not_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_denorm_x - tst.l FTEMP_LO(%a0) - bne.b is_denorm_x -is_zero_x: - mov.b &ZERO, %d0 - rts -is_denorm_x: - mov.b &DENORM, %d0 - rts -is_unnorm_x: - bsr.l unnorm_fix # convert to norm,denorm,or zero - rts -is_unnorm_reg_x: - mov.b &UNNORM, %d0 - rts -inf_or_nan_x: - tst.l FTEMP_LO(%a0) - bne.b is_nan_x - mov.l FTEMP_HI(%a0), %d0 - and.l &0x7fffffff, %d0 # msb is a don't care! - bne.b is_nan_x -is_inf_x: - mov.b &INF, %d0 - rts -is_nan_x: - mov.b &QNAN, %d0 - rts - -############################################################# - -qnan: long 0x7fff0000, 0xffffffff, 0xffffffff - -######################################################################### -# XDEF **************************************************************** # -# t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. # -# t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. # -# # -# These rouitnes are used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand. # -# # -# OUTPUT ************************************************************** # -# fp0 = default DZ result. # -# # -# ALGORITHM *********************************************************** # -# Transcendental emulation for the 060FPLSP has detected that # -# a DZ exception should occur for the instruction. If DZ is disabled, # -# return the default result. # -# If DZ is enabled, the dst operand should be returned unscathed # -# in fp0 while fp1 is used to create a DZ exception so that the # -# operating system can log that such an event occurred. # -# # -######################################################################### - - global t_dz -t_dz: - tst.b SRC_EX(%a0) # check sign for neg or pos - bpl.b dz_pinf # branch if pos sign - - global t_dz2 -t_dz2: - ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ - - btst &dz_bit,FPCR_ENABLE(%a6) - bne.b dz_minf_ena - -# dz is disabled. return a -INF. - fmov.s &0xff800000,%fp0 # return -INF - rts - -# dz is enabled. create a dz exception so the user can record it -# but use fp1 instead. return the dst operand unscathed in fp0. -dz_minf_ena: - fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed - fmov.l USER_FPCR(%a6),%fpcr - fmov.s &0xbf800000,%fp1 # load -1 - fdiv.s &0x00000000,%fp1 # -1 / 0 - rts - -dz_pinf: - ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ - - btst &dz_bit,FPCR_ENABLE(%a6) - bne.b dz_pinf_ena - -# dz is disabled. return a +INF. - fmov.s &0x7f800000,%fp0 # return +INF - rts - -# dz is enabled. create a dz exception so the user can record it -# but use fp1 instead. return the dst operand unscathed in fp0. -dz_pinf_ena: - fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed - fmov.l USER_FPCR(%a6),%fpcr - fmov.s &0x3f800000,%fp1 # load +1 - fdiv.s &0x00000000,%fp1 # +1 / 0 - rts - -######################################################################### -# XDEF **************************************************************** # -# t_operr(): Handle 060FPLSP OPERR exception during emulation. # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# fp1 = source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# fp1 = unchanged # -# # -# ALGORITHM *********************************************************** # -# An operand error should occur as the result of transcendental # -# emulation in the 060FPLSP. If OPERR is disabled, just return a NAN # -# in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 # -# and the source operand in fp1. Use fp2 to create an OPERR exception # -# so that the operating system can log the event. # -# # -######################################################################### - - global t_operr -t_operr: - ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP - - btst &operr_bit,FPCR_ENABLE(%a6) - bne.b operr_ena - -# operr is disabled. return a QNAN in fp0 - fmovm.x qnan(%pc),&0x80 # return QNAN - rts - -# operr is enabled. create an operr exception so the user can record it -# but use fp2 instead. return the dst operand unscathed in fp0. -operr_ena: - fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x &0x04,-(%sp) # save fp2 - fmov.s &0x7f800000,%fp2 # load +INF - fmul.s &0x00000000,%fp2 # +INF x 0 - fmovm.x (%sp)+,&0x20 # restore fp2 - rts - -pls_huge: - long 0x7ffe0000,0xffffffff,0xffffffff -mns_huge: - long 0xfffe0000,0xffffffff,0xffffffff -pls_tiny: - long 0x00000000,0x80000000,0x00000000 -mns_tiny: - long 0x80000000,0x80000000,0x00000000 - -######################################################################### -# XDEF **************************************************************** # -# t_unfl(): Handle 060FPLSP underflow exception during emulation. # -# t_unfl2(): Handle 060FPLSP underflow exception during # -# emulation. result always positive. # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default underflow result # -# # -# ALGORITHM *********************************************************** # -# An underflow should occur as the result of transcendental # -# emulation in the 060FPLSP. Create an underflow by using "fmul" # -# and two very small numbers of appropriate sign so the operating # -# system can log the event. # -# # -######################################################################### - - global t_unfl -t_unfl: - tst.b SRC_EX(%a0) - bpl.b unf_pos - - global t_unfl2 -t_unfl2: - ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX - - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x mns_tiny(%pc),&0x80 - fmul.x pls_tiny(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts -unf_pos: - ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX - - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x pls_tiny(%pc),&0x80 - fmul.x %fp0,%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# t_ovfl(): Handle 060FPLSP overflow exception during emulation. # -# (monadic) # -# t_ovfl2(): Handle 060FPLSP overflow exception during # -# emulation. result always positive. (dyadic) # -# t_ovfl_sc(): Handle 060FPLSP overflow exception during # -# emulation for "fscale". # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default underflow result # -# # -# ALGORITHM *********************************************************** # -# An overflow should occur as the result of transcendental # -# emulation in the 060FPLSP. Create an overflow by using "fmul" # -# and two very lareg numbers of appropriate sign so the operating # -# system can log the event. # -# For t_ovfl_sc() we take special care not to lose the INEX2 bit. # -# # -######################################################################### - - global t_ovfl_sc -t_ovfl_sc: - ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX - - mov.b %d0,%d1 # fetch rnd prec,mode - andi.b &0xc0,%d1 # extract prec - beq.w ovfl_work - -# dst op is a DENORM. we have to normalize the mantissa to see if the -# result would be inexact for the given precision. make a copy of the -# dst so we don't screw up the version passed to us. - mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) - mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) - mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 - movm.l &0xc080,-(%sp) # save d0-d1/a0 - bsr.l norm # normalize mantissa - movm.l (%sp)+,&0x0103 # restore d0-d1/a0 - - cmpi.b %d1,&0x40 # is precision sgl? - bne.b ovfl_sc_dbl # no; dbl -ovfl_sc_sgl: - tst.l LOCAL_LO(%a0) # is lo lw of sgl set? - bne.b ovfl_sc_inx # yes - tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? - bne.b ovfl_sc_inx # yes - bra.w ovfl_work # don't set INEX2 -ovfl_sc_dbl: - mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of - andi.l &0x7ff,%d1 # dbl mantissa set? - beq.w ovfl_work # no; don't set INEX2 -ovfl_sc_inx: - ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 - bra.b ovfl_work # continue - - global t_ovfl -t_ovfl: - ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX -ovfl_work: - tst.b SRC_EX(%a0) - bpl.b ovfl_p -ovfl_m: - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x mns_huge(%pc),&0x80 - fmul.x pls_huge(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - ori.b &neg_mask,%d0 - mov.b %d0,FPSR_CC(%a6) - rts -ovfl_p: - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x pls_huge(%pc),&0x80 - fmul.x pls_huge(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts - - global t_ovfl2 -t_ovfl2: - ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX - fmov.l USER_FPCR(%a6),%fpcr - fmovm.x pls_huge(%pc),&0x80 - fmul.x pls_huge(%pc),%fp0 - - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 - mov.b %d0,FPSR_CC(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # -# emulation. # -# t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # -# emulation. # -# # -# These routines are used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# fp0 = default underflow or overflow result # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# If an overflow or underflow occurred during the last # -# instruction of transcendental 060FPLSP emulation, then it has already # -# occurred and has been logged. Now we need to see if an inexact # -# exception should occur. # -# # -######################################################################### - - global t_catch2 -t_catch2: - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - bra.b inx2_work - - global t_catch -t_catch: - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - -######################################################################### -# XDEF **************************************************************** # -# t_inx2(): Handle inexact 060FPLSP exception during emulation. # -# t_pinx2(): Handle inexact 060FPLSP exception for "+" results. # -# t_minx2(): Handle inexact 060FPLSP exception for "-" results. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# fp0 = default result # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# The last instruction of transcendental emulation for the # -# 060FPLSP should be inexact. So, if inexact is enabled, then we create # -# the event here by adding a large and very small number together # -# so that the operating system can log the event. # -# Must check, too, if the result was zero, in which case we just # -# set the FPSR bits and return. # -# # -######################################################################### - - global t_inx2 -t_inx2: - fblt.w t_minx2 - fbeq.w inx2_zero - - global t_pinx2 -t_pinx2: - ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX - bra.b inx2_work - - global t_minx2 -t_minx2: - ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) - -inx2_work: - btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? - bne.b inx2_work_ena # yes - rts -inx2_work_ena: - fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions - fmov.s &0x3f800000,%fp1 # load +1 - fadd.x pls_tiny(%pc),%fp1 # cause exception - rts - -inx2_zero: - mov.b &z_bmask,FPSR_CC(%a6) - ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX - rts - -######################################################################### -# XDEF **************************************************************** # -# t_extdnrm(): Handle DENORM inputs in 060FPLSP. # -# t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". # -# # -# This routine is used by the 060FPLSP package. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# For all functions that have a denormalized input and that # -# f(x)=x, this is the entry point. # -# DENORM value is moved using "fmove" which triggers an exception # -# if enabled so the operating system can log the event. # -# # -######################################################################### - - global t_extdnrm -t_extdnrm: - fmov.l USER_FPCR(%a6),%fpcr - fmov.x SRC_EX(%a0),%fp0 - fmov.l %fpsr,%d0 - ori.l &unfinx_mask,%d0 - or.l %d0,USER_FPSR(%a6) - rts - - global t_resdnrm -t_resdnrm: - fmov.l USER_FPCR(%a6),%fpcr - fmov.x SRC_EX(%a0),%fp0 - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - rts - -########################################## - -# -# sto_cos: -# This is used by fsincos library emulation. The correct -# values are already in fp0 and fp1 so we do nothing here. -# - global sto_cos -sto_cos: - rts - -########################################## - -# -# dst_qnan --- force result when destination is a NaN -# - global dst_qnan -dst_qnan: - fmov.x DST(%a1),%fp0 - tst.b DST_EX(%a1) - bmi.b dst_qnan_m -dst_qnan_p: - mov.b &nan_bmask,FPSR_CC(%a6) - rts -dst_qnan_m: - mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) - rts - -# -# src_qnan --- force result when source is a NaN -# - global src_qnan -src_qnan: - fmov.x SRC(%a0),%fp0 - tst.b SRC_EX(%a0) - bmi.b src_qnan_m -src_qnan_p: - mov.b &nan_bmask,FPSR_CC(%a6) - rts -src_qnan_m: - mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) - rts - -########################################## - -# -# Native instruction support -# -# Some systems may need entry points even for 68060 native -# instructions. These routines are provided for -# convenience. -# - global _fadds_ -_fadds_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src - rts - - global _faddd_ -_faddd_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src - rts - - global _faddx_ -_faddx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fadd.x 0x10(%sp),%fp0 # fadd w/ ext src - rts - - global _fsubs_ -_fsubs_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src - rts - - global _fsubd_ -_fsubd_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src - rts - - global _fsubx_ -_fsubx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fsub.x 0x10(%sp),%fp0 # fsub w/ ext src - rts - - global _fmuls_ -_fmuls_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src - rts - - global _fmuld_ -_fmuld_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src - rts - - global _fmulx_ -_fmulx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fmul.x 0x10(%sp),%fp0 # fmul w/ ext src - rts - - global _fdivs_ -_fdivs_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.s 0x8(%sp),%fp0 # load sgl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src - rts - - global _fdivd_ -_fdivd_: - fmov.l %fpcr,-(%sp) # save fpcr - fmov.l &0x00000000,%fpcr # clear fpcr for load - fmov.d 0x8(%sp),%fp0 # load dbl dst - fmov.l (%sp)+,%fpcr # restore fpcr - fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src - rts - - global _fdivx_ -_fdivx_: - fmovm.x 0x4(%sp),&0x80 # load ext dst - fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src - rts - - global _fabss_ -_fabss_: - fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src - rts - - global _fabsd_ -_fabsd_: - fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src - rts - - global _fabsx_ -_fabsx_: - fabs.x 0x4(%sp),%fp0 # fabs w/ ext src - rts - - global _fnegs_ -_fnegs_: - fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src - rts - - global _fnegd_ -_fnegd_: - fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src - rts - - global _fnegx_ -_fnegx_: - fneg.x 0x4(%sp),%fp0 # fneg w/ ext src - rts - - global _fsqrts_ -_fsqrts_: - fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src - rts - - global _fsqrtd_ -_fsqrtd_: - fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src - rts - - global _fsqrtx_ -_fsqrtx_: - fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src - rts - - global _fints_ -_fints_: - fint.s 0x4(%sp),%fp0 # fint w/ sgl src - rts - - global _fintd_ -_fintd_: - fint.d 0x4(%sp),%fp0 # fint w/ dbl src - rts - - global _fintx_ -_fintx_: - fint.x 0x4(%sp),%fp0 # fint w/ ext src - rts - - global _fintrzs_ -_fintrzs_: - fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src - rts - - global _fintrzd_ -_fintrzd_: - fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src - rts - - global _fintrzx_ -_fintrzx_: - fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src - rts - -######################################################################## - -######################################################################### -# src_zero(): Return signed zero according to sign of src operand. # -######################################################################### - global src_zero -src_zero: - tst.b SRC_EX(%a0) # get sign of src operand - bmi.b ld_mzero # if neg, load neg zero - -# -# ld_pzero(): return a positive zero. -# - global ld_pzero -ld_pzero: - fmov.s &0x00000000,%fp0 # load +0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -# ld_mzero(): return a negative zero. - global ld_mzero -ld_mzero: - fmov.s &0x80000000,%fp0 # load -0 - mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits - rts - -######################################################################### -# dst_zero(): Return signed zero according to sign of dst operand. # -######################################################################### - global dst_zero -dst_zero: - tst.b DST_EX(%a1) # get sign of dst operand - bmi.b ld_mzero # if neg, load neg zero - bra.b ld_pzero # load positive zero - -######################################################################### -# src_inf(): Return signed inf according to sign of src operand. # -######################################################################### - global src_inf -src_inf: - tst.b SRC_EX(%a0) # get sign of src operand - bmi.b ld_minf # if negative branch - -# -# ld_pinf(): return a positive infinity. -# - global ld_pinf -ld_pinf: - fmov.s &0x7f800000,%fp0 # load +INF - mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit - rts - -# -# ld_minf():return a negative infinity. -# - global ld_minf -ld_minf: - fmov.s &0xff800000,%fp0 # load -INF - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# dst_inf(): Return signed inf according to sign of dst operand. # -######################################################################### - global dst_inf -dst_inf: - tst.b DST_EX(%a1) # get sign of dst operand - bmi.b ld_minf # if negative branch - bra.b ld_pinf - - global szr_inf -################################################################# -# szr_inf(): Return +ZERO for a negative src operand or # -# +INF for a positive src operand. # -# Routine used for fetox, ftwotox, and ftentox. # -################################################################# -szr_inf: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_pzero - bra.b ld_pinf - -######################################################################### -# sopr_inf(): Return +INF for a positive src operand or # -# jump to operand error routine for a negative src operand. # -# Routine used for flogn, flognp1, flog10, and flog2. # -######################################################################### - global sopr_inf -sopr_inf: - tst.b SRC_EX(%a0) # check sign of source - bmi.w t_operr - bra.b ld_pinf - -################################################################# -# setoxm1i(): Return minus one for a negative src operand or # -# positive infinity for a positive src operand. # -# Routine used for fetoxm1. # -################################################################# - global setoxm1i -setoxm1i: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mone - bra.b ld_pinf - -######################################################################### -# src_one(): Return signed one according to sign of src operand. # -######################################################################### - global src_one -src_one: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mone - -# -# ld_pone(): return positive one. -# - global ld_pone -ld_pone: - fmov.s &0x3f800000,%fp0 # load +1 - clr.b FPSR_CC(%a6) - rts - -# -# ld_mone(): return negative one. -# - global ld_mone -ld_mone: - fmov.s &0xbf800000,%fp0 # load -1 - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 -mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 - -################################################################# -# spi_2(): Return signed PI/2 according to sign of src operand. # -################################################################# - global spi_2 -spi_2: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mpi2 - -# -# ld_ppi2(): return positive PI/2. -# - global ld_ppi2 -ld_ppi2: - fmov.l %d0,%fpcr - fmov.x ppiby2(%pc),%fp0 # load +pi/2 - bra.w t_pinx2 # set INEX2 - -# -# ld_mpi2(): return negative PI/2. -# - global ld_mpi2 -ld_mpi2: - fmov.l %d0,%fpcr - fmov.x mpiby2(%pc),%fp0 # load -pi/2 - bra.w t_minx2 # set INEX2 - -#################################################### -# The following routines give support for fsincos. # -#################################################### - -# -# ssincosz(): When the src operand is ZERO, store a one in the -# cosine register and return a ZERO in fp0 w/ the same sign -# as the src operand. -# - global ssincosz -ssincosz: - fmov.s &0x3f800000,%fp1 - tst.b SRC_EX(%a0) # test sign - bpl.b sincoszp - fmov.s &0x80000000,%fp0 # return sin result in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) - rts -sincoszp: - fmov.s &0x00000000,%fp0 # return sin result in fp0 - mov.b &z_bmask,FPSR_CC(%a6) - rts - -# -# ssincosi(): When the src operand is INF, store a QNAN in the cosine -# register and jump to the operand error routine for negative -# src operands. -# - global ssincosi -ssincosi: - fmov.x qnan(%pc),%fp1 # load NAN - bra.w t_operr - -# -# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine -# register and branch to the src QNAN routine. -# - global ssincosqnan -ssincosqnan: - fmov.x LOCAL_EX(%a0),%fp1 - bra.w src_qnan - -######################################################################## - - global smod_sdnrm - global smod_snorm -smod_sdnrm: -smod_snorm: - mov.b DTAG(%a6),%d1 - beq.l smod - cmpi.b %d1,&ZERO - beq.w smod_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l smod - bra.l dst_qnan - - global smod_szero -smod_szero: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&ZERO - beq.l t_operr - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l t_operr - bra.l dst_qnan - - global smod_sinf -smod_sinf: - mov.b DTAG(%a6),%d1 - beq.l smod_fpn - cmpi.b %d1,&ZERO - beq.l smod_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l smod_fpn - bra.l dst_qnan - -smod_zro: -srem_zro: - mov.b SRC_EX(%a0),%d1 # get src sign - mov.b DST_EX(%a1),%d0 # get dst sign - eor.b %d0,%d1 # get qbyte sign - andi.b &0x80,%d1 - mov.b %d1,FPSR_QBYTE(%a6) - tst.b %d0 - bpl.w ld_pzero - bra.w ld_mzero - -smod_fpn: -srem_fpn: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) - mov.b SRC_EX(%a0),%d1 # get src sign - mov.b DST_EX(%a1),%d0 # get dst sign - eor.b %d0,%d1 # get qbyte sign - andi.b &0x80,%d1 - mov.b %d1,FPSR_QBYTE(%a6) - cmpi.b DTAG(%a6),&DENORM - bne.b smod_nrm - lea DST(%a1),%a0 - mov.l (%sp)+,%d0 - bra t_resdnrm -smod_nrm: - fmov.l (%sp)+,%fpcr - fmov.x DST(%a1),%fp0 - tst.b DST_EX(%a1) - bmi.b smod_nrm_neg - rts - -smod_nrm_neg: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code - rts - -######################################################################### - global srem_snorm - global srem_sdnrm -srem_sdnrm: -srem_snorm: - mov.b DTAG(%a6),%d1 - beq.l srem - cmpi.b %d1,&ZERO - beq.w srem_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l srem - bra.l dst_qnan - - global srem_szero -srem_szero: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&ZERO - beq.l t_operr - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l t_operr - bra.l dst_qnan - - global srem_sinf -srem_sinf: - mov.b DTAG(%a6),%d1 - beq.w srem_fpn - cmpi.b %d1,&ZERO - beq.w srem_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l srem_fpn - bra.l dst_qnan - -######################################################################### - - global sscale_snorm - global sscale_sdnrm -sscale_snorm: -sscale_sdnrm: - mov.b DTAG(%a6),%d1 - beq.l sscale - cmpi.b %d1,&ZERO - beq.l dst_zero - cmpi.b %d1,&INF - beq.l dst_inf - cmpi.b %d1,&DENORM - beq.l sscale - bra.l dst_qnan - - global sscale_szero -sscale_szero: - mov.b DTAG(%a6),%d1 - beq.l sscale - cmpi.b %d1,&ZERO - beq.l dst_zero - cmpi.b %d1,&INF - beq.l dst_inf - cmpi.b %d1,&DENORM - beq.l sscale - bra.l dst_qnan - - global sscale_sinf -sscale_sinf: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l t_operr - -######################################################################## - - global sop_sqnan -sop_sqnan: - mov.b DTAG(%a6),%d1 - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l src_qnan - -######################################################################### -# norm(): normalize the mantissa of an extended precision input. the # -# input operand should not be normalized already. # -# # -# XDEF **************************************************************** # -# norm() # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# a0 = pointer fp extended precision operand to normalize # -# # -# OUTPUT ************************************************************** # -# d0 = number of bit positions the mantissa was shifted # -# a0 = the input operand's mantissa is normalized; the exponent # -# is unchanged. # -# # -######################################################################### - global norm -norm: - mov.l %d2, -(%sp) # create some temp regs - mov.l %d3, -(%sp) - - mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) - mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) - - bfffo %d0{&0:&32}, %d2 # how many places to shift? - beq.b norm_lo # hi(man) is all zeroes! - -norm_hi: - lsl.l %d2, %d0 # left shift hi(man) - bfextu %d1{&0:%d2}, %d3 # extract lo bits - - or.l %d3, %d0 # create hi(man) - lsl.l %d2, %d1 # create lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - mov.l %d1, FTEMP_LO(%a0) # store new lo(man) - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -norm_lo: - bfffo %d1{&0:&32}, %d2 # how many places to shift? - lsl.l %d2, %d1 # shift lo(man) - add.l &32, %d2 # add 32 to shft amount - - mov.l %d1, FTEMP_HI(%a0) # store hi(man) - clr.l FTEMP_LO(%a0) # lo(man) is now zero - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -######################################################################### -# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # -# - returns corresponding optype tag # -# # -# XDEF **************************************************************** # -# unnorm_fix() # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa # -# # -# INPUT *************************************************************** # -# a0 = pointer to unnormalized extended precision number # -# # -# OUTPUT ************************************************************** # -# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # -# a0 = input operand has been converted to a norm, denorm, or # -# zero; both the exponent and mantissa are changed. # -# # -######################################################################### - - global unnorm_fix -unnorm_fix: - bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? - bne.b unnorm_shift # hi(man) is not all zeroes - -# -# hi(man) is all zeroes so see if any bits in lo(man) are set -# -unnorm_chk_lo: - bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? - beq.w unnorm_zero # yes - - add.w &32, %d0 # no; fix shift distance - -# -# d0 = # shifts needed for complete normalization -# -unnorm_shift: - clr.l %d1 # clear top word - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 # strip off sgn - - cmp.w %d0, %d1 # will denorm push exp < 0? - bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 - -# -# exponent would not go < 0. therefore, number stays normalized -# - sub.w %d0, %d1 # shift exponent value - mov.w FTEMP_EX(%a0), %d0 # load old exponent - and.w &0x8000, %d0 # save old sign - or.w %d0, %d1 # {sgn,new exp} - mov.w %d1, FTEMP_EX(%a0) # insert new exponent - - bsr.l norm # normalize UNNORM - - mov.b &NORM, %d0 # return new optype tag - rts - -# -# exponent would go < 0, so only denormalize until exp = 0 -# -unnorm_nrm_zero: - cmp.b %d1, &32 # is exp <= 32? - bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent - - bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) - mov.l %d0, FTEMP_HI(%a0) # save new hi(man) - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # extract new lo(man) - mov.l %d0, FTEMP_LO(%a0) # save new lo(man) - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# only mantissa bits set are in lo(man) -# -unnorm_nrm_zero_lrg: - sub.w &32, %d1 # adjust shft amt by 32 - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # left shift lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - clr.l FTEMP_LO(%a0) # lo(man) = 0 - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# whole mantissa is zero so this UNNORM is actually a zero -# -unnorm_zero: - and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero - - mov.b &ZERO, %d0 # fix optype tag - rts diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S deleted file mode 100644 index 78cb60f5..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S +++ /dev/null @@ -1,24785 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# -# freal.s: -# This file is appended to the top of the 060FPSP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located -# after _060FPSP_TABLE. -# Also, subroutine stubs exist in this file (_fpsp_done for -# example) that are referenced by the FPSP package itself in order -# to call a given routine. The stub routine actually performs the -# callout. The FPSP code does a "bsr" to the stub routine. This -# extra layer of hierarchy adds a slight performance penalty but -# it makes the FPSP code easier to read and more mainatinable. -# - -set _off_bsun, 0x00 -set _off_snan, 0x04 -set _off_operr, 0x08 -set _off_ovfl, 0x0c -set _off_unfl, 0x10 -set _off_dz, 0x14 -set _off_inex, 0x18 -set _off_fline, 0x1c -set _off_fpu_dis, 0x20 -set _off_trap, 0x24 -set _off_trace, 0x28 -set _off_access, 0x2c -set _off_done, 0x30 - -set _off_imr, 0x40 -set _off_dmr, 0x44 -set _off_dmw, 0x48 -set _off_irw, 0x4c -set _off_irl, 0x50 -set _off_drb, 0x54 -set _off_drw, 0x58 -set _off_drl, 0x5c -set _off_dwb, 0x60 -set _off_dww, 0x64 -set _off_dwl, 0x68 - -_060FPSP_TABLE: - -############################################################### - -# Here's the table of ENTRY POINTS for those linking the package. - bra.l _fpsp_snan - short 0x0000 - bra.l _fpsp_operr - short 0x0000 - bra.l _fpsp_ovfl - short 0x0000 - bra.l _fpsp_unfl - short 0x0000 - bra.l _fpsp_dz - short 0x0000 - bra.l _fpsp_inex - short 0x0000 - bra.l _fpsp_fline - short 0x0000 - bra.l _fpsp_unsupp - short 0x0000 - bra.l _fpsp_effadd - short 0x0000 - - space 56 - -############################################################### - global _fpsp_done -_fpsp_done: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_ovfl -_real_ovfl: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_unfl -_real_unfl: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_inex -_real_inex: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_bsun -_real_bsun: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_operr -_real_operr: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_snan -_real_snan: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_dz -_real_dz: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_fline -_real_fline: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_fpu_disabled -_real_fpu_disabled: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trap -_real_trap: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trace -_real_trace: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_access -_real_access: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -####################################### - - global _imem_read -_imem_read: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read -_dmem_read: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write -_dmem_write: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_word -_imem_read_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_long -_imem_read_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_byte -_dmem_read_byte: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_word -_dmem_read_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_long -_dmem_read_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_byte -_dmem_write_byte: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_word -_dmem_write_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_long -_dmem_write_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -# -# This file contains a set of define statements for constants -# in order to promote readability within the corecode itself. -# - -set LOCAL_SIZE, 192 # stack frame size(bytes) -set LV, -LOCAL_SIZE # stack offset - -set EXC_SR, 0x4 # stack status register -set EXC_PC, 0x6 # stack pc -set EXC_VOFF, 0xa # stacked vector offset -set EXC_EA, 0xc # stacked <ea> - -set EXC_FP, 0x0 # frame pointer - -set EXC_AREGS, -68 # offset of all address regs -set EXC_DREGS, -100 # offset of all data regs -set EXC_FPREGS, -36 # offset of all fp regs - -set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 -set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 -set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 -set EXC_A5, EXC_AREGS+(5*4) -set EXC_A4, EXC_AREGS+(4*4) -set EXC_A3, EXC_AREGS+(3*4) -set EXC_A2, EXC_AREGS+(2*4) -set EXC_A1, EXC_AREGS+(1*4) -set EXC_A0, EXC_AREGS+(0*4) -set EXC_D7, EXC_DREGS+(7*4) -set EXC_D6, EXC_DREGS+(6*4) -set EXC_D5, EXC_DREGS+(5*4) -set EXC_D4, EXC_DREGS+(4*4) -set EXC_D3, EXC_DREGS+(3*4) -set EXC_D2, EXC_DREGS+(2*4) -set EXC_D1, EXC_DREGS+(1*4) -set EXC_D0, EXC_DREGS+(0*4) - -set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 -set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 -set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) - -set FP_SCR1, LV+80 # fp scratch 1 -set FP_SCR1_EX, FP_SCR1+0 -set FP_SCR1_SGN, FP_SCR1+2 -set FP_SCR1_HI, FP_SCR1+4 -set FP_SCR1_LO, FP_SCR1+8 - -set FP_SCR0, LV+68 # fp scratch 0 -set FP_SCR0_EX, FP_SCR0+0 -set FP_SCR0_SGN, FP_SCR0+2 -set FP_SCR0_HI, FP_SCR0+4 -set FP_SCR0_LO, FP_SCR0+8 - -set FP_DST, LV+56 # fp destination operand -set FP_DST_EX, FP_DST+0 -set FP_DST_SGN, FP_DST+2 -set FP_DST_HI, FP_DST+4 -set FP_DST_LO, FP_DST+8 - -set FP_SRC, LV+44 # fp source operand -set FP_SRC_EX, FP_SRC+0 -set FP_SRC_SGN, FP_SRC+2 -set FP_SRC_HI, FP_SRC+4 -set FP_SRC_LO, FP_SRC+8 - -set USER_FPIAR, LV+40 # FP instr address register - -set USER_FPSR, LV+36 # FP status register -set FPSR_CC, USER_FPSR+0 # FPSR condition codes -set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte -set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte -set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte - -set USER_FPCR, LV+32 # FP control register -set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable -set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control - -set L_SCR3, LV+28 # integer scratch 3 -set L_SCR2, LV+24 # integer scratch 2 -set L_SCR1, LV+20 # integer scratch 1 - -set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) - -set EXC_TEMP2, LV+24 # temporary space -set EXC_TEMP, LV+16 # temporary space - -set DTAG, LV+15 # destination operand type -set STAG, LV+14 # source operand type - -set SPCOND_FLG, LV+10 # flag: special case (see below) - -set EXC_CC, LV+8 # saved condition codes -set EXC_EXTWPTR, LV+4 # saved current PC (active) -set EXC_EXTWORD, LV+2 # saved extension word -set EXC_CMDREG, LV+2 # saved extension word -set EXC_OPWORD, LV+0 # saved operation word - -################################ - -# Helpful macros - -set FTEMP, 0 # offsets within an -set FTEMP_EX, 0 # extended precision -set FTEMP_SGN, 2 # value saved in memory. -set FTEMP_HI, 4 -set FTEMP_LO, 8 -set FTEMP_GRS, 12 - -set LOCAL, 0 # offsets within an -set LOCAL_EX, 0 # extended precision -set LOCAL_SGN, 2 # value saved in memory. -set LOCAL_HI, 4 -set LOCAL_LO, 8 -set LOCAL_GRS, 12 - -set DST, 0 # offsets within an -set DST_EX, 0 # extended precision -set DST_HI, 4 # value saved in memory. -set DST_LO, 8 - -set SRC, 0 # offsets within an -set SRC_EX, 0 # extended precision -set SRC_HI, 4 # value saved in memory. -set SRC_LO, 8 - -set SGL_LO, 0x3f81 # min sgl prec exponent -set SGL_HI, 0x407e # max sgl prec exponent -set DBL_LO, 0x3c01 # min dbl prec exponent -set DBL_HI, 0x43fe # max dbl prec exponent -set EXT_LO, 0x0 # min ext prec exponent -set EXT_HI, 0x7ffe # max ext prec exponent - -set EXT_BIAS, 0x3fff # extended precision bias -set SGL_BIAS, 0x007f # single precision bias -set DBL_BIAS, 0x03ff # double precision bias - -set NORM, 0x00 # operand type for STAG/DTAG -set ZERO, 0x01 # operand type for STAG/DTAG -set INF, 0x02 # operand type for STAG/DTAG -set QNAN, 0x03 # operand type for STAG/DTAG -set DENORM, 0x04 # operand type for STAG/DTAG -set SNAN, 0x05 # operand type for STAG/DTAG -set UNNORM, 0x06 # operand type for STAG/DTAG - -################## -# FPSR/FPCR bits # -################## -set neg_bit, 0x3 # negative result -set z_bit, 0x2 # zero result -set inf_bit, 0x1 # infinite result -set nan_bit, 0x0 # NAN result - -set q_sn_bit, 0x7 # sign bit of quotient byte - -set bsun_bit, 7 # branch on unordered -set snan_bit, 6 # signalling NAN -set operr_bit, 5 # operand error -set ovfl_bit, 4 # overflow -set unfl_bit, 3 # underflow -set dz_bit, 2 # divide by zero -set inex2_bit, 1 # inexact result 2 -set inex1_bit, 0 # inexact result 1 - -set aiop_bit, 7 # accrued inexact operation bit -set aovfl_bit, 6 # accrued overflow bit -set aunfl_bit, 5 # accrued underflow bit -set adz_bit, 4 # accrued dz bit -set ainex_bit, 3 # accrued inexact bit - -############################# -# FPSR individual bit masks # -############################# -set neg_mask, 0x08000000 # negative bit mask (lw) -set inf_mask, 0x02000000 # infinity bit mask (lw) -set z_mask, 0x04000000 # zero bit mask (lw) -set nan_mask, 0x01000000 # nan bit mask (lw) - -set neg_bmask, 0x08 # negative bit mask (byte) -set inf_bmask, 0x02 # infinity bit mask (byte) -set z_bmask, 0x04 # zero bit mask (byte) -set nan_bmask, 0x01 # nan bit mask (byte) - -set bsun_mask, 0x00008000 # bsun exception mask -set snan_mask, 0x00004000 # snan exception mask -set operr_mask, 0x00002000 # operr exception mask -set ovfl_mask, 0x00001000 # overflow exception mask -set unfl_mask, 0x00000800 # underflow exception mask -set dz_mask, 0x00000400 # dz exception mask -set inex2_mask, 0x00000200 # inex2 exception mask -set inex1_mask, 0x00000100 # inex1 exception mask - -set aiop_mask, 0x00000080 # accrued illegal operation -set aovfl_mask, 0x00000040 # accrued overflow -set aunfl_mask, 0x00000020 # accrued underflow -set adz_mask, 0x00000010 # accrued divide by zero -set ainex_mask, 0x00000008 # accrued inexact - -###################################### -# FPSR combinations used in the FPSP # -###################################### -set dzinf_mask, inf_mask+dz_mask+adz_mask -set opnan_mask, nan_mask+operr_mask+aiop_mask -set nzi_mask, 0x01ffffff #clears N, Z, and I -set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask -set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask -set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask -set inx1a_mask, inex1_mask+ainex_mask -set inx2a_mask, inex2_mask+ainex_mask -set snaniop_mask, nan_mask+snan_mask+aiop_mask -set snaniop2_mask, snan_mask+aiop_mask -set naniop_mask, nan_mask+aiop_mask -set neginf_mask, neg_mask+inf_mask -set infaiop_mask, inf_mask+aiop_mask -set negz_mask, neg_mask+z_mask -set opaop_mask, operr_mask+aiop_mask -set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask -set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask - -######### -# misc. # -######### -set rnd_stky_bit, 29 # stky bit pos in longword - -set sign_bit, 0x7 # sign bit -set signan_bit, 0x6 # signalling nan bit - -set sgl_thresh, 0x3f81 # minimum sgl exponent -set dbl_thresh, 0x3c01 # minimum dbl exponent - -set x_mode, 0x0 # extended precision -set s_mode, 0x4 # single precision -set d_mode, 0x8 # double precision - -set rn_mode, 0x0 # round-to-nearest -set rz_mode, 0x1 # round-to-zero -set rm_mode, 0x2 # round-tp-minus-infinity -set rp_mode, 0x3 # round-to-plus-infinity - -set mantissalen, 64 # length of mantissa in bits - -set BYTE, 1 # len(byte) == 1 byte -set WORD, 2 # len(word) == 2 bytes -set LONG, 4 # len(longword) == 2 bytes - -set BSUN_VEC, 0xc0 # bsun vector offset -set INEX_VEC, 0xc4 # inexact vector offset -set DZ_VEC, 0xc8 # dz vector offset -set UNFL_VEC, 0xcc # unfl vector offset -set OPERR_VEC, 0xd0 # operr vector offset -set OVFL_VEC, 0xd4 # ovfl vector offset -set SNAN_VEC, 0xd8 # snan vector offset - -########################### -# SPecial CONDition FLaGs # -########################### -set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception -set fbsun_flg, 0x02 # flag bit: bsun exception -set mia7_flg, 0x04 # flag bit: (a7)+ <ea> -set mda7_flg, 0x08 # flag bit: -(a7) <ea> -set fmovm_flg, 0x40 # flag bit: fmovm instruction -set immed_flg, 0x80 # flag bit: &<data> <ea> - -set ftrapcc_bit, 0x0 -set fbsun_bit, 0x1 -set mia7_bit, 0x2 -set mda7_bit, 0x3 -set immed_bit, 0x7 - -################################## -# TRANSCENDENTAL "LAST-OP" FLAGS # -################################## -set FMUL_OP, 0x0 # fmul instr performed last -set FDIV_OP, 0x1 # fdiv performed last -set FADD_OP, 0x2 # fadd performed last -set FMOV_OP, 0x3 # fmov performed last - -############# -# CONSTANTS # -############# -T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD -T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL - -PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 -PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -TWOBYPI: - long 0x3FE45F30,0x6DC9C883 - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Overflow exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # -# _real_ovfl() - "callout" for Overflow exception enabled code # -# _real_inex() - "callout" for Inexact exception enabled code # -# _real_trace() - "callout" for Trace exception code # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Ovfl exception stack frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# Overflow Exception enabled: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# Overflow Exception disabled: # -# - The system stack is unchanged # -# - The "exception present" flag in the fsave frame is cleared # -# # -# ALGORITHM *********************************************************** # -# On the 060, if an FP overflow is present as the result of any # -# instruction, the 060 will take an overflow exception whether the # -# exception is enabled or disabled in the FPCR. For the disabled case, # -# This handler emulates the instruction to determine what the correct # -# default result should be for the operation. This default result is # -# then stored in either the FP regfile, data regfile, or memory. # -# Finally, the handler exits through the "callout" _fpsp_done() # -# denoting that no exceptional conditions exist within the machine. # -# If the exception is enabled, then this handler must create the # -# exceptional operand and plave it in the fsave state frame, and store # -# the default result (only if the instruction is opclass 3). For # -# exceptions enabled, this handler must exit through the "callout" # -# _real_ovfl() so that the operating system enabled overflow handler # -# can handle this case. # -# Two other conditions exist. First, if overflow was disabled # -# but the inexact exception was enabled, this handler must exit # -# through the "callout" _real_inex() regardless of whether the result # -# was inexact. # -# Also, in the case of an opclass three instruction where # -# overflow was disabled and the trace exception was enabled, this # -# handler must exit through the "callout" _real_trace(). # -# # -######################################################################### - - global _fpsp_ovfl -_fpsp_ovfl: - -#$# sub.l &24,%sp # make room for src/dst - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? - bne.w fovfl_out - - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -# since, I believe, only NORMs and DENORMs can come through here, -# maybe we can avoid the subroutine call. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bit five of the fp extension word separates the monadic and dyadic operations -# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos -# will never take this exception. - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fovfl_extract # monadic - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fovfl_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fovfl_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fovfl_extract: - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) -#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) -#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) -#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - -# maybe we can make these entry points ONLY the OVFL entry points of each routine. - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# the operation has been emulated. the result is in fp0. -# the EXOP, if an exception occurred, is in fp1. -# we must save the default result regardless of whether -# traps are enabled or disabled. - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -# the exceptional possibilities we have left ourselves with are ONLY overflow -# and inexact. and, the inexact is such that overflow occurred and was disabled -# but inexact was enabled. - btst &ovfl_bit,FPCR_ENABLE(%a6) - bne.b fovfl_ovfl_on - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.b fovfl_inex_on - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - bra.l _fpsp_done - -# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP -# in fp1. now, simply jump to _real_ovfl()! -fovfl_ovfl_on: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.w &0xe005,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_ovfl - -# overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, -# we must jump to real_inex(). -fovfl_inex_on: - - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_inex - -######################################################################## -fovfl_out: - - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) - -# the src operand is definitely a NORM(!), so tag it as such - mov.b &NORM,STAG(%a6) # set src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout - - btst &ovfl_bit,FPCR_ENABLE(%a6) - bne.w fovfl_ovfl_on - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.w fovfl_inex_on - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - bra.l _real_trace - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Underflow exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # -# _real_ovfl() - "callout" for Overflow exception enabled code # -# _real_inex() - "callout" for Inexact exception enabled code # -# _real_trace() - "callout" for Trace exception code # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Unfl exception stack frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# Underflow Exception enabled: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# Underflow Exception disabled: # -# - The system stack is unchanged # -# - The "exception present" flag in the fsave frame is cleared # -# # -# ALGORITHM *********************************************************** # -# On the 060, if an FP underflow is present as the result of any # -# instruction, the 060 will take an underflow exception whether the # -# exception is enabled or disabled in the FPCR. For the disabled case, # -# This handler emulates the instruction to determine what the correct # -# default result should be for the operation. This default result is # -# then stored in either the FP regfile, data regfile, or memory. # -# Finally, the handler exits through the "callout" _fpsp_done() # -# denoting that no exceptional conditions exist within the machine. # -# If the exception is enabled, then this handler must create the # -# exceptional operand and plave it in the fsave state frame, and store # -# the default result (only if the instruction is opclass 3). For # -# exceptions enabled, this handler must exit through the "callout" # -# _real_unfl() so that the operating system enabled overflow handler # -# can handle this case. # -# Two other conditions exist. First, if underflow was disabled # -# but the inexact exception was enabled and the result was inexact, # -# this handler must exit through the "callout" _real_inex(). # -# was inexact. # -# Also, in the case of an opclass three instruction where # -# underflow was disabled and the trace exception was enabled, this # -# handler must exit through the "callout" _real_trace(). # -# # -######################################################################### - - global _fpsp_unfl -_fpsp_unfl: - -#$# sub.l &24,%sp # make room for src/dst - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? - bne.w funfl_out - - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bit five of the fp ext word separates the monadic and dyadic operations -# that can pass through fpsp_unfl(). remember that fcmp, and ftst -# will never take this exception. - btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? - beq.b funfl_extract # monadic - -# now, what's left that's not dyadic is fsincos. we can distinguish it -# from all dyadics by the '0110xxx pattern - btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? - bne.b funfl_extract # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b funfl_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -funfl_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -funfl_extract: - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) -#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) -#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) -#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - andi.l &0x00ff01ff,USER_FPSR(%a6) - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - -# maybe we can make these entry points ONLY the OVFL entry points of each routine. - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. Since this is incorrect, we need to check -# if our emulation, after re-doing the operation, decided that -# no underflow was called for. We do these checks only in -# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this -# special case will simply exit gracefully with the correct result. - -# the exceptional possibilities we have left ourselves with are ONLY overflow -# and inexact. and, the inexact is such that overflow occurred and was disabled -# but inexact was enabled. - btst &unfl_bit,FPCR_ENABLE(%a6) - bne.b funfl_unfl_on - -funfl_chkinex: - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.b funfl_inex_on - -funfl_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - bra.l _fpsp_done - -# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP -# in fp1 (don't forget to save fp0). what to do now? -# well, we simply have to get to go to _real_unfl()! -funfl_unfl_on: - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. Since this is incorrect, we check here to see -# if our emulation, after re-doing the operation, decided that -# no underflow was called for. - btst &unfl_bit,FPSR_EXCEPT(%a6) - beq.w funfl_chkinex - -funfl_unfl_on2: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.w &0xe003,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_unfl - -# underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, -# we must jump to real_inex(). -funfl_inex_on: - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. -# But, whether bogus or not, if inexact is enabled AND it occurred, -# then we have to branch to real_inex. - - btst &inex2_bit,FPSR_EXCEPT(%a6) - beq.w funfl_exit - -funfl_inex_on2: - - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack - - mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_inex - -####################################################################### -funfl_out: - - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) - -# the src operand is definitely a NORM(!), so tag it as such - mov.b &NORM,STAG(%a6) # set src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout - - btst &unfl_bit,FPCR_ENABLE(%a6) - bne.w funfl_unfl_on2 - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.w funfl_inex_on2 - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - bra.l _real_trace - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # -# Data Type" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Data Type exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_{word,long}() - read instruction word/longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# load_fpn1() - load src operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _real_inex() - "callout" to operating system inexact handler # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# funimp_skew() - adjust fsave src ops to "incorrect" value # -# _real_snan() - "callout" for SNAN exception # -# _real_operr() - "callout" for OPERR exception # -# _real_ovfl() - "callout" for OVFL exception # -# _real_unfl() - "callout" for UNFL exception # -# get_packed() - fetch packed operand from memory # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimp Data Type" stk frame # -# - The fsave frame contains the ssrc op (for UNNORM/DENORM) # -# # -# OUTPUT ************************************************************** # -# If Inexact exception (opclass 3): # -# - The system stack is changed to an Inexact exception stk frame # -# If SNAN exception (opclass 3): # -# - The system stack is changed to an SNAN exception stk frame # -# If OPERR exception (opclass 3): # -# - The system stack is changed to an OPERR exception stk frame # -# If OVFL exception (opclass 3): # -# - The system stack is changed to an OVFL exception stk frame # -# If UNFL exception (opclass 3): # -# - The system stack is changed to an UNFL exception stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - Correct result has been stored as appropriate # -# # -# ALGORITHM *********************************************************** # -# Two main instruction types can enter here: (1) DENORM or UNNORM # -# unimplemented data types. These can be either opclass 0,2 or 3 # -# instructions, and (2) PACKED unimplemented data format instructions # -# also of opclasses 0,2, or 3. # -# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # -# operand from the fsave state frame and the dst operand (if dyadic) # -# from the FP register file. The instruction is then emulated by # -# choosing an emulation routine from a table of routines indexed by # -# instruction type. Once the instruction has been emulated and result # -# saved, then we check to see if any enabled exceptions resulted from # -# instruction emulation. If none, then we exit through the "callout" # -# _fpsp_done(). If there is an enabled FP exception, then we insert # -# this exception into the FPU in the fsave state frame and then exit # -# through _fpsp_done(). # -# PACKED opclass 0 and 2 is similar in how the instruction is # -# emulated and exceptions handled. The differences occur in how the # -# handler loads the packed op (by calling get_packed() routine) and # -# by the fact that a Trace exception could be pending for PACKED ops. # -# If a Trace exception is pending, then the current exception stack # -# frame is changed to a Trace exception stack frame and an exit is # -# made through _real_trace(). # -# For UNNORM/DENORM opclass 3, the actual move out to memory is # -# performed by calling the routine fout(). If no exception should occur # -# as the result of emulation, then an exit either occurs through # -# _fpsp_done() or through _real_trace() if a Trace exception is pending # -# (a Trace stack frame must be created here, too). If an FP exception # -# should occur, then we must create an exception stack frame of that # -# type and jump to either _real_snan(), _real_operr(), _real_inex(), # -# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # -# emulation is performed in a similar manner. # -# # -######################################################################### - -# -# (1) DENORM and UNNORM (unimplemented) data types: -# -# post-instruction -# ***************** -# * EA * -# pre-instruction * * -# ***************** ***************** -# * 0x0 * 0x0dc * * 0x3 * 0x0dc * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# -# (2) PACKED format (unsupported) opclasses two and three: -# ***************** -# * EA * -# * * -# ***************** -# * 0x2 * 0x0dc * -# ***************** -# * Next * -# * PC * -# ***************** -# * SR * -# ***************** -# - global _fpsp_unsupp -_fpsp_unsupp: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # save fp state - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - - btst &0x5,EXC_SR(%a6) # user or supervisor mode? - bne.b fu_s -fu_u: - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # save on stack - bra.b fu_cont -# if the exception is an opclass zero or two unimplemented data type -# exception, then the a7' calculated here is wrong since it doesn't -# stack an ea. however, we don't need an a7' for this case anyways. -fu_s: - lea 0x4+EXC_EA(%a6),%a0 # load old a7' - mov.l %a0,EXC_A7(%a6) # save on stack - -fu_cont: - -# the FPIAR holds the "current PC" of the faulting instruction -# the FPIAR should be set correctly for ALL exceptions passing through -# this point. - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - -############################ - - clr.b SPCOND_FLG(%a6) # clear special condition flag - -# Separate opclass three (fpn-to-mem) ops since they have a different -# stack frame and protocol. - btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? - bne.w fu_out # yes - -# Separate packed opclass two instructions. - bfextu EXC_CMDREG(%a6){&0:&6},%d0 - cmpi.b %d0,&0x13 - beq.w fu_in_pack - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field - andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - -# Opclass two w/ memory-to-fpn operation will have an incorrect extended -# precision format if the src format was single or double and the -# source data type was an INF, NAN, DENORM, or UNNORM - lea FP_SRC(%a6),%a0 # pass ptr to input - bsr.l fix_skewed_ops - -# we don't know whether the src operand or the dst operand (or both) is the -# UNNORM or DENORM. call the function that tags the operand type. if the -# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2 # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO - -fu_op2: - mov.b %d0,STAG(%a6) # save src optype tag - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - -# bit five of the fp extension word separates the monadic and dyadic operations -# at this point - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fu_extract # monadic - cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? - beq.b fu_extract # yes, so it's monadic, too - - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fu_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fu_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all dyadic ops -# OPERR : fsqrt(-NORM) -# OVFL : all except ftst,fcmp -# UNFL : all except ftst,fcmp -# DZ : fdiv -# INEX2 : all except ftst,fcmp -# INEX1 : none (packed doesn't go through here) -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set - bne.b fu_in_ena # some are enabled - -fu_in_cont: -# fcmp and ftst do not store any result. - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension - andi.b &0x38,%d0 # extract bits 3-5 - cmpi.b %d0,&0x38 # is instr fcmp or ftst? - beq.b fu_in_exit # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l store_fpreg # store the result - -fu_in_exit: - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - bra.l _fpsp_done - -fu_in_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_in_exc # there is at least one set - -# -# No exceptions occurred that were also enabled. Now: -# -# if (OVFL && ovfl_disabled && inexact_enabled) { -# branch to _real_inex() (even if the result was exact!); -# } else { -# save the result in the proper fp reg (unless the op is fcmp or ftst); -# return; -# } -# - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.b fu_in_cont # no - -fu_in_ovflchk: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.b fu_in_cont # no - bra.w fu_in_exc_ovfl # go insert overflow frame - -# -# An exception occurred and that exception was enabled: -# -# shift enabled exception field into lo byte of d0; -# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || -# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { -# /* -# * this is the case where we must call _real_inex() now or else -# * there will be no other way to pass it the exceptional operand -# */ -# call _real_inex(); -# } else { -# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; -# } -# -fu_in_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? (6) - bne.b fu_in_exc_exit # no - -# the enabled exception was inexact - btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? - bne.w fu_in_exc_unfl # yes - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? - bne.w fu_in_exc_ovfl # yes - -# here, we insert the correct fsave status value into the fsave frame for the -# corresponding exception. the operand in the fsave frame should be the original -# src operand. -fu_in_exc_exit: - mov.l %d0,-(%sp) # save d0 - bsr.l funimp_skew # skew sgl or dbl inputs - mov.l (%sp)+,%d0 # restore d0 - - mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 - - bra.l _fpsp_done - -tbl_except: - short 0xe000,0xe006,0xe004,0xe005 - short 0xe003,0xe002,0xe001,0xe001 - -fu_in_exc_unfl: - mov.w &0x4,%d0 - bra.b fu_in_exc_exit -fu_in_exc_ovfl: - mov.w &0x03,%d0 - bra.b fu_in_exc_exit - -# If the input operand to this operation was opclass two and a single -# or double precision denorm, inf, or nan, the operand needs to be -# "corrected" in order to have the proper equivalent extended precision -# number. - global fix_skewed_ops -fix_skewed_ops: - bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt - cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? - beq.b fso_sgl # yes - cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? - beq.b fso_dbl # yes - rts # no - -fso_sgl: - mov.w LOCAL_EX(%a0),%d0 # fetch src exponent - andi.w &0x7fff,%d0 # strip sign - cmpi.w %d0,&0x3f80 # is |exp| == $3f80? - beq.b fso_sgl_dnrm_zero # yes - cmpi.w %d0,&0x407f # no; is |exp| == $407f? - beq.b fso_infnan # yes - rts # no - -fso_sgl_dnrm_zero: - andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit - beq.b fso_zero # it's a skewed zero -fso_sgl_dnrm: -# here, we count on norm not to alter a0... - bsr.l norm # normalize mantissa - neg.w %d0 # -shft amt - addi.w &0x3f81,%d0 # adjust new exponent - andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent - or.w %d0,LOCAL_EX(%a0) # insert new exponent - rts - -fso_zero: - andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent - rts - -fso_infnan: - andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit - ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff - rts - -fso_dbl: - mov.w LOCAL_EX(%a0),%d0 # fetch src exponent - andi.w &0x7fff,%d0 # strip sign - cmpi.w %d0,&0x3c00 # is |exp| == $3c00? - beq.b fso_dbl_dnrm_zero # yes - cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? - beq.b fso_infnan # yes - rts # no - -fso_dbl_dnrm_zero: - andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit - bne.b fso_dbl_dnrm # it's a skewed denorm - tst.l LOCAL_LO(%a0) # is it a zero? - beq.b fso_zero # yes -fso_dbl_dnrm: -# here, we count on norm not to alter a0... - bsr.l norm # normalize mantissa - neg.w %d0 # -shft amt - addi.w &0x3c01,%d0 # adjust new exponent - andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent - or.w %d0,LOCAL_EX(%a0) # insert new exponent - rts - -################################################################# - -# fmove out took an unimplemented data type exception. -# the src operand is in FP_SRC. Call _fout() to write out the result and -# to determine which exceptions, if any, to take. -fu_out: - -# Separate packed move outs from the UNNORM and DENORM move outs. - bfextu EXC_CMDREG(%a6){&3:&3},%d0 - cmpi.b %d0,&0x3 - beq.w fu_out_pack - cmpi.b %d0,&0x7 - beq.w fu_out_pack - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field. -# fmove out doesn't affect ccodes. - and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - -# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine -# call here. just figure out what it is... - mov.w FP_SRC_EX(%a6),%d0 # get exponent - andi.w &0x7fff,%d0 # strip sign - beq.b fu_out_denorm # it's a DENORM - - lea FP_SRC(%a6),%a0 - bsr.l unnorm_fix # yes; fix it - - mov.b %d0,STAG(%a6) - - bra.b fu_out_cont -fu_out_denorm: - mov.b &DENORM,STAG(%a6) -fu_out_cont: - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - mov.l (%a6),EXC_A6(%a6) # in case a6 changes - bsr.l fout # call fmove out routine - -# Exceptions in order of precedence: -# BSUN : none -# SNAN : none -# OPERR : fmove.{b,w,l} out of large UNNORM -# OVFL : fmove.{s,d} -# UNFL : fmove.{s,d,x} -# DZ : none -# INEX2 : all -# INEX1 : none (packed doesn't travel through here) - -# determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_out_ena # some are enabled - -fu_out_done: - - mov.l EXC_A6(%a6),(%a6) # in case a6 changed - -# on extended precision opclass three instructions using pre-decrement or -# post-increment addressing mode, the address register is not updated. is the -# address register was the stack pointer used from user mode, then let's update -# it here. if it was used from supervisor mode, then we have to handle this -# as a special case. - btst &0x5,EXC_SR(%a6) - bne.b fu_out_done_s - - mov.l EXC_A7(%a6),%a0 # restore a7 - mov.l %a0,%usp - -fu_out_done_cont: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - btst &0x7,(%sp) # is trace on? - bne.b fu_out_trace # yes - - bra.l _fpsp_done - -# is the ea mode pre-decrement of the stack pointer from supervisor mode? -# ("fmov.x fpm,-(a7)") if so, -fu_out_done_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.b fu_out_done_cont - -# the extended precision result is still in fp0. but, we need to save it -# somewhere on the stack until we can copy it to its final resting place. -# here, we're counting on the top of the stack to be the old place-holders -# for fp0/fp1 which have already been restored. that way, we can write -# over those destinations with the shifted stack frame. - fmovm.x &0x80,FP_SRC(%a6) # put answer on stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - btst &0x7,(%sp) - bne.b fu_out_trace - - bra.l _fpsp_done - -fu_out_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_out_exc # there is at least one set - -# no exceptions were set. -# if a disabled overflow occurred and inexact was enabled but the result -# was exact, then a branch to _real_inex() is made. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.w fu_out_done # no - -fu_out_ovflchk: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.w fu_out_done # no - bra.w fu_inex # yes - -# -# The fp move out that took the "Unimplemented Data Type" exception was -# being traced. Since the stack frames are similar, get the "current" PC -# from FPIAR and put it in the trace stack frame then jump to _real_trace(). -# -# UNSUPP FRAME TRACE FRAME -# ***************** ***************** -# * EA * * Current * -# * * * PC * -# ***************** ***************** -# * 0x3 * 0x0dc * * 0x2 * 0x024 * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# -fu_out_trace: - mov.w &0x2024,0x6(%sp) - fmov.l %fpiar,0x8(%sp) - bra.l _real_trace - -# an exception occurred and that exception was enabled. -fu_out_exc: - subi.l &24,%d0 # fix offset to be 0-8 - -# we don't mess with the existing fsave frame. just re-insert it and -# jump to the "_real_{}()" handler... - mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 - jmp (tbl_fu_out.b,%pc,%d0.w*1) - - swbeg &0x8 -tbl_fu_out: - short tbl_fu_out - tbl_fu_out # BSUN can't happen - short tbl_fu_out - tbl_fu_out # SNAN can't happen - short fu_operr - tbl_fu_out # OPERR - short fu_ovfl - tbl_fu_out # OVFL - short fu_unfl - tbl_fu_out # UNFL - short tbl_fu_out - tbl_fu_out # DZ can't happen - short fu_inex - tbl_fu_out # INEX2 - short tbl_fu_out - tbl_fu_out # INEX1 won't make it here - -# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just -# frestore it. -fu_snan: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 - mov.w &0xe006,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) - - unlk %a6 - - - bra.l _real_snan - -fu_operr: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe004,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) - - unlk %a6 - - - bra.l _real_operr - -fu_ovfl: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 - mov.w &0xe005,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - bra.l _real_ovfl - -# underflow can happen for extended precision. extended precision opclass -# three instruction exceptions don't update the stack pointer. so, if the -# exception occurred from user mode, then simply update a7 and exit normally. -# if the exception occurred from supervisor mode, check if -fu_unfl: - mov.l EXC_A6(%a6),(%a6) # restore a6 - - btst &0x5,EXC_SR(%a6) - bne.w fu_unfl_s - - mov.l EXC_A7(%a6),%a0 # restore a7 whether we need - mov.l %a0,%usp # to or not... - -fu_unfl_cont: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc - mov.w &0xe003,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - bra.l _real_unfl - -fu_unfl_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? - bne.b fu_unfl_cont - -# the extended precision result is still in fp0. but, we need to save it -# somewhere on the stack until we can copy it to its final resting place -# (where the exc frame is currently). make sure it's not at the top of the -# frame or it will get overwritten when the exc stack frame is shifted "down". - fmovm.x &0x80,FP_SRC(%a6) # put answer on stack - fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc - mov.w &0xe003,2+FP_DST(%a6) - - frestore FP_DST(%a6) # restore EXOP - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - bra.l _real_unfl - -# fmove in and out enter here. -fu_inex: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - - bra.l _real_inex - -######################################################################### -######################################################################### -fu_in_pack: - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field - andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bsr.l get_packed # fetch packed src operand - - lea FP_SRC(%a6),%a0 # pass ptr to src - bsr.l set_tag_x # set src optype tag - - mov.b %d0,STAG(%a6) # save src optype tag - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - -# bit five of the fp extension word separates the monadic and dyadic operations -# at this point - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fu_extract_p # monadic - cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? - beq.b fu_extract_p # yes, so it's monadic, too - - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_done_p # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fu_op2_done_p: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fu_extract_p: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all dyadic ops -# OPERR : fsqrt(-NORM) -# OVFL : all except ftst,fcmp -# UNFL : all except ftst,fcmp -# DZ : fdiv -# INEX2 : all except ftst,fcmp -# INEX1 : all -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_in_ena_p # some are enabled - -fu_in_cont_p: -# fcmp and ftst do not store any result. - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension - andi.b &0x38,%d0 # extract bits 3-5 - cmpi.b %d0,&0x38 # is instr fcmp or ftst? - beq.b fu_in_exit_p # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l store_fpreg # store the result - -fu_in_exit_p: - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.w fu_in_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_in_exit_cont_p: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# the exception occurred in supervisor mode. check to see if the -# addressing mode was (a7)+. if so, we'll need to shift the -# stack frame "up". -fu_in_exit_s_p: - btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ - beq.b fu_in_exit_cont_p # no - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - -# shift the stack frame "up". we don't really care about the <ea> field. - mov.l 0x4(%sp),0x10(%sp) - mov.l 0x0(%sp),0xc(%sp) - add.l &0xc,%sp - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -fu_in_ena_p: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_in_exc_p # at least one was set - -# -# No exceptions occurred that were also enabled. Now: -# -# if (OVFL && ovfl_disabled && inexact_enabled) { -# branch to _real_inex() (even if the result was exact!); -# } else { -# save the result in the proper fp reg (unless the op is fcmp or ftst); -# return; -# } -# - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.w fu_in_cont_p # no - -fu_in_ovflchk_p: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.w fu_in_cont_p # no - bra.w fu_in_exc_ovfl_p # do _real_inex() now - -# -# An exception occurred and that exception was enabled: -# -# shift enabled exception field into lo byte of d0; -# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || -# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { -# /* -# * this is the case where we must call _real_inex() now or else -# * there will be no other way to pass it the exceptional operand -# */ -# call _real_inex(); -# } else { -# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; -# } -# -fu_in_exc_p: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) - blt.b fu_in_exc_exit_p # no - -# the enabled exception was inexact - btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? - bne.w fu_in_exc_unfl_p # yes - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? - bne.w fu_in_exc_ovfl_p # yes - -# here, we insert the correct fsave status value into the fsave frame for the -# corresponding exception. the operand in the fsave frame should be the original -# src operand. -# as a reminder for future predicted pain and agony, we are passing in fsave the -# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. -# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! -fu_in_exc_exit_p: - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.w fu_in_exc_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_in_exc_exit_cont_p: - mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 - - btst &0x7,(%sp) # is trace enabled? - bne.w fu_trace_p # yes - - bra.l _fpsp_done - -tbl_except_p: - short 0xe000,0xe006,0xe004,0xe005 - short 0xe003,0xe002,0xe001,0xe001 - -fu_in_exc_ovfl_p: - mov.w &0x3,%d0 - bra.w fu_in_exc_exit_p - -fu_in_exc_unfl_p: - mov.w &0x4,%d0 - bra.w fu_in_exc_exit_p - -fu_in_exc_exit_s_p: - btst &mia7_bit,SPCOND_FLG(%a6) - beq.b fu_in_exc_exit_cont_p - - mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 # unravel stack frame - -# shift stack frame "up". who cares about <ea> field. - mov.l 0x4(%sp),0x10(%sp) - mov.l 0x0(%sp),0xc(%sp) - add.l &0xc,%sp - - btst &0x7,(%sp) # is trace on? - bne.b fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# -# The opclass two PACKED instruction that took an "Unimplemented Data Type" -# exception was being traced. Make the "current" PC the FPIAR and put it in the -# trace stack frame then jump to _real_trace(). -# -# UNSUPP FRAME TRACE FRAME -# ***************** ***************** -# * EA * * Current * -# * * * PC * -# ***************** ***************** -# * 0x2 * 0x0dc * * 0x2 * 0x024 * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -fu_trace_p: - mov.w &0x2024,0x6(%sp) - fmov.l %fpiar,0x8(%sp) - - bra.l _real_trace - -######################################################### -######################################################### -fu_out_pack: - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field. -# fmove out doesn't affect ccodes. - and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l load_fpn1 - -# unlike other opclass 3, unimplemented data type exceptions, packed must be -# able to detect all operand types. - lea FP_SRC(%a6),%a0 - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_p # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO - -fu_op2_p: - mov.b %d0,STAG(%a6) # save src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - mov.l (%a6),EXC_A6(%a6) # in case a6 changes - bsr.l fout # call fmove out routine - -# Exceptions in order of precedence: -# BSUN : no -# SNAN : yes -# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) -# OVFL : no -# UNFL : no -# DZ : no -# INEX2 : yes -# INEX1 : no - -# determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_out_ena_p # some are enabled - -fu_out_exit_p: - mov.l EXC_A6(%a6),(%a6) # restore a6 - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.b fu_out_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_out_exit_cont_p: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# the exception occurred in supervisor mode. check to see if the -# addressing mode was -(a7). if so, we'll need to shift the -# stack frame "down". -fu_out_exit_s_p: - btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) - beq.b fu_out_exit_cont_p # no - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - btst &0x7,(%sp) - bne.w fu_trace_p - - bra.l _fpsp_done - -fu_out_ena_p: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - beq.w fu_out_exit_p - - mov.l EXC_A6(%a6),(%a6) # restore a6 - -# an exception occurred and that exception was enabled. -# the only exception possible on packed move out are INEX, OPERR, and SNAN. -fu_out_exc_p: - cmpi.b %d0,&0x1a - bgt.w fu_inex_p2 - beq.w fu_operr_p - -fu_snan_p: - btst &0x5,EXC_SR(%a6) - bne.b fu_snan_s_p - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_snan - -fu_snan_s_p: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_snan - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe006,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_snan - -fu_operr_p: - btst &0x5,EXC_SR(%a6) - bne.w fu_operr_p_s - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_operr - -fu_operr_p_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_operr - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe004,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_operr - -fu_inex_p2: - btst &0x5,EXC_SR(%a6) - bne.w fu_inex_s_p2 - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_inex - -fu_inex_s_p2: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_inex - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_inex - -######################################################################### - -# -# if we're stuffing a source operand back into an fsave frame then we -# have to make sure that for single or double source operands that the -# format stuffed is as weird as the hardware usually makes it. -# - global funimp_skew -funimp_skew: - bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier - cmpi.b %d0,&0x1 # was src sgl? - beq.b funimp_skew_sgl # yes - cmpi.b %d0,&0x5 # was src dbl? - beq.b funimp_skew_dbl # yes - rts - -funimp_skew_sgl: - mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent - andi.w &0x7fff,%d0 # strip sign - beq.b funimp_skew_sgl_not - cmpi.w %d0,&0x3f80 - bgt.b funimp_skew_sgl_not - neg.w %d0 # make exponent negative - addi.w &0x3f81,%d0 # find amt to shift - mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) - lsr.l %d0,%d1 # shift it - bset &31,%d1 # set j-bit - mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) - andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent - ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent -funimp_skew_sgl_not: - rts - -funimp_skew_dbl: - mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent - andi.w &0x7fff,%d0 # strip sign - beq.b funimp_skew_dbl_not - cmpi.w %d0,&0x3c00 - bgt.b funimp_skew_dbl_not - - tst.b FP_SRC_EX(%a6) # make "internal format" - smi.b 0x2+FP_SRC(%a6) - mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign - clr.l %d0 # clear g,r,s - lea FP_SRC(%a6),%a0 # pass ptr to src op - mov.w &0x3c01,%d1 # pass denorm threshold - bsr.l dnrm_lp # denorm it - mov.w &0x3c00,%d0 # new exponent - tst.b 0x2+FP_SRC(%a6) # is sign set? - beq.b fss_dbl_denorm_done # no - bset &15,%d0 # set sign -fss_dbl_denorm_done: - bset &0x7,FP_SRC_HI(%a6) # set j-bit - mov.w %d0,FP_SRC_EX(%a6) # insert new exponent -funimp_skew_dbl_not: - rts - -######################################################################### - global _mem_write2 -_mem_write2: - btst &0x5,EXC_SR(%a6) - beq.l _dmem_write - mov.l 0x0(%a0),FP_DST_EX(%a6) - mov.l 0x4(%a0),FP_DST_HI(%a6) - mov.l 0x8(%a0),FP_DST_LO(%a6) - clr.l %d1 - rts - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # -# effective address" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Effective Address exception in an operating # -# system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# decbin() - convert packed data to FP binary data # -# _real_fpu_disabled() - "callout" for "FPU disabled" exception # -# _real_access() - "callout" for access error exception # -# _mem_read() - read extended immediate operand from memory # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# fmovm_dynamic() - emulate dynamic fmovm instruction # -# fmovm_ctrl() - emulate fmovm control instruction # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimplemented <ea>" stk frame # -# # -# OUTPUT ************************************************************** # -# If access error: # -# - The system stack is changed to an access error stack frame # -# If FPU disabled: # -# - The system stack is changed to an FPU disabled stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - None (correct result has been stored as appropriate) # -# # -# ALGORITHM *********************************************************** # -# This exception handles 3 types of operations: # -# (1) FP Instructions using extended precision or packed immediate # -# addressing mode. # -# (2) The "fmovm.x" instruction w/ dynamic register specification. # -# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # -# # -# For immediate data operations, the data is read in w/ a # -# _mem_read() "callout", converted to FP binary (if packed), and used # -# as the source operand to the instruction specified by the instruction # -# word. If no FP exception should be reported ads a result of the # -# emulation, then the result is stored to the destination register and # -# the handler exits through _fpsp_done(). If an enabled exc has been # -# signalled as a result of emulation, then an fsave state frame # -# corresponding to the FP exception type must be entered into the 060 # -# FPU before exiting. In either the enabled or disabled cases, we # -# must also check if a Trace exception is pending, in which case, we # -# must create a Trace exception stack frame from the current exception # -# stack frame. If no Trace is pending, we simply exit through # -# _fpsp_done(). # -# For "fmovm.x", call the routine fmovm_dynamic() which will # -# decode and emulate the instruction. No FP exceptions can be pending # -# as a result of this operation emulation. A Trace exception can be # -# pending, though, which means the current stack frame must be changed # -# to a Trace stack frame and an exit made through _real_trace(). # -# For the case of "fmovm.x Dn,-(a7)", where the offending instruction # -# was executed from supervisor mode, this handler must store the FP # -# register file values to the system stack by itself since # -# fmovm_dynamic() can't handle this. A normal exit is made through # -# fpsp_done(). # -# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # -# Again, a Trace exception may be pending and an exit made through # -# _real_trace(). Else, a normal exit is made through _fpsp_done(). # -# # -# Before any of the above is attempted, it must be checked to # -# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # -# before the "FPU disabled" exception, but the "FPU disabled" exception # -# has higher priority, we check the disabled bit in the PCR. If set, # -# then we must create an 8 word "FPU disabled" exception stack frame # -# from the current 4 word exception stack frame. This includes # -# reproducing the effective address of the instruction to put on the # -# new stack frame. # -# # -# In the process of all emulation work, if a _mem_read() # -# "callout" returns a failing result indicating an access error, then # -# we must create an access error stack frame from the current stack # -# frame. This information includes a faulting address and a fault- # -# status-longword. These are created within this handler. # -# # -######################################################################### - - global _fpsp_effadd -_fpsp_effadd: - -# This exception type takes priority over the "Line F Emulator" -# exception. Therefore, the FPU could be disabled when entering here. -# So, we must check to see if it's disabled and handle that case separately. - mov.l %d0,-(%sp) # save d0 - movc %pcr,%d0 # load proc cr - btst &0x1,%d0 # is FPU disabled? - bne.w iea_disabled # yes - mov.l (%sp)+,%d0 # restore d0 - - link %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# PC of instruction that took the exception is the PC in the frame - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - -######################################################################### - - tst.w %d0 # is operation fmovem? - bmi.w iea_fmovm # yes - -# -# here, we will have: -# fabs fdabs fsabs facos fmod -# fadd fdadd fsadd fasin frem -# fcmp fatan fscale -# fdiv fddiv fsdiv fatanh fsin -# fint fcos fsincos -# fintrz fcosh fsinh -# fmove fdmove fsmove fetox ftan -# fmul fdmul fsmul fetoxm1 ftanh -# fneg fdneg fsneg fgetexp ftentox -# fsgldiv fgetman ftwotox -# fsglmul flog10 -# fsqrt flog2 -# fsub fdsub fssub flogn -# ftst flognp1 -# which can all use f<op>.{x,p} -# so, now it's immediate data extended precision AND PACKED FORMAT! -# -iea_op: - andi.l &0x00ff00ff,USER_FPSR(%a6) - - btst &0xa,%d0 # is src fmt x or p? - bne.b iea_op_pack # packed - - - mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> - lea FP_SRC(%a6),%a1 # pass: ptr to super addr - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _imem_read # read extended immediate - - tst.l %d1 # did ifetch fail? - bne.w iea_iacc # yes - - bra.b iea_op_setsrc - -iea_op_pack: - - mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> - lea FP_SRC(%a6),%a1 # pass: ptr to super dst - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _imem_read # read packed operand - - tst.l %d1 # did ifetch fail? - bne.w iea_iacc # yes - -# The packed operand is an INF or a NAN if the exponent field is all ones. - bfextu FP_SRC(%a6){&1:&15},%d0 # get exp - cmpi.w %d0,&0x7fff # INF or NAN? - beq.b iea_op_setsrc # operand is an INF or NAN - -# The packed operand is a zero if the mantissa is all zero, else it's -# a normal packed op. - mov.b 3+FP_SRC(%a6),%d0 # get byte 4 - andi.b &0x0f,%d0 # clear all but last nybble - bne.b iea_op_gp_not_spec # not a zero - tst.l FP_SRC_HI(%a6) # is lw 2 zero? - bne.b iea_op_gp_not_spec # not a zero - tst.l FP_SRC_LO(%a6) # is lw 3 zero? - beq.b iea_op_setsrc # operand is a ZERO -iea_op_gp_not_spec: - lea FP_SRC(%a6),%a0 # pass: ptr to packed op - bsr.l decbin # convert to extended - fmovm.x &0x80,FP_SRC(%a6) # make this the srcop - -iea_op_setsrc: - addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer - -# FP_SRC now holds the src operand. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # could be ANYTHING!!! - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b iea_op_getdst # no - bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO - mov.b %d0,STAG(%a6) # set new optype tag -iea_op_getdst: - clr.b STORE_FLG(%a6) # clear "store result" boolean - - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b iea_op_extract # monadic - btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? - bne.b iea_op_spec # yes - -iea_op_loaddst: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno - bsr.l load_fpn2 # load dst operand - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - mov.b %d0,DTAG(%a6) # could be ANYTHING!!! - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b iea_op_extract # no - bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO - mov.b %d0,DTAG(%a6) # set new optype tag - bra.b iea_op_extract - -# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic -iea_op_spec: - btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? - beq.b iea_op_extract # yes -# now, we're left with ftst and fcmp. so, first let's tag them so that they don't -# store a result. then, only fcmp will branch back and pick up a dst operand. - st STORE_FLG(%a6) # don't store a final result - btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? - beq.b iea_op_loaddst # yes - -iea_op_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - fmov.l &0x0,%fpcr - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all operations -# OPERR : all reg-reg or mem-reg operations that can normally operr -# OVFL : same as OPERR -# UNFL : same as OPERR -# DZ : same as OPERR -# INEX2 : same as OPERR -# INEX1 : all packed immediate operations -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.b iea_op_ena # some are enabled - -# now, we save the result, unless, of course, the operation was ftst or fcmp. -# these don't save results. -iea_op_save: - tst.b STORE_FLG(%a6) # does this op store a result? - bne.b iea_op_exit1 # exit with no frestore - -iea_op_store: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno - bsr.l store_fpreg # store the result - -iea_op_exit1: - mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel the frame - - btst &0x7,(%sp) # is trace on? - bne.w iea_op_trace # yes - - bra.l _fpsp_done # exit to os - -iea_op_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b iea_op_exc # at least one was set - -# no exception occurred. now, did a disabled, exact overflow occur with inexact -# enabled? if so, then we have to stuff an overflow frame into the FPU. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - beq.b iea_op_save - -iea_op_ovfl: - btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? - beq.b iea_op_store # no - bra.b iea_op_exc_ovfl # yes - -# an enabled exception occurred. we have to insert the exception type back into -# the machine. -iea_op_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? - bne.b iea_op_exc_force # no - -# the enabled exception was inexact. so, if it occurs with an overflow -# or underflow that was disabled, then we have to force an overflow or -# underflow frame. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - bne.b iea_op_exc_ovfl # yes - btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? - bne.b iea_op_exc_unfl # yes - -iea_op_exc_force: - mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) - bra.b iea_op_exit2 # exit with frestore - -tbl_iea_except: - short 0xe002, 0xe006, 0xe004, 0xe005 - short 0xe003, 0xe002, 0xe001, 0xe001 - -iea_op_exc_ovfl: - mov.w &0xe005,2+FP_SRC(%a6) - bra.b iea_op_exit2 - -iea_op_exc_unfl: - mov.w &0xe003,2+FP_SRC(%a6) - -iea_op_exit2: - mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore exceptional state - - unlk %a6 # unravel the frame - - btst &0x7,(%sp) # is trace on? - bne.b iea_op_trace # yes - - bra.l _fpsp_done # exit to os - -# -# The opclass two instruction that took an "Unimplemented Effective Address" -# exception was being traced. Make the "current" PC the FPIAR and put it in -# the trace stack frame then jump to _real_trace(). -# -# UNIMP EA FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f0 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ***************** -# * SR * -# ***************** -iea_op_trace: - mov.l (%sp),-(%sp) # shift stack frame "down" - mov.w 0x8(%sp),0x4(%sp) - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - - bra.l _real_trace - -######################################################################### -iea_fmovm: - btst &14,%d0 # ctrl or data reg - beq.w iea_fmovm_ctrl - -iea_fmovm_data: - - btst &0x5,EXC_SR(%a6) # user or supervisor mode - bne.b iea_fmovm_data_s - -iea_fmovm_data_u: - mov.l %usp,%a0 - mov.l %a0,EXC_A7(%a6) # store current a7 - bsr.l fmovm_dynamic # do dynamic fmovm - mov.l EXC_A7(%a6),%a0 # load possibly new a7 - mov.l %a0,%usp # update usp - bra.w iea_fmovm_exit - -iea_fmovm_data_s: - clr.b SPCOND_FLG(%a6) - lea 0x2+EXC_VOFF(%a6),%a0 - mov.l %a0,EXC_A7(%a6) - bsr.l fmovm_dynamic # do dynamic fmovm - - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.w iea_fmovm_data_predec - cmpi.b SPCOND_FLG(%a6),&mia7_flg - bne.w iea_fmovm_exit - -# right now, d0 = the size. -# the data has been fetched from the supervisor stack, but we have not -# incremented the stack pointer by the appropriate number of bytes. -# do it here. -iea_fmovm_data_postinc: - btst &0x7,EXC_SR(%a6) - bne.b iea_fmovm_data_pi_trace - - mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) - mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) - mov.w &0x00f0,(EXC_VOFF,%a6,%d0) - - lea (EXC_SR,%a6,%d0),%a0 - mov.l %a0,EXC_SR(%a6) - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - mov.l (%sp)+,%sp - bra.l _fpsp_done - -iea_fmovm_data_pi_trace: - mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) - mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) - mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) - mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) - - lea (EXC_SR-0x4,%a6,%d0),%a0 - mov.l %a0,EXC_SR(%a6) - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - mov.l (%sp)+,%sp - bra.l _real_trace - -# right now, d1 = size and d0 = the strg. -iea_fmovm_data_predec: - mov.b %d1,EXC_VOFF(%a6) # store strg - mov.b %d0,0x1+EXC_VOFF(%a6) # store size - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),-(%sp) # make a copy of a6 - mov.l %d0,-(%sp) # save d0 - mov.l %d1,-(%sp) # save d1 - mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC - - clr.l %d0 - mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size - neg.l %d0 # get negative of size - - btst &0x7,EXC_SR(%a6) # is trace enabled? - beq.b iea_fmovm_data_p2 - - mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) - mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) - mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) - mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) - - pea (%a6,%d0) # create final sp - bra.b iea_fmovm_data_p3 - -iea_fmovm_data_p2: - mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) - mov.l (%sp)+,(EXC_PC,%a6,%d0) - mov.w &0x00f0,(EXC_VOFF,%a6,%d0) - - pea (0x4,%a6,%d0) # create final sp - -iea_fmovm_data_p3: - clr.l %d1 - mov.b EXC_VOFF(%a6),%d1 # fetch strg - - tst.b %d1 - bpl.b fm_1 - fmovm.x &0x80,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_1: - lsl.b &0x1,%d1 - bpl.b fm_2 - fmovm.x &0x40,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_2: - lsl.b &0x1,%d1 - bpl.b fm_3 - fmovm.x &0x20,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_3: - lsl.b &0x1,%d1 - bpl.b fm_4 - fmovm.x &0x10,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_4: - lsl.b &0x1,%d1 - bpl.b fm_5 - fmovm.x &0x08,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_5: - lsl.b &0x1,%d1 - bpl.b fm_6 - fmovm.x &0x04,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_6: - lsl.b &0x1,%d1 - bpl.b fm_7 - fmovm.x &0x02,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_7: - lsl.b &0x1,%d1 - bpl.b fm_end - fmovm.x &0x01,(0x4+0x8,%a6,%d0) -fm_end: - mov.l 0x4(%sp),%d1 - mov.l 0x8(%sp),%d0 - mov.l 0xc(%sp),%a6 - mov.l (%sp)+,%sp - - btst &0x7,(%sp) # is trace enabled? - beq.l _fpsp_done - bra.l _real_trace - -######################################################################### -iea_fmovm_ctrl: - - bsr.l fmovm_ctrl # load ctrl regs - -iea_fmovm_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - btst &0x7,EXC_SR(%a6) # is trace on? - bne.b iea_fmovm_trace # yes - - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC - - unlk %a6 # unravel the frame - - bra.l _fpsp_done # exit to os - -# -# The control reg instruction that took an "Unimplemented Effective Address" -# exception was being traced. The "Current PC" for the trace frame is the -# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. -# After fixing the stack frame, jump to _real_trace(). -# -# UNIMP EA FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f0 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ***************** -# * SR * -# ***************** -# this ain't a pretty solution, but it works: -# -restore a6 (not with unlk) -# -shift stack frame down over where old a6 used to be -# -add LOCAL_SIZE to stack pointer -iea_fmovm_trace: - mov.l (%a6),%a6 # restore frame pointer - mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) - mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) - mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) - mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 - add.l &LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_trace - -######################################################################### -# The FPU is disabled and so we should really have taken the "Line -# F Emulator" exception. So, here we create an 8-word stack frame -# from our 4-word stack frame. This means we must calculate the length -# the faulting instruction to get the "next PC". This is trivial for -# immediate operands but requires some extra work for fmovm dynamic -# which can use most addressing modes. -iea_disabled: - mov.l (%sp)+,%d0 # restore d0 - - link %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - -# PC of instruction that took the exception is the PC in the frame - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - - tst.w %d0 # is instr fmovm? - bmi.b iea_dis_fmovm # yes -# instruction is using an extended precision immediate operand. Therefore, -# the total instruction length is 16 bytes. -iea_dis_immed: - mov.l &0x10,%d0 # 16 bytes of instruction - bra.b iea_dis_cont -iea_dis_fmovm: - btst &0xe,%d0 # is instr fmovm ctrl - bne.b iea_dis_fmovm_data # no -# the instruction is a fmovm.l with 2 or 3 registers. - bfextu %d0{&19:&3},%d1 - mov.l &0xc,%d0 - cmpi.b %d1,&0x7 # move all regs? - bne.b iea_dis_cont - addq.l &0x4,%d0 - bra.b iea_dis_cont -# the instruction is an fmovm.x dynamic which can use many addressing -# modes and thus can have several different total instruction lengths. -# call fmovm_calc_ea which will go through the ea calc process and, -# as a by-product, will tell us how long the instruction is. -iea_dis_fmovm_data: - clr.l %d0 - bsr.l fmovm_calc_ea - mov.l EXC_EXTWPTR(%a6),%d0 - sub.l EXC_PC(%a6),%d0 -iea_dis_cont: - mov.w %d0,EXC_VOFF(%a6) # store stack shift value - - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - -# here, we actually create the 8-word frame from the 4-word frame, -# with the "next PC" as additional info. -# the <ea> field is let as undefined. - subq.l &0x8,%sp # make room for new stack - mov.l %d0,-(%sp) # save d0 - mov.w 0xc(%sp),0x4(%sp) # move SR - mov.l 0xe(%sp),0x6(%sp) # move Current PC - clr.l %d0 - mov.w 0x12(%sp),%d0 - mov.l 0x6(%sp),0x10(%sp) # move Current PC - add.l %d0,0x6(%sp) # make Next PC - mov.w &0x402c,0xa(%sp) # insert offset,frame format - mov.l (%sp)+,%d0 # restore d0 - - bra.l _real_fpu_disabled - -########## - -iea_iacc: - movc %pcr,%d0 - btst &0x1,%d0 - bne.b iea_iacc_cont - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack -iea_iacc_cont: - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - subq.w &0x8,%sp # make stack frame bigger - mov.l 0x8(%sp),(%sp) # store SR,hi(PC) - mov.w 0xc(%sp),0x4(%sp) # store lo(PC) - mov.w &0x4008,0x6(%sp) # store voff - mov.l 0x2(%sp),0x8(%sp) # store ea - mov.l &0x09428001,0xc(%sp) # store fslw - -iea_acc_done: - btst &0x5,(%sp) # user or supervisor mode? - beq.b iea_acc_done2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -iea_acc_done2: - bra.l _real_access - -iea_dacc: - lea -LOCAL_SIZE(%a6),%sp - - movc %pcr,%d1 - btst &0x1,%d1 - bne.b iea_dacc_cont - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack - fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs -iea_dacc_cont: - mov.l (%a6),%a6 - - mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) - mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) - mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) - mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) - mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) - mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) - - movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 - add.w &LOCAL_SIZE-0x4,%sp - - bra.b iea_acc_done - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_operr(): 060FPSP entry point for FP Operr exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Operand Error exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# _real_operr() - "callout" to operating system operr handler # -# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # -# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # -# facc_out_{b,w,l}() - store to memory took access error (opcl 3) # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Operr exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# No access error: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP Operr exception is enabled, the goal # -# is to get to the handler specified at _real_operr(). But, on the 060, # -# for opclass zero and two instruction taking this exception, the # -# input operand in the fsave frame may be incorrect for some cases # -# and needs to be corrected. This handler calls fix_skewed_ops() to # -# do just this and then exits through _real_operr(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# operr result out to memory or data register file as it should. # -# This code must emulate the move out before finally exiting through # -# _real_inex(). The move out, if to memory, is performed using # -# _mem_write() "callout" routines that may return a failing result. # -# In this special case, the handler must exit through facc_out() # -# which creates an access error stack frame from the current operr # -# stack frame. # -# # -######################################################################### - - global _fpsp_operr -_fpsp_operr: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.b foperr_out # fmove out - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source infinity or -# denorm operand in the sgl or dbl format. NANs also become skewed, but can't -# cause an operr so we don't need to check for them here. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -foperr_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_operr - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# operand error exceptions. we do this here before passing control to -# the user operand error handler. -# -# byte, word, and long destination format operations can pass -# through here. we simply need to test the sign of the src -# operand and save the appropriate minimum or maximum integer value -# to the effective address as pointed to by the stacked effective address. -# -# although packed opclass three operations can take operand error -# exceptions, they won't pass through here since they are caught -# first by the unsupported data format exception handler. that handler -# sends them directly to _real_operr() if necessary. -# -foperr_out: - - mov.w FP_SRC_EX(%a6),%d1 # fetch exponent - andi.w &0x7fff,%d1 - cmpi.w %d1,&0x7fff - bne.b foperr_out_not_qnan -# the operand is either an infinity or a QNAN. - tst.l FP_SRC_LO(%a6) - bne.b foperr_out_qnan - mov.l FP_SRC_HI(%a6),%d1 - andi.l &0x7fffffff,%d1 - beq.b foperr_out_not_qnan -foperr_out_qnan: - mov.l FP_SRC_HI(%a6),L_SCR1(%a6) - bra.b foperr_out_jmp - -foperr_out_not_qnan: - mov.l &0x7fffffff,%d1 - tst.b FP_SRC_EX(%a6) - bpl.b foperr_out_not_qnan2 - addq.l &0x1,%d1 -foperr_out_not_qnan2: - mov.l %d1,L_SCR1(%a6) - -foperr_out_jmp: - bfextu %d0{&19:&3},%d0 # extract dst format field - mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg - mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 - jmp (tbl_operr.b,%pc,%a0) - -tbl_operr: - short foperr_out_l - tbl_operr # long word integer - short tbl_operr - tbl_operr # sgl prec shouldn't happen - short tbl_operr - tbl_operr # ext prec shouldn't happen - short foperr_exit - tbl_operr # packed won't enter here - short foperr_out_w - tbl_operr # word integer - short tbl_operr - tbl_operr # dbl prec shouldn't happen - short foperr_out_b - tbl_operr # byte integer - short tbl_operr - tbl_operr # packed won't enter here - -foperr_out_b: - mov.b L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_b_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_byte # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - bra.w foperr_exit -foperr_out_b_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_b # store result to regfile - bra.w foperr_exit - -foperr_out_w: - mov.w L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_w_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_word # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - bra.w foperr_exit -foperr_out_w_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_w # store result to regfile - bra.w foperr_exit - -foperr_out_l: - mov.l L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_l_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w foperr_exit -foperr_out_l_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w foperr_exit - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Signalling NAN exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# _real_snan() - "callout" to operating system SNAN handler # -# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # -# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # -# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # -# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP SNAN exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# No access error: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP SNAN exception is enabled, the goal # -# is to get to the handler specified at _real_snan(). But, on the 060, # -# for opclass zero and two instructions taking this exception, the # -# input operand in the fsave frame may be incorrect for some cases # -# and needs to be corrected. This handler calls fix_skewed_ops() to # -# do just this and then exits through _real_snan(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# SNAN result out to memory or data register file as it should. # -# This code must emulate the move out before finally exiting through # -# _real_snan(). The move out, if to memory, is performed using # -# _mem_write() "callout" routines that may return a failing result. # -# In this special case, the handler must exit through facc_out() # -# which creates an access error stack frame from the current SNAN # -# stack frame. # -# For the case of an extended precision opclass 3 instruction, # -# if the effective addressing mode was -() or ()+, then the address # -# register must get updated by calling _calc_ea_fout(). If the <ea> # -# was -(a7) from supervisor mode, then the exception frame currently # -# on the system stack must be carefully moved "down" to make room # -# for the operand being moved. # -# # -######################################################################### - - global _fpsp_snan -_fpsp_snan: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.w fsnan_out # fmove out - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source infinity or -# denorm operand in the sgl or dbl format. NANs also become skewed and must be -# fixed here. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -fsnan_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_snan - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# snan exceptions. we do this here before passing control to -# the user snan handler. -# -# byte, word, long, and packed destination format operations can pass -# through here. since packed format operations already were handled by -# fpsp_unsupp(), then we need to do nothing else for them here. -# for byte, word, and long, we simply need to test the sign of the src -# operand and save the appropriate minimum or maximum integer value -# to the effective address as pointed to by the stacked effective address. -# -fsnan_out: - - bfextu %d0{&19:&3},%d0 # extract dst format field - mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg - mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 - jmp (tbl_snan.b,%pc,%a0) - -tbl_snan: - short fsnan_out_l - tbl_snan # long word integer - short fsnan_out_s - tbl_snan # sgl prec shouldn't happen - short fsnan_out_x - tbl_snan # ext prec shouldn't happen - short tbl_snan - tbl_snan # packed needs no help - short fsnan_out_w - tbl_snan # word integer - short fsnan_out_d - tbl_snan # dbl prec shouldn't happen - short fsnan_out_b - tbl_snan # byte integer - short tbl_snan - tbl_snan # packed needs no help - -fsnan_out_b: - mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN - bset &6,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_b_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_byte # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - bra.w fsnan_exit -fsnan_out_b_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_b # store result to regfile - bra.w fsnan_exit - -fsnan_out_w: - mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN - bset &14,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_w_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_word # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - bra.w fsnan_exit -fsnan_out_w_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_w # store result to regfile - bra.w fsnan_exit - -fsnan_out_l: - mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN - bset &30,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_l_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w fsnan_exit -fsnan_out_l_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w fsnan_exit - -fsnan_out_s: - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_d_dn # yes - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit - mov.l FP_SRC_HI(%a6),%d1 # load mantissa - lsr.l &0x8,%d1 # shift mantissa for sgl - or.l %d1,%d0 # create sgl SNAN - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w fsnan_exit -fsnan_out_d_dn: - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit - mov.l %d1,-(%sp) - mov.l FP_SRC_HI(%a6),%d1 # load mantissa - lsr.l &0x8,%d1 # shift mantissa for sgl - or.l %d1,%d0 # create sgl SNAN - mov.l (%sp)+,%d1 - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w fsnan_exit - -fsnan_out_d: - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit - mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa - mov.l %d0,FP_SCR0_EX(%a6) # store to temp space - mov.l &11,%d0 # load shift amt - lsr.l %d0,%d1 - or.l %d1,FP_SCR0_EX(%a6) # create dbl hi - mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa - andi.l &0x000007ff,%d1 - ror.l %d0,%d1 - mov.l %d1,FP_SCR0_HI(%a6) # store to temp space - mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa - lsr.l %d0,%d1 - or.l %d1,FP_SCR0_HI(%a6) # create dbl lo - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l EXC_EA(%a6),%a1 # pass: dst addr - movq.l &0x8,%d0 # pass: size of 8 bytes - bsr.l _dmem_write # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - bra.w fsnan_exit - -# for extended precision, if the addressing mode is pre-decrement or -# post-increment, then the address register did not get updated. -# in addition, for pre-decrement, the stacked <ea> is incorrect. -fsnan_out_x: - clr.b SPCOND_FLG(%a6) # clear special case flag - - mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) - clr.w 2+FP_SCR0(%a6) - mov.l FP_SRC_HI(%a6),%d0 - bset &30,%d0 - mov.l %d0,FP_SCR0_HI(%a6) - mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) - - btst &0x5,EXC_SR(%a6) # supervisor mode exception? - bne.b fsnan_out_x_s # yes - - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() - mov.l (%a6),EXC_A6(%a6) - - bsr.l _calc_ea_fout # find the correct ea,update An - mov.l %a0,%a1 - mov.l %a0,EXC_EA(%a6) # stack correct <ea> - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp # restore user stack pointer - mov.l EXC_A6(%a6),(%a6) - -fsnan_out_x_save: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - movq.l &0xc,%d0 # pass: size of extended - bsr.l _dmem_write # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_x # yes - - bra.w fsnan_exit - -fsnan_out_x_s: - mov.l (%a6),EXC_A6(%a6) - - bsr.l _calc_ea_fout # find the correct ea,update An - mov.l %a0,%a1 - mov.l %a0,EXC_EA(%a6) # stack correct <ea> - - mov.l EXC_A6(%a6),(%a6) - - cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? - bne.b fsnan_out_x_save # no - -# the operation was "fmove.x SNAN,-(a7)" from supervisor mode. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - mov.l EXC_A6(%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - - mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) - mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) - mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - bra.l _real_snan - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Inexact exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# smovcr() - emulate an "fmovcr" instruction # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _real_inex() - "callout" to operating system inexact handler # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Inexact exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP Inexact exception is enabled, the goal # -# is to get to the handler specified at _real_inex(). But, on the 060, # -# for opclass zero and two instruction taking this exception, the # -# hardware doesn't store the correct result to the destination FP # -# register as did the '040 and '881/2. This handler must emulate the # -# instruction in order to get this value and then store it to the # -# correct register before calling _real_inex(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# inexact result out to memory or data register file as it should. # -# This code must emulate the move out by calling fout() before finally # -# exiting through _real_inex(). # -# # -######################################################################### - - global _fpsp_inex -_fpsp_inex: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.w finex_out # fmove out - - -# the hardware, for "fabs" and "fneg" w/ a long source format, puts the -# longword integer directly into the upper longword of the mantissa along -# w/ an exponent value of 0x401e. we convert this to extended precision here. - bfextu %d0{&19:&3},%d0 # fetch instr size - bne.b finex_cont # instr size is not long - cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? - bne.b finex_cont # no - fmov.l &0x0,%fpcr - fmov.l FP_SRC_HI(%a6),%fp0 # load integer src - fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision - mov.w &0xe001,0x2+FP_SRC(%a6) - -finex_cont: - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -# Here, we zero the ccode and exception byte field since we're going to -# emulate the whole instruction. Notice, though, that we don't kill the -# INEX1 bit. This is because a packed op has long since been converted -# to extended before arriving here. Therefore, we need to retain the -# INEX1 bit from when the operand was first converted. - andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg - cmpi.b %d1,&0x17 # is op an fmovecr? - beq.w finex_fmovcr # yes - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bits four and five of the fp extension word separate the monadic and dyadic -# operations that can pass through fpsp_inex(). remember that fcmp and ftst -# will never take this exception, but fsincos will. - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b finex_extract # monadic - - btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? - bne.b finex_extract # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b finex_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -finex_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -finex_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# the operation has been emulated. the result is in fp0. -finex_save: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -finex_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_inex - -finex_fmovcr: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.l &0x0000007f,%d1 # pass rom offset - bsr.l smovcr - bra.b finex_save - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# inexact exceptions. we do this here before passing control to -# the user inexact handler. -# -# byte, word, and long destination format operations can pass -# through here. so can double and single precision. -# although packed opclass three operations can take inexact -# exceptions, they won't pass through here since they are caught -# first by the unsupported data format exception handler. that handler -# sends them directly to _real_inex() if necessary. -# -finex_out: - - mov.b &NORM,STAG(%a6) # src is a NORM - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode - - andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout # store the default result - - bra.b finex_exit - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_dz(): 060FPSP entry point for FP DZ exception. # -# # -# This handler should be the first code executed upon taking # -# the FP DZ exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword from memory # -# fix_skewed_ops() - adjust fsave operand # -# _real_dz() - "callout" exit point from FP DZ handler # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP DZ exception stack. # -# - The fsave frame contains the source operand. # -# # -# OUTPUT ************************************************************** # -# - The system stack contains the FP DZ exception stack. # -# - The fsave frame contains the adjusted source operand. # -# # -# ALGORITHM *********************************************************** # -# In a system where the DZ exception is enabled, the goal is to # -# get to the handler specified at _real_dz(). But, on the 060, when the # -# exception is taken, the input operand in the fsave state frame may # -# be incorrect for some cases and need to be adjusted. So, this package # -# adjusts the operand using fix_skewed_ops() and then branches to # -# _real_dz(). # -# # -######################################################################### - - global _fpsp_dz -_fpsp_dz: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source zero -# in the sgl or dbl format. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -fdz_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_dz - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc. # -# # -# This handler should be the first code executed upon taking the # -# "Line F Emulator" exception in an operating system. # -# # -# XREF **************************************************************** # -# _fpsp_unimp() - handle "FP Unimplemented" exceptions # -# _real_fpu_disabled() - handle "FPU disabled" exceptions # -# _real_fline() - handle "FLINE" exceptions # -# _imem_read_long() - read instruction longword # -# # -# INPUT *************************************************************** # -# - The system stack contains a "Line F Emulator" exception # -# stack frame. # -# # -# OUTPUT ************************************************************** # -# - The system stack is unchanged # -# # -# ALGORITHM *********************************************************** # -# When a "Line F Emulator" exception occurs, there are 3 possible # -# exception types, denoted by the exception stack frame format number: # -# (1) FPU unimplemented instruction (6 word stack frame) # -# (2) FPU disabled (8 word stack frame) # -# (3) Line F (4 word stack frame) # -# # -# This module determines which and forks the flow off to the # -# appropriate "callout" (for "disabled" and "Line F") or to the # -# correct emulation code (for "FPU unimplemented"). # -# This code also must check for "fmovecr" instructions w/ a # -# non-zero <ea> field. These may get flagged as "Line F" but should # -# really be flagged as "FPU Unimplemented". (This is a "feature" on # -# the '060. # -# # -######################################################################### - - global _fpsp_fline -_fpsp_fline: - -# check to see if this exception is a "FP Unimplemented Instruction" -# exception. if so, branch directly to that handler's entry point. - cmpi.w 0x6(%sp),&0x202c - beq.l _fpsp_unimp - -# check to see if the FPU is disabled. if so, jump to the OS entry -# point for that condition. - cmpi.w 0x6(%sp),&0x402c - beq.l _real_fpu_disabled - -# the exception was an "F-Line Illegal" exception. we check to see -# if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if -# so, convert the F-Line exception stack frame to an FP Unimplemented -# Instruction exception stack frame else branch to the OS entry -# point for the F-Line exception handler. - link.w %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch instruction words - - bfextu %d0{&0:&10},%d1 # is it an fmovecr? - cmpi.w %d1,&0x03c8 - bne.b fline_fline # no - - bfextu %d0{&16:&6},%d1 # is it an fmovecr? - cmpi.b %d1,&0x17 - bne.b fline_fline # no - -# it's an fmovecr w/ a non-zero <ea> that has entered through -# the F-Line Illegal exception. -# so, we need to convert the F-Line exception stack frame into an -# FP Unimplemented Instruction stack frame and jump to that entry -# point. -# -# but, if the FPU is disabled, then we need to jump to the FPU disabled -# entry point. - movc %pcr,%d0 - btst &0x1,%d0 - beq.b fline_fmovcr - - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - sub.l &0x8,%sp # make room for "Next PC", <ea> - mov.w 0x8(%sp),(%sp) - mov.l 0xa(%sp),0x2(%sp) # move "Current PC" - mov.w &0x402c,0x6(%sp) - mov.l 0x2(%sp),0xc(%sp) - addq.l &0x4,0x2(%sp) # set "Next PC" - - bra.l _real_fpu_disabled - -fline_fmovcr: - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - fmov.l 0x2(%sp),%fpiar # set current PC - addq.l &0x4,0x2(%sp) # set Next PC - - mov.l (%sp),-(%sp) - mov.l 0x8(%sp),0x4(%sp) - mov.b &0x20,0x6(%sp) - - bra.l _fpsp_unimp - -fline_fline: - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - bra.l _real_fline - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented # -# Instruction" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Instruction exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_{word,long}() - read instruction word/longword # -# load_fop() - load src/dst ops from memory and/or FP regfile # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# tbl_trans - addr of table of emulation routines for trnscndls # -# _real_access() - "callout" for access error exception # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# smovcr() - emulate "fmovecr" instruction # -# funimp_skew() - adjust fsave src ops to "incorrect" value # -# _ftrapcc() - emulate an "ftrapcc" instruction # -# _fdbcc() - emulate an "fdbcc" instruction # -# _fscc() - emulate an "fscc" instruction # -# _real_trap() - "callout" for Trap exception # -# _real_bsun() - "callout" for enabled Bsun exception # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimplemented Instr" stk frame # -# # -# OUTPUT ************************************************************** # -# If access error: # -# - The system stack is changed to an access error stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - Correct result has been stored as appropriate # -# # -# ALGORITHM *********************************************************** # -# There are two main cases of instructions that may enter here to # -# be emulated: (1) the FPgen instructions, most of which were also # -# unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc". # -# For the first set, this handler calls the routine load_fop() # -# to load the source and destination (for dyadic) operands to be used # -# for instruction emulation. The correct emulation routine is then # -# chosen by decoding the instruction type and indexing into an # -# emulation subroutine index table. After emulation returns, this # -# handler checks to see if an exception should occur as a result of the # -# FP instruction emulation. If so, then an FP exception of the correct # -# type is inserted into the FPU state frame using the "frestore" # -# instruction before exiting through _fpsp_done(). In either the # -# exceptional or non-exceptional cases, we must check to see if the # -# Trace exception is enabled. If so, then we must create a Trace # -# exception frame from the current exception frame and exit through # -# _real_trace(). # -# For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines # -# _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three # -# may flag that a BSUN exception should be taken. If so, then the # -# current exception stack frame is converted into a BSUN exception # -# stack frame and an exit is made through _real_bsun(). If the # -# instruction was "ftrapcc" and a Trap exception should result, a Trap # -# exception stack frame is created from the current frame and an exit # -# is made through _real_trap(). If a Trace exception is pending, then # -# a Trace exception frame is created from the current frame and a jump # -# is made to _real_trace(). Finally, if none of these conditions exist, # -# then the handler exits though the callout _fpsp_done(). # -# # -# In any of the above scenarios, if a _mem_read() or _mem_write() # -# "callout" returns a failing value, then an access error stack frame # -# is created from the current stack frame and an exit is made through # -# _real_access(). # -# # -######################################################################### - -# -# FP UNIMPLEMENTED INSTRUCTION STACK FRAME: -# -# ***************** -# * * => <ea> of fp unimp instr. -# - EA - -# * * -# ***************** -# * 0x2 * 0x02c * => frame format and vector offset(vector #11) -# ***************** -# * * -# - Next PC - => PC of instr to execute after exc handling -# * * -# ***************** -# * SR * => SR at the time the exception was taken -# ***************** -# -# Note: the !NULL bit does not get set in the fsave frame when the -# machine encounters an fp unimp exception. Therefore, it must be set -# before leaving this handler. -# - global _fpsp_unimp -_fpsp_unimp: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 - - btst &0x5,EXC_SR(%a6) # user mode exception? - bne.b funimp_s # no; supervisor mode - -# save the value of the user stack pointer onto the stack frame -funimp_u: - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # store in stack frame - bra.b funimp_cont - -# store the value of the supervisor stack pointer BEFORE the exc occurred. -# old_sp is address just above stacked effective address. -funimp_s: - lea 4+EXC_EA(%a6),%a0 # load old a7' - mov.l %a0,EXC_A7(%a6) # store a7' - mov.l %a0,OLD_A7(%a6) # make a copy - -funimp_cont: - -# the FPIAR holds the "current PC" of the faulting instruction. - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################ - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l &0x0,%fpsr # clear FPSR - - clr.b SPCOND_FLG(%a6) # clear "special case" flag - -# Divide the fp instructions into 8 types based on the TYPE field in -# bits 6-8 of the opword(classes 6,7 are undefined). -# (for the '060, only two types can take this exception) -# bftst %d0{&7:&3} # test TYPE - btst &22,%d0 # type 0 or 1 ? - bne.w funimp_misc # type 1 - -######################################### -# TYPE == 0: General instructions # -######################################### -funimp_gen: - - clr.b STORE_FLG(%a6) # clear "store result" flag - -# clear the ccode byte and exception status byte - andi.l &0x00ff00ff,USER_FPSR(%a6) - - bfextu %d0{&16:&6},%d1 # extract upper 6 of cmdreg - cmpi.b %d1,&0x17 # is op an fmovecr? - beq.w funimp_fmovcr # yes - -funimp_gen_op: - bsr.l _load_fop # load - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x003f,%d1 # extract extension bits - lsl.w &0x3,%d1 # shift right 3 bits - or.b STAG(%a6),%d1 # insert src optag bits - - lea FP_DST(%a6),%a1 # pass dst ptr in a1 - lea FP_SRC(%a6),%a0 # pass src ptr in a0 - - mov.w (tbl_trans.w,%pc,%d1.w*2),%d1 - jsr (tbl_trans.w,%pc,%d1.w*1) # emulate - -funimp_fsave: - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w funimp_ena # some are enabled - -funimp_store: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn - bsr.l store_fpreg # store result to fp regfile - -funimp_gen_exit: - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - -funimp_gen_exit_cmp: - cmpi.b SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ? - beq.b funimp_gen_exit_a7 # yes - - cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ? - beq.b funimp_gen_exit_a7 # yes - -funimp_gen_exit_cont: - unlk %a6 - -funimp_gen_exit_cont2: - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - -# this catches a problem with the case where an exception will be re-inserted -# into the machine. the frestore has already been executed...so, the fmov.l -# alone of the control register would trigger an unwanted exception. -# until I feel like fixing this, we'll sidestep the exception. - fsave -(%sp) - fmov.l %fpiar,0x14(%sp) # "Current PC" is in FPIAR - frestore (%sp)+ - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x24 - bra.l _real_trace - -funimp_gen_exit_a7: - btst &0x5,EXC_SR(%a6) # supervisor or user mode? - bne.b funimp_gen_exit_a7_s # supervisor - - mov.l %a0,-(%sp) - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - mov.l (%sp)+,%a0 - bra.b funimp_gen_exit_cont - -# if the instruction was executed from supervisor mode and the addressing -# mode was (a7)+, then the stack frame for the rte must be shifted "up" -# "n" bytes where "n" is the size of the src operand type. -# f<op>.{b,w,l,s,d,x,p} -funimp_gen_exit_a7_s: - mov.l %d0,-(%sp) # save d0 - mov.l EXC_A7(%a6),%d0 # load new a7' - sub.l OLD_A7(%a6),%d0 # subtract old a7' - mov.l 0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame - mov.l EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame - mov.w %d0,EXC_SR(%a6) # store incr number - mov.l (%sp)+,%d0 # restore d0 - - unlk %a6 - - add.w (%sp),%sp # stack frame shifted - bra.b funimp_gen_exit_cont2 - -###################### -# fmovecr.x #ccc,fpn # -###################### -funimp_fmovcr: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.l &0x0000007f,%d1 # pass rom offset in d1 - bsr.l smovcr - bra.w funimp_fsave - -######################################################################### - -# -# the user has enabled some exceptions. we figure not to see this too -# often so that's why it gets lower priority. -# -funimp_ena: - -# was an exception set that was also enabled? - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled and set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b funimp_exc # at least one was set - -# no exception that was enabled was set BUT if we got an exact overflow -# and overflow wasn't enabled but inexact was (yech!) then this is -# an inexact exception; otherwise, return to normal non-exception flow. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - beq.w funimp_store # no; return to normal flow - -# the overflow w/ exact result happened but was inexact set in the FPCR? -funimp_ovfl: - btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? - beq.w funimp_store # no; return to normal flow - bra.b funimp_exc_ovfl # yes - -# some exception happened that was actually enabled. -# we'll insert this new exception into the FPU and then return. -funimp_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? - bne.b funimp_exc_force # no - -# the enabled exception was inexact. so, if it occurs with an overflow -# or underflow that was disabled, then we have to force an overflow or -# underflow frame. the eventual overflow or underflow handler will see that -# it's actually an inexact and act appropriately. this is the only easy -# way to have the EXOP available for the enabled inexact handler when -# a disabled overflow or underflow has also happened. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - bne.b funimp_exc_ovfl # yes - btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? - bne.b funimp_exc_unfl # yes - -# force the fsave exception status bits to signal an exception of the -# appropriate type. don't forget to "skew" the source operand in case we -# "unskewed" the one the hardware initially gave us. -funimp_exc_force: - mov.l %d0,-(%sp) # save d0 - bsr.l funimp_skew # check for special case - mov.l (%sp)+,%d0 # restore d0 - mov.w (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) - bra.b funimp_gen_exit2 # exit with frestore - -tbl_funimp_except: - short 0xe002, 0xe006, 0xe004, 0xe005 - short 0xe003, 0xe002, 0xe001, 0xe001 - -# insert an overflow frame -funimp_exc_ovfl: - bsr.l funimp_skew # check for special case - mov.w &0xe005,2+FP_SRC(%a6) - bra.b funimp_gen_exit2 - -# insert an underflow frame -funimp_exc_unfl: - bsr.l funimp_skew # check for special case - mov.w &0xe003,2+FP_SRC(%a6) - -# this is the general exit point for an enabled exception that will be -# restored into the machine for the instruction just emulated. -funimp_gen_exit2: - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # insert exceptional status - - bra.w funimp_gen_exit_cmp - -############################################################################ - -# -# TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc> -# -# These instructions were implemented on the '881/2 and '040 in hardware but -# are emulated in software on the '060. -# -funimp_misc: - bfextu %d0{&10:&3},%d1 # extract mode field - cmpi.b %d1,&0x1 # is it an fdb<cc>? - beq.w funimp_fdbcc # yes - cmpi.b %d1,&0x7 # is it an fs<cc>? - bne.w funimp_fscc # yes - bfextu %d0{&13:&3},%d1 - cmpi.b %d1,&0x2 # is it an fs<cc>? - blt.w funimp_fscc # yes - -######################### -# ftrap<cc> # -# ftrap<cc>.w #<data> # -# ftrap<cc>.l #<data> # -######################### -funimp_ftrapcc: - - bsr.l _ftrapcc # FTRAP<cc>() - - cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? - beq.w funimp_bsun # yes - - cmpi.b SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur? - bne.w funimp_done # no - -# FP UNIMP FRAME TRAP FRAME -# ***************** ***************** -# ** <EA> ** ** Current PC ** -# ***************** ***************** -# * 0x2 * 0x02c * * 0x2 * 0x01c * -# ***************** ***************** -# ** Next PC ** ** Next PC ** -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# (6 words) (6 words) -# -# the ftrapcc instruction should take a trap. so, here we must create a -# trap stack frame from an unimplemented fp instruction stack frame and -# jump to the user supplied entry point for the trap exception -funimp_ftrapcc_tp: - mov.l USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC - mov.w &0x201c,EXC_VOFF(%a6) # Vector Offset = 0x01c - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - bra.l _real_trap - -######################### -# fdb<cc> Dn,<label> # -######################### -funimp_fdbcc: - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # read displacement - - tst.l %d1 # did ifetch fail? - bne.w funimp_iacc # yes - - ext.l %d0 # sign extend displacement - - bsr.l _fdbcc # FDB<cc>() - - cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? - beq.w funimp_bsun - - bra.w funimp_done # branch to finish - -################# -# fs<cc>.b <ea> # -################# -funimp_fscc: - - bsr.l _fscc # FS<cc>() - -# I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction -# does not need to update "An" before taking a bsun exception. - cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? - beq.w funimp_bsun - - btst &0x5,EXC_SR(%a6) # yes; is it a user mode exception? - bne.b funimp_fscc_s # no - -funimp_fscc_u: - mov.l EXC_A7(%a6),%a0 # yes; set new USP - mov.l %a0,%usp - bra.w funimp_done # branch to finish - -# remember, I'm assuming that post-increment is bogus...(it IS!!!) -# so, the least significant WORD of the stacked effective address got -# overwritten by the "fs<cc> -(An)". We must shift the stack frame "down" -# so that the rte will work correctly without destroying the result. -# even though the operation size is byte, the stack ptr is decr by 2. -# -# remember, also, this instruction may be traced. -funimp_fscc_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # was a7 modified? - bne.w funimp_done # no - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - btst &0x7,(%sp) # is trace enabled? - bne.b funimp_fscc_s_trace # yes - - subq.l &0x2,%sp - mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" - mov.l 0x6(%sp),0x4(%sp) # shift lo(PC),voff "down" - bra.l _fpsp_done - -funimp_fscc_s_trace: - subq.l &0x2,%sp - mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" - mov.w 0x6(%sp),0x4(%sp) # shift lo(PC) - mov.w &0x2024,0x6(%sp) # fmt/voff = $2024 - fmov.l %fpiar,0x8(%sp) # insert "current PC" - - bra.l _real_trace - -# -# The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert -# the fp unimplemented instruction exception stack frame into a bsun stack frame, -# restore a bsun exception into the machine, and branch to the user -# supplied bsun hook. -# -# FP UNIMP FRAME BSUN FRAME -# ***************** ***************** -# ** <EA> ** * 0x0 * 0x0c0 * -# ***************** ***************** -# * 0x2 * 0x02c * ** Current PC ** -# ***************** ***************** -# ** Next PC ** * SR * -# ***************** ***************** -# * SR * (4 words) -# ***************** -# (6 words) -# -funimp_bsun: - mov.w &0x00c0,2+EXC_EA(%a6) # Fmt = 0x0; Vector Offset = 0x0c0 - mov.l USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC - mov.w EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up" - - mov.w &0xe000,2+FP_SRC(%a6) # bsun exception enabled - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore bsun exception - - unlk %a6 - - addq.l &0x4,%sp # erase sludge - - bra.l _real_bsun # branch to user bsun hook - -# -# all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame -# and return. -# -# as usual, we have to check for trace mode being on here. since instructions -# modifying the supervisor stack frame don't pass through here, this is a -# relatively easy task. -# -funimp_done: - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - btst &0x7,(%sp) # is trace enabled? - bne.b funimp_trace # yes - - bra.l _fpsp_done - -# FP UNIMP FRAME TRACE FRAME -# ***************** ***************** -# ** <EA> ** ** Current PC ** -# ***************** ***************** -# * 0x2 * 0x02c * * 0x2 * 0x024 * -# ***************** ***************** -# ** Next PC ** ** Next PC ** -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# (6 words) (6 words) -# -# the fscc instruction should take a trace trap. so, here we must create a -# trace stack frame from an unimplemented fp instruction stack frame and -# jump to the user supplied entry point for the trace exception -funimp_trace: - fmov.l %fpiar,0x8(%sp) # current PC is in fpiar - mov.b &0x24,0x7(%sp) # vector offset = 0x024 - - bra.l _real_trace - -################################################################ - - global tbl_trans - swbeg &0x1c0 -tbl_trans: - short tbl_trans - tbl_trans # $00-0 fmovecr all - short tbl_trans - tbl_trans # $00-1 fmovecr all - short tbl_trans - tbl_trans # $00-2 fmovecr all - short tbl_trans - tbl_trans # $00-3 fmovecr all - short tbl_trans - tbl_trans # $00-4 fmovecr all - short tbl_trans - tbl_trans # $00-5 fmovecr all - short tbl_trans - tbl_trans # $00-6 fmovecr all - short tbl_trans - tbl_trans # $00-7 fmovecr all - - short tbl_trans - tbl_trans # $01-0 fint norm - short tbl_trans - tbl_trans # $01-1 fint zero - short tbl_trans - tbl_trans # $01-2 fint inf - short tbl_trans - tbl_trans # $01-3 fint qnan - short tbl_trans - tbl_trans # $01-5 fint denorm - short tbl_trans - tbl_trans # $01-4 fint snan - short tbl_trans - tbl_trans # $01-6 fint unnorm - short tbl_trans - tbl_trans # $01-7 ERROR - - short ssinh - tbl_trans # $02-0 fsinh norm - short src_zero - tbl_trans # $02-1 fsinh zero - short src_inf - tbl_trans # $02-2 fsinh inf - short src_qnan - tbl_trans # $02-3 fsinh qnan - short ssinhd - tbl_trans # $02-5 fsinh denorm - short src_snan - tbl_trans # $02-4 fsinh snan - short tbl_trans - tbl_trans # $02-6 fsinh unnorm - short tbl_trans - tbl_trans # $02-7 ERROR - - short tbl_trans - tbl_trans # $03-0 fintrz norm - short tbl_trans - tbl_trans # $03-1 fintrz zero - short tbl_trans - tbl_trans # $03-2 fintrz inf - short tbl_trans - tbl_trans # $03-3 fintrz qnan - short tbl_trans - tbl_trans # $03-5 fintrz denorm - short tbl_trans - tbl_trans # $03-4 fintrz snan - short tbl_trans - tbl_trans # $03-6 fintrz unnorm - short tbl_trans - tbl_trans # $03-7 ERROR - - short tbl_trans - tbl_trans # $04-0 fsqrt norm - short tbl_trans - tbl_trans # $04-1 fsqrt zero - short tbl_trans - tbl_trans # $04-2 fsqrt inf - short tbl_trans - tbl_trans # $04-3 fsqrt qnan - short tbl_trans - tbl_trans # $04-5 fsqrt denorm - short tbl_trans - tbl_trans # $04-4 fsqrt snan - short tbl_trans - tbl_trans # $04-6 fsqrt unnorm - short tbl_trans - tbl_trans # $04-7 ERROR - - short tbl_trans - tbl_trans # $05-0 ERROR - short tbl_trans - tbl_trans # $05-1 ERROR - short tbl_trans - tbl_trans # $05-2 ERROR - short tbl_trans - tbl_trans # $05-3 ERROR - short tbl_trans - tbl_trans # $05-4 ERROR - short tbl_trans - tbl_trans # $05-5 ERROR - short tbl_trans - tbl_trans # $05-6 ERROR - short tbl_trans - tbl_trans # $05-7 ERROR - - short slognp1 - tbl_trans # $06-0 flognp1 norm - short src_zero - tbl_trans # $06-1 flognp1 zero - short sopr_inf - tbl_trans # $06-2 flognp1 inf - short src_qnan - tbl_trans # $06-3 flognp1 qnan - short slognp1d - tbl_trans # $06-5 flognp1 denorm - short src_snan - tbl_trans # $06-4 flognp1 snan - short tbl_trans - tbl_trans # $06-6 flognp1 unnorm - short tbl_trans - tbl_trans # $06-7 ERROR - - short tbl_trans - tbl_trans # $07-0 ERROR - short tbl_trans - tbl_trans # $07-1 ERROR - short tbl_trans - tbl_trans # $07-2 ERROR - short tbl_trans - tbl_trans # $07-3 ERROR - short tbl_trans - tbl_trans # $07-4 ERROR - short tbl_trans - tbl_trans # $07-5 ERROR - short tbl_trans - tbl_trans # $07-6 ERROR - short tbl_trans - tbl_trans # $07-7 ERROR - - short setoxm1 - tbl_trans # $08-0 fetoxm1 norm - short src_zero - tbl_trans # $08-1 fetoxm1 zero - short setoxm1i - tbl_trans # $08-2 fetoxm1 inf - short src_qnan - tbl_trans # $08-3 fetoxm1 qnan - short setoxm1d - tbl_trans # $08-5 fetoxm1 denorm - short src_snan - tbl_trans # $08-4 fetoxm1 snan - short tbl_trans - tbl_trans # $08-6 fetoxm1 unnorm - short tbl_trans - tbl_trans # $08-7 ERROR - - short stanh - tbl_trans # $09-0 ftanh norm - short src_zero - tbl_trans # $09-1 ftanh zero - short src_one - tbl_trans # $09-2 ftanh inf - short src_qnan - tbl_trans # $09-3 ftanh qnan - short stanhd - tbl_trans # $09-5 ftanh denorm - short src_snan - tbl_trans # $09-4 ftanh snan - short tbl_trans - tbl_trans # $09-6 ftanh unnorm - short tbl_trans - tbl_trans # $09-7 ERROR - - short satan - tbl_trans # $0a-0 fatan norm - short src_zero - tbl_trans # $0a-1 fatan zero - short spi_2 - tbl_trans # $0a-2 fatan inf - short src_qnan - tbl_trans # $0a-3 fatan qnan - short satand - tbl_trans # $0a-5 fatan denorm - short src_snan - tbl_trans # $0a-4 fatan snan - short tbl_trans - tbl_trans # $0a-6 fatan unnorm - short tbl_trans - tbl_trans # $0a-7 ERROR - - short tbl_trans - tbl_trans # $0b-0 ERROR - short tbl_trans - tbl_trans # $0b-1 ERROR - short tbl_trans - tbl_trans # $0b-2 ERROR - short tbl_trans - tbl_trans # $0b-3 ERROR - short tbl_trans - tbl_trans # $0b-4 ERROR - short tbl_trans - tbl_trans # $0b-5 ERROR - short tbl_trans - tbl_trans # $0b-6 ERROR - short tbl_trans - tbl_trans # $0b-7 ERROR - - short sasin - tbl_trans # $0c-0 fasin norm - short src_zero - tbl_trans # $0c-1 fasin zero - short t_operr - tbl_trans # $0c-2 fasin inf - short src_qnan - tbl_trans # $0c-3 fasin qnan - short sasind - tbl_trans # $0c-5 fasin denorm - short src_snan - tbl_trans # $0c-4 fasin snan - short tbl_trans - tbl_trans # $0c-6 fasin unnorm - short tbl_trans - tbl_trans # $0c-7 ERROR - - short satanh - tbl_trans # $0d-0 fatanh norm - short src_zero - tbl_trans # $0d-1 fatanh zero - short t_operr - tbl_trans # $0d-2 fatanh inf - short src_qnan - tbl_trans # $0d-3 fatanh qnan - short satanhd - tbl_trans # $0d-5 fatanh denorm - short src_snan - tbl_trans # $0d-4 fatanh snan - short tbl_trans - tbl_trans # $0d-6 fatanh unnorm - short tbl_trans - tbl_trans # $0d-7 ERROR - - short ssin - tbl_trans # $0e-0 fsin norm - short src_zero - tbl_trans # $0e-1 fsin zero - short t_operr - tbl_trans # $0e-2 fsin inf - short src_qnan - tbl_trans # $0e-3 fsin qnan - short ssind - tbl_trans # $0e-5 fsin denorm - short src_snan - tbl_trans # $0e-4 fsin snan - short tbl_trans - tbl_trans # $0e-6 fsin unnorm - short tbl_trans - tbl_trans # $0e-7 ERROR - - short stan - tbl_trans # $0f-0 ftan norm - short src_zero - tbl_trans # $0f-1 ftan zero - short t_operr - tbl_trans # $0f-2 ftan inf - short src_qnan - tbl_trans # $0f-3 ftan qnan - short stand - tbl_trans # $0f-5 ftan denorm - short src_snan - tbl_trans # $0f-4 ftan snan - short tbl_trans - tbl_trans # $0f-6 ftan unnorm - short tbl_trans - tbl_trans # $0f-7 ERROR - - short setox - tbl_trans # $10-0 fetox norm - short ld_pone - tbl_trans # $10-1 fetox zero - short szr_inf - tbl_trans # $10-2 fetox inf - short src_qnan - tbl_trans # $10-3 fetox qnan - short setoxd - tbl_trans # $10-5 fetox denorm - short src_snan - tbl_trans # $10-4 fetox snan - short tbl_trans - tbl_trans # $10-6 fetox unnorm - short tbl_trans - tbl_trans # $10-7 ERROR - - short stwotox - tbl_trans # $11-0 ftwotox norm - short ld_pone - tbl_trans # $11-1 ftwotox zero - short szr_inf - tbl_trans # $11-2 ftwotox inf - short src_qnan - tbl_trans # $11-3 ftwotox qnan - short stwotoxd - tbl_trans # $11-5 ftwotox denorm - short src_snan - tbl_trans # $11-4 ftwotox snan - short tbl_trans - tbl_trans # $11-6 ftwotox unnorm - short tbl_trans - tbl_trans # $11-7 ERROR - - short stentox - tbl_trans # $12-0 ftentox norm - short ld_pone - tbl_trans # $12-1 ftentox zero - short szr_inf - tbl_trans # $12-2 ftentox inf - short src_qnan - tbl_trans # $12-3 ftentox qnan - short stentoxd - tbl_trans # $12-5 ftentox denorm - short src_snan - tbl_trans # $12-4 ftentox snan - short tbl_trans - tbl_trans # $12-6 ftentox unnorm - short tbl_trans - tbl_trans # $12-7 ERROR - - short tbl_trans - tbl_trans # $13-0 ERROR - short tbl_trans - tbl_trans # $13-1 ERROR - short tbl_trans - tbl_trans # $13-2 ERROR - short tbl_trans - tbl_trans # $13-3 ERROR - short tbl_trans - tbl_trans # $13-4 ERROR - short tbl_trans - tbl_trans # $13-5 ERROR - short tbl_trans - tbl_trans # $13-6 ERROR - short tbl_trans - tbl_trans # $13-7 ERROR - - short slogn - tbl_trans # $14-0 flogn norm - short t_dz2 - tbl_trans # $14-1 flogn zero - short sopr_inf - tbl_trans # $14-2 flogn inf - short src_qnan - tbl_trans # $14-3 flogn qnan - short slognd - tbl_trans # $14-5 flogn denorm - short src_snan - tbl_trans # $14-4 flogn snan - short tbl_trans - tbl_trans # $14-6 flogn unnorm - short tbl_trans - tbl_trans # $14-7 ERROR - - short slog10 - tbl_trans # $15-0 flog10 norm - short t_dz2 - tbl_trans # $15-1 flog10 zero - short sopr_inf - tbl_trans # $15-2 flog10 inf - short src_qnan - tbl_trans # $15-3 flog10 qnan - short slog10d - tbl_trans # $15-5 flog10 denorm - short src_snan - tbl_trans # $15-4 flog10 snan - short tbl_trans - tbl_trans # $15-6 flog10 unnorm - short tbl_trans - tbl_trans # $15-7 ERROR - - short slog2 - tbl_trans # $16-0 flog2 norm - short t_dz2 - tbl_trans # $16-1 flog2 zero - short sopr_inf - tbl_trans # $16-2 flog2 inf - short src_qnan - tbl_trans # $16-3 flog2 qnan - short slog2d - tbl_trans # $16-5 flog2 denorm - short src_snan - tbl_trans # $16-4 flog2 snan - short tbl_trans - tbl_trans # $16-6 flog2 unnorm - short tbl_trans - tbl_trans # $16-7 ERROR - - short tbl_trans - tbl_trans # $17-0 ERROR - short tbl_trans - tbl_trans # $17-1 ERROR - short tbl_trans - tbl_trans # $17-2 ERROR - short tbl_trans - tbl_trans # $17-3 ERROR - short tbl_trans - tbl_trans # $17-4 ERROR - short tbl_trans - tbl_trans # $17-5 ERROR - short tbl_trans - tbl_trans # $17-6 ERROR - short tbl_trans - tbl_trans # $17-7 ERROR - - short tbl_trans - tbl_trans # $18-0 fabs norm - short tbl_trans - tbl_trans # $18-1 fabs zero - short tbl_trans - tbl_trans # $18-2 fabs inf - short tbl_trans - tbl_trans # $18-3 fabs qnan - short tbl_trans - tbl_trans # $18-5 fabs denorm - short tbl_trans - tbl_trans # $18-4 fabs snan - short tbl_trans - tbl_trans # $18-6 fabs unnorm - short tbl_trans - tbl_trans # $18-7 ERROR - - short scosh - tbl_trans # $19-0 fcosh norm - short ld_pone - tbl_trans # $19-1 fcosh zero - short ld_pinf - tbl_trans # $19-2 fcosh inf - short src_qnan - tbl_trans # $19-3 fcosh qnan - short scoshd - tbl_trans # $19-5 fcosh denorm - short src_snan - tbl_trans # $19-4 fcosh snan - short tbl_trans - tbl_trans # $19-6 fcosh unnorm - short tbl_trans - tbl_trans # $19-7 ERROR - - short tbl_trans - tbl_trans # $1a-0 fneg norm - short tbl_trans - tbl_trans # $1a-1 fneg zero - short tbl_trans - tbl_trans # $1a-2 fneg inf - short tbl_trans - tbl_trans # $1a-3 fneg qnan - short tbl_trans - tbl_trans # $1a-5 fneg denorm - short tbl_trans - tbl_trans # $1a-4 fneg snan - short tbl_trans - tbl_trans # $1a-6 fneg unnorm - short tbl_trans - tbl_trans # $1a-7 ERROR - - short tbl_trans - tbl_trans # $1b-0 ERROR - short tbl_trans - tbl_trans # $1b-1 ERROR - short tbl_trans - tbl_trans # $1b-2 ERROR - short tbl_trans - tbl_trans # $1b-3 ERROR - short tbl_trans - tbl_trans # $1b-4 ERROR - short tbl_trans - tbl_trans # $1b-5 ERROR - short tbl_trans - tbl_trans # $1b-6 ERROR - short tbl_trans - tbl_trans # $1b-7 ERROR - - short sacos - tbl_trans # $1c-0 facos norm - short ld_ppi2 - tbl_trans # $1c-1 facos zero - short t_operr - tbl_trans # $1c-2 facos inf - short src_qnan - tbl_trans # $1c-3 facos qnan - short sacosd - tbl_trans # $1c-5 facos denorm - short src_snan - tbl_trans # $1c-4 facos snan - short tbl_trans - tbl_trans # $1c-6 facos unnorm - short tbl_trans - tbl_trans # $1c-7 ERROR - - short scos - tbl_trans # $1d-0 fcos norm - short ld_pone - tbl_trans # $1d-1 fcos zero - short t_operr - tbl_trans # $1d-2 fcos inf - short src_qnan - tbl_trans # $1d-3 fcos qnan - short scosd - tbl_trans # $1d-5 fcos denorm - short src_snan - tbl_trans # $1d-4 fcos snan - short tbl_trans - tbl_trans # $1d-6 fcos unnorm - short tbl_trans - tbl_trans # $1d-7 ERROR - - short sgetexp - tbl_trans # $1e-0 fgetexp norm - short src_zero - tbl_trans # $1e-1 fgetexp zero - short t_operr - tbl_trans # $1e-2 fgetexp inf - short src_qnan - tbl_trans # $1e-3 fgetexp qnan - short sgetexpd - tbl_trans # $1e-5 fgetexp denorm - short src_snan - tbl_trans # $1e-4 fgetexp snan - short tbl_trans - tbl_trans # $1e-6 fgetexp unnorm - short tbl_trans - tbl_trans # $1e-7 ERROR - - short sgetman - tbl_trans # $1f-0 fgetman norm - short src_zero - tbl_trans # $1f-1 fgetman zero - short t_operr - tbl_trans # $1f-2 fgetman inf - short src_qnan - tbl_trans # $1f-3 fgetman qnan - short sgetmand - tbl_trans # $1f-5 fgetman denorm - short src_snan - tbl_trans # $1f-4 fgetman snan - short tbl_trans - tbl_trans # $1f-6 fgetman unnorm - short tbl_trans - tbl_trans # $1f-7 ERROR - - short tbl_trans - tbl_trans # $20-0 fdiv norm - short tbl_trans - tbl_trans # $20-1 fdiv zero - short tbl_trans - tbl_trans # $20-2 fdiv inf - short tbl_trans - tbl_trans # $20-3 fdiv qnan - short tbl_trans - tbl_trans # $20-5 fdiv denorm - short tbl_trans - tbl_trans # $20-4 fdiv snan - short tbl_trans - tbl_trans # $20-6 fdiv unnorm - short tbl_trans - tbl_trans # $20-7 ERROR - - short smod_snorm - tbl_trans # $21-0 fmod norm - short smod_szero - tbl_trans # $21-1 fmod zero - short smod_sinf - tbl_trans # $21-2 fmod inf - short sop_sqnan - tbl_trans # $21-3 fmod qnan - short smod_sdnrm - tbl_trans # $21-5 fmod denorm - short sop_ssnan - tbl_trans # $21-4 fmod snan - short tbl_trans - tbl_trans # $21-6 fmod unnorm - short tbl_trans - tbl_trans # $21-7 ERROR - - short tbl_trans - tbl_trans # $22-0 fadd norm - short tbl_trans - tbl_trans # $22-1 fadd zero - short tbl_trans - tbl_trans # $22-2 fadd inf - short tbl_trans - tbl_trans # $22-3 fadd qnan - short tbl_trans - tbl_trans # $22-5 fadd denorm - short tbl_trans - tbl_trans # $22-4 fadd snan - short tbl_trans - tbl_trans # $22-6 fadd unnorm - short tbl_trans - tbl_trans # $22-7 ERROR - - short tbl_trans - tbl_trans # $23-0 fmul norm - short tbl_trans - tbl_trans # $23-1 fmul zero - short tbl_trans - tbl_trans # $23-2 fmul inf - short tbl_trans - tbl_trans # $23-3 fmul qnan - short tbl_trans - tbl_trans # $23-5 fmul denorm - short tbl_trans - tbl_trans # $23-4 fmul snan - short tbl_trans - tbl_trans # $23-6 fmul unnorm - short tbl_trans - tbl_trans # $23-7 ERROR - - short tbl_trans - tbl_trans # $24-0 fsgldiv norm - short tbl_trans - tbl_trans # $24-1 fsgldiv zero - short tbl_trans - tbl_trans # $24-2 fsgldiv inf - short tbl_trans - tbl_trans # $24-3 fsgldiv qnan - short tbl_trans - tbl_trans # $24-5 fsgldiv denorm - short tbl_trans - tbl_trans # $24-4 fsgldiv snan - short tbl_trans - tbl_trans # $24-6 fsgldiv unnorm - short tbl_trans - tbl_trans # $24-7 ERROR - - short srem_snorm - tbl_trans # $25-0 frem norm - short srem_szero - tbl_trans # $25-1 frem zero - short srem_sinf - tbl_trans # $25-2 frem inf - short sop_sqnan - tbl_trans # $25-3 frem qnan - short srem_sdnrm - tbl_trans # $25-5 frem denorm - short sop_ssnan - tbl_trans # $25-4 frem snan - short tbl_trans - tbl_trans # $25-6 frem unnorm - short tbl_trans - tbl_trans # $25-7 ERROR - - short sscale_snorm - tbl_trans # $26-0 fscale norm - short sscale_szero - tbl_trans # $26-1 fscale zero - short sscale_sinf - tbl_trans # $26-2 fscale inf - short sop_sqnan - tbl_trans # $26-3 fscale qnan - short sscale_sdnrm - tbl_trans # $26-5 fscale denorm - short sop_ssnan - tbl_trans # $26-4 fscale snan - short tbl_trans - tbl_trans # $26-6 fscale unnorm - short tbl_trans - tbl_trans # $26-7 ERROR - - short tbl_trans - tbl_trans # $27-0 fsglmul norm - short tbl_trans - tbl_trans # $27-1 fsglmul zero - short tbl_trans - tbl_trans # $27-2 fsglmul inf - short tbl_trans - tbl_trans # $27-3 fsglmul qnan - short tbl_trans - tbl_trans # $27-5 fsglmul denorm - short tbl_trans - tbl_trans # $27-4 fsglmul snan - short tbl_trans - tbl_trans # $27-6 fsglmul unnorm - short tbl_trans - tbl_trans # $27-7 ERROR - - short tbl_trans - tbl_trans # $28-0 fsub norm - short tbl_trans - tbl_trans # $28-1 fsub zero - short tbl_trans - tbl_trans # $28-2 fsub inf - short tbl_trans - tbl_trans # $28-3 fsub qnan - short tbl_trans - tbl_trans # $28-5 fsub denorm - short tbl_trans - tbl_trans # $28-4 fsub snan - short tbl_trans - tbl_trans # $28-6 fsub unnorm - short tbl_trans - tbl_trans # $28-7 ERROR - - short tbl_trans - tbl_trans # $29-0 ERROR - short tbl_trans - tbl_trans # $29-1 ERROR - short tbl_trans - tbl_trans # $29-2 ERROR - short tbl_trans - tbl_trans # $29-3 ERROR - short tbl_trans - tbl_trans # $29-4 ERROR - short tbl_trans - tbl_trans # $29-5 ERROR - short tbl_trans - tbl_trans # $29-6 ERROR - short tbl_trans - tbl_trans # $29-7 ERROR - - short tbl_trans - tbl_trans # $2a-0 ERROR - short tbl_trans - tbl_trans # $2a-1 ERROR - short tbl_trans - tbl_trans # $2a-2 ERROR - short tbl_trans - tbl_trans # $2a-3 ERROR - short tbl_trans - tbl_trans # $2a-4 ERROR - short tbl_trans - tbl_trans # $2a-5 ERROR - short tbl_trans - tbl_trans # $2a-6 ERROR - short tbl_trans - tbl_trans # $2a-7 ERROR - - short tbl_trans - tbl_trans # $2b-0 ERROR - short tbl_trans - tbl_trans # $2b-1 ERROR - short tbl_trans - tbl_trans # $2b-2 ERROR - short tbl_trans - tbl_trans # $2b-3 ERROR - short tbl_trans - tbl_trans # $2b-4 ERROR - short tbl_trans - tbl_trans # $2b-5 ERROR - short tbl_trans - tbl_trans # $2b-6 ERROR - short tbl_trans - tbl_trans # $2b-7 ERROR - - short tbl_trans - tbl_trans # $2c-0 ERROR - short tbl_trans - tbl_trans # $2c-1 ERROR - short tbl_trans - tbl_trans # $2c-2 ERROR - short tbl_trans - tbl_trans # $2c-3 ERROR - short tbl_trans - tbl_trans # $2c-4 ERROR - short tbl_trans - tbl_trans # $2c-5 ERROR - short tbl_trans - tbl_trans # $2c-6 ERROR - short tbl_trans - tbl_trans # $2c-7 ERROR - - short tbl_trans - tbl_trans # $2d-0 ERROR - short tbl_trans - tbl_trans # $2d-1 ERROR - short tbl_trans - tbl_trans # $2d-2 ERROR - short tbl_trans - tbl_trans # $2d-3 ERROR - short tbl_trans - tbl_trans # $2d-4 ERROR - short tbl_trans - tbl_trans # $2d-5 ERROR - short tbl_trans - tbl_trans # $2d-6 ERROR - short tbl_trans - tbl_trans # $2d-7 ERROR - - short tbl_trans - tbl_trans # $2e-0 ERROR - short tbl_trans - tbl_trans # $2e-1 ERROR - short tbl_trans - tbl_trans # $2e-2 ERROR - short tbl_trans - tbl_trans # $2e-3 ERROR - short tbl_trans - tbl_trans # $2e-4 ERROR - short tbl_trans - tbl_trans # $2e-5 ERROR - short tbl_trans - tbl_trans # $2e-6 ERROR - short tbl_trans - tbl_trans # $2e-7 ERROR - - short tbl_trans - tbl_trans # $2f-0 ERROR - short tbl_trans - tbl_trans # $2f-1 ERROR - short tbl_trans - tbl_trans # $2f-2 ERROR - short tbl_trans - tbl_trans # $2f-3 ERROR - short tbl_trans - tbl_trans # $2f-4 ERROR - short tbl_trans - tbl_trans # $2f-5 ERROR - short tbl_trans - tbl_trans # $2f-6 ERROR - short tbl_trans - tbl_trans # $2f-7 ERROR - - short ssincos - tbl_trans # $30-0 fsincos norm - short ssincosz - tbl_trans # $30-1 fsincos zero - short ssincosi - tbl_trans # $30-2 fsincos inf - short ssincosqnan - tbl_trans # $30-3 fsincos qnan - short ssincosd - tbl_trans # $30-5 fsincos denorm - short ssincossnan - tbl_trans # $30-4 fsincos snan - short tbl_trans - tbl_trans # $30-6 fsincos unnorm - short tbl_trans - tbl_trans # $30-7 ERROR - - short ssincos - tbl_trans # $31-0 fsincos norm - short ssincosz - tbl_trans # $31-1 fsincos zero - short ssincosi - tbl_trans # $31-2 fsincos inf - short ssincosqnan - tbl_trans # $31-3 fsincos qnan - short ssincosd - tbl_trans # $31-5 fsincos denorm - short ssincossnan - tbl_trans # $31-4 fsincos snan - short tbl_trans - tbl_trans # $31-6 fsincos unnorm - short tbl_trans - tbl_trans # $31-7 ERROR - - short ssincos - tbl_trans # $32-0 fsincos norm - short ssincosz - tbl_trans # $32-1 fsincos zero - short ssincosi - tbl_trans # $32-2 fsincos inf - short ssincosqnan - tbl_trans # $32-3 fsincos qnan - short ssincosd - tbl_trans # $32-5 fsincos denorm - short ssincossnan - tbl_trans # $32-4 fsincos snan - short tbl_trans - tbl_trans # $32-6 fsincos unnorm - short tbl_trans - tbl_trans # $32-7 ERROR - - short ssincos - tbl_trans # $33-0 fsincos norm - short ssincosz - tbl_trans # $33-1 fsincos zero - short ssincosi - tbl_trans # $33-2 fsincos inf - short ssincosqnan - tbl_trans # $33-3 fsincos qnan - short ssincosd - tbl_trans # $33-5 fsincos denorm - short ssincossnan - tbl_trans # $33-4 fsincos snan - short tbl_trans - tbl_trans # $33-6 fsincos unnorm - short tbl_trans - tbl_trans # $33-7 ERROR - - short ssincos - tbl_trans # $34-0 fsincos norm - short ssincosz - tbl_trans # $34-1 fsincos zero - short ssincosi - tbl_trans # $34-2 fsincos inf - short ssincosqnan - tbl_trans # $34-3 fsincos qnan - short ssincosd - tbl_trans # $34-5 fsincos denorm - short ssincossnan - tbl_trans # $34-4 fsincos snan - short tbl_trans - tbl_trans # $34-6 fsincos unnorm - short tbl_trans - tbl_trans # $34-7 ERROR - - short ssincos - tbl_trans # $35-0 fsincos norm - short ssincosz - tbl_trans # $35-1 fsincos zero - short ssincosi - tbl_trans # $35-2 fsincos inf - short ssincosqnan - tbl_trans # $35-3 fsincos qnan - short ssincosd - tbl_trans # $35-5 fsincos denorm - short ssincossnan - tbl_trans # $35-4 fsincos snan - short tbl_trans - tbl_trans # $35-6 fsincos unnorm - short tbl_trans - tbl_trans # $35-7 ERROR - - short ssincos - tbl_trans # $36-0 fsincos norm - short ssincosz - tbl_trans # $36-1 fsincos zero - short ssincosi - tbl_trans # $36-2 fsincos inf - short ssincosqnan - tbl_trans # $36-3 fsincos qnan - short ssincosd - tbl_trans # $36-5 fsincos denorm - short ssincossnan - tbl_trans # $36-4 fsincos snan - short tbl_trans - tbl_trans # $36-6 fsincos unnorm - short tbl_trans - tbl_trans # $36-7 ERROR - - short ssincos - tbl_trans # $37-0 fsincos norm - short ssincosz - tbl_trans # $37-1 fsincos zero - short ssincosi - tbl_trans # $37-2 fsincos inf - short ssincosqnan - tbl_trans # $37-3 fsincos qnan - short ssincosd - tbl_trans # $37-5 fsincos denorm - short ssincossnan - tbl_trans # $37-4 fsincos snan - short tbl_trans - tbl_trans # $37-6 fsincos unnorm - short tbl_trans - tbl_trans # $37-7 ERROR - -########## - -# the instruction fetch access for the displacement word for the -# fdbcc emulation failed. here, we create an access error frame -# from the current frame and branch to _real_access(). -funimp_iacc: - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - - mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC - - unlk %a6 - - mov.l (%sp),-(%sp) # store SR,hi(PC) - mov.w 0x8(%sp),0x4(%sp) # store lo(PC) - mov.w &0x4008,0x6(%sp) # store voff - mov.l 0x2(%sp),0x8(%sp) # store EA - mov.l &0x09428001,0xc(%sp) # store FSLW - - btst &0x5,(%sp) # user or supervisor mode? - beq.b funimp_iacc_end # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -funimp_iacc_end: - bra.l _real_access - -######################################################################### -# ssin(): computes the sine of a normalized input # -# ssind(): computes the sine of a denormalized input # -# scos(): computes the cosine of a normalized input # -# scosd(): computes the cosine of a denormalized input # -# ssincos(): computes the sine and cosine of a normalized input # -# ssincosd(): computes the sine and cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = sin(X) or cos(X) # -# # -# For ssincos(X): # -# fp0 = sin(X) # -# fp1 = cos(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 1 ulp in 64 significant bit, i.e. # -# within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# SIN and COS: # -# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # -# # -# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # -# # -# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 4, so in particular, k = 0,1,2,or 3. # -# Overwrite k by k := k + AdjN. # -# # -# 4. If k is even, go to 6. # -# # -# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # -# Return sgn*cos(r) where cos(r) is approximated by an # -# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # -# s = r*r. # -# Exit. # -# # -# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # -# where sin(r) is approximated by an odd polynomial in r # -# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # -# Exit. # -# # -# 7. If |X| > 1, go to 9. # -# # -# 8. (|X|<2**(-40)) If SIN is invoked, return X; # -# otherwise return 1. # -# # -# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # -# go back to 3. # -# # -# SINCOS: # -# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # -# # -# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 4, so in particular, k = 0,1,2,or 3. # -# # -# 3. If k is even, go to 5. # -# # -# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # -# j1 exclusive or with the l.s.b. of k. # -# sgn1 := (-1)**j1, sgn2 := (-1)**j2. # -# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # -# sin(r) and cos(r) are computed as odd and even # -# polynomials in r, respectively. Exit # -# # -# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # -# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # -# sin(r) and cos(r) are computed as odd and even # -# polynomials in r, respectively. Exit # -# # -# 6. If |X| > 1, go to 8. # -# # -# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # -# # -# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # -# go back to 2. # -# # -######################################################################### - -SINA7: long 0xBD6AAA77,0xCCC994F5 -SINA6: long 0x3DE61209,0x7AAE8DA1 -SINA5: long 0xBE5AE645,0x2A118AE4 -SINA4: long 0x3EC71DE3,0xA5341531 -SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 -SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 -SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 - -COSB8: long 0x3D2AC4D0,0xD6011EE3 -COSB7: long 0xBDA9396F,0x9F45AC19 -COSB6: long 0x3E21EED9,0x0612C972 -COSB5: long 0xBE927E4F,0xB79D9FCF -COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 -COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 -COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E -COSB1: long 0xBF000000 - - set INARG,FP_SCR0 - - set X,FP_SCR0 -# set XDCARE,X+2 - set XFRAC,X+4 - - set RPRIME,FP_SCR0 - set SPRIME,FP_SCR1 - - set POSNEG1,L_SCR1 - set TWOTO63,L_SCR1 - - set ENDFLAG,L_SCR2 - set INT,L_SCR2 - - set ADJN,L_SCR3 - -############################################ - global ssin -ssin: - mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 - bra.b SINBGN - -############################################ - global scos -scos: - mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 - -############################################ -SINBGN: -#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE - - fmov.x (%a0),%fp0 # LOAD INPUT - fmov.x %fp0,X(%a6) # save input at X - -# "COMPACTIFY" X - mov.l (%a0),%d1 # put exp in hi word - mov.w 4(%a0),%d1 # fetch hi(man) - and.l &0x7FFFFFFF,%d1 # strip sign - - cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? - bge.b SOK1 # no - bra.w SINSM # yes; input is very small - -SOK1: - cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? - blt.b SINMAIN # no - bra.w SREDUCEX # yes; input is very large - -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. -SINMAIN: - fmov.x %fp0,%fp1 - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER - - mov.l INT(%a6),%d1 # make a copy of N - asl.l &4,%d1 # N *= 16 - add.l %d1,%a1 # tbl_addr = a1 + (N*16) - -# A1 IS THE ADDRESS OF N*PIBY2 -# ...WHICH IS IN TWO PIECES Y1 & Y2 - fsub.x (%a1)+,%fp0 # X-Y1 - fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 - -SINCONT: -#--continuation from REDUCEX - -#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED - mov.l INT(%a6),%d1 - add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN - ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE - cmp.l %d1,&0 - blt.w COSPOLY - -#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY -#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE -#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS -#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) -#--WHERE T=S*S. -#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION -#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. -SINPOLY: - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.x %fp0,X(%a6) # X IS R - fmul.x %fp0,%fp0 # FP0 IS S - - fmov.d SINA7(%pc),%fp3 - fmov.d SINA6(%pc),%fp2 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS T - - ror.l &1,%d1 - and.l &0x80000000,%d1 -# ...LEAST SIG. BIT OF D0 IN SIGN POSITION - eor.l %d1,X(%a6) # X IS NOW R'= SGN*R - - fmul.x %fp1,%fp3 # TA7 - fmul.x %fp1,%fp2 # TA6 - - fadd.d SINA5(%pc),%fp3 # A5+TA7 - fadd.d SINA4(%pc),%fp2 # A4+TA6 - - fmul.x %fp1,%fp3 # T(A5+TA7) - fmul.x %fp1,%fp2 # T(A4+TA6) - - fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) - fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) - - fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) - - fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) - fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) - fmul.x X(%a6),%fp0 # R'*S - - fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] - - fmul.x %fp1,%fp0 # SIN(R')-R' - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.x X(%a6),%fp0 # last inst - possible exception set - bra t_inx2 - -#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. -#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY -#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE -#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS -#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) -#--WHERE T=S*S. -#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION -#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 -#--AND IS THEREFORE STORED AS SINGLE PRECISION. -COSPOLY: - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.x %fp0,%fp0 # FP0 IS S - - fmov.d COSB8(%pc),%fp2 - fmov.d COSB7(%pc),%fp3 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS T - - fmov.x %fp0,X(%a6) # X IS S - ror.l &1,%d1 - and.l &0x80000000,%d1 -# ...LEAST SIG. BIT OF D0 IN SIGN POSITION - - fmul.x %fp1,%fp2 # TB8 - - eor.l %d1,X(%a6) # X IS NOW S'= SGN*S - and.l &0x80000000,%d1 - - fmul.x %fp1,%fp3 # TB7 - - or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE - mov.l %d1,POSNEG1(%a6) - - fadd.d COSB6(%pc),%fp2 # B6+TB8 - fadd.d COSB5(%pc),%fp3 # B5+TB7 - - fmul.x %fp1,%fp2 # T(B6+TB8) - fmul.x %fp1,%fp3 # T(B5+TB7) - - fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) - fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) - - fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) - fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) - - fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) - fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) - - fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) - - fadd.x %fp1,%fp0 - - fmul.x X(%a6),%fp0 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set - bra t_inx2 - -############################################## - -# SINe: Big OR Small? -#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -#--IF |X| < 2**(-40), RETURN X OR 1. -SINBORS: - cmp.l %d1,&0x3FFF8000 - bgt.l SREDUCEX - -SINSM: - mov.l ADJN(%a6),%d1 - cmp.l %d1,&0 - bgt.b COSTINY - -# here, the operation may underflow iff the precision is sgl or dbl. -# extended denorms are handled through another entry point. -SINTINY: -# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE - - fmov.l %d0,%fpcr # restore users round mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - bra t_catch - -COSTINY: - fmov.s &0x3F800000,%fp0 # fp0 = 1.0 - fmov.l %d0,%fpcr # restore users round mode,prec - fadd.s &0x80800000,%fp0 # last inst - possible exception set - bra t_pinx2 - -################################################ - global ssind -#--SIN(X) = X FOR DENORMALIZED X -ssind: - bra t_extdnrm - -############################################ - global scosd -#--COS(X) = 1 FOR DENORMALIZED X -scosd: - fmov.s &0x3F800000,%fp0 # fp0 = 1.0 - bra t_pinx2 - -################################################## - - global ssincos -ssincos: -#--SET ADJN TO 4 - mov.l &4,ADJN(%a6) - - fmov.x (%a0),%fp0 # LOAD INPUT - fmov.x %fp0,X(%a6) - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 # COMPACTIFY X - - cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? - bge.b SCOK1 - bra.w SCSM - -SCOK1: - cmp.l %d1,&0x4004BC7E # |X| < 15 PI? - blt.b SCMAIN - bra.w SREDUCEX - - -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. -SCMAIN: - fmov.x %fp0,%fp1 - - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER - - mov.l INT(%a6),%d1 - asl.l &4,%d1 - add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 - - fsub.x (%a1)+,%fp0 # X-Y1 - fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 - -SCCONT: -#--continuation point from REDUCEX - - mov.l INT(%a6),%d1 - ror.l &1,%d1 - cmp.l %d1,&0 # D0 < 0 IFF N IS ODD - bge.w NEVEN - -SNODD: -#--REGISTERS SAVED SO FAR: D0, A0, FP2. - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,RPRIME(%a6) - fmul.x %fp0,%fp0 # FP0 IS S = R*R - fmov.d SINA7(%pc),%fp1 # A7 - fmov.d COSB8(%pc),%fp2 # B8 - fmul.x %fp0,%fp1 # SA7 - fmul.x %fp0,%fp2 # SB8 - - mov.l %d2,-(%sp) - mov.l %d1,%d2 - ror.l &1,%d2 - and.l &0x80000000,%d2 - eor.l %d1,%d2 - and.l &0x80000000,%d2 - - fadd.d SINA6(%pc),%fp1 # A6+SA7 - fadd.d COSB7(%pc),%fp2 # B7+SB8 - - fmul.x %fp0,%fp1 # S(A6+SA7) - eor.l %d2,RPRIME(%a6) - mov.l (%sp)+,%d2 - fmul.x %fp0,%fp2 # S(B7+SB8) - ror.l &1,%d1 - and.l &0x80000000,%d1 - mov.l &0x3F800000,POSNEG1(%a6) - eor.l %d1,POSNEG1(%a6) - - fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) - fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) - - fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) - fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) - fmov.x %fp0,SPRIME(%a6) - - fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) - eor.l %d1,SPRIME(%a6) - fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) - - fmul.x %fp0,%fp1 # S(A4+...) - fmul.x %fp0,%fp2 # S(B5+...) - - fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) - fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) - - fmul.x %fp0,%fp1 # S(A3+...) - fmul.x %fp0,%fp2 # S(B4+...) - - fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) - fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) - - fmul.x %fp0,%fp1 # S(A2+...) - fmul.x %fp0,%fp2 # S(B3+...) - - fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) - fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) - - fmul.x %fp0,%fp1 # S(A1+...) - fmul.x %fp2,%fp0 # S(B2+...) - - fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) - fadd.s COSB1(%pc),%fp0 # B1+S(B2...) - fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr - fadd.x RPRIME(%a6),%fp1 # COS(X) - bsr sto_cos # store cosine result - fadd.s POSNEG1(%a6),%fp0 # SIN(X) - bra t_inx2 - -NEVEN: -#--REGISTERS SAVED SO FAR: FP2. - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,RPRIME(%a6) - fmul.x %fp0,%fp0 # FP0 IS S = R*R - - fmov.d COSB8(%pc),%fp1 # B8 - fmov.d SINA7(%pc),%fp2 # A7 - - fmul.x %fp0,%fp1 # SB8 - fmov.x %fp0,SPRIME(%a6) - fmul.x %fp0,%fp2 # SA7 - - ror.l &1,%d1 - and.l &0x80000000,%d1 - - fadd.d COSB7(%pc),%fp1 # B7+SB8 - fadd.d SINA6(%pc),%fp2 # A6+SA7 - - eor.l %d1,RPRIME(%a6) - eor.l %d1,SPRIME(%a6) - - fmul.x %fp0,%fp1 # S(B7+SB8) - - or.l &0x3F800000,%d1 - mov.l %d1,POSNEG1(%a6) - - fmul.x %fp0,%fp2 # S(A6+SA7) - - fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) - fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) - - fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) - fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) - - fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) - fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) - - fmul.x %fp0,%fp1 # S(B5+...) - fmul.x %fp0,%fp2 # S(A4+...) - - fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) - fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) - - fmul.x %fp0,%fp1 # S(B4+...) - fmul.x %fp0,%fp2 # S(A3+...) - - fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) - fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) - - fmul.x %fp0,%fp1 # S(B3+...) - fmul.x %fp0,%fp2 # S(A2+...) - - fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) - fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) - - fmul.x %fp0,%fp1 # S(B2+...) - fmul.x %fp2,%fp0 # s(a1+...) - - - fadd.s COSB1(%pc),%fp1 # B1+S(B2...) - fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) - fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr - fadd.s POSNEG1(%a6),%fp1 # COS(X) - bsr sto_cos # store cosine result - fadd.x RPRIME(%a6),%fp0 # SIN(X) - bra t_inx2 - -################################################ - -SCBORS: - cmp.l %d1,&0x3FFF8000 - bgt.w SREDUCEX - -################################################ - -SCSM: -# mov.w &0x0000,XDCARE(%a6) - fmov.s &0x3F800000,%fp1 - - fmov.l %d0,%fpcr - fsub.s &0x00800000,%fp1 - bsr sto_cos # store cosine result - fmov.l %fpcr,%d0 # d0 must have fpcr,too - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 - bra t_catch - -############################################## - - global ssincosd -#--SIN AND COS OF X FOR DENORMALIZED X -ssincosd: - mov.l %d0,-(%sp) # save d0 - fmov.s &0x3F800000,%fp1 - bsr sto_cos # store cosine result - mov.l (%sp)+,%d0 # restore d0 - bra t_extdnrm - -############################################ - -#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. -SREDUCEX: - fmovm.x &0x3c,-(%sp) # save {fp2-fp5} - mov.l %d2,-(%sp) # save d2 - fmov.s &0x00000000,%fp1 # fp1 = 0 - -#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -#--there is a danger of unwanted overflow in first LOOP iteration. In this -#--case, reduce argument by one remainder step to make subsequent reduction -#--safe. - cmp.l %d1,&0x7ffeffff # is arg dangerously large? - bne.b SLOOP # no - -# yes; create 2**16383*PI/2 - mov.w &0x7ffe,FP_SCR0_EX(%a6) - mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - -# create low half of 2**16383*PI/2 at FP_SCR1 - mov.w &0x7fdc,FP_SCR1_EX(%a6) - mov.l &0x85a308d3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - - ftest.x %fp0 # test sign of argument - fblt.w sred_neg - - or.b &0x80,FP_SCR0_EX(%a6) # positive arg - or.b &0x80,FP_SCR1_EX(%a6) -sred_neg: - fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact - fmov.x %fp0,%fp1 # save high result in fp1 - fadd.x FP_SCR1(%a6),%fp0 # low part of reduction - fsub.x %fp0,%fp1 # determine low component of result - fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. - -#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -#--integer quotient will be stored in N -#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) -SLOOP: - fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 - mov.w INARG(%a6),%d1 - mov.l %d1,%a1 # save a copy of D0 - and.l &0x00007FFF,%d1 - sub.l &0x00003FFF,%d1 # d0 = K - cmp.l %d1,&28 - ble.b SLASTLOOP -SCONTLOOP: - sub.l &27,%d1 # d0 = L := K-27 - mov.b &0,ENDFLAG(%a6) - bra.b SWORK -SLASTLOOP: - clr.l %d1 # d0 = L := 0 - mov.b &1,ENDFLAG(%a6) - -SWORK: -#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -#--2**L * (PIby2_1), 2**L * (PIby2_2) - - mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI - sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) - - mov.l &0xA2F9836E,FP_SCR0_HI(%a6) - mov.l &0x4E44152A,FP_SCR0_LO(%a6) - mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) - - fmov.x %fp0,%fp2 - fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) - -#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -#--US THE DESIRED VALUE IN FLOATING POINT. - mov.l %a1,%d2 - swap %d2 - and.l &0x80000000,%d2 - or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL - mov.l %d2,TWOTO63(%a6) - fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED - fsub.s TWOTO63(%a6),%fp2 # fp2 = N -# fint.x %fp2 - -#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - mov.l %d1,%d2 # d2 = L - - add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) - mov.w %d2,FP_SCR0_EX(%a6) - mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 - - add.l &0x00003FDD,%d1 - mov.w %d1,FP_SCR1_EX(%a6) - mov.l &0x85A308D3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 - - mov.b ENDFLAG(%a6),%d1 - -#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -#--P2 = 2**(L) * Piby2_2 - fmov.x %fp2,%fp4 # fp4 = N - fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 - fmov.x %fp2,%fp5 # fp5 = N - fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 - fmov.x %fp4,%fp3 # fp3 = W = N*P1 - -#--we want P+p = W+w but |p| <= half ulp of P -#--Then, we need to compute A := R-P and a := r-p - fadd.x %fp5,%fp3 # fp3 = P - fsub.x %fp3,%fp4 # fp4 = W-P - - fsub.x %fp3,%fp0 # fp0 = A := R - P - fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w - - fmov.x %fp0,%fp3 # fp3 = A - fsub.x %fp4,%fp1 # fp1 = a := r - p - -#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -#--|r| <= half ulp of R. - fadd.x %fp1,%fp0 # fp0 = R := A+a -#--No need to calculate r if this is the last loop - cmp.b %d1,&0 - bgt.w SRESTORE - -#--Need to calculate r - fsub.x %fp0,%fp3 # fp3 = A-R - fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a - bra.w SLOOP - -SRESTORE: - fmov.l %fp2,INT(%a6) - mov.l (%sp)+,%d2 # restore d2 - fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} - - mov.l ADJN(%a6),%d1 - cmp.l %d1,&4 - - blt.w SINCONT - bra.w SCCONT - -######################################################################### -# stan(): computes the tangent of a normalized input # -# stand(): computes the tangent of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = tan(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulp in 64 significant bit, i.e. # -# within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # -# # -# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # -# k = N mod 2, so in particular, k = 0 or 1. # -# # -# 3. If k is odd, go to 5. # -# # -# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # -# rational function U/V where # -# U = r + r*s*(P1 + s*(P2 + s*P3)), and # -# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # -# Exit. # -# # -# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # -# a rational function U/V where # -# U = r + r*s*(P1 + s*(P2 + s*P3)), and # -# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # -# -Cot(r) = -V/U. Exit. # -# # -# 6. If |X| > 1, go to 8. # -# # -# 7. (|X|<2**(-40)) Tan(X) = X. Exit. # -# # -# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # -# to 2. # -# # -######################################################################### - -TANQ4: - long 0x3EA0B759,0xF50F8688 -TANP3: - long 0xBEF2BAA5,0xA8924F04 - -TANQ3: - long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 - -TANP2: - long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 - -TANQ2: - long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 - -TANP1: - long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 - -TANQ1: - long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 - -INVTWOPI: - long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 - -TWOPI1: - long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 -TWOPI2: - long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 - -#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING -#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT -#--MOST 69 BITS LONG. -# global PITBL -PITBL: - long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 - long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 - long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 - long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 - long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 - long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 - long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 - long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 - long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 - long 0xC0040000,0x90836524,0x88034B96,0x20B00000 - long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 - long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 - long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 - long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 - long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 - long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 - long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 - long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 - long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 - long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 - long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 - long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 - long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 - long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 - long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 - long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 - long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 - long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 - long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 - long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 - long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 - long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 - long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 - long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 - long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 - long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 - long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 - long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 - long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 - long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 - long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 - long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 - long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 - long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 - long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 - long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 - long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 - long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 - long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 - long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 - long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 - long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 - long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 - long 0x40040000,0x90836524,0x88034B96,0xA0B00000 - long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 - long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 - long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 - long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 - long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 - long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 - long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 - long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 - long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 - - set INARG,FP_SCR0 - - set TWOTO63,L_SCR1 - set INT,L_SCR1 - set ENDFLAG,L_SCR2 - - global stan -stan: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? - bge.b TANOK1 - bra.w TANSM -TANOK1: - cmp.l %d1,&0x4004BC7E # |X| < 15 PI? - blt.b TANMAIN - bra.w REDUCEX - -TANMAIN: -#--THIS IS THE USUAL CASE, |X| <= 15 PI. -#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. - fmov.x %fp0,%fp1 - fmul.d TWOBYPI(%pc),%fp1 # X*2/PI - - lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 - - fmov.l %fp1,%d1 # CONVERT TO INTEGER - - asl.l &4,%d1 - add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 - - fsub.x (%a1)+,%fp0 # X-Y1 - - fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 - - ror.l &5,%d1 - and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 - -TANCONT: - fmovm.x &0x0c,-(%sp) # save fp2,fp3 - - cmp.l %d1,&0 - blt.w NODD - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # S = R*R - - fmov.d TANQ4(%pc),%fp3 - fmov.d TANP3(%pc),%fp2 - - fmul.x %fp1,%fp3 # SQ4 - fmul.x %fp1,%fp2 # SP3 - - fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 - fadd.x TANP2(%pc),%fp2 # P2+SP3 - - fmul.x %fp1,%fp3 # S(Q3+SQ4) - fmul.x %fp1,%fp2 # S(P2+SP3) - - fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) - fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) - - fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) - fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) - - fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) - fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) - - fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) - - fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) - - fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) - - fmovm.x (%sp)+,&0x30 # restore fp2,fp3 - - fmov.l %d0,%fpcr # restore users round mode,prec - fdiv.x %fp1,%fp0 # last inst - possible exception set - bra t_inx2 - -NODD: - fmov.x %fp0,%fp1 - fmul.x %fp0,%fp0 # S = R*R - - fmov.d TANQ4(%pc),%fp3 - fmov.d TANP3(%pc),%fp2 - - fmul.x %fp0,%fp3 # SQ4 - fmul.x %fp0,%fp2 # SP3 - - fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 - fadd.x TANP2(%pc),%fp2 # P2+SP3 - - fmul.x %fp0,%fp3 # S(Q3+SQ4) - fmul.x %fp0,%fp2 # S(P2+SP3) - - fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) - fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) - - fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) - fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) - - fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) - fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) - - fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) - - fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) - fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) - - fmovm.x (%sp)+,&0x30 # restore fp2,fp3 - - fmov.x %fp1,-(%sp) - eor.l &0x80000000,(%sp) - - fmov.l %d0,%fpcr # restore users round mode,prec - fdiv.x (%sp)+,%fp0 # last inst - possible exception set - bra t_inx2 - -TANBORS: -#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. -#--IF |X| < 2**(-40), RETURN X OR 1. - cmp.l %d1,&0x3FFF8000 - bgt.b REDUCEX - -TANSM: - fmov.x %fp0,-(%sp) - fmov.l %d0,%fpcr # restore users round mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%sp)+,%fp0 # last inst - posibble exception set - bra t_catch - - global stand -#--TAN(X) = X FOR DENORMALIZED X -stand: - bra t_extdnrm - -#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. -#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING -#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. -REDUCEX: - fmovm.x &0x3c,-(%sp) # save {fp2-fp5} - mov.l %d2,-(%sp) # save d2 - fmov.s &0x00000000,%fp1 # fp1 = 0 - -#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that -#--there is a danger of unwanted overflow in first LOOP iteration. In this -#--case, reduce argument by one remainder step to make subsequent reduction -#--safe. - cmp.l %d1,&0x7ffeffff # is arg dangerously large? - bne.b LOOP # no - -# yes; create 2**16383*PI/2 - mov.w &0x7ffe,FP_SCR0_EX(%a6) - mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - -# create low half of 2**16383*PI/2 at FP_SCR1 - mov.w &0x7fdc,FP_SCR1_EX(%a6) - mov.l &0x85a308d3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - - ftest.x %fp0 # test sign of argument - fblt.w red_neg - - or.b &0x80,FP_SCR0_EX(%a6) # positive arg - or.b &0x80,FP_SCR1_EX(%a6) -red_neg: - fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact - fmov.x %fp0,%fp1 # save high result in fp1 - fadd.x FP_SCR1(%a6),%fp0 # low part of reduction - fsub.x %fp0,%fp1 # determine low component of result - fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. - -#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. -#--integer quotient will be stored in N -#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) -LOOP: - fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 - mov.w INARG(%a6),%d1 - mov.l %d1,%a1 # save a copy of D0 - and.l &0x00007FFF,%d1 - sub.l &0x00003FFF,%d1 # d0 = K - cmp.l %d1,&28 - ble.b LASTLOOP -CONTLOOP: - sub.l &27,%d1 # d0 = L := K-27 - mov.b &0,ENDFLAG(%a6) - bra.b WORK -LASTLOOP: - clr.l %d1 # d0 = L := 0 - mov.b &1,ENDFLAG(%a6) - -WORK: -#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN -#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. - -#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), -#--2**L * (PIby2_1), 2**L * (PIby2_2) - - mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI - sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) - - mov.l &0xA2F9836E,FP_SCR0_HI(%a6) - mov.l &0x4E44152A,FP_SCR0_LO(%a6) - mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) - - fmov.x %fp0,%fp2 - fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) - -#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN -#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N -#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT -#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE -#--US THE DESIRED VALUE IN FLOATING POINT. - mov.l %a1,%d2 - swap %d2 - and.l &0x80000000,%d2 - or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL - mov.l %d2,TWOTO63(%a6) - fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED - fsub.s TWOTO63(%a6),%fp2 # fp2 = N -# fintrz.x %fp2,%fp2 - -#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 - mov.l %d1,%d2 # d2 = L - - add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) - mov.w %d2,FP_SCR0_EX(%a6) - mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 - - add.l &0x00003FDD,%d1 - mov.w %d1,FP_SCR1_EX(%a6) - mov.l &0x85A308D3,FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 - - mov.b ENDFLAG(%a6),%d1 - -#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and -#--P2 = 2**(L) * Piby2_2 - fmov.x %fp2,%fp4 # fp4 = N - fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 - fmov.x %fp2,%fp5 # fp5 = N - fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 - fmov.x %fp4,%fp3 # fp3 = W = N*P1 - -#--we want P+p = W+w but |p| <= half ulp of P -#--Then, we need to compute A := R-P and a := r-p - fadd.x %fp5,%fp3 # fp3 = P - fsub.x %fp3,%fp4 # fp4 = W-P - - fsub.x %fp3,%fp0 # fp0 = A := R - P - fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w - - fmov.x %fp0,%fp3 # fp3 = A - fsub.x %fp4,%fp1 # fp1 = a := r - p - -#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but -#--|r| <= half ulp of R. - fadd.x %fp1,%fp0 # fp0 = R := A+a -#--No need to calculate r if this is the last loop - cmp.b %d1,&0 - bgt.w RESTORE - -#--Need to calculate r - fsub.x %fp0,%fp3 # fp3 = A-R - fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a - bra.w LOOP - -RESTORE: - fmov.l %fp2,INT(%a6) - mov.l (%sp)+,%d2 # restore d2 - fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} - - mov.l INT(%a6),%d1 - ror.l &1,%d1 - - bra.w TANCONT - -######################################################################### -# satan(): computes the arctangent of a normalized number # -# satand(): computes the arctangent of a denormalized number # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arctan(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # -# # -# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # -# Note that k = -4, -3,..., or 3. # -# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # -# significant bits of X with a bit-1 attached at the 6-th # -# bit position. Define u to be u = (X-F) / (1 + X*F). # -# # -# Step 3. Approximate arctan(u) by a polynomial poly. # -# # -# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # -# table of values calculated beforehand. Exit. # -# # -# Step 5. If |X| >= 16, go to Step 7. # -# # -# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # -# # -# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # -# polynomial in X'. # -# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # -# # -######################################################################### - -ATANA3: long 0xBFF6687E,0x314987D8 -ATANA2: long 0x4002AC69,0x34A26DB3 -ATANA1: long 0xBFC2476F,0x4E1DA28E - -ATANB6: long 0x3FB34444,0x7F876989 -ATANB5: long 0xBFB744EE,0x7FAF45DB -ATANB4: long 0x3FBC71C6,0x46940220 -ATANB3: long 0xBFC24924,0x921872F9 -ATANB2: long 0x3FC99999,0x99998FA9 -ATANB1: long 0xBFD55555,0x55555555 - -ATANC5: long 0xBFB70BF3,0x98539E6A -ATANC4: long 0x3FBC7187,0x962D1D7D -ATANC3: long 0xBFC24924,0x827107B8 -ATANC2: long 0x3FC99999,0x9996263E -ATANC1: long 0xBFD55555,0x55555536 - -PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 -NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 -NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 - -ATANTBL: - long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 - long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 - long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 - long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 - long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 - long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 - long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 - long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 - long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 - long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 - long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 - long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 - long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 - long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 - long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 - long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 - long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 - long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 - long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 - long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 - long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 - long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 - long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 - long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 - long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 - long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 - long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 - long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 - long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 - long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 - long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 - long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 - long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 - long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 - long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 - long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 - long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 - long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 - long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 - long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 - long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 - long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 - long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 - long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 - long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 - long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 - long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 - long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 - long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 - long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 - long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 - long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 - long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 - long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 - long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 - long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 - long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 - long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 - long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 - long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 - long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 - long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 - long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 - long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 - long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 - long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 - long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 - long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 - long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 - long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 - long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 - long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 - long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 - long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 - long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 - long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 - long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 - long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 - long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 - long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 - long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 - long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 - long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 - long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 - long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 - long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 - long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 - long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 - long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 - long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 - long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 - long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 - long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 - long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 - long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 - long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 - long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 - long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 - long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 - long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 - long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 - long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 - long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 - long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 - long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 - long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 - long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 - long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 - long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 - long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 - long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 - long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 - long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 - long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 - long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 - long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 - long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 - long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 - long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 - long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 - long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 - long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 - long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 - long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 - long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 - long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 - long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 - long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - set XFRACLO,X+8 - - set ATANF,FP_SCR1 - set ATANFHI,ATANF+4 - set ATANFLO,ATANF+8 - - global satan -#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -satan: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? - bge.b ATANOK1 - bra.w ATANSM - -ATANOK1: - cmp.l %d1,&0x4002FFFF # |X| < 16 ? - ble.b ATANMAIN - bra.w ATANBIG - -#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE -#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). -#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN -#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE -#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS -#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR -#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO -#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE -#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL -#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE -#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION -#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION -#--WILL INVOLVE A VERY LONG POLYNOMIAL. - -#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS -#--WE CHOSE F TO BE +-2^K * 1.BBBB1 -#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE -#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE -#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS -#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). - -ATANMAIN: - - and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS - or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 - mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F - - fmov.x %fp0,%fp1 # FP1 IS X - fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 - fsub.x X(%a6),%fp0 # FP0 IS X-F - fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F - fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) - -#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) -#--CREATE ATAN(F) AND STORE IT IN ATANF, AND -#--SAVE REGISTERS FP2. - - mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY - mov.l %d1,%d2 # THE EXP AND 16 BITS OF X - and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION - and.l &0x7FFF0000,%d2 # EXPONENT OF F - sub.l &0x3FFB0000,%d2 # K+4 - asr.l &1,%d2 - add.l %d2,%d1 # THE 7 BITS IDENTIFYING F - asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) - lea ATANTBL(%pc),%a1 - add.l %d1,%a1 # ADDRESS OF ATAN(|F|) - mov.l (%a1)+,ATANF(%a6) - mov.l (%a1)+,ATANFHI(%a6) - mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) - mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN - and.l &0x80000000,%d1 # SIGN(F) - or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) - mov.l (%sp)+,%d2 # RESTORE d2 - -#--THAT'S ALL I HAVE TO DO FOR NOW, -#--BUT ALAS, THE DIVIDE IS STILL CRANKING! - -#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS -#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U -#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. -#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) -#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. -#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT -#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED - - fmovm.x &0x04,-(%sp) # save fp2 - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 - fmov.d ATANA3(%pc),%fp2 - fadd.x %fp1,%fp2 # A3+V - fmul.x %fp1,%fp2 # V*(A3+V) - fmul.x %fp0,%fp1 # U*V - fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) - fmul.d ATANA1(%pc),%fp1 # A1*U*V - fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) - fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED - - fmovm.x (%sp)+,&0x20 # restore fp2 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - fadd.x ATANF(%a6),%fp0 # ATAN(X) - bra t_inx2 - -ATANBORS: -#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. -#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. - cmp.l %d1,&0x3FFF8000 - bgt.w ATANBIG # I.E. |X| >= 16 - -ATANSM: -#--|X| <= 1/16 -#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE -#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) -#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) -#--WHERE Y = X*X, AND Z = Y*Y. - - cmp.l %d1,&0x3FD78000 - blt.w ATANTINY - -#--COMPUTE POLYNOMIAL - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.x %fp0,%fp0 # FPO IS Y = X*X - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y - - fmov.d ATANB6(%pc),%fp2 - fmov.d ATANB5(%pc),%fp3 - - fmul.x %fp1,%fp2 # Z*B6 - fmul.x %fp1,%fp3 # Z*B5 - - fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 - fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 - - fmul.x %fp1,%fp2 # Z*(B4+Z*B6) - fmul.x %fp3,%fp1 # Z*(B3+Z*B5) - - fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) - fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) - - fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) - fmul.x X(%a6),%fp0 # X*Y - - fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] - - fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - fadd.x X(%a6),%fp0 - bra t_inx2 - -ATANTINY: -#--|X| < 2^(-40), ATAN(X) = X - - fmov.l %d0,%fpcr # restore users rnd mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - - bra t_catch - -ATANBIG: -#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, -#--RETURN SIGN(X)*PI/2 + ATAN(-1/X). - cmp.l %d1,&0x40638000 - bgt.w ATANHUGE - -#--APPROXIMATE ATAN(-1/X) BY -#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' -#--THIS CAN BE RE-WRITTEN AS -#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. - - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.s &0xBF800000,%fp1 # LOAD -1 - fdiv.x %fp0,%fp1 # FP1 IS -1/X - -#--DIVIDE IS STILL CRANKING - - fmov.x %fp1,%fp0 # FP0 IS X' - fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' - fmov.x %fp1,X(%a6) # X IS REALLY X' - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y - - fmov.d ATANC5(%pc),%fp3 - fmov.d ATANC4(%pc),%fp2 - - fmul.x %fp1,%fp3 # Z*C5 - fmul.x %fp1,%fp2 # Z*B4 - - fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 - fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 - - fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED - fmul.x %fp0,%fp2 # Y*(C2+Z*C4) - - fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) - fmul.x X(%a6),%fp0 # X'*Y - - fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] - - fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] -# ... +[Y*(B2+Z*(B4+Z*B6))]) - fadd.x X(%a6),%fp0 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - - fmov.l %d0,%fpcr # restore users rnd mode,prec - tst.b (%a0) - bpl.b pos_big - -neg_big: - fadd.x NPIBY2(%pc),%fp0 - bra t_minx2 - -pos_big: - fadd.x PPIBY2(%pc),%fp0 - bra t_pinx2 - -ATANHUGE: -#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY - tst.b (%a0) - bpl.b pos_huge - -neg_huge: - fmov.x NPIBY2(%pc),%fp0 - fmov.l %d0,%fpcr - fadd.x PTINY(%pc),%fp0 - bra t_minx2 - -pos_huge: - fmov.x PPIBY2(%pc),%fp0 - fmov.l %d0,%fpcr - fadd.x NTINY(%pc),%fp0 - bra t_pinx2 - - global satand -#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT -satand: - bra t_extdnrm - -######################################################################### -# sasin(): computes the inverse sine of a normalized input # -# sasind(): computes the inverse sine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arcsin(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ASIN # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate asin(X) by # -# z := sqrt( [1-X][1+X] ) # -# asin(X) = atan( x / z ). # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global sasin -sasin: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ASINBIG - -# This catch is added here for the '060 QSP. Originally, the call to -# satan() would handle this case by causing the exception which would -# not be caught until gen_except(). Now, with the exceptions being -# detected inside of satan(), the exception would have been handled there -# instead of inside sasin() as expected. - cmp.l %d1,&0x3FD78000 - blt.w ASINTINY - -#--THIS IS THE USUAL CASE, |X| < 1 -#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) - -ASINMAIN: - fmov.s &0x3F800000,%fp1 - fsub.x %fp0,%fp1 # 1-X - fmovm.x &0x4,-(%sp) # {fp2} - fmov.s &0x3F800000,%fp2 - fadd.x %fp0,%fp2 # 1+X - fmul.x %fp2,%fp1 # (1+X)(1-X) - fmovm.x (%sp)+,&0x20 # {fp2} - fsqrt.x %fp1 # SQRT([1-X][1+X]) - fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) - fmovm.x &0x01,-(%sp) # save X/SQRT(...) - lea (%sp),%a0 # pass ptr to X/SQRT(...) - bsr satan - add.l &0xc,%sp # clear X/SQRT(...) from stack - bra t_inx2 - -ASINBIG: - fabs.x %fp0 # |X| - fcmp.s %fp0,&0x3F800000 - fbgt t_operr # cause an operr exception - -#--|X| = 1, ASIN(X) = +- PI/2. -ASINONE: - fmov.x PIBY2(%pc),%fp0 - mov.l (%a0),%d1 - and.l &0x80000000,%d1 # SIGN BIT OF X - or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT - mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT - fmov.l %d0,%fpcr - fmul.s (%sp)+,%fp0 - bra t_inx2 - -#--|X| < 2^(-40), ATAN(X) = X -ASINTINY: - fmov.l %d0,%fpcr # restore users rnd mode,prec - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%a0),%fp0 # last inst - possible exception - bra t_catch - - global sasind -#--ASIN(X) = X FOR DENORMALIZED X -sasind: - bra t_extdnrm - -######################################################################### -# sacos(): computes the inverse cosine of a normalized input # -# sacosd(): computes the inverse cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arccos(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ACOS # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate acos(X) by # -# z := (1-X) / (1+X) # -# acos(X) = 2 * atan( sqrt(z) ). # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global sacos -sacos: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 # pack exp w/ upper 16 fraction - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ACOSBIG - -#--THIS IS THE USUAL CASE, |X| < 1 -#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) - -ACOSMAIN: - fmov.s &0x3F800000,%fp1 - fadd.x %fp0,%fp1 # 1+X - fneg.x %fp0 # -X - fadd.s &0x3F800000,%fp0 # 1-X - fdiv.x %fp1,%fp0 # (1-X)/(1+X) - fsqrt.x %fp0 # SQRT((1-X)/(1+X)) - mov.l %d0,-(%sp) # save original users fpcr - clr.l %d0 - fmovm.x &0x01,-(%sp) # save SQRT(...) to stack - lea (%sp),%a0 # pass ptr to sqrt - bsr satan # ATAN(SQRT([1-X]/[1+X])) - add.l &0xc,%sp # clear SQRT(...) from stack - - fmov.l (%sp)+,%fpcr # restore users round prec,mode - fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) - bra t_pinx2 - -ACOSBIG: - fabs.x %fp0 - fcmp.s %fp0,&0x3F800000 - fbgt t_operr # cause an operr exception - -#--|X| = 1, ACOS(X) = 0 OR PI - tst.b (%a0) # is X positive or negative? - bpl.b ACOSP1 - -#--X = -1 -#Returns PI and inexact exception -ACOSM1: - fmov.x PI(%pc),%fp0 # load PI - fmov.l %d0,%fpcr # load round mode,prec - fadd.s &0x00800000,%fp0 # add a small value - bra t_pinx2 - -ACOSP1: - bra ld_pzero # answer is positive zero - - global sacosd -#--ACOS(X) = PI/2 FOR DENORMALIZED X -sacosd: - fmov.l %d0,%fpcr # load user's rnd mode/prec - fmov.x PIBY2(%pc),%fp0 - bra t_pinx2 - -######################################################################### -# setox(): computes the exponential for a normalized input # -# setoxd(): computes the exponential for a denormalized input # -# setoxm1(): computes the exponential minus 1 for a normalized input # -# setoxm1d(): computes the exponential minus 1 for a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = exp(X) or exp(X)-1 # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 0.85 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM and IMPLEMENTATION **************************************** # -# # -# setoxd # -# ------ # -# Step 1. Set ans := 1.0 # -# # -# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # -# Notes: This will always generate one exception -- inexact. # -# # -# # -# setox # -# ----- # -# # -# Step 1. Filter out extreme cases of input argument. # -# 1.1 If |X| >= 2^(-65), go to Step 1.3. # -# 1.2 Go to Step 7. # -# 1.3 If |X| < 16380 log(2), go to Step 2. # -# 1.4 Go to Step 8. # -# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# -# To avoid the use of floating-point comparisons, a # -# compact representation of |X| is used. This format is a # -# 32-bit integer, the upper (more significant) 16 bits # -# are the sign and biased exponent field of |X|; the # -# lower 16 bits are the 16 most significant fraction # -# (including the explicit bit) bits of |X|. Consequently, # -# the comparisons in Steps 1.1 and 1.3 can be performed # -# by integer comparison. Note also that the constant # -# 16380 log(2) used in Step 1.3 is also in the compact # -# form. Thus taking the branch to Step 2 guarantees # -# |X| < 16380 log(2). There is no harm to have a small # -# number of cases where |X| is less than, but close to, # -# 16380 log(2) and the branch to Step 9 is taken. # -# # -# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # -# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # -# was taken) # -# 2.2 N := round-to-nearest-integer( X * 64/log2 ). # -# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # -# or 63. # -# 2.4 Calculate M = (N - J)/64; so N = 64M + J. # -# 2.5 Calculate the address of the stored value of # -# 2^(J/64). # -# 2.6 Create the value Scale = 2^M. # -# Notes: The calculation in 2.2 is really performed by # -# Z := X * constant # -# N := round-to-nearest-integer(Z) # -# where # -# constant := single-precision( 64/log 2 ). # -# # -# Using a single-precision constant avoids memory # -# access. Another effect of using a single-precision # -# "constant" is that the calculated value Z is # -# # -# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # -# # -# This error has to be considered later in Steps 3 and 4. # -# # -# Step 3. Calculate X - N*log2/64. # -# 3.1 R := X + N*L1, # -# where L1 := single-precision(-log2/64). # -# 3.2 R := R + N*L2, # -# L2 := extended-precision(-log2/64 - L1).# -# Notes: a) The way L1 and L2 are chosen ensures L1+L2 # -# approximate the value -log2/64 to 88 bits of accuracy. # -# b) N*L1 is exact because N is no longer than 22 bits # -# and L1 is no longer than 24 bits. # -# c) The calculation X+N*L1 is also exact due to # -# cancellation. Thus, R is practically X+N(L1+L2) to full # -# 64 bits. # -# d) It is important to estimate how large can |R| be # -# after Step 3.2. # -# # -# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # -# X*64/log2 (1+eps) = N + f, |f| <= 0.5 # -# X*64/log2 - N = f - eps*X 64/log2 # -# X - N*log2/64 = f*log2/64 - eps*X # -# # -# # -# Now |X| <= 16446 log2, thus # -# # -# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # -# <= 0.57 log2/64. # -# This bound will be used in Step 4. # -# # -# Step 4. Approximate exp(R)-1 by a polynomial # -# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: A1 (which is 1/2), A4 # -# and A5 are single precision; A2 and A3 are double # -# precision. # -# b) Even with the restrictions above, # -# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # -# Note that 0.0062 is slightly bigger than 0.57 log2/64. # -# c) To fully utilize the pipeline, p is separated into # -# two independent pieces of roughly equal complexities # -# p = [ R + R*S*(A2 + S*A4) ] + # -# [ S*(A1 + S*(A3 + S*A5)) ] # -# where S = R*R. # -# # -# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # -# ans := T + ( T*p + t) # -# where T and t are the stored values for 2^(J/64). # -# Notes: 2^(J/64) is stored as T and t where T+t approximates # -# 2^(J/64) to roughly 85 bits; T is in extended precision # -# and t is in single precision. Note also that T is # -# rounded to 62 bits so that the last two bits of T are # -# zero. The reason for such a special form is that T-1, # -# T-2, and T-8 will all be exact --- a property that will # -# give much more accurate computation of the function # -# EXPM1. # -# # -# Step 6. Reconstruction of exp(X) # -# exp(X) = 2^M * 2^(J/64) * exp(R). # -# 6.1 If AdjFlag = 0, go to 6.3 # -# 6.2 ans := ans * AdjScale # -# 6.3 Restore the user FPCR # -# 6.4 Return ans := ans * Scale. Exit. # -# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # -# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # -# neither overflow nor underflow. If AdjFlag = 1, that # -# means that # -# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # -# Hence, exp(X) may overflow or underflow or neither. # -# When that is the case, AdjScale = 2^(M1) where M1 is # -# approximately M. Thus 6.2 will never cause # -# over/underflow. Possible exception in 6.4 is overflow # -# or underflow. The inexact exception is not generated in # -# 6.4. Although one can argue that the inexact flag # -# should always be raised, to simulate that exception # -# cost to much than the flag is worth in practical uses. # -# # -# Step 7. Return 1 + X. # -# 7.1 ans := X # -# 7.2 Restore user FPCR. # -# 7.3 Return ans := 1 + ans. Exit # -# Notes: For non-zero X, the inexact exception will always be # -# raised by 7.3. That is the only exception raised by 7.3.# -# Note also that we use the FMOVEM instruction to move X # -# in Step 7.1 to avoid unnecessary trapping. (Although # -# the FMOVEM may not seem relevant since X is normalized, # -# the precaution will be useful in the library version of # -# this code where the separate entry for denormalized # -# inputs will be done away with.) # -# # -# Step 8. Handle exp(X) where |X| >= 16380log2. # -# 8.1 If |X| > 16480 log2, go to Step 9. # -# (mimic 2.2 - 2.6) # -# 8.2 N := round-to-integer( X * 64/log2 ) # -# 8.3 Calculate J = N mod 64, J = 0,1,...,63 # -# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # -# AdjFlag := 1. # -# 8.5 Calculate the address of the stored value # -# 2^(J/64). # -# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # -# 8.7 Go to Step 3. # -# Notes: Refer to notes for 2.2 - 2.6. # -# # -# Step 9. Handle exp(X), |X| > 16480 log2. # -# 9.1 If X < 0, go to 9.3 # -# 9.2 ans := Huge, go to 9.4 # -# 9.3 ans := Tiny. # -# 9.4 Restore user FPCR. # -# 9.5 Return ans := ans * ans. Exit. # -# Notes: Exp(X) will surely overflow or underflow, depending on # -# X's sign. "Huge" and "Tiny" are respectively large/tiny # -# extended-precision numbers whose square over/underflow # -# with an inexact result. Thus, 9.5 always raises the # -# inexact together with either overflow or underflow. # -# # -# setoxm1d # -# -------- # -# # -# Step 1. Set ans := 0 # -# # -# Step 2. Return ans := X + ans. Exit. # -# Notes: This will return X with the appropriate rounding # -# precision prescribed by the user FPCR. # -# # -# setoxm1 # -# ------- # -# # -# Step 1. Check |X| # -# 1.1 If |X| >= 1/4, go to Step 1.3. # -# 1.2 Go to Step 7. # -# 1.3 If |X| < 70 log(2), go to Step 2. # -# 1.4 Go to Step 10. # -# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# -# However, it is conceivable |X| can be small very often # -# because EXPM1 is intended to evaluate exp(X)-1 # -# accurately when |X| is small. For further details on # -# the comparisons, see the notes on Step 1 of setox. # -# # -# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # -# 2.1 N := round-to-nearest-integer( X * 64/log2 ). # -# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # -# or 63. # -# 2.3 Calculate M = (N - J)/64; so N = 64M + J. # -# 2.4 Calculate the address of the stored value of # -# 2^(J/64). # -# 2.5 Create the values Sc = 2^M and # -# OnebySc := -2^(-M). # -# Notes: See the notes on Step 2 of setox. # -# # -# Step 3. Calculate X - N*log2/64. # -# 3.1 R := X + N*L1, # -# where L1 := single-precision(-log2/64). # -# 3.2 R := R + N*L2, # -# L2 := extended-precision(-log2/64 - L1).# -# Notes: Applying the analysis of Step 3 of setox in this case # -# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # -# this case). # -# # -# Step 4. Approximate exp(R)-1 by a polynomial # -# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: A1 (which is 1/2), A5 # -# and A6 are single precision; A2, A3 and A4 are double # -# precision. # -# b) Even with the restriction above, # -# |p - (exp(R)-1)| < |R| * 2^(-72.7) # -# for all |R| <= 0.0055. # -# c) To fully utilize the pipeline, p is separated into # -# two independent pieces of roughly equal complexity # -# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # -# [ R + S*(A1 + S*(A3 + S*A5)) ] # -# where S = R*R. # -# # -# Step 5. Compute 2^(J/64)*p by # -# p := T*p # -# where T and t are the stored values for 2^(J/64). # -# Notes: 2^(J/64) is stored as T and t where T+t approximates # -# 2^(J/64) to roughly 85 bits; T is in extended precision # -# and t is in single precision. Note also that T is # -# rounded to 62 bits so that the last two bits of T are # -# zero. The reason for such a special form is that T-1, # -# T-2, and T-8 will all be exact --- a property that will # -# be exploited in Step 6 below. The total relative error # -# in p is no bigger than 2^(-67.7) compared to the final # -# result. # -# # -# Step 6. Reconstruction of exp(X)-1 # -# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # -# 6.1 If M <= 63, go to Step 6.3. # -# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # -# 6.3 If M >= -3, go to 6.5. # -# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # -# 6.5 ans := (T + OnebySc) + (p + t). # -# 6.6 Restore user FPCR. # -# 6.7 Return ans := Sc * ans. Exit. # -# Notes: The various arrangements of the expressions give # -# accurate evaluations. # -# # -# Step 7. exp(X)-1 for |X| < 1/4. # -# 7.1 If |X| >= 2^(-65), go to Step 9. # -# 7.2 Go to Step 8. # -# # -# Step 8. Calculate exp(X)-1, |X| < 2^(-65). # -# 8.1 If |X| < 2^(-16312), goto 8.3 # -# 8.2 Restore FPCR; return ans := X - 2^(-16382). # -# Exit. # -# 8.3 X := X * 2^(140). # -# 8.4 Restore FPCR; ans := ans - 2^(-16382). # -# Return ans := ans*2^(140). Exit # -# Notes: The idea is to return "X - tiny" under the user # -# precision and rounding modes. To avoid unnecessary # -# inefficiency, we stay away from denormalized numbers # -# the best we can. For |X| >= 2^(-16312), the # -# straightforward 8.2 generates the inexact exception as # -# the case warrants. # -# # -# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # -# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # -# Notes: a) In order to reduce memory access, the coefficients # -# are made as "short" as possible: B1 (which is 1/2), B9 # -# to B12 are single precision; B3 to B8 are double # -# precision; and B2 is double extended. # -# b) Even with the restriction above, # -# |p - (exp(X)-1)| < |X| 2^(-70.6) # -# for all |X| <= 0.251. # -# Note that 0.251 is slightly bigger than 1/4. # -# c) To fully preserve accuracy, the polynomial is # -# computed as # -# X + ( S*B1 + Q ) where S = X*X and # -# Q = X*S*(B2 + X*(B3 + ... + X*B12)) # -# d) To fully utilize the pipeline, Q is separated into # -# two independent pieces of roughly equal complexity # -# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # -# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # -# # -# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # -# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # -# practical purposes. Therefore, go to Step 1 of setox. # -# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # -# purposes. # -# ans := -1 # -# Restore user FPCR # -# Return ans := ans + 2^(-126). Exit. # -# Notes: 10.2 will always create an inexact and return -1 + tiny # -# in the user rounding precision and mode. # -# # -######################################################################### - -L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 - -EEXPA3: long 0x3FA55555,0x55554CC1 -EEXPA2: long 0x3FC55555,0x55554A54 - -EM1A4: long 0x3F811111,0x11174385 -EM1A3: long 0x3FA55555,0x55554F5A - -EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 - -EM1B8: long 0x3EC71DE3,0xA5774682 -EM1B7: long 0x3EFA01A0,0x19D7CB68 - -EM1B6: long 0x3F2A01A0,0x1A019DF3 -EM1B5: long 0x3F56C16C,0x16C170E2 - -EM1B4: long 0x3F811111,0x11111111 -EM1B3: long 0x3FA55555,0x55555555 - -EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB - long 0x00000000 - -TWO140: long 0x48B00000,0x00000000 -TWON140: - long 0x37300000,0x00000000 - -EEXPTBL: - long 0x3FFF0000,0x80000000,0x00000000,0x00000000 - long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B - long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 - long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 - long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C - long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F - long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 - long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF - long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF - long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA - long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 - long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 - long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 - long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 - long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D - long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 - long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD - long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 - long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 - long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D - long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 - long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C - long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 - long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 - long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 - long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA - long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A - long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC - long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC - long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 - long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 - long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A - long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 - long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 - long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC - long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 - long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 - long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 - long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 - long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B - long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 - long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E - long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 - long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D - long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 - long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C - long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 - long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 - long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F - long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F - long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 - long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 - long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B - long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 - long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A - long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 - long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 - long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B - long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 - long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 - long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 - long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 - long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 - long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A - - set ADJFLAG,L_SCR2 - set SCALE,FP_SCR0 - set ADJSCALE,FP_SCR1 - set SC,FP_SCR0 - set ONEBYSC,FP_SCR1 - - global setox -setox: -#--entry point for EXP(X), here X is finite, non-zero, and not NaN's - -#--Step 1. - mov.l (%a0),%d1 # load part of input X - and.l &0x7FFF0000,%d1 # biased expo. of X - cmp.l %d1,&0x3FBE0000 # 2^(-65) - bge.b EXPC1 # normal case - bra EXPSM - -EXPC1: -#--The case |X| >= 2^(-65) - mov.w 4(%a0),%d1 # expo. and partial sig. of |X| - cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits - blt.b EXPMAIN # normal case - bra EEXPBIG - -EXPMAIN: -#--Step 2. -#--This is the normal branch: 2^(-65) <= |X| < 16380 log2. - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - mov.l &0,ADJFLAG(%a6) - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M) - mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB - -EXPCONT1: -#--Step 3. -#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) - fmov.x %fp0,%fp2 - fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) - fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 - fadd.x %fp1,%fp0 # X + N*L1 - fadd.x %fp2,%fp0 # fp0 is R, reduced arg. - -#--Step 4. -#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) -#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # fp1 IS S = R*R - - fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 - - fmul.x %fp1,%fp2 # fp2 IS S*A5 - fmov.x %fp1,%fp3 - fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 - - fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 - fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 - - fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) - mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended - mov.l &0x80000000,SCALE+4(%a6) - clr.l SCALE+8(%a6) - - fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) - - fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) - fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) - - fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) - fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), - - fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) - fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 - -#--Step 5 -#--final reconstruction process -#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) - - fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - fadd.s (%a1),%fp0 # accurate 2^(J/64) - - fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... - mov.l ADJFLAG(%a6),%d1 - -#--Step 6 - tst.l %d1 - beq.b NORMAL -ADJUST: - fmul.x ADJSCALE(%a6),%fp0 -NORMAL: - fmov.l %d0,%fpcr # restore user FPCR - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x SCALE(%a6),%fp0 # multiply 2^(M) - bra t_catch - -EXPSM: -#--Step 7 - fmovm.x (%a0),&0x80 # load X - fmov.l %d0,%fpcr - fadd.s &0x3F800000,%fp0 # 1+X in user mode - bra t_pinx2 - -EEXPBIG: -#--Step 8 - cmp.l %d1,&0x400CB27C # 16480 log2 - bgt.b EXP2BIG -#--Steps 8.2 -- 8.6 - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - mov.l &1,ADJFLAG(%a6) - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is K - mov.l %d1,L_SCR1(%a6) # save K temporarily - asr.l &1,%d1 # D0 is M1 - sub.l %d1,L_SCR1(%a6) # a1 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M1) - mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) - mov.l &0x80000000,ADJSCALE+4(%a6) - clr.l ADJSCALE+8(%a6) - mov.l L_SCR1(%a6),%d1 # D0 is M - add.w &0x3FFF,%d1 # biased expo. of 2^(M) - bra.w EXPCONT1 # go back to Step 3 - -EXP2BIG: -#--Step 9 - tst.b (%a0) # is X positive or negative? - bmi t_unfl2 - bra t_ovfl2 - - global setoxd -setoxd: -#--entry point for EXP(X), X is denormalized - mov.l (%a0),-(%sp) - andi.l &0x80000000,(%sp) - ori.l &0x00800000,(%sp) # sign(X)*2^(-126) - - fmov.s &0x3F800000,%fp0 - - fmov.l %d0,%fpcr - fadd.s (%sp)+,%fp0 - bra t_pinx2 - - global setoxm1 -setoxm1: -#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN - -#--Step 1. -#--Step 1.1 - mov.l (%a0),%d1 # load part of input X - and.l &0x7FFF0000,%d1 # biased expo. of X - cmp.l %d1,&0x3FFD0000 # 1/4 - bge.b EM1CON1 # |X| >= 1/4 - bra EM1SM - -EM1CON1: -#--Step 1.3 -#--The case |X| >= 1/4 - mov.w 4(%a0),%d1 # expo. and partial sig. of |X| - cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits - ble.b EM1MAIN # 1/4 <= |X| <= 70log2 - bra EM1BIG - -EM1MAIN: -#--Step 2. -#--This is the case: 1/4 <= |X| <= 70 log2. - fmov.x (%a0),%fp0 # load input from (a0) - - fmov.x %fp0,%fp1 - fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - fmov.l %fp0,%d1 # N = int( X * 64/log2 ) - lea EEXPTBL(%pc),%a1 - fmov.l %d1,%fp0 # convert to floating-format - - mov.l %d1,L_SCR1(%a6) # save N temporarily - and.l &0x3F,%d1 # D0 is J = N mod 64 - lsl.l &4,%d1 - add.l %d1,%a1 # address of 2^(J/64) - mov.l L_SCR1(%a6),%d1 - asr.l &6,%d1 # D0 is M - mov.l %d1,L_SCR1(%a6) # save a copy of M - -#--Step 3. -#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, -#--a0 points to 2^(J/64), D0 and a1 both contain M - fmov.x %fp0,%fp2 - fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) - fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 - fadd.x %fp1,%fp0 # X + N*L1 - fadd.x %fp2,%fp0 # fp0 is R, reduced arg. - add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M - -#--Step 4. -#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL -#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) -#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R -#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # fp1 IS S = R*R - - fmov.s &0x3950097B,%fp2 # fp2 IS a6 - - fmul.x %fp1,%fp2 # fp2 IS S*A6 - fmov.x %fp1,%fp3 - fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 - - fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 - fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 - mov.w %d1,SC(%a6) # SC is 2^(M) in extended - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - - fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) - mov.l L_SCR1(%a6),%d1 # D0 is M - neg.w %d1 # D0 is -M - fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) - add.w &0x3FFF,%d1 # biased expo. of 2^(-M) - fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) - fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) - - fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) - or.w &0x8000,%d1 # signed/expo. of -2^(-M) - mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) - mov.l &0x80000000,ONEBYSC+4(%a6) - clr.l ONEBYSC+8(%a6) - fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) - - fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) - fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) - - fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 - - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - -#--Step 5 -#--Compute 2^(J/64)*p - - fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) - -#--Step 6 -#--Step 6.1 - mov.l L_SCR1(%a6),%d1 # retrieve M - cmp.l %d1,&63 - ble.b MLE63 -#--Step 6.2 M >= 64 - fmov.s 12(%a1),%fp1 # fp1 is t - fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc - fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released - fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) - bra EM1SCALE -MLE63: -#--Step 6.3 M <= 63 - cmp.l %d1,&-3 - bge.b MGEN3 -MLTN3: -#--Step 6.4 M <= -4 - fadd.s 12(%a1),%fp0 # p+t - fadd.x (%a1),%fp0 # T+(p+t) - fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) - bra EM1SCALE -MGEN3: -#--Step 6.5 -3 <= M <= 63 - fmov.x (%a1)+,%fp1 # fp1 is T - fadd.s (%a1),%fp0 # fp0 is p+t - fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc - fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) - -EM1SCALE: -#--Step 6.6 - fmov.l %d0,%fpcr - fmul.x SC(%a6),%fp0 - bra t_inx2 - -EM1SM: -#--Step 7 |X| < 1/4. - cmp.l %d1,&0x3FBE0000 # 2^(-65) - bge.b EM1POLY - -EM1TINY: -#--Step 8 |X| < 2^(-65) - cmp.l %d1,&0x00330000 # 2^(-16312) - blt.b EM12TINY -#--Step 8.2 - mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - fmov.x (%a0),%fp0 - fmov.l %d0,%fpcr - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x SC(%a6),%fp0 - bra t_catch - -EM12TINY: -#--Step 8.3 - fmov.x (%a0),%fp0 - fmul.d TWO140(%pc),%fp0 - mov.l &0x80010000,SC(%a6) - mov.l &0x80000000,SC+4(%a6) - clr.l SC+8(%a6) - fadd.x SC(%a6),%fp0 - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.d TWON140(%pc),%fp0 - bra t_catch - -EM1POLY: -#--Step 9 exp(X)-1 by a simple polynomial - fmov.x (%a0),%fp0 # fp0 is X - fmul.x %fp0,%fp0 # fp0 is S := X*X - fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} - fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 - fmul.x %fp0,%fp1 # fp1 is S*B12 - fmov.s &0x310F8290,%fp2 # fp2 is B11 - fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 - - fmul.x %fp0,%fp2 # fp2 is S*B11 - fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... - - fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... - fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B9+... - fmul.x %fp0,%fp1 # fp1 is S*(B8+... - - fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... - fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B7+... - fmul.x %fp0,%fp1 # fp1 is S*(B6+... - - fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... - fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B5+... - fmul.x %fp0,%fp1 # fp1 is S*(B4+... - - fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... - fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... - - fmul.x %fp0,%fp2 # fp2 is S*(B3+... - fmul.x %fp0,%fp1 # fp1 is S*(B2+... - - fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) - fmul.x (%a0),%fp1 # fp1 is X*S*(B2... - - fmul.s &0x3F000000,%fp0 # fp0 is S*B1 - fadd.x %fp2,%fp1 # fp1 is Q - - fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} - - fadd.x %fp1,%fp0 # fp0 is S*B1+Q - - fmov.l %d0,%fpcr - fadd.x (%a0),%fp0 - bra t_inx2 - -EM1BIG: -#--Step 10 |X| > 70 log2 - mov.l (%a0),%d1 - cmp.l %d1,&0 - bgt.w EXPC1 -#--Step 10.2 - fmov.s &0xBF800000,%fp0 # fp0 is -1 - fmov.l %d0,%fpcr - fadd.s &0x00800000,%fp0 # -1 + 2^(-126) - bra t_minx2 - - global setoxm1d -setoxm1d: -#--entry point for EXPM1(X), here X is denormalized -#--Step 0. - bra t_extdnrm - -######################################################################### -# sgetexp(): returns the exponent portion of the input argument. # -# The exponent bias is removed and the exponent value is # -# returned as an extended precision number in fp0. # -# sgetexpd(): handles denormalized numbers. # -# # -# sgetman(): extracts the mantissa of the input argument. The # -# mantissa is converted to an extended precision number w/ # -# an exponent of $3fff and is returned in fp0. The range of # -# the result is [1.0 - 2.0). # -# sgetmand(): handles denormalized numbers. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# # -# OUTPUT ************************************************************** # -# fp0 = exponent(X) or mantissa(X) # -# # -######################################################################### - - global sgetexp -sgetexp: - mov.w SRC_EX(%a0),%d0 # get the exponent - bclr &0xf,%d0 # clear the sign bit - subi.w &0x3fff,%d0 # subtract off the bias - fmov.w %d0,%fp0 # return exp in fp0 - blt.b sgetexpn # it's negative - rts - -sgetexpn: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - - global sgetexpd -sgetexpd: - bsr.l norm # normalize - neg.w %d0 # new exp = -(shft amt) - subi.w &0x3fff,%d0 # subtract off the bias - fmov.w %d0,%fp0 # return exp in fp0 - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - - global sgetman -sgetman: - mov.w SRC_EX(%a0),%d0 # get the exp - ori.w &0x7fff,%d0 # clear old exp - bclr &0xe,%d0 # make it the new exp +-3fff - -# here, we build the result in a tmp location so as not to disturb the input - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 - bmi.b sgetmann # it's negative - rts - -sgetmann: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# For denormalized numbers, shift the mantissa until the j-bit = 1, -# then load the exponent with +/1 $3fff. -# - global sgetmand -sgetmand: - bsr.l norm # normalize exponent - bra.b sgetman - -######################################################################### -# scosh(): computes the hyperbolic cosine of a normalized input # -# scoshd(): computes the hyperbolic cosine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = cosh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# COSH # -# 1. If |X| > 16380 log2, go to 3. # -# # -# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # -# y = |X|, z = exp(Y), and # -# cosh(X) = (1/2)*( z + 1/z ). # -# Exit. # -# # -# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # -# # -# 4. (16380 log2 < |X| <= 16480 log2) # -# cosh(X) = sign(X) * exp(|X|)/2. # -# However, invoking exp(|X|) may cause premature # -# overflow. Thus, we calculate sinh(X) as follows: # -# Y := |X| # -# Fact := 2**(16380) # -# Y' := Y - 16381 log2 # -# cosh(X) := Fact * exp(Y'). # -# Exit. # -# # -# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # -# Huge*Huge to generate overflow and an infinity with # -# the appropriate sign. Huge is the largest finite number # -# in extended format. Exit. # -# # -######################################################################### - -TWO16380: - long 0x7FFB0000,0x80000000,0x00000000,0x00000000 - - global scosh -scosh: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x400CB167 - bgt.b COSHBIG - -#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) - - fabs.x %fp0 # |X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save |X| to stack - lea (%sp),%a0 # pass ptr to |X| - bsr setox # FP0 IS EXP(|X|) - add.l &0xc,%sp # erase |X| from stack - fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) - mov.l (%sp)+,%d0 - - fmov.s &0x3E800000,%fp1 # (1/4) - fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) - - fmov.l %d0,%fpcr - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x %fp1,%fp0 - bra t_catch - -COSHBIG: - cmp.l %d1,&0x400CB2B3 - bgt.b COSHHUGE - - fabs.x %fp0 - fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) - fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save fp0 to stack - lea (%sp),%a0 # pass ptr to fp0 - bsr setox - add.l &0xc,%sp # clear fp0 from stack - mov.l (%sp)+,%d0 - - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x TWO16380(%pc),%fp0 - bra t_catch - -COSHHUGE: - bra t_ovfl2 - - global scoshd -#--COSH(X) = 1 FOR DENORMALIZED X -scoshd: - fmov.s &0x3F800000,%fp0 - - fmov.l %d0,%fpcr - fadd.s &0x00800000,%fp0 - bra t_pinx2 - -######################################################################### -# ssinh(): computes the hyperbolic sine of a normalized input # -# ssinhd(): computes the hyperbolic sine of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = sinh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# SINH # -# 1. If |X| > 16380 log2, go to 3. # -# # -# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # -# y = |X|, sgn = sign(X), and z = expm1(Y), # -# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # -# Exit. # -# # -# 3. If |X| > 16480 log2, go to 5. # -# # -# 4. (16380 log2 < |X| <= 16480 log2) # -# sinh(X) = sign(X) * exp(|X|)/2. # -# However, invoking exp(|X|) may cause premature overflow. # -# Thus, we calculate sinh(X) as follows: # -# Y := |X| # -# sgn := sign(X) # -# sgnFact := sgn * 2**(16380) # -# Y' := Y - 16381 log2 # -# sinh(X) := sgnFact * exp(Y'). # -# Exit. # -# # -# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # -# sign(X)*Huge*Huge to generate overflow and an infinity with # -# the appropriate sign. Huge is the largest finite number in # -# extended format. Exit. # -# # -######################################################################### - - global ssinh -ssinh: - fmov.x (%a0),%fp0 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - mov.l %d1,%a1 # save (compacted) operand - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x400CB167 - bgt.b SINHBIG - -#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 -#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) - - fabs.x %fp0 # Y = |X| - - movm.l &0x8040,-(%sp) # {a1/d0} - fmovm.x &0x01,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - clr.l %d0 - bsr setoxm1 # FP0 IS Z = EXPM1(Y) - add.l &0xc,%sp # clear Y from stack - fmov.l &0,%fpcr - movm.l (%sp)+,&0x0201 # {a1/d0} - - fmov.x %fp0,%fp1 - fadd.s &0x3F800000,%fp1 # 1+Z - fmov.x %fp0,-(%sp) - fdiv.x %fp1,%fp0 # Z/(1+Z) - mov.l %a1,%d1 - and.l &0x80000000,%d1 - or.l &0x3F000000,%d1 - fadd.x (%sp)+,%fp0 - mov.l %d1,-(%sp) - - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set - bra t_catch - -SINHBIG: - cmp.l %d1,&0x400CB2B3 - bgt t_ovfl - fabs.x %fp0 - fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) - mov.l &0,-(%sp) - mov.l &0x80000000,-(%sp) - mov.l %a1,%d1 - and.l &0x80000000,%d1 - or.l &0x7FFB0000,%d1 - mov.l %d1,-(%sp) # EXTENDED FMT - fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save fp0 on stack - lea (%sp),%a0 # pass ptr to fp0 - bsr setox - add.l &0xc,%sp # clear fp0 from stack - - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x (%sp)+,%fp0 # possible exception - bra t_catch - - global ssinhd -#--SINH(X) = X FOR DENORMALIZED X -ssinhd: - bra t_extdnrm - -######################################################################### -# stanh(): computes the hyperbolic tangent of a normalized input # -# stanhd(): computes the hyperbolic tangent of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = tanh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# TANH # -# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # -# # -# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # -# sgn := sign(X), y := 2|X|, z := expm1(Y), and # -# tanh(X) = sgn*( z/(2+z) ). # -# Exit. # -# # -# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # -# go to 7. # -# # -# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # -# # -# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # -# sgn := sign(X), y := 2|X|, z := exp(Y), # -# tanh(X) = sgn - [ sgn*2/(1+z) ]. # -# Exit. # -# # -# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # -# calculate Tanh(X) by # -# sgn := sign(X), Tiny := 2**(-126), # -# tanh(X) := sgn - sgn*Tiny. # -# Exit. # -# # -# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # -# # -######################################################################### - - set X,FP_SCR0 - set XFRAC,X+4 - - set SGN,L_SCR3 - - set V,FP_SCR0 - - global stanh -stanh: - fmov.x (%a0),%fp0 # LOAD INPUT - - fmov.x %fp0,X(%a6) - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - mov.l %d1,X(%a6) - and.l &0x7FFFFFFF,%d1 - cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? - blt.w TANHBORS # yes - cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? - bgt.w TANHBORS # yes - -#--THIS IS THE USUAL CASE -#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). - - mov.l X(%a6),%d1 - mov.l %d1,SGN(%a6) - and.l &0x7FFF0000,%d1 - add.l &0x00010000,%d1 # EXPONENT OF 2|X| - mov.l %d1,X(%a6) - and.l &0x80000000,SGN(%a6) - fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x1,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - bsr setoxm1 # FP0 IS Z = EXPM1(Y) - add.l &0xc,%sp # clear Y from stack - mov.l (%sp)+,%d0 - - fmov.x %fp0,%fp1 - fadd.s &0x40000000,%fp1 # Z+2 - mov.l SGN(%a6),%d1 - fmov.x %fp1,V(%a6) - eor.l %d1,V(%a6) - - fmov.l %d0,%fpcr # restore users round prec,mode - fdiv.x V(%a6),%fp0 - bra t_inx2 - -TANHBORS: - cmp.l %d1,&0x3FFF8000 - blt.w TANHSM - - cmp.l %d1,&0x40048AA1 - bgt.w TANHHUGE - -#-- (5/2) LOG2 < |X| < 50 LOG2, -#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), -#--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. - - mov.l X(%a6),%d1 - mov.l %d1,SGN(%a6) - and.l &0x7FFF0000,%d1 - add.l &0x00010000,%d1 # EXPO OF 2|X| - mov.l %d1,X(%a6) # Y = 2|X| - and.l &0x80000000,SGN(%a6) - mov.l SGN(%a6),%d1 - fmov.x X(%a6),%fp0 # Y = 2|X| - - mov.l %d0,-(%sp) - clr.l %d0 - fmovm.x &0x01,-(%sp) # save Y on stack - lea (%sp),%a0 # pass ptr to Y - bsr setox # FP0 IS EXP(Y) - add.l &0xc,%sp # clear Y from stack - mov.l (%sp)+,%d0 - mov.l SGN(%a6),%d1 - fadd.s &0x3F800000,%fp0 # EXP(Y)+1 - - eor.l &0xC0000000,%d1 # -SIGN(X)*2 - fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT - fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] - - mov.l SGN(%a6),%d1 - or.l &0x3F800000,%d1 # SGN - fmov.s %d1,%fp0 # SGN IN SGL FMT - - fmov.l %d0,%fpcr # restore users round prec,mode - mov.b &FADD_OP,%d1 # last inst is ADD - fadd.x %fp1,%fp0 - bra t_inx2 - -TANHSM: - fmov.l %d0,%fpcr # restore users round prec,mode - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x X(%a6),%fp0 # last inst - possible exception set - bra t_catch - -#---RETURN SGN(X) - SGN(X)EPS -TANHHUGE: - mov.l X(%a6),%d1 - and.l &0x80000000,%d1 - or.l &0x3F800000,%d1 - fmov.s %d1,%fp0 - and.l &0x80000000,%d1 - eor.l &0x80800000,%d1 # -SIGN(X)*EPS - - fmov.l %d0,%fpcr # restore users round prec,mode - fadd.s %d1,%fp0 - bra t_inx2 - - global stanhd -#--TANH(X) = X FOR DENORMALIZED X -stanhd: - bra t_extdnrm - -######################################################################### -# slogn(): computes the natural logarithm of a normalized input # -# slognd(): computes the natural logarithm of a denormalized input # -# slognp1(): computes the log(1+X) of a normalized input # -# slognp1d(): computes the log(1+X) of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = log(X) or log(1+X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# LOGN: # -# Step 1. If |X-1| < 1/16, approximate log(X) by an odd # -# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # -# move on to Step 2. # -# # -# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # -# seven significant bits of Y plus 2**(-7), i.e. # -# F = 1.xxxxxx1 in base 2 where the six "x" match those # -# of Y. Note that |Y-F| <= 2**(-7). # -# # -# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # -# polynomial in u, log(1+u) = poly. # -# # -# Step 4. Reconstruct # -# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # -# by k*log(2) + (log(F) + poly). The values of log(F) are # -# calculated beforehand and stored in the program. # -# # -# lognp1: # -# Step 1: If |X| < 1/16, approximate log(1+X) by an odd # -# polynomial in u where u = 2X/(2+X). Otherwise, move on # -# to Step 2. # -# # -# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # -# in Step 2 of the algorithm for LOGN and compute # -# log(1+X) as k*log(2) + log(F) + poly where poly # -# approximates log(1+u), u = (Y-F)/F. # -# # -# Implementation Notes: # -# Note 1. There are 64 different possible values for F, thus 64 # -# log(F)'s need to be tabulated. Moreover, the values of # -# 1/F are also tabulated so that the division in (Y-F)/F # -# can be performed by a multiplication. # -# # -# Note 2. In Step 2 of lognp1, in order to preserved accuracy, # -# the value Y-F has to be calculated carefully when # -# 1/2 <= X < 3/2. # -# # -# Note 3. To fully exploit the pipeline, polynomials are usually # -# separated into two parts evaluated independently before # -# being added up. # -# # -######################################################################### -LOGOF2: - long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -one: - long 0x3F800000 -zero: - long 0x00000000 -infty: - long 0x7F800000 -negone: - long 0xBF800000 - -LOGA6: - long 0x3FC2499A,0xB5E4040B -LOGA5: - long 0xBFC555B5,0x848CB7DB - -LOGA4: - long 0x3FC99999,0x987D8730 -LOGA3: - long 0xBFCFFFFF,0xFF6F7E97 - -LOGA2: - long 0x3FD55555,0x555555A4 -LOGA1: - long 0xBFE00000,0x00000008 - -LOGB5: - long 0x3F175496,0xADD7DAD6 -LOGB4: - long 0x3F3C71C2,0xFE80C7E0 - -LOGB3: - long 0x3F624924,0x928BCCFF -LOGB2: - long 0x3F899999,0x999995EC - -LOGB1: - long 0x3FB55555,0x55555555 -TWO: - long 0x40000000,0x00000000 - -LTHOLD: - long 0x3f990000,0x80000000,0x00000000,0x00000000 - -LOGTBL: - long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 - long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 - long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 - long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 - long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 - long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 - long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 - long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 - long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 - long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 - long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 - long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 - long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 - long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 - long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 - long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 - long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 - long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 - long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 - long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 - long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 - long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 - long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 - long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 - long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 - long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 - long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 - long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 - long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 - long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 - long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 - long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 - long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 - long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 - long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 - long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 - long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 - long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 - long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 - long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 - long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 - long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 - long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 - long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 - long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 - long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 - long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 - long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 - long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 - long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 - long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 - long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 - long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 - long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 - long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 - long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 - long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 - long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 - long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 - long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 - long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 - long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 - long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 - long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 - long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 - long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 - long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 - long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 - long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 - long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 - long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 - long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 - long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 - long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 - long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 - long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 - long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 - long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 - long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 - long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 - long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 - long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 - long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 - long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 - long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 - long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 - long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 - long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 - long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 - long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 - long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 - long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 - long 0x3FFE0000,0x94458094,0x45809446,0x00000000 - long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 - long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 - long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 - long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 - long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 - long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 - long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 - long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 - long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 - long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 - long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 - long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 - long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 - long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 - long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 - long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 - long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 - long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 - long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 - long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 - long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 - long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 - long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 - long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 - long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 - long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 - long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 - long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 - long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 - long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 - long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 - long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 - long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 - long 0x3FFE0000,0x80808080,0x80808081,0x00000000 - long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 - - set ADJK,L_SCR1 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - - set F,FP_SCR1 - set FFRAC,F+4 - - set KLOG2,FP_SCR0 - - set SAVEU,FP_SCR0 - - global slogn -#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S -slogn: - fmov.x (%a0),%fp0 # LOAD INPUT - mov.l &0x00000000,ADJK(%a6) - -LOGBGN: -#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS -#--A FINITE, NON-ZERO, NORMALIZED NUMBER. - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - - mov.l (%a0),X(%a6) - mov.l 4(%a0),X+4(%a6) - mov.l 8(%a0),X+8(%a6) - - cmp.l %d1,&0 # CHECK IF X IS NEGATIVE - blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID -# X IS POSITIVE, CHECK IF X IS NEAR 1 - cmp.l %d1,&0x3ffef07d # IS X < 15/16? - blt.b LOGMAIN # YES - cmp.l %d1,&0x3fff8841 # IS X > 17/16? - ble.w LOGNEAR1 # NO - -LOGMAIN: -#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 - -#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. -#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. -#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) -#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). -#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING -#--LOG(1+U) CAN BE VERY EFFICIENT. -#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO -#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. - -#--GET K, Y, F, AND ADDRESS OF 1/F. - asr.l &8,%d1 - asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X - sub.l &0x3FFF,%d1 # THIS IS K - add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. - lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) - fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT - -#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F - mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X - mov.l XFRAC(%a6),FFRAC(%a6) - and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y - or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT - mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT - add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F - - fmov.x X(%a6),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # Y-F - fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY -#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K -#--REGISTERS SAVED: FPCR, FP1, FP2 - -LP1CONT1: -#--AN RE-ENTRY POINT FOR LOGNP1 - fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F - fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY - fmov.x %fp0,%fp2 - fmul.x %fp2,%fp2 # FP2 IS V=U*U - fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 - -#--LOG(1+U) IS APPROXIMATED BY -#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS -#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] - - fmov.x %fp2,%fp3 - fmov.x %fp2,%fp1 - - fmul.d LOGA6(%pc),%fp1 # V*A6 - fmul.d LOGA5(%pc),%fp2 # V*A5 - - fadd.d LOGA4(%pc),%fp1 # A4+V*A6 - fadd.d LOGA3(%pc),%fp2 # A3+V*A5 - - fmul.x %fp3,%fp1 # V*(A4+V*A6) - fmul.x %fp3,%fp2 # V*(A3+V*A5) - - fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) - fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) - - fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) - add.l &16,%a0 # ADDRESS OF LOG(F) - fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) - - fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) - fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) - - fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) - fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 - fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) - - fmov.l %d0,%fpcr - fadd.x KLOG2(%a6),%fp0 # FINAL ADD - bra t_inx2 - - -LOGNEAR1: - -# if the input is exactly equal to one, then exit through ld_pzero. -# if these 2 lines weren't here, the correct answer would be returned -# but the INEX2 bit would be set. - fcmp.b %fp0,&0x1 # is it equal to one? - fbeq.l ld_pzero # yes - -#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. - fmov.x %fp0,%fp1 - fsub.s one(%pc),%fp1 # FP1 IS X-1 - fadd.s one(%pc),%fp0 # FP0 IS X+1 - fadd.x %fp1,%fp1 # FP1 IS 2(X-1) -#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL -#--IN U, U = 2(X-1)/(X+1) = FP1/FP0 - -LP1CONT2: -#--THIS IS AN RE-ENTRY POINT FOR LOGNP1 - fdiv.x %fp0,%fp1 # FP1 IS U - fmovm.x &0xc,-(%sp) # SAVE FP2-3 -#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 -#--LET V=U*U, W=V*V, CALCULATE -#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY -#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) - fmov.x %fp1,%fp0 - fmul.x %fp0,%fp0 # FP0 IS V - fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS W - - fmov.d LOGB5(%pc),%fp3 - fmov.d LOGB4(%pc),%fp2 - - fmul.x %fp1,%fp3 # W*B5 - fmul.x %fp1,%fp2 # W*B4 - - fadd.d LOGB3(%pc),%fp3 # B3+W*B5 - fadd.d LOGB2(%pc),%fp2 # B2+W*B4 - - fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED - - fmul.x %fp0,%fp2 # V*(B2+W*B4) - - fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) - fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V - - fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED - fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED - - fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) - - fmov.l %d0,%fpcr - fadd.x SAVEU(%a6),%fp0 - bra t_inx2 - -#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID -LOGNEG: - bra t_operr - - global slognd -slognd: -#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT - - mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 - -#----normalize the input value by left shifting k bits (k to be determined -#----below), adjusting exponent and storing -k to ADJK -#----the value TWOTO100 is no longer needed. -#----Note that this code assumes the denormalized input is NON-ZERO. - - movm.l &0x3f00,-(%sp) # save some registers {d2-d7} - mov.l (%a0),%d3 # D3 is exponent of smallest norm. # - mov.l 4(%a0),%d4 - mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) - clr.l %d2 # D2 used for holding K - - tst.l %d4 - bne.b Hi_not0 - -Hi_0: - mov.l %d5,%d4 - clr.l %d5 - mov.l &32,%d2 - clr.l %d6 - bfffo %d4{&0:&32},%d6 - lsl.l %d6,%d4 - add.l %d6,%d2 # (D3,D4,D5) is normalized - - mov.l %d3,X(%a6) - mov.l %d4,XFRAC(%a6) - mov.l %d5,XFRAC+4(%a6) - neg.l %d2 - mov.l %d2,ADJK(%a6) - fmov.x X(%a6),%fp0 - movm.l (%sp)+,&0xfc # restore registers {d2-d7} - lea X(%a6),%a0 - bra.w LOGBGN # begin regular log(X) - -Hi_not0: - clr.l %d6 - bfffo %d4{&0:&32},%d6 # find first 1 - mov.l %d6,%d2 # get k - lsl.l %d6,%d4 - mov.l %d5,%d7 # a copy of D5 - lsl.l %d6,%d5 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d4 # (D3,D4,D5) normalized - - mov.l %d3,X(%a6) - mov.l %d4,XFRAC(%a6) - mov.l %d5,XFRAC+4(%a6) - neg.l %d2 - mov.l %d2,ADJK(%a6) - fmov.x X(%a6),%fp0 - movm.l (%sp)+,&0xfc # restore registers {d2-d7} - lea X(%a6),%a0 - bra.w LOGBGN # begin regular log(X) - - global slognp1 -#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S -slognp1: - fmov.x (%a0),%fp0 # LOAD INPUT - fabs.x %fp0 # test magnitude - fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold - fbgt.w LP1REAL # if greater, continue - fmov.l %d0,%fpcr - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x (%a0),%fp0 # return signed argument - bra t_catch - -LP1REAL: - fmov.x (%a0),%fp0 # LOAD INPUT - mov.l &0x00000000,ADJK(%a6) - fmov.x %fp0,%fp1 # FP1 IS INPUT Z - fadd.s one(%pc),%fp0 # X := ROUND(1+Z) - fmov.x %fp0,X(%a6) - mov.w XFRAC(%a6),XDCARE(%a6) - mov.l X(%a6),%d1 - cmp.l %d1,&0 - ble.w LP1NEG0 # LOG OF ZERO OR -VE - cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? - blt.w LOGMAIN - cmp.l %d1,&0x3fffc000 - bgt.w LOGMAIN -#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, -#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, -#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). - -LP1NEAR1: -#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) - cmp.l %d1,&0x3ffef07d - blt.w LP1CARE - cmp.l %d1,&0x3fff8841 - bgt.w LP1CARE - -LP1ONE16: -#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) -#--WHERE U = 2Z/(2+Z) = 2Z/(1+X). - fadd.x %fp1,%fp1 # FP1 IS 2Z - fadd.s one(%pc),%fp0 # FP0 IS 1+X -#--U = FP1/FP0 - bra.w LP1CONT2 - -LP1CARE: -#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE -#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST -#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], -#--THERE ARE ONLY TWO CASES. -#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z -#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z -#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF -#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. - - mov.l XFRAC(%a6),FFRAC(%a6) - and.l &0xFE000000,FFRAC(%a6) - or.l &0x01000000,FFRAC(%a6) # F OBTAINED - cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 - bge.b KISZERO - -KISNEG1: - fmov.s TWO(%pc),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # 2-F - mov.l FFRAC(%a6),%d1 - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F - fadd.x %fp1,%fp1 # GET 2Z - fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} - fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z - lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F - add.l %d1,%a0 - fmov.s negone(%pc),%fp1 # FP1 IS K = -1 - bra.w LP1CONT1 - -KISZERO: - fmov.s one(%pc),%fp0 - mov.l &0x3fff0000,F(%a6) - clr.l F+8(%a6) - fsub.x F(%a6),%fp0 # 1-F - mov.l FFRAC(%a6),%d1 - and.l &0x7E000000,%d1 - asr.l &8,%d1 - asr.l &8,%d1 - asr.l &4,%d1 - fadd.x %fp1,%fp0 # FP0 IS Y-F - fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} - lea LOGTBL(%pc),%a0 - add.l %d1,%a0 # A0 IS ADDRESS OF 1/F - fmov.s zero(%pc),%fp1 # FP1 IS K = 0 - bra.w LP1CONT1 - -LP1NEG0: -#--FPCR SAVED. D0 IS X IN COMPACT FORM. - cmp.l %d1,&0 - blt.b LP1NEG -LP1ZERO: - fmov.s negone(%pc),%fp0 - - fmov.l %d0,%fpcr - bra t_dz - -LP1NEG: - fmov.s zero(%pc),%fp0 - - fmov.l %d0,%fpcr - bra t_operr - - global slognp1d -#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT -# Simply return the denorm -slognp1d: - bra t_extdnrm - -######################################################################### -# satanh(): computes the inverse hyperbolic tangent of a norm input # -# satanhd(): computes the inverse hyperbolic tangent of a denorm input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = arctanh(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 3 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# ATANH # -# 1. If |X| >= 1, go to 3. # -# # -# 2. (|X| < 1) Calculate atanh(X) by # -# sgn := sign(X) # -# y := |X| # -# z := 2y/(1-y) # -# atanh(X) := sgn * (1/2) * logp1(z) # -# Exit. # -# # -# 3. If |X| > 1, go to 5. # -# # -# 4. (|X| = 1) Generate infinity with an appropriate sign and # -# divide-by-zero by # -# sgn := sign(X) # -# atan(X) := sgn / (+0). # -# Exit. # -# # -# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # -# Exit. # -# # -######################################################################### - - global satanh -satanh: - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - cmp.l %d1,&0x3FFF8000 - bge.b ATANHBIG - -#--THIS IS THE USUAL CASE, |X| < 1 -#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). - - fabs.x (%a0),%fp0 # Y = |X| - fmov.x %fp0,%fp1 - fneg.x %fp1 # -Y - fadd.x %fp0,%fp0 # 2Y - fadd.s &0x3F800000,%fp1 # 1-Y - fdiv.x %fp1,%fp0 # 2Y/(1-Y) - mov.l (%a0),%d1 - and.l &0x80000000,%d1 - or.l &0x3F000000,%d1 # SIGN(X)*HALF - mov.l %d1,-(%sp) - - mov.l %d0,-(%sp) # save rnd prec,mode - clr.l %d0 # pass ext prec,RN - fmovm.x &0x01,-(%sp) # save Z on stack - lea (%sp),%a0 # pass ptr to Z - bsr slognp1 # LOG1P(Z) - add.l &0xc,%sp # clear Z from stack - - mov.l (%sp)+,%d0 # fetch old prec,mode - fmov.l %d0,%fpcr # load it - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.s (%sp)+,%fp0 - bra t_catch - -ATANHBIG: - fabs.x (%a0),%fp0 # |X| - fcmp.s %fp0,&0x3F800000 - fbgt t_operr - bra t_dz - - global satanhd -#--ATANH(X) = X FOR DENORMALIZED X -satanhd: - bra t_extdnrm - -######################################################################### -# slog10(): computes the base-10 logarithm of a normalized input # -# slog10d(): computes the base-10 logarithm of a denormalized input # -# slog2(): computes the base-2 logarithm of a normalized input # -# slog2d(): computes the base-2 logarithm of a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = log_10(X) or log_2(X) # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 1.7 ulps in 64 significant bit, # -# i.e. within 0.5003 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# slog10d: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # -# Notes: Even if X is denormalized, log(X) is always normalized. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L10. # -# # -# slog10: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L10. # -# # -# sLog2d: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # -# Notes: Even if X is denormalized, log(X) is always normalized. # -# # -# Step 2. Compute log_10(X) = log(X) * (1/log(2)). # -# 2.1 Restore the user FPCR # -# 2.2 Return ans := Y * INV_L2. # -# # -# sLog2: # -# # -# Step 0. If X < 0, create a NaN and raise the invalid operation # -# flag. Otherwise, save FPCR in D1; set FpCR to default. # -# Notes: Default means round-to-nearest mode, no floating-point # -# traps, and precision control = double extended. # -# # -# Step 1. If X is not an integer power of two, i.e., X != 2^k, # -# go to Step 3. # -# # -# Step 2. Return k. # -# 2.1 Get integer k, X = 2^k. # -# 2.2 Restore the user FPCR. # -# 2.3 Return ans := convert-to-double-extended(k). # -# # -# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # -# # -# Step 4. Compute log_2(X) = log(X) * (1/log(2)). # -# 4.1 Restore the user FPCR # -# 4.2 Return ans := Y * INV_L2. # -# # -######################################################################### - -INV_L10: - long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 - -INV_L2: - long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 - - global slog10 -#--entry point for Log10(X), X is normalized -slog10: - fmov.b &0x1,%fp0 - fcmp.x %fp0,(%a0) # if operand == 1, - fbeq.l ld_pzero # return an EXACT zero - - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slogn # log(X), X normal. - fmov.l (%sp)+,%fpcr - fmul.x INV_L10(%pc),%fp0 - bra t_inx2 - - global slog10d -#--entry point for Log10(X), X is denormalized -slog10d: - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slognd # log(X), X denorm. - fmov.l (%sp)+,%fpcr - fmul.x INV_L10(%pc),%fp0 - bra t_minx2 - - global slog2 -#--entry point for Log2(X), X is normalized -slog2: - mov.l (%a0),%d1 - blt.w invalid - - mov.l 8(%a0),%d1 - bne.b continue # X is not 2^k - - mov.l 4(%a0),%d1 - and.l &0x7FFFFFFF,%d1 - bne.b continue - -#--X = 2^k. - mov.w (%a0),%d1 - and.l &0x00007FFF,%d1 - sub.l &0x3FFF,%d1 - beq.l ld_pzero - fmov.l %d0,%fpcr - fmov.l %d1,%fp0 - bra t_inx2 - -continue: - mov.l %d0,-(%sp) - clr.l %d0 - bsr slogn # log(X), X normal. - fmov.l (%sp)+,%fpcr - fmul.x INV_L2(%pc),%fp0 - bra t_inx2 - -invalid: - bra t_operr - - global slog2d -#--entry point for Log2(X), X is denormalized -slog2d: - mov.l (%a0),%d1 - blt.w invalid - mov.l %d0,-(%sp) - clr.l %d0 - bsr slognd # log(X), X denorm. - fmov.l (%sp)+,%fpcr - fmul.x INV_L2(%pc),%fp0 - bra t_minx2 - -######################################################################### -# stwotox(): computes 2**X for a normalized input # -# stwotoxd(): computes 2**X for a denormalized input # -# stentox(): computes 10**X for a normalized input # -# stentoxd(): computes 10**X for a denormalized input # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input # -# d0 = round precision,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = 2**X or 10**X # -# # -# ACCURACY and MONOTONICITY ******************************************* # -# The returned result is within 2 ulps in 64 significant bit, # -# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # -# rounded to double precision. The result is provably monotonic # -# in double precision. # -# # -# ALGORITHM *********************************************************** # -# # -# twotox # -# 1. If |X| > 16480, go to ExpBig. # -# # -# 2. If |X| < 2**(-70), go to ExpSm. # -# # -# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # -# decompose N as # -# N = 64(M + M') + j, j = 0,1,2,...,63. # -# # -# 4. Overwrite r := r * log2. Then # -# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # -# Go to expr to compute that expression. # -# # -# tentox # -# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # -# # -# 2. If |X| < 2**(-70), go to ExpSm. # -# # -# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # -# N := round-to-int(y). Decompose N as # -# N = 64(M + M') + j, j = 0,1,2,...,63. # -# # -# 4. Define r as # -# r := ((X - N*L1)-N*L2) * L10 # -# where L1, L2 are the leading and trailing parts of # -# log_10(2)/64 and L10 is the natural log of 10. Then # -# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # -# Go to expr to compute that expression. # -# # -# expr # -# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # -# # -# 2. Overwrite Fact1 and Fact2 by # -# Fact1 := 2**(M) * Fact1 # -# Fact2 := 2**(M) * Fact2 # -# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # -# # -# 3. Calculate P where 1 + P approximates exp(r): # -# P = r + r*r*(A1+r*(A2+...+r*A5)). # -# # -# 4. Let AdjFact := 2**(M'). Return # -# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # -# Exit. # -# # -# ExpBig # -# 1. Generate overflow by Huge * Huge if X > 0; otherwise, # -# generate underflow by Tiny * Tiny. # -# # -# ExpSm # -# 1. Return 1 + X. # -# # -######################################################################### - -L2TEN64: - long 0x406A934F,0x0979A371 # 64LOG10/LOG2 -L10TWO1: - long 0x3F734413,0x509F8000 # LOG2/64LOG10 - -L10TWO2: - long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 - -LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 - -LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 - -EXPA5: long 0x3F56C16D,0x6F7BD0B2 -EXPA4: long 0x3F811112,0x302C712C -EXPA3: long 0x3FA55555,0x55554CC1 -EXPA2: long 0x3FC55555,0x55554A54 -EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 - -TEXPTBL: - long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 - long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA - long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 - long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 - long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA - long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C - long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 - long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA - long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 - long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 - long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 - long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 - long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D - long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 - long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B - long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 - long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A - long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B - long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF - long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA - long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD - long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E - long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B - long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB - long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB - long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 - long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C - long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 - long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 - long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 - long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F - long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C - long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB - long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB - long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C - long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA - long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD - long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 - long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A - long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 - long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB - long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 - long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C - long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 - long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 - long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE - long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 - long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 - long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A - long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 - long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 - long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 - long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 - long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE - long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 - long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F - long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A - long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A - long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC - long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F - long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A - long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 - long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B - long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 - - set INT,L_SCR1 - - set X,FP_SCR0 - set XDCARE,X+2 - set XFRAC,X+4 - - set ADJFACT,FP_SCR0 - - set FACT1,FP_SCR0 - set FACT1HI,FACT1+4 - set FACT1LOW,FACT1+8 - - set FACT2,FP_SCR1 - set FACT2HI,FACT2+4 - set FACT2LOW,FACT2+8 - - global stwotox -#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -stwotox: - fmovm.x (%a0),&0x80 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? - bge.b TWOOK1 - bra.w EXPBORS - -TWOOK1: - cmp.l %d1,&0x400D80C0 # |X| > 16480? - ble.b TWOMAIN - bra.w EXPBORS - -TWOMAIN: -#--USUAL CASE, 2^(-70) <= |X| <= 16480 - - fmov.x %fp0,%fp1 - fmul.s &0x42800000,%fp1 # 64 * X - fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) - mov.l %d2,-(%sp) - lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) - fmov.l INT(%a6),%fp1 # N --> FLOATING FMT - mov.l INT(%a6),%d1 - mov.l %d1,%d2 - and.l &0x3F,%d1 # D0 IS J - asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) - add.l %d1,%a1 # ADDRESS FOR 2^(J/64) - asr.l &6,%d2 # d2 IS L, N = 64L + J - mov.l %d2,%d1 - asr.l &1,%d1 # D0 IS M - sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J - add.l &0x3FFF,%d2 - -#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -#--ADJFACT = 2^(M'). -#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmul.s &0x3C800000,%fp1 # (1/64)*N - mov.l (%a1)+,FACT1(%a6) - mov.l (%a1)+,FACT1HI(%a6) - mov.l (%a1)+,FACT1LOW(%a6) - mov.w (%a1)+,FACT2(%a6) - - fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) - - mov.w (%a1)+,FACT2HI(%a6) - clr.w FACT2HI+2(%a6) - clr.l FACT2LOW(%a6) - add.w %d1,FACT1(%a6) - fmul.x LOG2(%pc),%fp0 # FP0 IS R - add.w %d1,FACT2(%a6) - - bra.w expr - -EXPBORS: -#--FPCR, D0 SAVED - cmp.l %d1,&0x3FFF8000 - bgt.b TEXPBIG - -#--|X| IS SMALL, RETURN 1 + X - - fmov.l %d0,%fpcr # restore users round prec,mode - fadd.s &0x3F800000,%fp0 # RETURN 1 + X - bra t_pinx2 - -TEXPBIG: -#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW -#--REGISTERS SAVE SO FAR ARE FPCR AND D0 - mov.l X(%a6),%d1 - cmp.l %d1,&0 - blt.b EXPNEG - - bra t_ovfl2 # t_ovfl expects positive value - -EXPNEG: - bra t_unfl2 # t_unfl expects positive value - - global stwotoxd -stwotoxd: -#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT - - fmov.l %d0,%fpcr # set user's rounding mode/precision - fmov.s &0x3F800000,%fp0 # RETURN 1 + X - mov.l (%a0),%d1 - or.l &0x00800001,%d1 - fadd.s %d1,%fp0 - bra t_pinx2 - - global stentox -#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S -stentox: - fmovm.x (%a0),&0x80 # LOAD INPUT - - mov.l (%a0),%d1 - mov.w 4(%a0),%d1 - fmov.x %fp0,X(%a6) - and.l &0x7FFFFFFF,%d1 - - cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? - bge.b TENOK1 - bra.w EXPBORS - -TENOK1: - cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? - ble.b TENMAIN - bra.w EXPBORS - -TENMAIN: -#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 - - fmov.x %fp0,%fp1 - fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 - fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) - mov.l %d2,-(%sp) - lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) - fmov.l INT(%a6),%fp1 # N --> FLOATING FMT - mov.l INT(%a6),%d1 - mov.l %d1,%d2 - and.l &0x3F,%d1 # D0 IS J - asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) - add.l %d1,%a1 # ADDRESS FOR 2^(J/64) - asr.l &6,%d2 # d2 IS L, N = 64L + J - mov.l %d2,%d1 - asr.l &1,%d1 # D0 IS M - sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J - add.l &0x3FFF,%d2 - -#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), -#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. -#--ADJFACT = 2^(M'). -#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. - fmovm.x &0x0c,-(%sp) # save fp2/fp3 - - fmov.x %fp1,%fp2 - - fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD - mov.l (%a1)+,FACT1(%a6) - - fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL - - mov.l (%a1)+,FACT1HI(%a6) - mov.l (%a1)+,FACT1LOW(%a6) - fsub.x %fp1,%fp0 # X - N L_LEAD - mov.w (%a1)+,FACT2(%a6) - - fsub.x %fp2,%fp0 # X - N L_TRAIL - - mov.w (%a1)+,FACT2HI(%a6) - clr.w FACT2HI+2(%a6) - clr.l FACT2LOW(%a6) - - fmul.x LOG10(%pc),%fp0 # FP0 IS R - add.w %d1,FACT1(%a6) - add.w %d1,FACT2(%a6) - -expr: -#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. -#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). -#--FP0 IS R. THE FOLLOWING CODE COMPUTES -#-- 2**(M'+M) * 2**(J/64) * EXP(R) - - fmov.x %fp0,%fp1 - fmul.x %fp1,%fp1 # FP1 IS S = R*R - - fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 - fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 - - fmul.x %fp1,%fp2 # FP2 IS S*A5 - fmul.x %fp1,%fp3 # FP3 IS S*A4 - - fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 - fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 - - fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) - fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) - - fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) - fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) - - fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) - fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) - fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 - - fmovm.x (%sp)+,&0x30 # restore fp2/fp3 - -#--FINAL RECONSTRUCTION PROCESS -#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) - - fmul.x FACT1(%a6),%fp0 - fadd.x FACT2(%a6),%fp0 - fadd.x FACT1(%a6),%fp0 - - fmov.l %d0,%fpcr # restore users round prec,mode - mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT - mov.l (%sp)+,%d2 - mov.l &0x80000000,ADJFACT+4(%a6) - clr.l ADJFACT+8(%a6) - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT - bra t_catch - - global stentoxd -stentoxd: -#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT - - fmov.l %d0,%fpcr # set user's rounding mode/precision - fmov.s &0x3F800000,%fp0 # RETURN 1 + X - mov.l (%a0),%d1 - or.l &0x00800001,%d1 - fadd.s %d1,%fp0 - bra t_pinx2 - -######################################################################### -# smovcr(): returns the ROM constant at the offset specified in d1 # -# rounded to the mode and precision specified in d0. # -# # -# INPUT *************************************************************** # -# d0 = rnd prec,mode # -# d1 = ROM offset # -# # -# OUTPUT ************************************************************** # -# fp0 = the ROM constant rounded to the user's rounding mode,prec # -# # -######################################################################### - - global smovcr -smovcr: - mov.l %d1,-(%sp) # save rom offset for a sec - - lsr.b &0x4,%d0 # shift ctrl bits to lo - mov.l %d0,%d1 # make a copy - andi.w &0x3,%d1 # extract rnd mode - andi.w &0xc,%d0 # extract rnd prec - swap %d0 # put rnd prec in hi - mov.w %d1,%d0 # put rnd mode in lo - - mov.l (%sp)+,%d1 # get rom offset - -# -# check range of offset -# - tst.b %d1 # if zero, offset is to pi - beq.b pi_tbl # it is pi - cmpi.b %d1,&0x0a # check range $01 - $0a - ble.b z_val # if in this range, return zero - cmpi.b %d1,&0x0e # check range $0b - $0e - ble.b sm_tbl # valid constants in this range - cmpi.b %d1,&0x2f # check range $10 - $2f - ble.b z_val # if in this range, return zero - cmpi.b %d1,&0x3f # check range $30 - $3f - ble.b bg_tbl # valid constants in this range - -z_val: - bra.l ld_pzero # return a zero - -# -# the answer is PI rounded to the proper precision. -# -# fetch a pointer to the answer table relating to the proper rounding -# precision. -# -pi_tbl: - tst.b %d0 # is rmode RN? - bne.b pi_not_rn # no -pi_rn: - lea.l PIRN(%pc),%a0 # yes; load PI RN table addr - bra.w set_finx -pi_not_rn: - cmpi.b %d0,&rp_mode # is rmode RP? - beq.b pi_rp # yes -pi_rzrm: - lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr - bra.b set_finx -pi_rp: - lea.l PIRP(%pc),%a0 # load PI RP table addr - bra.b set_finx - -# -# the answer is one of: -# $0B log10(2) (inexact) -# $0C e (inexact) -# $0D log2(e) (inexact) -# $0E log10(e) (exact) -# -# fetch a pointer to the answer table relating to the proper rounding -# precision. -# -sm_tbl: - subi.b &0xb,%d1 # make offset in 0-4 range - tst.b %d0 # is rmode RN? - bne.b sm_not_rn # no -sm_rn: - lea.l SMALRN(%pc),%a0 # yes; load RN table addr -sm_tbl_cont: - cmpi.b %d1,&0x2 # is result log10(e)? - ble.b set_finx # no; answer is inexact - bra.b no_finx # yes; answer is exact -sm_not_rn: - cmpi.b %d0,&rp_mode # is rmode RP? - beq.b sm_rp # yes -sm_rzrm: - lea.l SMALRZRM(%pc),%a0 # no; load RZ,RM table addr - bra.b sm_tbl_cont -sm_rp: - lea.l SMALRP(%pc),%a0 # load RP table addr - bra.b sm_tbl_cont - -# -# the answer is one of: -# $30 ln(2) (inexact) -# $31 ln(10) (inexact) -# $32 10^0 (exact) -# $33 10^1 (exact) -# $34 10^2 (exact) -# $35 10^4 (exact) -# $36 10^8 (exact) -# $37 10^16 (exact) -# $38 10^32 (inexact) -# $39 10^64 (inexact) -# $3A 10^128 (inexact) -# $3B 10^256 (inexact) -# $3C 10^512 (inexact) -# $3D 10^1024 (inexact) -# $3E 10^2048 (inexact) -# $3F 10^4096 (inexact) -# -# fetch a pointer to the answer table relating to the proper rounding -# precision. -# -bg_tbl: - subi.b &0x30,%d1 # make offset in 0-f range - tst.b %d0 # is rmode RN? - bne.b bg_not_rn # no -bg_rn: - lea.l BIGRN(%pc),%a0 # yes; load RN table addr -bg_tbl_cont: - cmpi.b %d1,&0x1 # is offset <= $31? - ble.b set_finx # yes; answer is inexact - cmpi.b %d1,&0x7 # is $32 <= offset <= $37? - ble.b no_finx # yes; answer is exact - bra.b set_finx # no; answer is inexact -bg_not_rn: - cmpi.b %d0,&rp_mode # is rmode RP? - beq.b bg_rp # yes -bg_rzrm: - lea.l BIGRZRM(%pc),%a0 # no; load RZ,RM table addr - bra.b bg_tbl_cont -bg_rp: - lea.l BIGRP(%pc),%a0 # load RP table addr - bra.b bg_tbl_cont - -# answer is inexact, so set INEX2 and AINEX in the user's FPSR. -set_finx: - ori.l &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX -no_finx: - mulu.w &0xc,%d1 # offset points into tables - swap %d0 # put rnd prec in lo word - tst.b %d0 # is precision extended? - - bne.b not_ext # if xprec, do not call round - -# Precision is extended - fmovm.x (%a0,%d1.w),&0x80 # return result in fp0 - rts - -# Precision is single or double -not_ext: - swap %d0 # rnd prec in upper word - -# call round() to round the answer to the proper precision. -# exponents out of range for single or double DO NOT cause underflow -# or overflow. - mov.w 0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word - mov.l 0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word - mov.l 0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word - mov.l %d0,%d1 - clr.l %d0 # clear g,r,s - lea FP_SCR1(%a6),%a0 # pass ptr to answer - clr.w LOCAL_SGN(%a0) # sign always positive - bsr.l _round # round the mantissa - - fmovm.x (%a0),&0x80 # return rounded result in fp0 - rts - - align 0x4 - -PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi -PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi -PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi - -SMALRN: long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) - long 0x40000000,0xadf85458,0xa2bb4a9a # e - long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) - long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) - long 0x00000000,0x00000000,0x00000000 # 0.0 - -SMALRZRM: - long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) - long 0x40000000,0xadf85458,0xa2bb4a9a # e - long 0x3fff0000,0xb8aa3b29,0x5c17f0bb # log2(e) - long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) - long 0x00000000,0x00000000,0x00000000 # 0.0 - -SMALRP: long 0x3ffd0000,0x9a209a84,0xfbcff799 # log10(2) - long 0x40000000,0xadf85458,0xa2bb4a9b # e - long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) - long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) - long 0x00000000,0x00000000,0x00000000 # 0.0 - -BIGRN: long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) - long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) - - long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - -BIGRZRM: - long 0x3ffe0000,0xb17217f7,0xd1cf79ab # ln(2) - long 0x40000000,0x935d8ddd,0xaaa8ac16 # ln(10) - - long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 - -BIGRP: - long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) - long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) - - long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - -######################################################################### -# sscale(): computes the destination operand scaled by the source # -# operand. If the absoulute value of the source operand is # -# >= 2^14, an overflow or underflow is returned. # -# # -# INPUT *************************************************************** # -# a0 = pointer to double-extended source operand X # -# a1 = pointer to double-extended destination operand Y # -# # -# OUTPUT ************************************************************** # -# fp0 = scale(X,Y) # -# # -######################################################################### - -set SIGN, L_SCR1 - - global sscale -sscale: - mov.l %d0,-(%sp) # store off ctrl bits for now - - mov.w DST_EX(%a1),%d1 # get dst exponent - smi.b SIGN(%a6) # use SIGN to hold dst sign - andi.l &0x00007fff,%d1 # strip sign from dst exp - - mov.w SRC_EX(%a0),%d0 # check src bounds - andi.w &0x7fff,%d0 # clr src sign bit - cmpi.w %d0,&0x3fff # is src ~ ZERO? - blt.w src_small # yes - cmpi.w %d0,&0x400c # no; is src too big? - bgt.w src_out # yes - -# -# Source is within 2^14 range. -# -src_ok: - fintrz.x SRC(%a0),%fp0 # calc int of src - fmov.l %fp0,%d0 # int src to d0 -# don't want any accrued bits from the fintrz showing up later since -# we may need to read the fpsr for the last fp op in t_catch2(). - fmov.l &0x0,%fpsr - - tst.b DST_HI(%a1) # is dst denormalized? - bmi.b sok_norm - -# the dst is a DENORM. normalize the DENORM and add the adjustment to -# the src value. then, jump to the norm part of the routine. -sok_dnrm: - mov.l %d0,-(%sp) # save src for now - - mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy - mov.l DST_HI(%a1),FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 # pass ptr to DENORM - bsr.l norm # normalize the DENORM - neg.l %d0 - add.l (%sp)+,%d0 # add adjustment to src - - fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM - - cmpi.w %d0,&-0x3fff # is the shft amt really low? - bge.b sok_norm2 # thank goodness no - -# the multiply factor that we're trying to create should be a denorm -# for the multiply to work. Therefore, we're going to actually do a -# multiply with a denorm which will cause an unimplemented data type -# exception to be put into the machine which will be caught and corrected -# later. we don't do this with the DENORMs above because this method -# is slower. but, don't fret, I don't see it being used much either. - fmov.l (%sp)+,%fpcr # restore user fpcr - mov.l &0x80000000,%d1 # load normalized mantissa - subi.l &-0x3fff,%d0 # how many should we shift? - neg.l %d0 # make it positive - cmpi.b %d0,&0x20 # is it > 32? - bge.b sok_dnrm_32 # yes - lsr.l %d0,%d1 # no; bit stays in upper lw - clr.l -(%sp) # insert zero low mantissa - mov.l %d1,-(%sp) # insert new high mantissa - clr.l -(%sp) # make zero exponent - bra.b sok_norm_cont -sok_dnrm_32: - subi.b &0x20,%d0 # get shift count - lsr.l %d0,%d1 # make low mantissa longword - mov.l %d1,-(%sp) # insert new low mantissa - clr.l -(%sp) # insert zero high mantissa - clr.l -(%sp) # make zero exponent - bra.b sok_norm_cont - -# the src will force the dst to a DENORM value or worse. so, let's -# create an fp multiply that will create the result. -sok_norm: - fmovm.x DST(%a1),&0x80 # load fp0 with normalized src -sok_norm2: - fmov.l (%sp)+,%fpcr # restore user fpcr - - addi.w &0x3fff,%d0 # turn src amt into exp value - swap %d0 # put exponent in high word - clr.l -(%sp) # insert new exponent - mov.l &0x80000000,-(%sp) # insert new high mantissa - mov.l %d0,-(%sp) # insert new lo mantissa - -sok_norm_cont: - fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x (%sp)+,%fp0 # do the multiply - bra t_catch2 # catch any exceptions - -# -# Source is outside of 2^14 range. Test the sign and branch -# to the appropriate exception handler. -# -src_out: - mov.l (%sp)+,%d0 # restore ctrl bits - exg %a0,%a1 # swap src,dst ptrs - tst.b SRC_EX(%a1) # is src negative? - bmi t_unfl # yes; underflow - bra t_ovfl_sc # no; overflow - -# -# The source input is below 1, so we check for denormalized numbers -# and set unfl. -# -src_small: - tst.b DST_HI(%a1) # is dst denormalized? - bpl.b ssmall_done # yes - - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr # no; load control bits - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x DST(%a1),%fp0 # simply return dest - bra t_catch2 -ssmall_done: - mov.l (%sp)+,%d0 # load control bits into d1 - mov.l %a1,%a0 # pass ptr to dst - bra t_resdnrm - -######################################################################### -# smod(): computes the fp MOD of the input values X,Y. # -# srem(): computes the fp (IEEE) REM of the input values X,Y. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision input X # -# a1 = pointer to extended precision input Y # -# d0 = round precision,mode # -# # -# The input operands X and Y can be either normalized or # -# denormalized. # -# # -# OUTPUT ************************************************************** # -# fp0 = FREM(X,Y) or FMOD(X,Y) # -# # -# ALGORITHM *********************************************************** # -# # -# Step 1. Save and strip signs of X and Y: signX := sign(X), # -# signY := sign(Y), X := |X|, Y := |Y|, # -# signQ := signX EOR signY. Record whether MOD or REM # -# is requested. # -# # -# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # -# If (L < 0) then # -# R := X, go to Step 4. # -# else # -# R := 2^(-L)X, j := L. # -# endif # -# # -# Step 3. Perform MOD(X,Y) # -# 3.1 If R = Y, go to Step 9. # -# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # -# 3.3 If j = 0, go to Step 4. # -# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # -# Step 3.1. # -# # -# Step 4. At this point, R = X - QY = MOD(X,Y). Set # -# Last_Subtract := false (used in Step 7 below). If # -# MOD is requested, go to Step 6. # -# # -# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # -# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # -# Step 6. # -# 5.2 If R > Y/2, then { set Last_Subtract := true, # -# Q := Q + 1, Y := signY*Y }. Go to Step 6. # -# 5.3 This is the tricky case of R = Y/2. If Q is odd, # -# then { Q := Q + 1, signX := -signX }. # -# # -# Step 6. R := signX*R. # -# # -# Step 7. If Last_Subtract = true, R := R - Y. # -# # -# Step 8. Return signQ, last 7 bits of Q, and R as required. # -# # -# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # -# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # -# R := 0. Return signQ, last 7 bits of Q, and R. # -# # -######################################################################### - - set Mod_Flag,L_SCR3 - set Sc_Flag,L_SCR3+1 - - set SignY,L_SCR2 - set SignX,L_SCR2+2 - set SignQ,L_SCR3+2 - - set Y,FP_SCR0 - set Y_Hi,Y+4 - set Y_Lo,Y+8 - - set R,FP_SCR1 - set R_Hi,R+4 - set R_Lo,R+8 - -Scale: - long 0x00010000,0x80000000,0x00000000,0x00000000 - - global smod -smod: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) # save ctrl bits - clr.b Mod_Flag(%a6) - bra.b Mod_Rem - - global srem -srem: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) # save ctrl bits - mov.b &0x1,Mod_Flag(%a6) - -Mod_Rem: -#..Save sign of X and Y - movm.l &0x3f00,-(%sp) # save data registers - mov.w SRC_EX(%a0),%d3 - mov.w %d3,SignY(%a6) - and.l &0x00007FFF,%d3 # Y := |Y| - -# - mov.l SRC_HI(%a0),%d4 - mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| - - tst.l %d3 - bne.b Y_Normal - - mov.l &0x00003FFE,%d3 # $3FFD + 1 - tst.l %d4 - bne.b HiY_not0 - -HiY_0: - mov.l %d5,%d4 - clr.l %d5 - sub.l &32,%d3 - clr.l %d6 - bfffo %d4{&0:&32},%d6 - lsl.l %d6,%d4 - sub.l %d6,%d3 # (D3,D4,D5) is normalized -# ...with bias $7FFD - bra.b Chk_X - -HiY_not0: - clr.l %d6 - bfffo %d4{&0:&32},%d6 - sub.l %d6,%d3 - lsl.l %d6,%d4 - mov.l %d5,%d7 # a copy of D5 - lsl.l %d6,%d5 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d4 # (D3,D4,D5) normalized -# ...with bias $7FFD - bra.b Chk_X - -Y_Normal: - add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized -# ...with bias $7FFD - -Chk_X: - mov.w DST_EX(%a1),%d0 - mov.w %d0,SignX(%a6) - mov.w SignY(%a6),%d1 - eor.l %d0,%d1 - and.l &0x00008000,%d1 - mov.w %d1,SignQ(%a6) # sign(Q) obtained - and.l &0x00007FFF,%d0 - mov.l DST_HI(%a1),%d1 - mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| - tst.l %d0 - bne.b X_Normal - mov.l &0x00003FFE,%d0 - tst.l %d1 - bne.b HiX_not0 - -HiX_0: - mov.l %d2,%d1 - clr.l %d2 - sub.l &32,%d0 - clr.l %d6 - bfffo %d1{&0:&32},%d6 - lsl.l %d6,%d1 - sub.l %d6,%d0 # (D0,D1,D2) is normalized -# ...with bias $7FFD - bra.b Init - -HiX_not0: - clr.l %d6 - bfffo %d1{&0:&32},%d6 - sub.l %d6,%d0 - lsl.l %d6,%d1 - mov.l %d2,%d7 # a copy of D2 - lsl.l %d6,%d2 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d1 # (D0,D1,D2) normalized -# ...with bias $7FFD - bra.b Init - -X_Normal: - add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized -# ...with bias $7FFD - -Init: -# - mov.l %d3,L_SCR1(%a6) # save biased exp(Y) - mov.l %d0,-(%sp) # save biased exp(X) - sub.l %d3,%d0 # L := expo(X)-expo(Y) - - clr.l %d6 # D6 := carry <- 0 - clr.l %d3 # D3 is Q - mov.l &0,%a1 # A1 is k; j+k=L, Q=0 - -#..(Carry,D1,D2) is R - tst.l %d0 - bge.b Mod_Loop_pre - -#..expo(X) < expo(Y). Thus X = mod(X,Y) -# - mov.l (%sp)+,%d0 # restore d0 - bra.w Get_Mod - -Mod_Loop_pre: - addq.l &0x4,%sp # erase exp(X) -#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L -Mod_Loop: - tst.l %d6 # test carry bit - bgt.b R_GT_Y - -#..At this point carry = 0, R = (D1,D2), Y = (D4,D5) - cmp.l %d1,%d4 # compare hi(R) and hi(Y) - bne.b R_NE_Y - cmp.l %d2,%d5 # compare lo(R) and lo(Y) - bne.b R_NE_Y - -#..At this point, R = Y - bra.w Rem_is_0 - -R_NE_Y: -#..use the borrow of the previous compare - bcs.b R_LT_Y # borrow is set iff R < Y - -R_GT_Y: -#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 -#..and Y < (D1,D2) < 2Y. Either way, perform R - Y - sub.l %d5,%d2 # lo(R) - lo(Y) - subx.l %d4,%d1 # hi(R) - hi(Y) - clr.l %d6 # clear carry - addq.l &1,%d3 # Q := Q + 1 - -R_LT_Y: -#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. - tst.l %d0 # see if j = 0. - beq.b PostLoop - - add.l %d3,%d3 # Q := 2Q - add.l %d2,%d2 # lo(R) = 2lo(R) - roxl.l &1,%d1 # hi(R) = 2hi(R) + carry - scs %d6 # set Carry if 2(R) overflows - addq.l &1,%a1 # k := k+1 - subq.l &1,%d0 # j := j - 1 -#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. - - bra.b Mod_Loop - -PostLoop: -#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. - -#..normalize R. - mov.l L_SCR1(%a6),%d0 # new biased expo of R - tst.l %d1 - bne.b HiR_not0 - -HiR_0: - mov.l %d2,%d1 - clr.l %d2 - sub.l &32,%d0 - clr.l %d6 - bfffo %d1{&0:&32},%d6 - lsl.l %d6,%d1 - sub.l %d6,%d0 # (D0,D1,D2) is normalized -# ...with bias $7FFD - bra.b Get_Mod - -HiR_not0: - clr.l %d6 - bfffo %d1{&0:&32},%d6 - bmi.b Get_Mod # already normalized - sub.l %d6,%d0 - lsl.l %d6,%d1 - mov.l %d2,%d7 # a copy of D2 - lsl.l %d6,%d2 - neg.l %d6 - add.l &32,%d6 - lsr.l %d6,%d7 - or.l %d7,%d1 # (D0,D1,D2) normalized - -# -Get_Mod: - cmp.l %d0,&0x000041FE - bge.b No_Scale -Do_Scale: - mov.w %d0,R(%a6) - mov.l %d1,R_Hi(%a6) - mov.l %d2,R_Lo(%a6) - mov.l L_SCR1(%a6),%d6 - mov.w %d6,Y(%a6) - mov.l %d4,Y_Hi(%a6) - mov.l %d5,Y_Lo(%a6) - fmov.x R(%a6),%fp0 # no exception - mov.b &1,Sc_Flag(%a6) - bra.b ModOrRem -No_Scale: - mov.l %d1,R_Hi(%a6) - mov.l %d2,R_Lo(%a6) - sub.l &0x3FFE,%d0 - mov.w %d0,R(%a6) - mov.l L_SCR1(%a6),%d6 - sub.l &0x3FFE,%d6 - mov.l %d6,L_SCR1(%a6) - fmov.x R(%a6),%fp0 - mov.w %d6,Y(%a6) - mov.l %d4,Y_Hi(%a6) - mov.l %d5,Y_Lo(%a6) - clr.b Sc_Flag(%a6) - -# -ModOrRem: - tst.b Mod_Flag(%a6) - beq.b Fix_Sign - - mov.l L_SCR1(%a6),%d6 # new biased expo(Y) - subq.l &1,%d6 # biased expo(Y/2) - cmp.l %d0,%d6 - blt.b Fix_Sign - bgt.b Last_Sub - - cmp.l %d1,%d4 - bne.b Not_EQ - cmp.l %d2,%d5 - bne.b Not_EQ - bra.w Tie_Case - -Not_EQ: - bcs.b Fix_Sign - -Last_Sub: -# - fsub.x Y(%a6),%fp0 # no exceptions - addq.l &1,%d3 # Q := Q + 1 - -# -Fix_Sign: -#..Get sign of X - mov.w SignX(%a6),%d6 - bge.b Get_Q - fneg.x %fp0 - -#..Get Q -# -Get_Q: - clr.l %d6 - mov.w SignQ(%a6),%d6 # D6 is sign(Q) - mov.l &8,%d7 - lsr.l %d7,%d6 - and.l &0x0000007F,%d3 # 7 bits of Q - or.l %d6,%d3 # sign and bits of Q -# swap %d3 -# fmov.l %fpsr,%d6 -# and.l &0xFF00FFFF,%d6 -# or.l %d3,%d6 -# fmov.l %d6,%fpsr # put Q in fpsr - mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr - -# -Restore: - movm.l (%sp)+,&0xfc # {%d2-%d7} - mov.l (%sp)+,%d0 - fmov.l %d0,%fpcr - tst.b Sc_Flag(%a6) - beq.b Finish - mov.b &FMUL_OP,%d1 # last inst is MUL - fmul.x Scale(%pc),%fp0 # may cause underflow - bra t_catch2 -# the '040 package did this apparently to see if the dst operand for the -# preceding fmul was a denorm. but, it better not have been since the -# algorithm just got done playing with fp0 and expected no exceptions -# as a result. trust me... -# bra t_avoid_unsupp # check for denorm as a -# ;result of the scaling - -Finish: - mov.b &FMOV_OP,%d1 # last inst is MOVE - fmov.x %fp0,%fp0 # capture exceptions & round - bra t_catch2 - -Rem_is_0: -#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) - addq.l &1,%d3 - cmp.l %d0,&8 # D0 is j - bge.b Q_Big - - lsl.l %d0,%d3 - bra.b Set_R_0 - -Q_Big: - clr.l %d3 - -Set_R_0: - fmov.s &0x00000000,%fp0 - clr.b Sc_Flag(%a6) - bra.w Fix_Sign - -Tie_Case: -#..Check parity of Q - mov.l %d3,%d6 - and.l &0x00000001,%d6 - tst.l %d6 - beq.w Fix_Sign # Q is even - -#..Q is odd, Q := Q + 1, signX := -signX - addq.l &1,%d3 - mov.w SignX(%a6),%d6 - eor.l &0x00008000,%d6 - mov.w %d6,SignX(%a6) - bra.w Fix_Sign - -qnan: long 0x7fff0000, 0xffffffff, 0xffffffff - -######################################################################### -# XDEF **************************************************************** # -# t_dz(): Handle DZ exception during transcendental emulation. # -# Sets N bit according to sign of source operand. # -# t_dz2(): Handle DZ exception during transcendental emulation. # -# Sets N bit always. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# - Store properly signed INF into fp0. # -# - Set FPSR exception status dz bit, ccode inf bit, and # -# accrued dz bit. # -# # -######################################################################### - - global t_dz -t_dz: - tst.b SRC_EX(%a0) # no; is src negative? - bmi.b t_dz2 # yes - -dz_pinf: - fmov.s &0x7f800000,%fp0 # return +INF in fp0 - ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ - rts - - global t_dz2 -t_dz2: - fmov.s &0xff800000,%fp0 # return -INF in fp0 - ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ - rts - -################################################################# -# OPERR exception: # -# - set FPSR exception status operr bit, condition code # -# nan bit; Store default NAN into fp0 # -################################################################# - global t_operr -t_operr: - ori.l &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP - fmovm.x qnan(%pc),&0x80 # return default NAN in fp0 - rts - -################################################################# -# Extended DENORM: # -# - For all functions that have a denormalized input and # -# that f(x)=x, this is the entry point. # -# - we only return the EXOP here if either underflow or # -# inexact is enabled. # -################################################################# - -# Entry point for scale w/ extended denorm. The function does -# NOT set INEX2/AUNFL/AINEX. - global t_resdnrm -t_resdnrm: - ori.l &unfl_mask,USER_FPSR(%a6) # set UNFL - bra.b xdnrm_con - - global t_extdnrm -t_extdnrm: - ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX - -xdnrm_con: - mov.l %a0,%a1 # make copy of src ptr - mov.l %d0,%d1 # make copy of rnd prec,mode - andi.b &0xc0,%d1 # extended precision? - bne.b xdnrm_sd # no - -# result precision is extended. - tst.b LOCAL_EX(%a0) # is denorm negative? - bpl.b xdnrm_exit # no - - bset &neg_bit,FPSR_CC(%a6) # yes; set 'N' ccode bit - bra.b xdnrm_exit - -# result precision is single or double -xdnrm_sd: - mov.l %a1,-(%sp) - tst.b LOCAL_EX(%a0) # is denorm pos or neg? - smi.b %d1 # set d0 accodingly - bsr.l unf_sub - mov.l (%sp)+,%a1 -xdnrm_exit: - fmovm.x (%a0),&0x80 # return default result in fp0 - - mov.b FPCR_ENABLE(%a6),%d0 - andi.b &0x0a,%d0 # is UNFL or INEX enabled? - bne.b xdnrm_ena # yes - rts - -################ -# unfl enabled # -################ -# we have a DENORM that needs to be converted into an EXOP. -# so, normalize the mantissa, add 0x6000 to the new exponent, -# and return the result in fp1. -xdnrm_ena: - mov.w LOCAL_EX(%a1),FP_SCR0_EX(%a6) - mov.l LOCAL_HI(%a1),FP_SCR0_HI(%a6) - mov.l LOCAL_LO(%a1),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize mantissa - addi.l &0x6000,%d0 # add extra bias - andi.w &0x8000,FP_SCR0_EX(%a6) # keep old sign - or.w %d0,FP_SCR0_EX(%a6) # insert new exponent - - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -################################################################# -# UNFL exception: # -# - This routine is for cases where even an EXOP isn't # -# large enough to hold the range of this result. # -# In such a case, the EXOP equals zero. # -# - Return the default result to the proper precision # -# with the sign of this result being the same as that # -# of the src operand. # -# - t_unfl2() is provided to force the result sign to # -# positive which is the desired result for fetox(). # -################################################################# - global t_unfl -t_unfl: - ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX - - tst.b (%a0) # is result pos or neg? - smi.b %d1 # set d1 accordingly - bsr.l unf_sub # calc default unfl result - fmovm.x (%a0),&0x80 # return default result in fp0 - - fmov.s &0x00000000,%fp1 # return EXOP in fp1 - rts - -# t_unfl2 ALWAYS tells unf_sub to create a positive result - global t_unfl2 -t_unfl2: - ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX - - sf.b %d1 # set d0 to represent positive - bsr.l unf_sub # calc default unfl result - fmovm.x (%a0),&0x80 # return default result in fp0 - - fmov.s &0x0000000,%fp1 # return EXOP in fp1 - rts - -################################################################# -# OVFL exception: # -# - This routine is for cases where even an EXOP isn't # -# large enough to hold the range of this result. # -# - Return the default result to the proper precision # -# with the sign of this result being the same as that # -# of the src operand. # -# - t_ovfl2() is provided to force the result sign to # -# positive which is the desired result for fcosh(). # -# - t_ovfl_sc() is provided for scale() which only sets # -# the inexact bits if the number is inexact for the # -# precision indicated. # -################################################################# - - global t_ovfl_sc -t_ovfl_sc: - ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX - - mov.b %d0,%d1 # fetch rnd mode/prec - andi.b &0xc0,%d1 # extract rnd prec - beq.b ovfl_work # prec is extended - - tst.b LOCAL_HI(%a0) # is dst a DENORM? - bmi.b ovfl_sc_norm # no - -# dst op is a DENORM. we have to normalize the mantissa to see if the -# result would be inexact for the given precision. make a copy of the -# dst so we don't screw up the version passed to us. - mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) - mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) - mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 - movm.l &0xc080,-(%sp) # save d0-d1/a0 - bsr.l norm # normalize mantissa - movm.l (%sp)+,&0x0103 # restore d0-d1/a0 - -ovfl_sc_norm: - cmpi.b %d1,&0x40 # is prec dbl? - bne.b ovfl_sc_dbl # no; sgl -ovfl_sc_sgl: - tst.l LOCAL_LO(%a0) # is lo lw of sgl set? - bne.b ovfl_sc_inx # yes - tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? - bne.b ovfl_sc_inx # yes - bra.b ovfl_work # don't set INEX2 -ovfl_sc_dbl: - mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of - andi.l &0x7ff,%d1 # dbl mantissa set? - beq.b ovfl_work # no; don't set INEX2 -ovfl_sc_inx: - ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 - bra.b ovfl_work # continue - - global t_ovfl -t_ovfl: - ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX - -ovfl_work: - tst.b LOCAL_EX(%a0) # what is the sign? - smi.b %d1 # set d1 accordingly - bsr.l ovf_res # calc default ovfl result - mov.b %d0,FPSR_CC(%a6) # insert new ccodes - fmovm.x (%a0),&0x80 # return default result in fp0 - - fmov.s &0x00000000,%fp1 # return EXOP in fp1 - rts - -# t_ovfl2 ALWAYS tells ovf_res to create a positive result - global t_ovfl2 -t_ovfl2: - ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX - - sf.b %d1 # clear sign flag for positive - bsr.l ovf_res # calc default ovfl result - mov.b %d0,FPSR_CC(%a6) # insert new ccodes - fmovm.x (%a0),&0x80 # return default result in fp0 - - fmov.s &0x00000000,%fp1 # return EXOP in fp1 - rts - -################################################################# -# t_catch(): # -# - the last operation of a transcendental emulation # -# routine may have caused an underflow or overflow. # -# we find out if this occurred by doing an fsave and # -# checking the exception bit. if one did occur, then we # -# jump to fgen_except() which creates the default # -# result and EXOP for us. # -################################################################# - global t_catch -t_catch: - - fsave -(%sp) - tst.b 0x2(%sp) - bmi.b catch - add.l &0xc,%sp - -################################################################# -# INEX2 exception: # -# - The inex2 and ainex bits are set. # -################################################################# - global t_inx2 -t_inx2: - fblt.w t_minx2 - fbeq.w inx2_zero - - global t_pinx2 -t_pinx2: - ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX - rts - - global t_minx2 -t_minx2: - ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX - rts - -inx2_zero: - mov.b &z_bmask,FPSR_CC(%a6) - ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX - rts - -# an underflow or overflow exception occurred. -# we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not! -catch: - ori.w &inx2a_mask,FPSR_EXCEPT(%a6) -catch2: - bsr.l fgen_except - add.l &0xc,%sp - rts - - global t_catch2 -t_catch2: - - fsave -(%sp) - - tst.b 0x2(%sp) - bmi.b catch2 - add.l &0xc,%sp - - fmov.l %fpsr,%d0 - or.l %d0,USER_FPSR(%a6) - - rts - -######################################################################### - -######################################################################### -# unf_res(): underflow default result calculation for transcendentals # -# # -# INPUT: # -# d0 : rnd mode,precision # -# d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+)) # -# OUTPUT: # -# a0 : points to result (in instruction memory) # -######################################################################### -unf_sub: - ori.l &unfinx_mask,USER_FPSR(%a6) - - andi.w &0x10,%d1 # keep sign bit in 4th spot - - lsr.b &0x4,%d0 # shift rnd prec,mode to lo bits - andi.b &0xf,%d0 # strip hi rnd mode bit - or.b %d1,%d0 # concat {sgn,mode,prec} - - mov.l %d0,%d1 # make a copy - lsl.b &0x1,%d1 # mult index 2 by 2 - - mov.b (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits - lea (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr - rts - -tbl_unf_cc: - byte 0x4, 0x4, 0x4, 0x0 - byte 0x4, 0x4, 0x4, 0x0 - byte 0x4, 0x4, 0x4, 0x0 - byte 0x0, 0x0, 0x0, 0x0 - byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 - byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 - byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 - -tbl_unf_result: - long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext - long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext - long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext - long 0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext - - long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl - long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl - long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl - long 0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl - - long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl - long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl - long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl - long 0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl - - long 0x0,0x0,0x0,0x0 - long 0x0,0x0,0x0,0x0 - long 0x0,0x0,0x0,0x0 - long 0x0,0x0,0x0,0x0 - - long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext - long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext - long 0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext - long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext - - long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl - long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl - long 0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl - long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl - - long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl - long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl - long 0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl - long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl - -############################################################ - -######################################################################### -# src_zero(): Return signed zero according to sign of src operand. # -######################################################################### - global src_zero -src_zero: - tst.b SRC_EX(%a0) # get sign of src operand - bmi.b ld_mzero # if neg, load neg zero - -# -# ld_pzero(): return a positive zero. -# - global ld_pzero -ld_pzero: - fmov.s &0x00000000,%fp0 # load +0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -# ld_mzero(): return a negative zero. - global ld_mzero -ld_mzero: - fmov.s &0x80000000,%fp0 # load -0 - mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits - rts - -######################################################################### -# dst_zero(): Return signed zero according to sign of dst operand. # -######################################################################### - global dst_zero -dst_zero: - tst.b DST_EX(%a1) # get sign of dst operand - bmi.b ld_mzero # if neg, load neg zero - bra.b ld_pzero # load positive zero - -######################################################################### -# src_inf(): Return signed inf according to sign of src operand. # -######################################################################### - global src_inf -src_inf: - tst.b SRC_EX(%a0) # get sign of src operand - bmi.b ld_minf # if negative branch - -# -# ld_pinf(): return a positive infinity. -# - global ld_pinf -ld_pinf: - fmov.s &0x7f800000,%fp0 # load +INF - mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit - rts - -# -# ld_minf():return a negative infinity. -# - global ld_minf -ld_minf: - fmov.s &0xff800000,%fp0 # load -INF - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# dst_inf(): Return signed inf according to sign of dst operand. # -######################################################################### - global dst_inf -dst_inf: - tst.b DST_EX(%a1) # get sign of dst operand - bmi.b ld_minf # if negative branch - bra.b ld_pinf - - global szr_inf -################################################################# -# szr_inf(): Return +ZERO for a negative src operand or # -# +INF for a positive src operand. # -# Routine used for fetox, ftwotox, and ftentox. # -################################################################# -szr_inf: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_pzero - bra.b ld_pinf - -######################################################################### -# sopr_inf(): Return +INF for a positive src operand or # -# jump to operand error routine for a negative src operand. # -# Routine used for flogn, flognp1, flog10, and flog2. # -######################################################################### - global sopr_inf -sopr_inf: - tst.b SRC_EX(%a0) # check sign of source - bmi.w t_operr - bra.b ld_pinf - -################################################################# -# setoxm1i(): Return minus one for a negative src operand or # -# positive infinity for a positive src operand. # -# Routine used for fetoxm1. # -################################################################# - global setoxm1i -setoxm1i: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mone - bra.b ld_pinf - -######################################################################### -# src_one(): Return signed one according to sign of src operand. # -######################################################################### - global src_one -src_one: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mone - -# -# ld_pone(): return positive one. -# - global ld_pone -ld_pone: - fmov.s &0x3f800000,%fp0 # load +1 - clr.b FPSR_CC(%a6) - rts - -# -# ld_mone(): return negative one. -# - global ld_mone -ld_mone: - fmov.s &0xbf800000,%fp0 # load -1 - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 -mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 - -################################################################# -# spi_2(): Return signed PI/2 according to sign of src operand. # -################################################################# - global spi_2 -spi_2: - tst.b SRC_EX(%a0) # check sign of source - bmi.b ld_mpi2 - -# -# ld_ppi2(): return positive PI/2. -# - global ld_ppi2 -ld_ppi2: - fmov.l %d0,%fpcr - fmov.x ppiby2(%pc),%fp0 # load +pi/2 - bra.w t_pinx2 # set INEX2 - -# -# ld_mpi2(): return negative PI/2. -# - global ld_mpi2 -ld_mpi2: - fmov.l %d0,%fpcr - fmov.x mpiby2(%pc),%fp0 # load -pi/2 - bra.w t_minx2 # set INEX2 - -#################################################### -# The following routines give support for fsincos. # -#################################################### - -# -# ssincosz(): When the src operand is ZERO, store a one in the -# cosine register and return a ZERO in fp0 w/ the same sign -# as the src operand. -# - global ssincosz -ssincosz: - fmov.s &0x3f800000,%fp1 - tst.b SRC_EX(%a0) # test sign - bpl.b sincoszp - fmov.s &0x80000000,%fp0 # return sin result in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) - bra.b sto_cos # store cosine result -sincoszp: - fmov.s &0x00000000,%fp0 # return sin result in fp0 - mov.b &z_bmask,FPSR_CC(%a6) - bra.b sto_cos # store cosine result - -# -# ssincosi(): When the src operand is INF, store a QNAN in the cosine -# register and jump to the operand error routine for negative -# src operands. -# - global ssincosi -ssincosi: - fmov.x qnan(%pc),%fp1 # load NAN - bsr.l sto_cos # store cosine result - bra.w t_operr - -# -# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine -# register and branch to the src QNAN routine. -# - global ssincosqnan -ssincosqnan: - fmov.x LOCAL_EX(%a0),%fp1 - bsr.l sto_cos - bra.w src_qnan - -# -# ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set -# in the cosine register and branch to the src SNAN routine. -# - global ssincossnan -ssincossnan: - fmov.x LOCAL_EX(%a0),%fp1 - bsr.l sto_cos - bra.w src_snan - -######################################################################## - -######################################################################### -# sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. # -# fp1 holds the result of the cosine portion of ssincos(). # -# the value in fp1 will not take any exceptions when moved. # -# INPUT: # -# fp1 : fp value to store # -# MODIFIED: # -# d0 # -######################################################################### - global sto_cos -sto_cos: - mov.b 1+EXC_CMDREG(%a6),%d0 - andi.w &0x7,%d0 - mov.w (tbl_sto_cos.b,%pc,%d0.w*2),%d0 - jmp (tbl_sto_cos.b,%pc,%d0.w*1) - -tbl_sto_cos: - short sto_cos_0 - tbl_sto_cos - short sto_cos_1 - tbl_sto_cos - short sto_cos_2 - tbl_sto_cos - short sto_cos_3 - tbl_sto_cos - short sto_cos_4 - tbl_sto_cos - short sto_cos_5 - tbl_sto_cos - short sto_cos_6 - tbl_sto_cos - short sto_cos_7 - tbl_sto_cos - -sto_cos_0: - fmovm.x &0x40,EXC_FP0(%a6) - rts -sto_cos_1: - fmovm.x &0x40,EXC_FP1(%a6) - rts -sto_cos_2: - fmov.x %fp1,%fp2 - rts -sto_cos_3: - fmov.x %fp1,%fp3 - rts -sto_cos_4: - fmov.x %fp1,%fp4 - rts -sto_cos_5: - fmov.x %fp1,%fp5 - rts -sto_cos_6: - fmov.x %fp1,%fp6 - rts -sto_cos_7: - fmov.x %fp1,%fp7 - rts - -################################################################## - global smod_sdnrm - global smod_snorm -smod_sdnrm: -smod_snorm: - mov.b DTAG(%a6),%d1 - beq.l smod - cmpi.b %d1,&ZERO - beq.w smod_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l smod - cmpi.b %d1,&SNAN - beq.l dst_snan - bra.l dst_qnan - - global smod_szero -smod_szero: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&ZERO - beq.l t_operr - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l t_operr - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - - global smod_sinf -smod_sinf: - mov.b DTAG(%a6),%d1 - beq.l smod_fpn - cmpi.b %d1,&ZERO - beq.l smod_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l smod_fpn - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - -smod_zro: -srem_zro: - mov.b SRC_EX(%a0),%d1 # get src sign - mov.b DST_EX(%a1),%d0 # get dst sign - eor.b %d0,%d1 # get qbyte sign - andi.b &0x80,%d1 - mov.b %d1,FPSR_QBYTE(%a6) - tst.b %d0 - bpl.w ld_pzero - bra.w ld_mzero - -smod_fpn: -srem_fpn: - clr.b FPSR_QBYTE(%a6) - mov.l %d0,-(%sp) - mov.b SRC_EX(%a0),%d1 # get src sign - mov.b DST_EX(%a1),%d0 # get dst sign - eor.b %d0,%d1 # get qbyte sign - andi.b &0x80,%d1 - mov.b %d1,FPSR_QBYTE(%a6) - cmpi.b DTAG(%a6),&DENORM - bne.b smod_nrm - lea DST(%a1),%a0 - mov.l (%sp)+,%d0 - bra t_resdnrm -smod_nrm: - fmov.l (%sp)+,%fpcr - fmov.x DST(%a1),%fp0 - tst.b DST_EX(%a1) - bmi.b smod_nrm_neg - rts - -smod_nrm_neg: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode - rts - -######################################################################### - global srem_snorm - global srem_sdnrm -srem_sdnrm: -srem_snorm: - mov.b DTAG(%a6),%d1 - beq.l srem - cmpi.b %d1,&ZERO - beq.w srem_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l srem - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - - global srem_szero -srem_szero: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&ZERO - beq.l t_operr - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l t_operr - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - - global srem_sinf -srem_sinf: - mov.b DTAG(%a6),%d1 - beq.w srem_fpn - cmpi.b %d1,&ZERO - beq.w srem_zro - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l srem_fpn - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - -######################################################################### - global sscale_snorm - global sscale_sdnrm -sscale_snorm: -sscale_sdnrm: - mov.b DTAG(%a6),%d1 - beq.l sscale - cmpi.b %d1,&ZERO - beq.l dst_zero - cmpi.b %d1,&INF - beq.l dst_inf - cmpi.b %d1,&DENORM - beq.l sscale - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - - global sscale_szero -sscale_szero: - mov.b DTAG(%a6),%d1 - beq.l sscale - cmpi.b %d1,&ZERO - beq.l dst_zero - cmpi.b %d1,&INF - beq.l dst_inf - cmpi.b %d1,&DENORM - beq.l sscale - cmpi.b %d1,&QNAN - beq.l dst_qnan - bra.l dst_snan - - global sscale_sinf -sscale_sinf: - mov.b DTAG(%a6),%d1 - beq.l t_operr - cmpi.b %d1,&QNAN - beq.l dst_qnan - cmpi.b %d1,&SNAN - beq.l dst_snan - bra.l t_operr - -######################################################################## - -# -# sop_sqnan(): The src op for frem/fmod/fscale was a QNAN. -# - global sop_sqnan -sop_sqnan: - mov.b DTAG(%a6),%d1 - cmpi.b %d1,&QNAN - beq.b dst_qnan - cmpi.b %d1,&SNAN - beq.b dst_snan - bra.b src_qnan - -# -# sop_ssnan(): The src op for frem/fmod/fscale was an SNAN. -# - global sop_ssnan -sop_ssnan: - mov.b DTAG(%a6),%d1 - cmpi.b %d1,&QNAN - beq.b dst_qnan_src_snan - cmpi.b %d1,&SNAN - beq.b dst_snan - bra.b src_snan - -dst_qnan_src_snan: - ori.l &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP - bra.b dst_qnan - -# -# dst_qnan(): Return the dst SNAN w/ the SNAN bit set. -# - global dst_snan -dst_snan: - fmov.x DST(%a1),%fp0 # the fmove sets the SNAN bit - fmov.l %fpsr,%d0 # catch resulting status - or.l %d0,USER_FPSR(%a6) # store status - rts - -# -# dst_qnan(): Return the dst QNAN. -# - global dst_qnan -dst_qnan: - fmov.x DST(%a1),%fp0 # return the non-signalling nan - tst.b DST_EX(%a1) # set ccodes according to QNAN sign - bmi.b dst_qnan_m -dst_qnan_p: - mov.b &nan_bmask,FPSR_CC(%a6) - rts -dst_qnan_m: - mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) - rts - -# -# src_snan(): Return the src SNAN w/ the SNAN bit set. -# - global src_snan -src_snan: - fmov.x SRC(%a0),%fp0 # the fmove sets the SNAN bit - fmov.l %fpsr,%d0 # catch resulting status - or.l %d0,USER_FPSR(%a6) # store status - rts - -# -# src_qnan(): Return the src QNAN. -# - global src_qnan -src_qnan: - fmov.x SRC(%a0),%fp0 # return the non-signalling nan - tst.b SRC_EX(%a0) # set ccodes according to QNAN sign - bmi.b dst_qnan_m -src_qnan_p: - mov.b &nan_bmask,FPSR_CC(%a6) - rts -src_qnan_m: - mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) - rts - -# -# fkern2.s: -# These entry points are used by the exception handler -# routines where an instruction is selected by an index into -# a large jump table corresponding to a given instruction which -# has been decoded. Flow continues here where we now decode -# further accoding to the source operand type. -# - - global fsinh -fsinh: - mov.b STAG(%a6),%d1 - beq.l ssinh - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l src_inf - cmpi.b %d1,&DENORM - beq.l ssinhd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global flognp1 -flognp1: - mov.b STAG(%a6),%d1 - beq.l slognp1 - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l sopr_inf - cmpi.b %d1,&DENORM - beq.l slognp1d - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fetoxm1 -fetoxm1: - mov.b STAG(%a6),%d1 - beq.l setoxm1 - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l setoxm1i - cmpi.b %d1,&DENORM - beq.l setoxm1d - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global ftanh -ftanh: - mov.b STAG(%a6),%d1 - beq.l stanh - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l src_one - cmpi.b %d1,&DENORM - beq.l stanhd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fatan -fatan: - mov.b STAG(%a6),%d1 - beq.l satan - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l spi_2 - cmpi.b %d1,&DENORM - beq.l satand - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fasin -fasin: - mov.b STAG(%a6),%d1 - beq.l sasin - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l sasind - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fatanh -fatanh: - mov.b STAG(%a6),%d1 - beq.l satanh - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l satanhd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fsine -fsine: - mov.b STAG(%a6),%d1 - beq.l ssin - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l ssind - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global ftan -ftan: - mov.b STAG(%a6),%d1 - beq.l stan - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l stand - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fetox -fetox: - mov.b STAG(%a6),%d1 - beq.l setox - cmpi.b %d1,&ZERO - beq.l ld_pone - cmpi.b %d1,&INF - beq.l szr_inf - cmpi.b %d1,&DENORM - beq.l setoxd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global ftwotox -ftwotox: - mov.b STAG(%a6),%d1 - beq.l stwotox - cmpi.b %d1,&ZERO - beq.l ld_pone - cmpi.b %d1,&INF - beq.l szr_inf - cmpi.b %d1,&DENORM - beq.l stwotoxd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global ftentox -ftentox: - mov.b STAG(%a6),%d1 - beq.l stentox - cmpi.b %d1,&ZERO - beq.l ld_pone - cmpi.b %d1,&INF - beq.l szr_inf - cmpi.b %d1,&DENORM - beq.l stentoxd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global flogn -flogn: - mov.b STAG(%a6),%d1 - beq.l slogn - cmpi.b %d1,&ZERO - beq.l t_dz2 - cmpi.b %d1,&INF - beq.l sopr_inf - cmpi.b %d1,&DENORM - beq.l slognd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global flog10 -flog10: - mov.b STAG(%a6),%d1 - beq.l slog10 - cmpi.b %d1,&ZERO - beq.l t_dz2 - cmpi.b %d1,&INF - beq.l sopr_inf - cmpi.b %d1,&DENORM - beq.l slog10d - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global flog2 -flog2: - mov.b STAG(%a6),%d1 - beq.l slog2 - cmpi.b %d1,&ZERO - beq.l t_dz2 - cmpi.b %d1,&INF - beq.l sopr_inf - cmpi.b %d1,&DENORM - beq.l slog2d - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fcosh -fcosh: - mov.b STAG(%a6),%d1 - beq.l scosh - cmpi.b %d1,&ZERO - beq.l ld_pone - cmpi.b %d1,&INF - beq.l ld_pinf - cmpi.b %d1,&DENORM - beq.l scoshd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global facos -facos: - mov.b STAG(%a6),%d1 - beq.l sacos - cmpi.b %d1,&ZERO - beq.l ld_ppi2 - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l sacosd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fcos -fcos: - mov.b STAG(%a6),%d1 - beq.l scos - cmpi.b %d1,&ZERO - beq.l ld_pone - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l scosd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fgetexp -fgetexp: - mov.b STAG(%a6),%d1 - beq.l sgetexp - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l sgetexpd - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fgetman -fgetman: - mov.b STAG(%a6),%d1 - beq.l sgetman - cmpi.b %d1,&ZERO - beq.l src_zero - cmpi.b %d1,&INF - beq.l t_operr - cmpi.b %d1,&DENORM - beq.l sgetmand - cmpi.b %d1,&QNAN - beq.l src_qnan - bra.l src_snan - - global fsincos -fsincos: - mov.b STAG(%a6),%d1 - beq.l ssincos - cmpi.b %d1,&ZERO - beq.l ssincosz - cmpi.b %d1,&INF - beq.l ssincosi - cmpi.b %d1,&DENORM - beq.l ssincosd - cmpi.b %d1,&QNAN - beq.l ssincosqnan - bra.l ssincossnan - - global fmod -fmod: - mov.b STAG(%a6),%d1 - beq.l smod_snorm - cmpi.b %d1,&ZERO - beq.l smod_szero - cmpi.b %d1,&INF - beq.l smod_sinf - cmpi.b %d1,&DENORM - beq.l smod_sdnrm - cmpi.b %d1,&QNAN - beq.l sop_sqnan - bra.l sop_ssnan - - global frem -frem: - mov.b STAG(%a6),%d1 - beq.l srem_snorm - cmpi.b %d1,&ZERO - beq.l srem_szero - cmpi.b %d1,&INF - beq.l srem_sinf - cmpi.b %d1,&DENORM - beq.l srem_sdnrm - cmpi.b %d1,&QNAN - beq.l sop_sqnan - bra.l sop_ssnan - - global fscale -fscale: - mov.b STAG(%a6),%d1 - beq.l sscale_snorm - cmpi.b %d1,&ZERO - beq.l sscale_szero - cmpi.b %d1,&INF - beq.l sscale_sinf - cmpi.b %d1,&DENORM - beq.l sscale_sdnrm - cmpi.b %d1,&QNAN - beq.l sop_sqnan - bra.l sop_ssnan - -######################################################################### -# XDEF **************************************************************** # -# fgen_except(): catch an exception during transcendental # -# emulation # -# # -# XREF **************************************************************** # -# fmul() - emulate a multiply instruction # -# fadd() - emulate an add instruction # -# fin() - emulate an fmove instruction # -# # -# INPUT *************************************************************** # -# fp0 = destination operand # -# d0 = type of instruction that took exception # -# fsave frame = source operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP # -# # -# ALGORITHM *********************************************************** # -# An exception occurred on the last instruction of the # -# transcendental emulation. hopefully, this won't be happening much # -# because it will be VERY slow. # -# The only exceptions capable of passing through here are # -# Overflow, Underflow, and Unsupported Data Type. # -# # -######################################################################### - - global fgen_except -fgen_except: - cmpi.b 0x3(%sp),&0x7 # is exception UNSUPP? - beq.b fge_unsupp # yes - - mov.b &NORM,STAG(%a6) - -fge_cont: - mov.b &NORM,DTAG(%a6) - -# ok, I have a problem with putting the dst op at FP_DST. the emulation -# routines aren't supposed to alter the operands but we've just squashed -# FP_DST here... - -# 8/17/93 - this turns out to be more of a "cleanliness" standpoint -# then a potential bug. to begin with, only the dyadic functions -# frem,fmod, and fscale would get the dst trashed here. But, for -# the 060SP, the FP_DST is never used again anyways. - fmovm.x &0x80,FP_DST(%a6) # dst op is in fp0 - - lea 0x4(%sp),%a0 # pass: ptr to src op - lea FP_DST(%a6),%a1 # pass: ptr to dst op - - cmpi.b %d1,&FMOV_OP - beq.b fge_fin # it was an "fmov" - cmpi.b %d1,&FADD_OP - beq.b fge_fadd # it was an "fadd" -fge_fmul: - bsr.l fmul - rts -fge_fadd: - bsr.l fadd - rts -fge_fin: - bsr.l fin - rts - -fge_unsupp: - mov.b &DENORM,STAG(%a6) - bra.b fge_cont - -# -# This table holds the offsets of the emulation routines for each individual -# math operation relative to the address of this table. Included are -# routines like fadd/fmul/fabs as well as the transcendentals. -# The location within the table is determined by the extension bits of the -# operation longword. -# - - swbeg &109 -tbl_unsupp: - long fin - tbl_unsupp # 00: fmove - long fint - tbl_unsupp # 01: fint - long fsinh - tbl_unsupp # 02: fsinh - long fintrz - tbl_unsupp # 03: fintrz - long fsqrt - tbl_unsupp # 04: fsqrt - long tbl_unsupp - tbl_unsupp - long flognp1 - tbl_unsupp # 06: flognp1 - long tbl_unsupp - tbl_unsupp - long fetoxm1 - tbl_unsupp # 08: fetoxm1 - long ftanh - tbl_unsupp # 09: ftanh - long fatan - tbl_unsupp # 0a: fatan - long tbl_unsupp - tbl_unsupp - long fasin - tbl_unsupp # 0c: fasin - long fatanh - tbl_unsupp # 0d: fatanh - long fsine - tbl_unsupp # 0e: fsin - long ftan - tbl_unsupp # 0f: ftan - long fetox - tbl_unsupp # 10: fetox - long ftwotox - tbl_unsupp # 11: ftwotox - long ftentox - tbl_unsupp # 12: ftentox - long tbl_unsupp - tbl_unsupp - long flogn - tbl_unsupp # 14: flogn - long flog10 - tbl_unsupp # 15: flog10 - long flog2 - tbl_unsupp # 16: flog2 - long tbl_unsupp - tbl_unsupp - long fabs - tbl_unsupp # 18: fabs - long fcosh - tbl_unsupp # 19: fcosh - long fneg - tbl_unsupp # 1a: fneg - long tbl_unsupp - tbl_unsupp - long facos - tbl_unsupp # 1c: facos - long fcos - tbl_unsupp # 1d: fcos - long fgetexp - tbl_unsupp # 1e: fgetexp - long fgetman - tbl_unsupp # 1f: fgetman - long fdiv - tbl_unsupp # 20: fdiv - long fmod - tbl_unsupp # 21: fmod - long fadd - tbl_unsupp # 22: fadd - long fmul - tbl_unsupp # 23: fmul - long fsgldiv - tbl_unsupp # 24: fsgldiv - long frem - tbl_unsupp # 25: frem - long fscale - tbl_unsupp # 26: fscale - long fsglmul - tbl_unsupp # 27: fsglmul - long fsub - tbl_unsupp # 28: fsub - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsincos - tbl_unsupp # 30: fsincos - long fsincos - tbl_unsupp # 31: fsincos - long fsincos - tbl_unsupp # 32: fsincos - long fsincos - tbl_unsupp # 33: fsincos - long fsincos - tbl_unsupp # 34: fsincos - long fsincos - tbl_unsupp # 35: fsincos - long fsincos - tbl_unsupp # 36: fsincos - long fsincos - tbl_unsupp # 37: fsincos - long fcmp - tbl_unsupp # 38: fcmp - long tbl_unsupp - tbl_unsupp - long ftst - tbl_unsupp # 3a: ftst - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsin - tbl_unsupp # 40: fsmove - long fssqrt - tbl_unsupp # 41: fssqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fdin - tbl_unsupp # 44: fdmove - long fdsqrt - tbl_unsupp # 45: fdsqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsabs - tbl_unsupp # 58: fsabs - long tbl_unsupp - tbl_unsupp - long fsneg - tbl_unsupp # 5a: fsneg - long tbl_unsupp - tbl_unsupp - long fdabs - tbl_unsupp # 5c: fdabs - long tbl_unsupp - tbl_unsupp - long fdneg - tbl_unsupp # 5e: fdneg - long tbl_unsupp - tbl_unsupp - long fsdiv - tbl_unsupp # 60: fsdiv - long tbl_unsupp - tbl_unsupp - long fsadd - tbl_unsupp # 62: fsadd - long fsmul - tbl_unsupp # 63: fsmul - long fddiv - tbl_unsupp # 64: fddiv - long tbl_unsupp - tbl_unsupp - long fdadd - tbl_unsupp # 66: fdadd - long fdmul - tbl_unsupp # 67: fdmul - long fssub - tbl_unsupp # 68: fssub - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fdsub - tbl_unsupp # 6c: fdsub - -######################################################################### -# XDEF **************************************************************** # -# fmul(): emulates the fmul instruction # -# fsmul(): emulates the fsmul instruction # -# fdmul(): emulates the fdmul instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a multiply # -# instruction won't cause an exception. Use the regular fmul to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - align 0x10 -tbl_fmul_ovfl: - long 0x3fff - 0x7ffe # ext_max - long 0x3fff - 0x407e # sgl_max - long 0x3fff - 0x43fe # dbl_max -tbl_fmul_unfl: - long 0x3fff + 0x0001 # ext_unfl - long 0x3fff - 0x3f80 # sgl_unfl - long 0x3fff - 0x3c00 # dbl_unfl - - global fsmul -fsmul: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fmul - - global fdmul -fdmul: - andi.b &0x30,%d0 - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fmul -fmul: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - bne.w fmul_not_norm # optimize on non-norm input - -fmul_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale src exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision - lsr.b &0x6,%d1 # shift to lo bits - mov.l (%sp)+,%d0 # load S.F. - cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? - beq.w fmul_may_ovfl # result may rnd to overflow - blt.w fmul_ovfl # result will overflow - - cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? - beq.w fmul_may_unfl # result may rnd to no unfl - bgt.w fmul_unfl # result will underflow - -# -# NORMAL: -# - the result of the multiply operation will neither overflow nor underflow. -# - do the multiply to the proper precision and rounding mode. -# - scale the result exponent using the scale factor. if both operands were -# normalized then we really don't need to go through this scaling. but for now, -# this will do. -# -fmul_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fmul_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# OVERFLOW: -# - the result of the multiply operation is an overflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# - if overflow or inexact is enabled, we need a multiply result rounded to -# extended precision. if the original operation was extended, then we have this -# result. if the original operation was single or double, we have to do another -# multiply using extended precision and the correct rounding mode. the result -# of this operation then has its exponent scaled by -0x6000 to create the -# exceptional operand. -# -fmul_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -# save setting this until now because this is where fmul_may_ovfl may jump in -fmul_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fmul_ovfl_ena # yes - -# calculate the default result -fmul_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled; Create EXOP: -# - if precision is extended, then we have the EXOP. simply bias the exponent -# with an extra -0x6000. if the precision is single or double, we need to -# calculate a result rounded to extended precision. -# -fmul_ovfl_ena: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # test the rnd prec - bne.b fmul_ovfl_ena_sd # it's sgl or dbl - -fmul_ovfl_ena_cont: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 # clear sign bit - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fmul_ovfl_dis - -fmul_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode only - fmov.l %d1,%fpcr # set FPCR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - bra.b fmul_ovfl_ena_cont - -# -# may OVERFLOW: -# - the result of the multiply operation MAY overflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# -fmul_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fmul_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fmul_normal_exit - -# -# UNDERFLOW: -# - the result of the multiply operation is an underflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# - if overflow or inexact is enabled, we need a multiply result rounded to -# extended precision. if the original operation was extended, then we have this -# result. if the original operation was single or double, we have to do another -# multiply using extended precision and the correct rounding mode. the result -# of this operation then has its exponent scaled by -0x6000 to create the -# exceptional operand. -# -fmul_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - -# for fun, let's use only extended precision, round to zero. then, let -# the unf_res() routine figure out all the rest. -# will we get the correct answer. - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fmul_unfl_ena # yes - -fmul_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fmul_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fmul_unfl_ena_sd # no, sgl or dbl - -# if the rnd mode is anything but RZ, then we have to re-do the above -# multiplication because we used RZ for all. - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fmul_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fmul_unfl_dis - -fmul_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fmul_unfl_ena_cont - -# MAY UNDERFLOW: -# -use the correct rounding mode and precision. this code favors operations -# that do not underflow. -fmul_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| > 2.b? - fbgt.w fmul_normal_exit # no; no underflow occurred - fblt.w fmul_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 2. but, -# we don't know if the result was an underflow that rounded up to a 2 or -# a normalized number that rounded down to a 2. so, redo the entire operation -# using RZ as the rounding mode to see what the pre-rounded result is. -# this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x2 # is |result| < 2.b? - fbge.w fmul_normal_exit # no; no underflow occurred - bra.w fmul_unfl # yes, underflow occurred - -################################################################################ - -# -# Multiply: inputs are not both normalized; what are they? -# -fmul_not_norm: - mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fmul_op.b,%pc,%d1.w) - - swbeg &48 -tbl_fmul_op: - short fmul_norm - tbl_fmul_op # NORM x NORM - short fmul_zero - tbl_fmul_op # NORM x ZERO - short fmul_inf_src - tbl_fmul_op # NORM x INF - short fmul_res_qnan - tbl_fmul_op # NORM x QNAN - short fmul_norm - tbl_fmul_op # NORM x DENORM - short fmul_res_snan - tbl_fmul_op # NORM x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_zero - tbl_fmul_op # ZERO x NORM - short fmul_zero - tbl_fmul_op # ZERO x ZERO - short fmul_res_operr - tbl_fmul_op # ZERO x INF - short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN - short fmul_zero - tbl_fmul_op # ZERO x DENORM - short fmul_res_snan - tbl_fmul_op # ZERO x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_inf_dst - tbl_fmul_op # INF x NORM - short fmul_res_operr - tbl_fmul_op # INF x ZERO - short fmul_inf_dst - tbl_fmul_op # INF x INF - short fmul_res_qnan - tbl_fmul_op # INF x QNAN - short fmul_inf_dst - tbl_fmul_op # INF x DENORM - short fmul_res_snan - tbl_fmul_op # INF x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_res_qnan - tbl_fmul_op # QNAN x NORM - short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO - short fmul_res_qnan - tbl_fmul_op # QNAN x INF - short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN - short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM - short fmul_res_snan - tbl_fmul_op # QNAN x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_norm - tbl_fmul_op # NORM x NORM - short fmul_zero - tbl_fmul_op # NORM x ZERO - short fmul_inf_src - tbl_fmul_op # NORM x INF - short fmul_res_qnan - tbl_fmul_op # NORM x QNAN - short fmul_norm - tbl_fmul_op # NORM x DENORM - short fmul_res_snan - tbl_fmul_op # NORM x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_res_snan - tbl_fmul_op # SNAN x NORM - short fmul_res_snan - tbl_fmul_op # SNAN x ZERO - short fmul_res_snan - tbl_fmul_op # SNAN x INF - short fmul_res_snan - tbl_fmul_op # SNAN x QNAN - short fmul_res_snan - tbl_fmul_op # SNAN x DENORM - short fmul_res_snan - tbl_fmul_op # SNAN x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - -fmul_res_operr: - bra.l res_operr -fmul_res_snan: - bra.l res_snan -fmul_res_qnan: - bra.l res_qnan - -# -# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) -# - global fmul_zero # global for fsglmul -fmul_zero: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_zero_p # result ZERO is pos. -fmul_zero_n: - fmov.s &0x80000000,%fp0 # load -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N - rts -fmul_zero_p: - fmov.s &0x00000000,%fp0 # load +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# Multiply: (inf x inf) || (inf x norm) || (inf x denorm) -# -# Note: The j-bit for an infinity is a don't-care. However, to be -# strictly compatible w/ the 68881/882, we make sure to return an -# INF w/ the j-bit set if the input INF j-bit was set. Destination -# INFs take priority. -# - global fmul_inf_dst # global for fsglmul -fmul_inf_dst: - fmovm.x DST(%a1),&0x80 # return INF result in fp0 - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_inf_dst_p # result INF is pos. -fmul_inf_dst_n: - fabs.x %fp0 # clear result sign - fneg.x %fp0 # set result sign - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N - rts -fmul_inf_dst_p: - fabs.x %fp0 # clear result sign - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - - global fmul_inf_src # global for fsglmul -fmul_inf_src: - fmovm.x SRC(%a0),&0x80 # return INF result in fp0 - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_inf_dst_p # result INF is pos. - bra.b fmul_inf_dst_n - -######################################################################### -# XDEF **************************************************************** # -# fin(): emulates the fmove instruction # -# fsin(): emulates the fsmove instruction # -# fdin(): emulates the fdmove instruction # -# # -# XREF **************************************************************** # -# norm() - normalize mantissa for EXOP on denorm # -# scale_to_zero_src() - scale src exponent to zero # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round prec/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Norms can be emulated w/ a regular fmove instruction. For # -# sgl/dbl, must scale exponent and perform an "fmove". Check to see # -# if the result would have overflowed/underflowed. If so, use unf_res() # -# or ovf_res() to return the default result. Also return EXOP if # -# exception is enabled. If no exception, return the default result. # -# Unnorms don't pass through here. # -# # -######################################################################### - - global fsin -fsin: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fin - - global fdin -fdin: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fin -fin: - mov.l %d0,L_SCR3(%a6) # store rnd info - - mov.b STAG(%a6),%d1 # fetch src optype tag - bne.w fin_not_norm # optimize on non-norm input - -# -# FP MOVE IN: NORMs and DENORMs ONLY! -# -fin_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fin_not_ext # no, so go handle dbl or sgl - -# -# precision selected is extended. so...we cannot get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - tst.b SRC_EX(%a0) # is the operand negative? - bpl.b fin_norm_done # no - bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit -fin_norm_done: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fin_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fin_not_ext # no, so go handle dbl or sgl - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - tst.b SRC_EX(%a0) # is the operand negative? - bpl.b fin_denorm_done # no - bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit -fin_denorm_done: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fin_denorm_unfl_ena # yes - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fin_denorm_unfl_ena: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat new exo,old sign - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is to be rounded to single or double precision -# -fin_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fin_dbl - -# -# operand is to be rounded to single precision -# -fin_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fin_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fin_sd_may_ovfl # maybe; go check - blt.w fin_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved into the fp reg file -# -fin_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform move - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fin_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exponent - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fin_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.w fin_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fin_sd_may_ovfl # maybe; go check - blt.w fin_sd_ovfl # yes; go handle overflow - bra.w fin_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fin_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - tst.b FP_SCR0_EX(%a6) # is operand negative? - bpl.b fin_sd_unfl_tst - bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit - -# if underflow or inexact is enabled, then go calculate the EXOP first. -fin_sd_unfl_tst: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fin_sd_unfl_ena # yes - -fin_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow or inexact is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fin_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # subtract scale factor - andi.w &0x8000,%d2 # extract old sign - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fin_sd_unfl_dis - -# -# operand WILL overflow. -# -fin_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform move - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fin_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fin_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fin_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fin_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - sub.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fin_sd_ovfl_dis - -# -# the move in MAY overflow. so... -# -fin_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform the move - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fin_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fin_sd_normal_exit - -########################################################################## - -# -# operand is not a NORM: check its optype and branch accordingly -# -fin_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fin_denorm - cmpi.b %d1,&SNAN # weed out SNANs - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNANs - beq.l res_qnan_1op - -# -# do the fmove in; at this point, only possible ops are ZERO and INF. -# use fmov to determine ccodes. -# prec:mode should be zero at this point but it won't affect answer anyways. -# - fmov.x SRC(%a0),%fp0 # do fmove in - fmov.l %fpsr,%d0 # no exceptions possible - rol.l &0x8,%d0 # put ccodes in lo byte - mov.b %d0,FPSR_CC(%a6) # insert correct ccodes - rts - -######################################################################### -# XDEF **************************************************************** # -# fdiv(): emulates the fdiv instruction # -# fsdiv(): emulates the fsdiv instruction # -# fddiv(): emulates the fddiv instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a divide # -# instruction won't cause an exception. Use the regular fdiv to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - align 0x10 -tbl_fdiv_unfl: - long 0x3fff - 0x0000 # ext_unfl - long 0x3fff - 0x3f81 # sgl_unfl - long 0x3fff - 0x3c01 # dbl_unfl - -tbl_fdiv_ovfl: - long 0x3fff - 0x7ffe # ext overflow exponent - long 0x3fff - 0x407e # sgl overflow exponent - long 0x3fff - 0x43fe # dbl overflow exponent - - global fsdiv -fsdiv: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fdiv - - global fddiv -fddiv: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fdiv -fdiv: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fdiv_not_norm # optimize on non-norm input - -# -# DIVIDE: NORMs and DENORMs ONLY! -# -fdiv_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale src exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - neg.l (%sp) # SCALE FACTOR = scale1 - scale2 - add.l %d0,(%sp) - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision - lsr.b &0x6,%d1 # shift to lo bits - mov.l (%sp)+,%d0 # load S.F. - cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? - ble.w fdiv_may_ovfl # result will overflow - - cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? - beq.w fdiv_may_unfl # maybe - bgt.w fdiv_unfl # yes; go handle underflow - -fdiv_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # save FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # perform divide - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fdiv_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store result on stack - mov.l %d2,-(%sp) # store d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -tbl_fdiv_ovfl2: - long 0x7fff - long 0x407f - long 0x43ff - -fdiv_no_ovfl: - mov.l (%sp)+,%d0 # restore scale factor - bra.b fdiv_normal_exit - -fdiv_may_ovfl: - mov.l %d0,-(%sp) # save scale factor - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # set FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d0 - fmov.l &0x0,%fpcr - - or.l %d0,USER_FPSR(%a6) # save INEX,N - - fmovm.x &0x01,-(%sp) # save result to stack - mov.w (%sp),%d0 # fetch new exponent - add.l &0xc,%sp # clear result from stack - andi.l &0x7fff,%d0 # strip sign - sub.l (%sp),%d0 # add scale factor - cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) - blt.b fdiv_no_ovfl - mov.l (%sp)+,%d0 - -fdiv_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fdiv_ovfl_ena # yes - -fdiv_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fdiv_ovfl_ena: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl - -fdiv_ovfl_ena_cont: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 # clear sign bit - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fdiv_ovfl_dis - -fdiv_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode - fmov.l %d1,%fpcr # set FPCR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - bra.b fdiv_ovfl_ena_cont - -fdiv_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fdiv_unfl_ena # yes - -fdiv_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fdiv_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fdiv_unfl_ena_sd # no, sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fdiv_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp1 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factoer - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exp - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fdiv_unfl_dis - -fdiv_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fdiv_unfl_ena_cont - -# -# the divide operation MAY underflow: -# -fdiv_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| > 1.b? - fbgt.w fdiv_normal_exit # no; no underflow occurred - fblt.w fdiv_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 1. but, -# we don't know if the result was an underflow that rounded up to a 1 -# or a normalized number that rounded down to a 1. so, redo the entire -# operation using RZ as the rounding mode to see what the pre-rounded -# result is. this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp1 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x1 # is |result| < 1.b? - fbge.w fdiv_normal_exit # no; no underflow occurred - bra.w fdiv_unfl # yes; underflow occurred - -############################################################################ - -# -# Divide: inputs are not both normalized; what are they? -# -fdiv_not_norm: - mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fdiv_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fdiv_op: - short fdiv_norm - tbl_fdiv_op # NORM / NORM - short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO - short fdiv_zero_load - tbl_fdiv_op # NORM / INF - short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN - short fdiv_norm - tbl_fdiv_op # NORM / DENORM - short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM - short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO - short fdiv_zero_load - tbl_fdiv_op # ZERO / INF - short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN - short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM - short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_inf_dst - tbl_fdiv_op # INF / NORM - short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO - short fdiv_res_operr - tbl_fdiv_op # INF / INF - short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN - short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM - short fdiv_res_snan - tbl_fdiv_op # INF / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM - short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO - short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF - short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN - short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM - short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_norm - tbl_fdiv_op # DENORM / NORM - short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO - short fdiv_zero_load - tbl_fdiv_op # DENORM / INF - short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN - short fdiv_norm - tbl_fdiv_op # DENORM / DENORM - short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM - short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO - short fdiv_res_snan - tbl_fdiv_op # SNAN / INF - short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN - short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM - short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - -fdiv_res_qnan: - bra.l res_qnan -fdiv_res_snan: - bra.l res_snan -fdiv_res_operr: - bra.l res_operr - - global fdiv_zero_load # global for fsgldiv -fdiv_zero_load: - mov.b SRC_EX(%a0),%d0 # result sign is exclusive - mov.b DST_EX(%a1),%d1 # or of input signs. - eor.b %d0,%d1 - bpl.b fdiv_zero_load_p # result is positive - fmov.s &0x80000000,%fp0 # load a -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N - rts -fdiv_zero_load_p: - fmov.s &0x00000000,%fp0 # load a +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# The destination was In Range and the source was a ZERO. The result, -# Therefore, is an INF w/ the proper sign. -# So, determine the sign and return a new INF (w/ the j-bit cleared). -# - global fdiv_inf_load # global for fsgldiv -fdiv_inf_load: - ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ - mov.b SRC_EX(%a0),%d0 # load both signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fdiv_inf_load_p # result is positive - fmov.s &0xff800000,%fp0 # make result -INF - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N - rts -fdiv_inf_load_p: - fmov.s &0x7f800000,%fp0 # make result +INF - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -# -# The destination was an INF w/ an In Range or ZERO source, the result is -# an INF w/ the proper sign. -# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the -# dst INF is set, then then j-bit of the result INF is also set). -# - global fdiv_inf_dst # global for fsgldiv -fdiv_inf_dst: - mov.b DST_EX(%a1),%d0 # load both signs - mov.b SRC_EX(%a0),%d1 - eor.b %d0,%d1 - bpl.b fdiv_inf_dst_p # result is positive - - fmovm.x DST(%a1),&0x80 # return result in fp0 - fabs.x %fp0 # clear sign bit - fneg.x %fp0 # set sign bit - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fdiv_inf_dst_p: - fmovm.x DST(%a1),&0x80 # return result in fp0 - fabs.x %fp0 # return positive INF - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fneg(): emulates the fneg instruction # -# fsneg(): emulates the fsneg instruction # -# fdneg(): emulates the fdneg instruction # -# # -# XREF **************************************************************** # -# norm() - normalize a denorm to provide EXOP # -# scale_to_zero_src() - scale sgl/dbl source exponent # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, zeroes, and infinities as special cases. Separate # -# norms/denorms into ext/sgl/dbl precisions. Extended precision can be # -# emulated by simply setting sign bit. Sgl/dbl operands must be scaled # -# and an actual fneg performed to see if overflow/underflow would have # -# occurred. If so, return default underflow/overflow result. Else, # -# scale the result exponent and return result. FPSR gets set based on # -# the result value. # -# # -######################################################################### - - global fsneg -fsneg: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fneg - - global fdneg -fdneg: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fneg -fneg: - mov.l %d0,L_SCR3(%a6) # store rnd info - mov.b STAG(%a6),%d1 - bne.w fneg_not_norm # optimize on non-norm input - -# -# NEGATE SIGN : norms and denorms ONLY! -# -fneg_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fneg_not_ext # no; go handle sgl or dbl - -# -# precision selected is extended. so...we can not get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - eori.w &0x8000,%d0 # negate sign - bpl.b fneg_norm_load # sign is positive - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit -fneg_norm_load: - mov.w %d0,FP_SCR0_EX(%a6) - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fneg_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fneg_not_ext # no; go handle sgl or dbl - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - eori.w &0x8000,%d0 # negate sign - bpl.b fneg_denorm_done # no - mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit -fneg_denorm_done: - mov.w %d0,FP_SCR0_EX(%a6) - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fneg_ext_unfl_ena # yes - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fneg_ext_unfl_ena: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat old sign, new exponent - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is either single or double -# -fneg_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fneg_dbl - -# -# operand is to be rounded to single precision -# -fneg_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fneg_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fneg_sd_may_ovfl # maybe; go check - blt.w fneg_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fneg_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fneg_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fneg_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.b fneg_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fneg_sd_may_ovfl # maybe; go check - blt.w fneg_sd_ovfl # yes; go handle overflow - bra.w fneg_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fneg_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - eori.b &0x80,FP_SCR0_EX(%a6) # negate sign - bpl.b fneg_sd_unfl_tst - bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit - -# if underflow or inexact is enabled, go calculate EXOP first. -fneg_sd_unfl_tst: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fneg_sd_unfl_ena # yes - -fneg_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fneg_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fneg_sd_unfl_dis - -# -# operand WILL overflow. -# -fneg_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fneg_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fneg_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fneg_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fneg_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fneg_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fneg_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fneg_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fneg_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fneg_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - -# -# do the fneg; at this point, only possible ops are ZERO and INF. -# use fneg to determine ccodes. -# prec:mode should be zero at this point but it won't affect answer anyways. -# - fneg.x SRC_EX(%a0),%fp0 # do fneg - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 # put ccodes in lo byte - mov.b %d0,FPSR_CC(%a6) # insert correct ccodes - rts - -######################################################################### -# XDEF **************************************************************** # -# ftst(): emulates the ftest instruction # -# # -# XREF **************************************************************** # -# res{s,q}nan_1op() - set NAN result for monadic instruction # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# none # -# # -# ALGORITHM *********************************************************** # -# Check the source operand tag (STAG) and set the FPCR according # -# to the operand type and sign. # -# # -######################################################################### - - global ftst -ftst: - mov.b STAG(%a6),%d1 - bne.b ftst_not_norm # optimize on non-norm input - -# -# Norm: -# -ftst_norm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_norm_m # yes - rts -ftst_norm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# input is not normalized; what is it? -# -ftst_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b ftst_zero - cmpi.b %d1,&INF # weed out INF - beq.b ftst_inf - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - -# -# Denorm: -# -ftst_denorm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_denorm_m # yes - rts -ftst_denorm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# Infinity: -# -ftst_inf: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_inf_m # yes -ftst_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -ftst_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits - rts - -# -# Zero: -# -ftst_zero: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_zero_m # yes -ftst_zero_p: - mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts -ftst_zero_m: - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fint(): emulates the fint instruction # -# # -# XREF **************************************************************** # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# # -# ALGORITHM *********************************************************** # -# Separate according to operand type. Unnorms don't pass through # -# here. For norms, load the rounding mode/prec, execute a "fint", then # -# store the resulting FPSR bits. # -# For denorms, force the j-bit to a one and do the same as for # -# norms. Denorms are so low that the answer will either be a zero or a # -# one. # -# For zeroes/infs/NANs, return the same while setting the FPSR # -# as appropriate. # -# # -######################################################################### - - global fint -fint: - mov.b STAG(%a6),%d1 - bne.b fint_not_norm # optimize on non-norm input - -# -# Norm: -# -fint_norm: - andi.b &0x30,%d0 # set prec = ext - - fmov.l %d0,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fint.x SRC(%a0),%fp0 # execute fint - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d0 # save FPSR - or.l %d0,USER_FPSR(%a6) # set exception bits - - rts - -# -# input is not normalized; what is it? -# -fint_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fint_zero - cmpi.b %d1,&INF # weed out INF - beq.b fint_inf - cmpi.b %d1,&DENORM # weed out DENORM - beq.b fint_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op # weed out QNAN - -# -# Denorm: -# -# for DENORMs, the result will be either (+/-)ZERO or (+/-)1. -# also, the INEX2 and AINEX exception bits will be set. -# so, we could either set these manually or force the DENORM -# to a very small NORM and ship it to the NORM routine. -# I do the latter. -# -fint_denorm: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp - mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM - lea FP_SCR0(%a6),%a0 - bra.b fint_norm - -# -# Zero: -# -fint_zero: - tst.b SRC_EX(%a0) # is ZERO negative? - bmi.b fint_zero_m # yes -fint_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO in fp0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fint_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -# -# Infinity: -# -fint_inf: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - tst.b SRC_EX(%a0) # is INF negative? - bmi.b fint_inf_m # yes -fint_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -fint_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fintrz(): emulates the fintrz instruction # -# # -# XREF **************************************************************** # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# # -# ALGORITHM *********************************************************** # -# Separate according to operand type. Unnorms don't pass through # -# here. For norms, load the rounding mode/prec, execute a "fintrz", # -# then store the resulting FPSR bits. # -# For denorms, force the j-bit to a one and do the same as for # -# norms. Denorms are so low that the answer will either be a zero or a # -# one. # -# For zeroes/infs/NANs, return the same while setting the FPSR # -# as appropriate. # -# # -######################################################################### - - global fintrz -fintrz: - mov.b STAG(%a6),%d1 - bne.b fintrz_not_norm # optimize on non-norm input - -# -# Norm: -# -fintrz_norm: - fmov.l &0x0,%fpsr # clear FPSR - - fintrz.x SRC(%a0),%fp0 # execute fintrz - - fmov.l %fpsr,%d0 # save FPSR - or.l %d0,USER_FPSR(%a6) # set exception bits - - rts - -# -# input is not normalized; what is it? -# -fintrz_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fintrz_zero - cmpi.b %d1,&INF # weed out INF - beq.b fintrz_inf - cmpi.b %d1,&DENORM # weed out DENORM - beq.b fintrz_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op # weed out QNAN - -# -# Denorm: -# -# for DENORMs, the result will be (+/-)ZERO. -# also, the INEX2 and AINEX exception bits will be set. -# so, we could either set these manually or force the DENORM -# to a very small NORM and ship it to the NORM routine. -# I do the latter. -# -fintrz_denorm: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp - mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM - lea FP_SCR0(%a6),%a0 - bra.b fintrz_norm - -# -# Zero: -# -fintrz_zero: - tst.b SRC_EX(%a0) # is ZERO negative? - bmi.b fintrz_zero_m # yes -fintrz_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO in fp0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fintrz_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -# -# Infinity: -# -fintrz_inf: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - tst.b SRC_EX(%a0) # is INF negative? - bmi.b fintrz_inf_m # yes -fintrz_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -fintrz_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fabs(): emulates the fabs instruction # -# fsabs(): emulates the fsabs instruction # -# fdabs(): emulates the fdabs instruction # -# # -# XREF **************************************************************** # -# norm() - normalize denorm mantissa to provide EXOP # -# scale_to_zero_src() - make exponent. = 0; get scale factor # -# unf_res() - calculate underflow result # -# ovf_res() - calculate overflow result # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = rnd precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Simply clear sign for extended precision norm. Ext prec denorm # -# gets an EXOP created for it since it's an underflow. # -# Double and single precision can overflow and underflow. First, # -# scale the operand such that the exponent is zero. Perform an "fabs" # -# using the correct rnd mode/prec. Check to see if the original # -# exponent would take an exception. If so, use unf_res() or ovf_res() # -# to calculate the default result. Also, create the EXOP for the # -# exceptional case. If no exception should occur, insert the correct # -# result exponent and return. # -# Unnorms don't pass through here. # -# # -######################################################################### - - global fsabs -fsabs: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fabs - - global fdabs -fdabs: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fabs -fabs: - mov.l %d0,L_SCR3(%a6) # store rnd info - mov.b STAG(%a6),%d1 - bne.w fabs_not_norm # optimize on non-norm input - -# -# ABSOLUTE VALUE: norms and denorms ONLY! -# -fabs_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fabs_not_ext # no; go handle sgl or dbl - -# -# precision selected is extended. so...we can not get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d1 - bclr &15,%d1 # force absolute value - mov.w %d1,FP_SCR0_EX(%a6) # insert exponent - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fabs_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fabs_not_ext # no - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - bclr &15,%d0 # clear sign - mov.w %d0,FP_SCR0_EX(%a6) # insert exponent - - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fabs_ext_unfl_ena - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fabs_ext_unfl_ena: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat old sign, new exponent - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is either single or double -# -fabs_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fabs_dbl - -# -# operand is to be rounded to single precision -# -fabs_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fabs_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fabs_sd_may_ovfl # maybe; go check - blt.w fabs_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fabs_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fabs_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fabs_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.b fabs_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fabs_sd_may_ovfl # maybe; go check - blt.w fabs_sd_ovfl # yes; go handle overflow - bra.w fabs_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fabs_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - bclr &0x7,FP_SCR0_EX(%a6) # force absolute value - -# if underflow or inexact is enabled, go calculate EXOP first. - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fabs_sd_unfl_ena # yes - -fabs_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fabs_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fabs_sd_unfl_dis - -# -# operand WILL overflow. -# -fabs_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fabs_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fabs_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fabs_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fabs_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fabs_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fabs_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fabs_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fabs_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fabs_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - - fabs.x SRC(%a0),%fp0 # force absolute value - - cmpi.b %d1,&INF # weed out INF - beq.b fabs_inf -fabs_zero: - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fabs_inf: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fcmp(): fp compare op routine # -# # -# XREF **************************************************************** # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 = round prec/mode # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Handle NANs and denorms as special cases. For everything else, # -# just use the actual fcmp instruction to produce the correct condition # -# codes. # -# # -######################################################################### - - global fcmp -fcmp: - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 - bne.b fcmp_not_norm # optimize on non-norm input - -# -# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs -# -fcmp_norm: - fmovm.x DST(%a1),&0x80 # load dst op - - fcmp.x %fp0,SRC(%a0) # do compare - - fmov.l %fpsr,%d0 # save FPSR - rol.l &0x8,%d0 # extract ccode bits - mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) - - rts - -# -# fcmp: inputs are not both normalized; what are they? -# -fcmp_not_norm: - mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fcmp_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fcmp_op: - short fcmp_norm - tbl_fcmp_op # NORM - NORM - short fcmp_norm - tbl_fcmp_op # NORM - ZERO - short fcmp_norm - tbl_fcmp_op # NORM - INF - short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN - short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM - short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_norm - tbl_fcmp_op # ZERO - NORM - short fcmp_norm - tbl_fcmp_op # ZERO - ZERO - short fcmp_norm - tbl_fcmp_op # ZERO - INF - short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN - short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM - short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_norm - tbl_fcmp_op # INF - NORM - short fcmp_norm - tbl_fcmp_op # INF - ZERO - short fcmp_norm - tbl_fcmp_op # INF - INF - short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN - short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM - short fcmp_res_snan - tbl_fcmp_op # INF - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM - short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO - short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF - short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN - short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM - short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM - short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO - short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF - short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN - short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM - short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM - short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO - short fcmp_res_snan - tbl_fcmp_op # SNAN - INF - short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN - short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM - short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - -# unlike all other functions for QNAN and SNAN, fcmp does NOT set the -# 'N' bit for a negative QNAN or SNAN input so we must squelch it here. -fcmp_res_qnan: - bsr.l res_qnan - andi.b &0xf7,FPSR_CC(%a6) - rts -fcmp_res_snan: - bsr.l res_snan - andi.b &0xf7,FPSR_CC(%a6) - rts - -# -# DENORMs are a little more difficult. -# If you have a 2 DENORMs, then you can just force the j-bit to a one -# and use the fcmp_norm routine. -# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one -# and use the fcmp_norm routine. -# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. -# But with a DENORM and a NORM of the same sign, the neg bit is set if the -# (1) signs are (+) and the DENORM is the dst or -# (2) signs are (-) and the DENORM is the src -# - -fcmp_dnrm_s: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),%d0 - bset &31,%d0 # DENORM src; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 - bra.w fcmp_norm - -fcmp_dnrm_d: - mov.l DST_EX(%a1),FP_SCR0_EX(%a6) - mov.l DST_HI(%a1),%d0 - bset &31,%d0 # DENORM src; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a1 - bra.w fcmp_norm - -fcmp_dnrm_sd: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l DST_HI(%a1),%d0 - bset &31,%d0 # DENORM dst; make into small norm - mov.l %d0,FP_SCR1_HI(%a6) - mov.l SRC_HI(%a0),%d0 - bset &31,%d0 # DENORM dst; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR1(%a6),%a1 - lea FP_SCR0(%a6),%a0 - bra.w fcmp_norm - -fcmp_nrm_dnrm: - mov.b SRC_EX(%a0),%d0 # determine if like signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fcmp_dnrm_s - -# signs are the same, so must determine the answer ourselves. - tst.b %d0 # is src op negative? - bmi.b fcmp_nrm_dnrm_m # yes - rts -fcmp_nrm_dnrm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -fcmp_dnrm_nrm: - mov.b SRC_EX(%a0),%d0 # determine if like signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fcmp_dnrm_d - -# signs are the same, so must determine the answer ourselves. - tst.b %d0 # is src op negative? - bpl.b fcmp_dnrm_nrm_m # no - rts -fcmp_dnrm_nrm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fsglmul(): emulates the fsglmul instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res4() - return default underflow result for sglop # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a multiply # -# instruction won't cause an exception. Use the regular fsglmul to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fsglmul -fsglmul: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 - - bne.w fsglmul_not_norm # optimize on non-norm input - -fsglmul_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 - - cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? - beq.w fsglmul_may_ovfl # result may rnd to overflow - blt.w fsglmul_ovfl # result will overflow - - cmpi.l %d0,&0x3fff+0x0001 # would result unfl? - beq.w fsglmul_may_unfl # result may rnd to no unfl - bgt.w fsglmul_unfl # result will underflow - -fsglmul_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsglmul_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -fsglmul_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsglmul_ovfl_tst: - -# save setting this until now because this is where fsglmul_may_ovfl may jump in - or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsglmul_ovfl_ena # yes - -fsglmul_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - andi.b &0x30,%d0 # force prec = ext - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fsglmul_ovfl_ena: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsglmul_ovfl_dis - -fsglmul_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fsglmul_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fsglmul_normal_exit - -fsglmul_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsglmul_unfl_ena # yes - -fsglmul_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res4 # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fsglmul_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fsglmul_unfl_dis - -fsglmul_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| > 2.b? - fbgt.w fsglmul_normal_exit # no; no underflow occurred - fblt.w fsglmul_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 2. but, -# we don't know if the result was an underflow that rounded up to a 2 or -# a normalized number that rounded down to a 2. so, redo the entire operation -# using RZ as the rounding mode to see what the pre-rounded result is. -# this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x2 # is |result| < 2.b? - fbge.w fsglmul_normal_exit # no; no underflow occurred - bra.w fsglmul_unfl # yes, underflow occurred - -############################################################################## - -# -# Single Precision Multiply: inputs are not both normalized; what are they? -# -fsglmul_not_norm: - mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsglmul_op: - short fsglmul_norm - tbl_fsglmul_op # NORM x NORM - short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO - short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF - short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN - short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM - short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO - short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF - short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN - short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM - short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO - short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF - short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN - short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_norm - tbl_fsglmul_op # NORM x NORM - short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO - short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF - short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN - short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - -fsglmul_res_operr: - bra.l res_operr -fsglmul_res_snan: - bra.l res_snan -fsglmul_res_qnan: - bra.l res_qnan -fsglmul_zero: - bra.l fmul_zero -fsglmul_inf_src: - bra.l fmul_inf_src -fsglmul_inf_dst: - bra.l fmul_inf_dst - -######################################################################### -# XDEF **************************************************************** # -# fsgldiv(): emulates the fsgldiv instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res4() - return default underflow result for sglop # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a divide # -# instruction won't cause an exception. Use the regular fsgldiv to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fsgldiv -fsgldiv: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fsgldiv_not_norm # optimize on non-norm input - -# -# DIVIDE: NORMs and DENORMs ONLY! -# -fsgldiv_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # calculate scale factor 1 - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # calculate scale factor 2 - - neg.l (%sp) # S.F. = scale1 - scale2 - add.l %d0,(%sp) - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode - lsr.b &0x6,%d1 - mov.l (%sp)+,%d0 - cmpi.l %d0,&0x3fff-0x7ffe - ble.w fsgldiv_may_ovfl - - cmpi.l %d0,&0x3fff-0x0000 # will result underflow? - beq.w fsgldiv_may_unfl # maybe - bgt.w fsgldiv_unfl # yes; go handle underflow - -fsgldiv_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # save FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsgldiv_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store result on stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -fsgldiv_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # set FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 - fmov.l &0x0,%fpcr - - or.l %d1,USER_FPSR(%a6) # save INEX,N - - fmovm.x &0x01,-(%sp) # save result to stack - mov.w (%sp),%d1 # fetch new exponent - add.l &0xc,%sp # clear result - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - cmp.l %d1,&0x7fff # did divide overflow? - blt.b fsgldiv_normal_exit - -fsgldiv_ovfl_tst: - or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsgldiv_ovfl_ena # yes - -fsgldiv_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - andi.b &0x30,%d0 # kill precision - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fsgldiv_ovfl_ena: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract new bias - andi.w &0x7fff,%d1 # clear ms bit - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsgldiv_ovfl_dis - -fsgldiv_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsgldiv_unfl_ena # yes - -fsgldiv_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res4 # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fsgldiv_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat old sign, new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsgldiv_unfl_dis - -# -# the divide operation MAY underflow: -# -fsgldiv_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| > 1.b? - fbgt.w fsgldiv_normal_exit # no; no underflow occurred - fblt.w fsgldiv_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 1. but, -# we don't know if the result was an underflow that rounded up to a 1 -# or a normalized number that rounded down to a 1. so, redo the entire -# operation using RZ as the rounding mode to see what the pre-rounded -# result is. this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 - - clr.l %d1 # clear scratch register - ori.b &rz_mode*0x10,%d1 # force RZ rnd mode - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x1 # is |result| < 1.b? - fbge.w fsgldiv_normal_exit # no; no underflow occurred - bra.w fsgldiv_unfl # yes; underflow occurred - -############################################################################ - -# -# Divide: inputs are not both normalized; what are they? -# -fsgldiv_not_norm: - mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsgldiv_op: - short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM - short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN - short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM - short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO - short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM - short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN - short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - -fsgldiv_res_qnan: - bra.l res_qnan -fsgldiv_res_snan: - bra.l res_snan -fsgldiv_res_operr: - bra.l res_operr -fsgldiv_inf_load: - bra.l fdiv_inf_load -fsgldiv_zero_load: - bra.l fdiv_zero_load -fsgldiv_inf_dst: - bra.l fdiv_inf_dst - -######################################################################### -# XDEF **************************************************************** # -# fadd(): emulates the fadd instruction # -# fsadd(): emulates the fadd instruction # -# fdadd(): emulates the fdadd instruction # -# # -# XREF **************************************************************** # -# addsub_scaler2() - scale the operands so they won't take exc # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan() - set QNAN result # -# res_snan() - set SNAN result # -# res_operr() - set OPERR result # -# scale_to_zero_src() - set src operand exponent equal to zero # -# scale_to_zero_dst() - set dst operand exponent equal to zero # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Do addition after scaling exponents such that exception won't # -# occur. Then, check result exponent to see if exception would have # -# occurred. If so, return default result and maybe EXOP. Else, insert # -# the correct result exponent and return. Set FPSR bits as appropriate. # -# # -######################################################################### - - global fsadd -fsadd: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fadd - - global fdadd -fdadd: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fadd -fadd: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fadd_not_norm # optimize on non-norm input - -# -# ADD: norms and denorms -# -fadd_norm: - bsr.l addsub_scaler2 # scale exponents - -fadd_zero_entry: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch INEX2,N,Z - - or.l %d1,USER_FPSR(%a6) # save exc and ccode bits - - fbeq.w fadd_zero_exit # if result is zero, end now - - mov.l %d2,-(%sp) # save d2 - - fmovm.x &0x01,-(%sp) # save result to stack - - mov.w 2+L_SCR3(%a6),%d1 - lsr.b &0x6,%d1 - - mov.w (%sp),%d2 # fetch new sign, exp - andi.l &0x7fff,%d2 # strip sign - sub.l %d0,%d2 # add scale factor - - cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? - bge.b fadd_ovfl # yes - - cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? - blt.w fadd_unfl # yes - beq.w fadd_may_unfl # maybe; go find out - -fadd_normal: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x80 # return result in fp0 - - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_zero_exit: -# fmov.s &0x00000000,%fp0 # return zero in fp0 - rts - -tbl_fadd_ovfl: - long 0x7fff # ext ovfl - long 0x407f # sgl ovfl - long 0x43ff # dbl ovfl - -tbl_fadd_unfl: - long 0x0000 # ext unfl - long 0x3f81 # sgl unfl - long 0x3c01 # dbl unfl - -fadd_ovfl: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fadd_ovfl_ena # yes - - add.l &0xc,%sp -fadd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_ovfl_ena: - mov.b L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl - -fadd_ovfl_ena_cont: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - subi.l &0x6000,%d2 # add extra bias - andi.w &0x7fff,%d2 - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x40 # return EXOP in fp1 - bra.b fadd_ovfl_dis - -fadd_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode - fmov.l %d1,%fpcr # set FPCR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - - add.l &0xc,%sp - fmovm.x &0x01,-(%sp) - bra.b fadd_ovfl_ena_cont - -fadd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - add.l &0xc,%sp - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save status - - or.l %d1,USER_FPSR(%a6) # save INEX,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fadd_unfl_ena # yes - -fadd_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fadd_unfl_ena_sd # no; sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fadd_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fadd_unfl_dis - -fadd_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fadd_unfl_ena_cont - -# -# result is equal to the smallest normalized number in the selected precision -# if the precision is extended, this result could not have come from an -# underflow that rounded up. -# -fadd_may_unfl: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 - beq.w fadd_normal # yes; no underflow occurred - - mov.l 0x4(%sp),%d1 # extract hi(man) - cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? - bne.w fadd_normal # no; no underflow occurred - - tst.l 0x8(%sp) # is lo(man) = 0x0? - bne.w fadd_normal # no; no underflow occurred - - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.w fadd_normal # no; no underflow occurred - -# -# ok, so now the result has a exponent equal to the smallest normalized -# exponent for the selected precision. also, the mantissa is equal to -# 0x8000000000000000 and this mantissa is the result of rounding non-zero -# g,r,s. -# now, we must determine whether the pre-rounded result was an underflow -# rounded "up" or a normalized number rounded "down". -# so, we do this be re-executing the add using RZ as the rounding mode and -# seeing if the new result is smaller or equal to the current result. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert rnd mode - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp1 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # compare absolute values - fabs.x %fp1 - fcmp.x %fp0,%fp1 # is first result > second? - - fbgt.w fadd_unfl # yes; it's an underflow - bra.w fadd_normal # no; it's not an underflow - -########################################################################## - -# -# Add: inputs are not both normalized; what are they? -# -fadd_not_norm: - mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fadd_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fadd_op: - short fadd_norm - tbl_fadd_op # NORM + NORM - short fadd_zero_src - tbl_fadd_op # NORM + ZERO - short fadd_inf_src - tbl_fadd_op # NORM + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_norm - tbl_fadd_op # NORM + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_zero_dst - tbl_fadd_op # ZERO + NORM - short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO - short fadd_inf_src - tbl_fadd_op # ZERO + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_inf_dst - tbl_fadd_op # INF + NORM - short fadd_inf_dst - tbl_fadd_op # INF + ZERO - short fadd_inf_2 - tbl_fadd_op # INF + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_inf_dst - tbl_fadd_op # INF + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_res_qnan - tbl_fadd_op # QNAN + NORM - short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO - short fadd_res_qnan - tbl_fadd_op # QNAN + INF - short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN - short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM - short fadd_res_snan - tbl_fadd_op # QNAN + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_norm - tbl_fadd_op # DENORM + NORM - short fadd_zero_src - tbl_fadd_op # DENORM + ZERO - short fadd_inf_src - tbl_fadd_op # DENORM + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_norm - tbl_fadd_op # DENORM + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_res_snan - tbl_fadd_op # SNAN + NORM - short fadd_res_snan - tbl_fadd_op # SNAN + ZERO - short fadd_res_snan - tbl_fadd_op # SNAN + INF - short fadd_res_snan - tbl_fadd_op # SNAN + QNAN - short fadd_res_snan - tbl_fadd_op # SNAN + DENORM - short fadd_res_snan - tbl_fadd_op # SNAN + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - -fadd_res_qnan: - bra.l res_qnan -fadd_res_snan: - bra.l res_snan - -# -# both operands are ZEROes -# -fadd_zero_2: - mov.b SRC_EX(%a0),%d0 # are the signs opposite - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) - -# the signs are the same. so determine whether they are positive or negative -# and return the appropriately signed zero. - tst.b %d0 # are ZEROes positive or negative? - bmi.b fadd_zero_rm # negative - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# the ZEROes have opposite signs: -# - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. -# - -ZERO is returned in the case of RM. -# -fadd_zero_2_chk_rm: - mov.b 3+L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # extract rnd mode - cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? - beq.b fadd_zero_rm # yes - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -fadd_zero_rm: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z - rts - -# -# one operand is a ZERO and the other is a DENORM or NORM. scale -# the DENORM or NORM and jump to the regular fadd routine. -# -fadd_zero_dst: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # scale the operand - clr.w FP_SCR1_EX(%a6) - clr.l FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - bra.w fadd_zero_entry # go execute fadd - -fadd_zero_src: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - bsr.l scale_to_zero_dst # scale the operand - clr.w FP_SCR0_EX(%a6) - clr.l FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - bra.w fadd_zero_entry # go execute fadd - -# -# both operands are INFs. an OPERR will result if the INFs have -# different signs. else, an INF of the same sign is returned -# -fadd_inf_2: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bmi.l res_operr # weed out (-INF)+(+INF) - -# ok, so it's not an OPERR. but, we do have to remember to return the -# src INF since that's where the 881/882 gets the j-bit from... - -# -# operands are INF and one of {ZERO, INF, DENORM, NORM} -# -fadd_inf_src: - fmovm.x SRC(%a0),&0x80 # return src INF - tst.b SRC_EX(%a0) # is INF positive? - bpl.b fadd_inf_done # yes; we're done - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -# -# operands are INF and one of {ZERO, INF, DENORM, NORM} -# -fadd_inf_dst: - fmovm.x DST(%a1),&0x80 # return dst INF - tst.b DST_EX(%a1) # is INF positive? - bpl.b fadd_inf_done # yes; we're done - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fadd_inf_done: - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fsub(): emulates the fsub instruction # -# fssub(): emulates the fssub instruction # -# fdsub(): emulates the fdsub instruction # -# # -# XREF **************************************************************** # -# addsub_scaler2() - scale the operands so they won't take exc # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan() - set QNAN result # -# res_snan() - set SNAN result # -# res_operr() - set OPERR result # -# scale_to_zero_src() - set src operand exponent equal to zero # -# scale_to_zero_dst() - set dst operand exponent equal to zero # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Do subtraction after scaling exponents such that exception won't# -# occur. Then, check result exponent to see if exception would have # -# occurred. If so, return default result and maybe EXOP. Else, insert # -# the correct result exponent and return. Set FPSR bits as appropriate. # -# # -######################################################################### - - global fssub -fssub: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fsub - - global fdsub -fdsub: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fsub -fsub: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fsub_not_norm # optimize on non-norm input - -# -# SUB: norms and denorms -# -fsub_norm: - bsr.l addsub_scaler2 # scale exponents - -fsub_zero_entry: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch INEX2, N, Z - - or.l %d1,USER_FPSR(%a6) # save exc and ccode bits - - fbeq.w fsub_zero_exit # if result zero, end now - - mov.l %d2,-(%sp) # save d2 - - fmovm.x &0x01,-(%sp) # save result to stack - - mov.w 2+L_SCR3(%a6),%d1 - lsr.b &0x6,%d1 - - mov.w (%sp),%d2 # fetch new exponent - andi.l &0x7fff,%d2 # strip sign - sub.l %d0,%d2 # add scale factor - - cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? - bge.b fsub_ovfl # yes - - cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? - blt.w fsub_unfl # yes - beq.w fsub_may_unfl # maybe; go find out - -fsub_normal: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - or.w %d2,%d1 # insert new exponent - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x80 # return result in fp0 - - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_zero_exit: -# fmov.s &0x00000000,%fp0 # return zero in fp0 - rts - -tbl_fsub_ovfl: - long 0x7fff # ext ovfl - long 0x407f # sgl ovfl - long 0x43ff # dbl ovfl - -tbl_fsub_unfl: - long 0x0000 # ext unfl - long 0x3f81 # sgl unfl - long 0x3c01 # dbl unfl - -fsub_ovfl: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsub_ovfl_ena # yes - - add.l &0xc,%sp -fsub_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_ovfl_ena: - mov.b L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fsub_ovfl_ena_sd # no - -fsub_ovfl_ena_cont: - mov.w (%sp),%d1 # fetch {sgn,exp} - andi.w &0x8000,%d1 # keep sign - subi.l &0x6000,%d2 # subtract new bias - andi.w &0x7fff,%d2 # clear top bit - or.w %d2,%d1 # concat sign,exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x40 # return EXOP in fp1 - bra.b fsub_ovfl_dis - -fsub_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # clear rnd prec - fmov.l %d1,%fpcr # set FPCR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - add.l &0xc,%sp - fmovm.x &0x01,-(%sp) - bra.b fsub_ovfl_ena_cont - -fsub_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - add.l &0xc,%sp - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save status - - or.l %d1,USER_FPSR(%a6) - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsub_unfl_ena # yes - -fsub_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fsub_unfl_ena_sd # no - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fsub_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp1 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # store result to stack - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # subtract new bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat sgn,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fsub_unfl_dis - -fsub_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # clear rnd prec - fmov.l %d1,%fpcr # set FPCR - - bra.b fsub_unfl_ena_cont - -# -# result is equal to the smallest normalized number in the selected precision -# if the precision is extended, this result could not have come from an -# underflow that rounded up. -# -fsub_may_unfl: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # fetch rnd prec - beq.w fsub_normal # yes; no underflow occurred - - mov.l 0x4(%sp),%d1 - cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? - bne.w fsub_normal # no; no underflow occurred - - tst.l 0x8(%sp) # is lo(man) = 0x0? - bne.w fsub_normal # no; no underflow occurred - - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.w fsub_normal # no; no underflow occurred - -# -# ok, so now the result has a exponent equal to the smallest normalized -# exponent for the selected precision. also, the mantissa is equal to -# 0x8000000000000000 and this mantissa is the result of rounding non-zero -# g,r,s. -# now, we must determine whether the pre-rounded result was an underflow -# rounded "up" or a normalized number rounded "down". -# so, we do this be re-executing the add using RZ as the rounding mode and -# seeing if the new result is smaller or equal to the current result. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert rnd mode - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp1 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # compare absolute values - fabs.x %fp1 - fcmp.x %fp0,%fp1 # is first result > second? - - fbgt.w fsub_unfl # yes; it's an underflow - bra.w fsub_normal # no; it's not an underflow - -########################################################################## - -# -# Sub: inputs are not both normalized; what are they? -# -fsub_not_norm: - mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsub_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsub_op: - short fsub_norm - tbl_fsub_op # NORM - NORM - short fsub_zero_src - tbl_fsub_op # NORM - ZERO - short fsub_inf_src - tbl_fsub_op # NORM - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_norm - tbl_fsub_op # NORM - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_zero_dst - tbl_fsub_op # ZERO - NORM - short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO - short fsub_inf_src - tbl_fsub_op # ZERO - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_inf_dst - tbl_fsub_op # INF - NORM - short fsub_inf_dst - tbl_fsub_op # INF - ZERO - short fsub_inf_2 - tbl_fsub_op # INF - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_inf_dst - tbl_fsub_op # INF - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_res_qnan - tbl_fsub_op # QNAN - NORM - short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO - short fsub_res_qnan - tbl_fsub_op # QNAN - INF - short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN - short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM - short fsub_res_snan - tbl_fsub_op # QNAN - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_norm - tbl_fsub_op # DENORM - NORM - short fsub_zero_src - tbl_fsub_op # DENORM - ZERO - short fsub_inf_src - tbl_fsub_op # DENORM - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_norm - tbl_fsub_op # DENORM - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_res_snan - tbl_fsub_op # SNAN - NORM - short fsub_res_snan - tbl_fsub_op # SNAN - ZERO - short fsub_res_snan - tbl_fsub_op # SNAN - INF - short fsub_res_snan - tbl_fsub_op # SNAN - QNAN - short fsub_res_snan - tbl_fsub_op # SNAN - DENORM - short fsub_res_snan - tbl_fsub_op # SNAN - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - -fsub_res_qnan: - bra.l res_qnan -fsub_res_snan: - bra.l res_snan - -# -# both operands are ZEROes -# -fsub_zero_2: - mov.b SRC_EX(%a0),%d0 - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bpl.b fsub_zero_2_chk_rm - -# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO - tst.b %d0 # is dst negative? - bmi.b fsub_zero_2_rm # yes - fmov.s &0x00000000,%fp0 # no; return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# the ZEROes have the same signs: -# - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP -# - -ZERO is returned in the case of RM. -# -fsub_zero_2_chk_rm: - mov.b 3+L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # extract rnd mode - cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? - beq.b fsub_zero_2_rm # yes - fmov.s &0x00000000,%fp0 # no; return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -fsub_zero_2_rm: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG - rts - -# -# one operand is a ZERO and the other is a DENORM or a NORM. -# scale the DENORM or NORM and jump to the regular fsub routine. -# -fsub_zero_dst: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # scale the operand - clr.w FP_SCR1_EX(%a6) - clr.l FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - bra.w fsub_zero_entry # go execute fsub - -fsub_zero_src: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - bsr.l scale_to_zero_dst # scale the operand - clr.w FP_SCR0_EX(%a6) - clr.l FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - bra.w fsub_zero_entry # go execute fsub - -# -# both operands are INFs. an OPERR will result if the INFs have the -# same signs. else, -# -fsub_inf_2: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bpl.l res_operr # weed out (-INF)+(+INF) - -# ok, so it's not an OPERR. but we do have to remember to return -# the src INF since that's where the 881/882 gets the j-bit. - -fsub_inf_src: - fmovm.x SRC(%a0),&0x80 # return src INF - fneg.x %fp0 # invert sign - fbge.w fsub_inf_done # sign is now positive - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fsub_inf_dst: - fmovm.x DST(%a1),&0x80 # return dst INF - tst.b DST_EX(%a1) # is INF negative? - bpl.b fsub_inf_done # no - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fsub_inf_done: - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fsqrt(): emulates the fsqrt instruction # -# fssqrt(): emulates the fssqrt instruction # -# fdsqrt(): emulates the fdsqrt instruction # -# # -# XREF **************************************************************** # -# scale_sqrt() - scale the source operand # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a sqrt # -# instruction won't cause an exception. Use the regular fsqrt to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fssqrt -fssqrt: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fsqrt - - global fdsqrt -fdsqrt: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fsqrt -fsqrt: - mov.l %d0,L_SCR3(%a6) # store rnd info - clr.w %d1 - mov.b STAG(%a6),%d1 - bne.w fsqrt_not_norm # optimize on non-norm input - -# -# SQUARE ROOT: norms and denorms ONLY! -# -fsqrt_norm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.l res_operr # yes - - andi.b &0xc0,%d0 # is precision extended? - bne.b fsqrt_not_ext # no; go handle sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsqrt.x (%a0),%fp0 # execute square root - - fmov.l %fpsr,%d1 - or.l %d1,USER_FPSR(%a6) # set N,INEX - - rts - -fsqrt_denorm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.l res_operr # yes - - andi.b &0xc0,%d0 # is precision extended? - bne.b fsqrt_not_ext # no; go handle sgl or dbl - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - bra.w fsqrt_sd_normal - -# -# operand is either single or double -# -fsqrt_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.w fsqrt_dbl - -# -# operand is to be rounded to single precision -# -fsqrt_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? - beq.w fsqrt_sd_may_unfl - bgt.w fsqrt_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407f # will move in overflow? - beq.w fsqrt_sd_may_ovfl # maybe; go check - blt.w fsqrt_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fsqrt_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsqrt_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fsqrt_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? - beq.w fsqrt_sd_may_unfl - bgt.b fsqrt_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? - beq.w fsqrt_sd_may_ovfl # maybe; go check - blt.w fsqrt_sd_ovfl # yes; go handle overflow - bra.w fsqrt_sd_normal # no; ho handle normalized op - -# we're on the line here and the distinguising characteristic is whether -# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number -# elsewise fall through to underflow. -fsqrt_sd_may_unfl: - btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? - bne.w fsqrt_sd_normal # yes, so no underflow - -# -# operand WILL underflow when moved in to the fp register file -# -fsqrt_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsqrt.x FP_SCR0(%a6),%fp0 # execute square root - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -# if underflow or inexact is enabled, go calculate EXOP first. - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsqrt_sd_unfl_ena # yes - -fsqrt_sd_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fsqrt_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fsqrt_sd_unfl_dis - -# -# operand WILL overflow. -# -fsqrt_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform square root - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsqrt_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsqrt_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fsqrt_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fsqrt_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fsqrt_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fsqrt_sd_may_ovfl: - btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? - bne.w fsqrt_sd_ovfl # yes, so overflow - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fmov.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| >= 1.b? - fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fsqrt_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fsqrt_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fsqrt_denorm - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fsqrt_zero - cmpi.b %d1,&INF # weed out INF - beq.b fsqrt_inf - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op - -# -# fsqrt(+0) = +0 -# fsqrt(-0) = -0 -# fsqrt(+INF) = +INF -# fsqrt(-INF) = OPERR -# -fsqrt_zero: - tst.b SRC_EX(%a0) # is ZERO positive or negative? - bmi.b fsqrt_zero_m # negative -fsqrt_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fsqrt_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -fsqrt_inf: - tst.b SRC_EX(%a0) # is INF positive or negative? - bmi.l res_operr # negative -fsqrt_inf_p: - fmovm.x SRC(%a0),&0x80 # return +INF in fp0 - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# addsub_scaler2(): scale inputs to fadd/fsub such that no # -# OVFL/UNFL exceptions will result # -# # -# XREF **************************************************************** # -# norm() - normalize mantissa after adjusting exponent # -# # -# INPUT *************************************************************** # -# FP_SRC(a6) = fp op1(src) # -# FP_DST(a6) = fp op2(dst) # -# # -# OUTPUT ************************************************************** # -# FP_SRC(a6) = fp op1 scaled(src) # -# FP_DST(a6) = fp op2 scaled(dst) # -# d0 = scale amount # -# # -# ALGORITHM *********************************************************** # -# If the DST exponent is > the SRC exponent, set the DST exponent # -# equal to 0x3fff and scale the SRC exponent by the value that the # -# DST exponent was scaled by. If the SRC exponent is greater or equal, # -# do the opposite. Return this scale factor in d0. # -# If the two exponents differ by > the number of mantissa bits # -# plus two, then set the smallest exponent to a very small value as a # -# quick shortcut. # -# # -######################################################################### - - global addsub_scaler2 -addsub_scaler2: - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - mov.w SRC_EX(%a0),%d0 - mov.w DST_EX(%a1),%d1 - mov.w %d0,FP_SCR0_EX(%a6) - mov.w %d1,FP_SCR1_EX(%a6) - - andi.w &0x7fff,%d0 - andi.w &0x7fff,%d1 - mov.w %d0,L_SCR1(%a6) # store src exponent - mov.w %d1,2+L_SCR1(%a6) # store dst exponent - - cmp.w %d0, %d1 # is src exp >= dst exp? - bge.l src_exp_ge2 - -# dst exp is > src exp; scale dst to exp = 0x3fff -dst_exp_gt2: - bsr.l scale_to_zero_dst - mov.l %d0,-(%sp) # save scale factor - - cmpi.b STAG(%a6),&DENORM # is dst denormalized? - bne.b cmpexp12 - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the denorm; result is new exp - neg.w %d0 # new exp = -(shft val) - mov.w %d0,L_SCR1(%a6) # inset new exp - -cmpexp12: - mov.w 2+L_SCR1(%a6),%d0 - subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp - - cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? - bge.b quick_scale12 - - mov.w L_SCR1(%a6),%d0 - add.w 0x2(%sp),%d0 # scale src exponent by scale factor - mov.w FP_SCR0_EX(%a6),%d1 - and.w &0x8000,%d1 - or.w %d1,%d0 # concat {sgn,new exp} - mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -quick_scale12: - andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent - bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -# src exp is >= dst exp; scale src to exp = 0x3fff -src_exp_ge2: - bsr.l scale_to_zero_src - mov.l %d0,-(%sp) # save scale factor - - cmpi.b DTAG(%a6),&DENORM # is dst denormalized? - bne.b cmpexp22 - lea FP_SCR1(%a6),%a0 - bsr.l norm # normalize the denorm; result is new exp - neg.w %d0 # new exp = -(shft val) - mov.w %d0,2+L_SCR1(%a6) # inset new exp - -cmpexp22: - mov.w L_SCR1(%a6),%d0 - subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp - - cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? - bge.b quick_scale22 - - mov.w 2+L_SCR1(%a6),%d0 - add.w 0x2(%sp),%d0 # scale dst exponent by scale factor - mov.w FP_SCR1_EX(%a6),%d1 - andi.w &0x8000,%d1 - or.w %d1,%d0 # concat {sgn,new exp} - mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -quick_scale22: - andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent - bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# scale_to_zero_src(): scale the exponent of extended precision # -# value at FP_SCR0(a6). # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR0(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# Set the exponent of the input operand to 0x3fff. Save the value # -# of the difference between the original and new exponent. Then, # -# normalize the operand if it was a DENORM. Add this normalization # -# value to the previous value. Return the result. # -# # -######################################################################### - - global scale_to_zero_src -scale_to_zero_src: - mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} - mov.w %d1,%d0 # make a copy - - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,%d0 # extract operand's sgn - or.w &0x3fff,%d0 # insert new operand's exponent(=0) - - mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent - - cmpi.b STAG(%a6),&DENORM # is operand normalized? - beq.b stzs_denorm # normalize the DENORM - -stzs_norm: - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - - rts - -stzs_denorm: - lea FP_SCR0(%a6),%a0 # pass ptr to src op - bsr.l norm # normalize denorm - neg.l %d0 # new exponent = -(shft val) - mov.l %d0,%d1 # prepare for op_norm call - bra.b stzs_norm # finish scaling - -### - -######################################################################### -# XDEF **************************************************************** # -# scale_sqrt(): scale the input operand exponent so a subsequent # -# fsqrt operation won't take an exception. # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR0(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# If the input operand is a DENORM, normalize it. # -# If the exponent of the input operand is even, set the exponent # -# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # -# exponent of the input operand is off, set the exponent to ox3fff and # -# return a scale factor of "(exp-0x3fff)/2". # -# # -######################################################################### - - global scale_sqrt -scale_sqrt: - cmpi.b STAG(%a6),&DENORM # is operand normalized? - beq.b ss_denorm # normalize the DENORM - - mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn - - btst &0x0,%d1 # is exp even or odd? - beq.b ss_norm_even - - ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_norm_even: - ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - mov.l &0x3ffe,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_denorm: - lea FP_SCR0(%a6),%a0 # pass ptr to src op - bsr.l norm # normalize denorm - - btst &0x0,%d0 # is exp even or odd? - beq.b ss_denorm_even - - ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - add.l &0x3fff,%d0 - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_denorm_even: - ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - add.l &0x3ffe,%d0 - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -### - -######################################################################### -# XDEF **************************************************************** # -# scale_to_zero_dst(): scale the exponent of extended precision # -# value at FP_SCR1(a6). # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR1(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR1(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# Set the exponent of the input operand to 0x3fff. Save the value # -# of the difference between the original and new exponent. Then, # -# normalize the operand if it was a DENORM. Add this normalization # -# value to the previous value. Return the result. # -# # -######################################################################### - - global scale_to_zero_dst -scale_to_zero_dst: - mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} - mov.w %d1,%d0 # make a copy - - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,%d0 # extract operand's sgn - or.w &0x3fff,%d0 # insert new operand's exponent(=0) - - mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent - - cmpi.b DTAG(%a6),&DENORM # is operand normalized? - beq.b stzd_denorm # normalize the DENORM - -stzd_norm: - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - rts - -stzd_denorm: - lea FP_SCR1(%a6),%a0 # pass ptr to dst op - bsr.l norm # normalize denorm - neg.l %d0 # new exponent = -(shft val) - mov.l %d0,%d1 # prepare for op_norm call - bra.b stzd_norm # finish scaling - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# res_qnan(): return default result w/ QNAN operand for dyadic # -# res_snan(): return default result w/ SNAN operand for dyadic # -# res_qnan_1op(): return dflt result w/ QNAN operand for monadic # -# res_snan_1op(): return dflt result w/ SNAN operand for monadic # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# FP_SRC(a6) = pointer to extended precision src operand # -# FP_DST(a6) = pointer to extended precision dst operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# If either operand (but not both operands) of an operation is a # -# nonsignalling NAN, then that NAN is returned as the result. If both # -# operands are nonsignalling NANs, then the destination operand # -# nonsignalling NAN is returned as the result. # -# If either operand to an operation is a signalling NAN (SNAN), # -# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # -# enable bit is set in the FPCR, then the trap is taken and the # -# destination is not modified. If the SNAN trap enable bit is not set, # -# then the SNAN is converted to a nonsignalling NAN (by setting the # -# SNAN bit in the operand to one), and the operation continues as # -# described in the preceding paragraph, for nonsignalling NANs. # -# Make sure the appropriate FPSR bits are set before exiting. # -# # -######################################################################### - - global res_qnan - global res_snan -res_qnan: -res_snan: - cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? - beq.b dst_snan2 - cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? - beq.b dst_qnan2 -src_nan: - cmp.b STAG(%a6), &QNAN - beq.b src_qnan2 - global res_snan_1op -res_snan_1op: -src_snan2: - bset &0x6, FP_SRC_HI(%a6) # set SNAN bit - or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) - lea FP_SRC(%a6), %a0 - bra.b nan_comp - global res_qnan_1op -res_qnan_1op: -src_qnan2: - or.l &nan_mask, USER_FPSR(%a6) - lea FP_SRC(%a6), %a0 - bra.b nan_comp -dst_snan2: - or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) - bset &0x6, FP_DST_HI(%a6) # set SNAN bit - lea FP_DST(%a6), %a0 - bra.b nan_comp -dst_qnan2: - lea FP_DST(%a6), %a0 - cmp.b STAG(%a6), &SNAN - bne nan_done - or.l &aiop_mask+snan_mask, USER_FPSR(%a6) -nan_done: - or.l &nan_mask, USER_FPSR(%a6) -nan_comp: - btst &0x7, FTEMP_EX(%a0) # is NAN neg? - beq.b nan_not_neg - or.l &neg_mask, USER_FPSR(%a6) -nan_not_neg: - fmovm.x (%a0), &0x80 - rts - -######################################################################### -# XDEF **************************************************************** # -# res_operr(): return default result during operand error # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# fp0 = default operand error result # -# # -# ALGORITHM *********************************************************** # -# An nonsignalling NAN is returned as the default result when # -# an operand error occurs for the following cases: # -# # -# Multiply: (Infinity x Zero) # -# Divide : (Zero / Zero) || (Infinity / Infinity) # -# # -######################################################################### - - global res_operr -res_operr: - or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) - fmovm.x nan_return(%pc), &0x80 - rts - -nan_return: - long 0x7fff0000, 0xffffffff, 0xffffffff - -######################################################################### -# fdbcc(): routine to emulate the fdbcc instruction # -# # -# XDEF **************************************************************** # -# _fdbcc() # -# # -# XREF **************************************************************** # -# fetch_dreg() - fetch Dn value # -# store_dreg_l() - store updated Dn value # -# # -# INPUT *************************************************************** # -# d0 = displacement # -# # -# OUTPUT ************************************************************** # -# none # -# # -# ALGORITHM *********************************************************** # -# This routine checks which conditional predicate is specified by # -# the stacked fdbcc instruction opcode and then branches to a routine # -# for that predicate. The corresponding fbcc instruction is then used # -# to see whether the condition (specified by the stacked FPSR) is true # -# or false. # -# If a BSUN exception should be indicated, the BSUN and ABSUN # -# bits are set in the stacked FPSR. If the BSUN exception is enabled, # -# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # -# enabled BSUN should not be flagged and the predicate is true, then # -# Dn is fetched and decremented by one. If Dn is not equal to -1, add # -# the displacement value to the stacked PC so that when an "rte" is # -# finally executed, the branch occurs. # -# # -######################################################################### - global _fdbcc -_fdbcc: - mov.l %d0,L_SCR1(%a6) # save displacement - - mov.w EXC_CMDREG(%a6),%d0 # fetch predicate - - clr.l %d1 # clear scratch reg - mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes - ror.l &0x8,%d1 # rotate to top byte - fmov.l %d1,%fpsr # insert into FPSR - - mov.w (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table - jmp (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine - -tbl_fdbcc: - short fdbcc_f - tbl_fdbcc # 00 - short fdbcc_eq - tbl_fdbcc # 01 - short fdbcc_ogt - tbl_fdbcc # 02 - short fdbcc_oge - tbl_fdbcc # 03 - short fdbcc_olt - tbl_fdbcc # 04 - short fdbcc_ole - tbl_fdbcc # 05 - short fdbcc_ogl - tbl_fdbcc # 06 - short fdbcc_or - tbl_fdbcc # 07 - short fdbcc_un - tbl_fdbcc # 08 - short fdbcc_ueq - tbl_fdbcc # 09 - short fdbcc_ugt - tbl_fdbcc # 10 - short fdbcc_uge - tbl_fdbcc # 11 - short fdbcc_ult - tbl_fdbcc # 12 - short fdbcc_ule - tbl_fdbcc # 13 - short fdbcc_neq - tbl_fdbcc # 14 - short fdbcc_t - tbl_fdbcc # 15 - short fdbcc_sf - tbl_fdbcc # 16 - short fdbcc_seq - tbl_fdbcc # 17 - short fdbcc_gt - tbl_fdbcc # 18 - short fdbcc_ge - tbl_fdbcc # 19 - short fdbcc_lt - tbl_fdbcc # 20 - short fdbcc_le - tbl_fdbcc # 21 - short fdbcc_gl - tbl_fdbcc # 22 - short fdbcc_gle - tbl_fdbcc # 23 - short fdbcc_ngle - tbl_fdbcc # 24 - short fdbcc_ngl - tbl_fdbcc # 25 - short fdbcc_nle - tbl_fdbcc # 26 - short fdbcc_nlt - tbl_fdbcc # 27 - short fdbcc_nge - tbl_fdbcc # 28 - short fdbcc_ngt - tbl_fdbcc # 29 - short fdbcc_sneq - tbl_fdbcc # 30 - short fdbcc_st - tbl_fdbcc # 31 - -######################################################################### -# # -# IEEE Nonaware tests # -# # -# For the IEEE nonaware tests, only the false branch changes the # -# counter. However, the true branch may set bsun so we check to see # -# if the NAN bit is set, in which case BSUN and AIOP will be set. # -# # -# The cases EQ and NE are shared by the Aware and Nonaware groups # -# and are incapable of setting the BSUN exception bit. # -# # -# Typically, only one of the two possible branch directions could # -# have the NAN bit set. # -# (This is assuming the mutual exclusiveness of FPSR cc bit groupings # -# is preserved.) # -# # -######################################################################### - -# -# equal: -# -# Z -# -fdbcc_eq: - fbeq.w fdbcc_eq_yes # equal? -fdbcc_eq_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_eq_yes: - rts - -# -# not equal: -# _ -# Z -# -fdbcc_neq: - fbneq.w fdbcc_neq_yes # not equal? -fdbcc_neq_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_neq_yes: - rts - -# -# greater than: -# _______ -# NANvZvN -# -fdbcc_gt: - fbgt.w fdbcc_gt_yes # greater than? - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fdbcc_false # no;go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # no; go handle counter -fdbcc_gt_yes: - rts # do nothing - -# -# not greater than: -# -# NANvZvN -# -fdbcc_ngt: - fbngt.w fdbcc_ngt_yes # not greater than? -fdbcc_ngt_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ngt_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b fdbcc_ngt_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_ngt_done: - rts # no; do nothing - -# -# greater than or equal: -# _____ -# Zv(NANvN) -# -fdbcc_ge: - fbge.w fdbcc_ge_yes # greater than or equal? -fdbcc_ge_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fdbcc_false # no;go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # no; go handle counter -fdbcc_ge_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b fdbcc_ge_yes_done # no;go do nothing - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_ge_yes_done: - rts # do nothing - -# -# not (greater than or equal): -# _ -# NANv(N^Z) -# -fdbcc_nge: - fbnge.w fdbcc_nge_yes # not (greater than or equal)? -fdbcc_nge_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_nge_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b fdbcc_nge_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_nge_done: - rts # no; do nothing - -# -# less than: -# _____ -# N^(NANvZ) -# -fdbcc_lt: - fblt.w fdbcc_lt_yes # less than? -fdbcc_lt_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fdbcc_false # no; go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # no; go handle counter -fdbcc_lt_yes: - rts # do nothing - -# -# not less than: -# _ -# NANv(ZvN) -# -fdbcc_nlt: - fbnlt.w fdbcc_nlt_yes # not less than? -fdbcc_nlt_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_nlt_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b fdbcc_nlt_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_nlt_done: - rts # no; do nothing - -# -# less than or equal: -# ___ -# Zv(N^NAN) -# -fdbcc_le: - fble.w fdbcc_le_yes # less than or equal? -fdbcc_le_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fdbcc_false # no; go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # no; go handle counter -fdbcc_le_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b fdbcc_le_yes_done # no; go do nothing - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_le_yes_done: - rts # do nothing - -# -# not (less than or equal): -# ___ -# NANv(NvZ) -# -fdbcc_nle: - fbnle.w fdbcc_nle_yes # not (less than or equal)? -fdbcc_nle_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_nle_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fdbcc_nle_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_nle_done: - rts # no; do nothing - -# -# greater or less than: -# _____ -# NANvZ -# -fdbcc_gl: - fbgl.w fdbcc_gl_yes # greater or less than? -fdbcc_gl_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fdbcc_false # no; handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # no; go handle counter -fdbcc_gl_yes: - rts # do nothing - -# -# not (greater or less than): -# -# NANvZ -# -fdbcc_ngl: - fbngl.w fdbcc_ngl_yes # not (greater or less than)? -fdbcc_ngl_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ngl_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b fdbcc_ngl_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_ngl_done: - rts # no; do nothing - -# -# greater, less, or equal: -# ___ -# NAN -# -fdbcc_gle: - fbgle.w fdbcc_gle_yes # greater, less, or equal? -fdbcc_gle_no: - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # no; go handle counter -fdbcc_gle_yes: - rts # do nothing - -# -# not (greater, less, or equal): -# -# NAN -# -fdbcc_ngle: - fbngle.w fdbcc_ngle_yes # not (greater, less, or equal)? -fdbcc_ngle_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ngle_yes: - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - rts # no; do nothing - -######################################################################### -# # -# Miscellaneous tests # -# # -# For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. # -# # -######################################################################### - -# -# false: -# -# False -# -fdbcc_f: # no bsun possible - bra.w fdbcc_false # go handle counter - -# -# true: -# -# True -# -fdbcc_t: # no bsun possible - rts # do nothing - -# -# signalling false: -# -# False -# -fdbcc_sf: - btst &nan_bit, FPSR_CC(%a6) # is NAN set? - beq.w fdbcc_false # no;go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # go handle counter - -# -# signalling true: -# -# True -# -fdbcc_st: - btst &nan_bit, FPSR_CC(%a6) # is NAN set? - beq.b fdbcc_st_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_st_done: - rts - -# -# signalling equal: -# -# Z -# -fdbcc_seq: - fbseq.w fdbcc_seq_yes # signalling equal? -fdbcc_seq_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set? - beq.w fdbcc_false # no;go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # go handle counter -fdbcc_seq_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set? - beq.b fdbcc_seq_yes_done # no;go do nothing - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_seq_yes_done: - rts # yes; do nothing - -# -# signalling not equal: -# _ -# Z -# -fdbcc_sneq: - fbsneq.w fdbcc_sneq_yes # signalling not equal? -fdbcc_sneq_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set? - beq.w fdbcc_false # no;go handle counter - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception - bra.w fdbcc_false # go handle counter -fdbcc_sneq_yes: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fdbcc_sneq_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? - bne.w fdbcc_bsun # yes; we have an exception -fdbcc_sneq_done: - rts - -######################################################################### -# # -# IEEE Aware tests # -# # -# For the IEEE aware tests, action is only taken if the result is false.# -# Therefore, the opposite branch type is used to jump to the decrement # -# routine. # -# The BSUN exception will not be set for any of these tests. # -# # -######################################################################### - -# -# ordered greater than: -# _______ -# NANvZvN -# -fdbcc_ogt: - fbogt.w fdbcc_ogt_yes # ordered greater than? -fdbcc_ogt_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ogt_yes: - rts # yes; do nothing - -# -# unordered or less or equal: -# _______ -# NANvZvN -# -fdbcc_ule: - fbule.w fdbcc_ule_yes # unordered or less or equal? -fdbcc_ule_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ule_yes: - rts # yes; do nothing - -# -# ordered greater than or equal: -# _____ -# Zv(NANvN) -# -fdbcc_oge: - fboge.w fdbcc_oge_yes # ordered greater than or equal? -fdbcc_oge_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_oge_yes: - rts # yes; do nothing - -# -# unordered or less than: -# _ -# NANv(N^Z) -# -fdbcc_ult: - fbult.w fdbcc_ult_yes # unordered or less than? -fdbcc_ult_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ult_yes: - rts # yes; do nothing - -# -# ordered less than: -# _____ -# N^(NANvZ) -# -fdbcc_olt: - fbolt.w fdbcc_olt_yes # ordered less than? -fdbcc_olt_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_olt_yes: - rts # yes; do nothing - -# -# unordered or greater or equal: -# -# NANvZvN -# -fdbcc_uge: - fbuge.w fdbcc_uge_yes # unordered or greater than? -fdbcc_uge_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_uge_yes: - rts # yes; do nothing - -# -# ordered less than or equal: -# ___ -# Zv(N^NAN) -# -fdbcc_ole: - fbole.w fdbcc_ole_yes # ordered greater or less than? -fdbcc_ole_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ole_yes: - rts # yes; do nothing - -# -# unordered or greater than: -# ___ -# NANv(NvZ) -# -fdbcc_ugt: - fbugt.w fdbcc_ugt_yes # unordered or greater than? -fdbcc_ugt_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ugt_yes: - rts # yes; do nothing - -# -# ordered greater or less than: -# _____ -# NANvZ -# -fdbcc_ogl: - fbogl.w fdbcc_ogl_yes # ordered greater or less than? -fdbcc_ogl_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ogl_yes: - rts # yes; do nothing - -# -# unordered or equal: -# -# NANvZ -# -fdbcc_ueq: - fbueq.w fdbcc_ueq_yes # unordered or equal? -fdbcc_ueq_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_ueq_yes: - rts # yes; do nothing - -# -# ordered: -# ___ -# NAN -# -fdbcc_or: - fbor.w fdbcc_or_yes # ordered? -fdbcc_or_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_or_yes: - rts # yes; do nothing - -# -# unordered: -# -# NAN -# -fdbcc_un: - fbun.w fdbcc_un_yes # unordered? -fdbcc_un_no: - bra.w fdbcc_false # no; go handle counter -fdbcc_un_yes: - rts # yes; do nothing - -####################################################################### - -# -# the bsun exception bit was not set. -# -# (1) subtract 1 from the count register -# (2) if (cr == -1) then -# pc = pc of next instruction -# else -# pc += sign_ext(16-bit displacement) -# -fdbcc_false: - mov.b 1+EXC_OPWORD(%a6), %d1 # fetch lo opword - andi.w &0x7, %d1 # extract count register - - bsr.l fetch_dreg # fetch count value -# make sure that d0 isn't corrupted between calls... - - subq.w &0x1, %d0 # Dn - 1 -> Dn - - bsr.l store_dreg_l # store new count value - - cmpi.w %d0, &-0x1 # is (Dn == -1)? - bne.b fdbcc_false_cont # no; - rts - -fdbcc_false_cont: - mov.l L_SCR1(%a6),%d0 # fetch displacement - add.l USER_FPIAR(%a6),%d0 # add instruction PC - addq.l &0x4,%d0 # add instruction length - mov.l %d0,EXC_PC(%a6) # set new PC - rts - -# the emulation routine set bsun and BSUN was enabled. have to -# fix stack and jump to the bsun handler. -# let the caller of this routine shift the stack frame up to -# eliminate the effective address field. -fdbcc_bsun: - mov.b &fbsun_flg,SPCOND_FLG(%a6) - rts - -######################################################################### -# ftrapcc(): routine to emulate the ftrapcc instruction # -# # -# XDEF **************************************************************** # -# _ftrapcc() # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# none # -# # -# OUTPUT ************************************************************** # -# none # -# # -# ALGORITHM *********************************************************** # -# This routine checks which conditional predicate is specified by # -# the stacked ftrapcc instruction opcode and then branches to a routine # -# for that predicate. The corresponding fbcc instruction is then used # -# to see whether the condition (specified by the stacked FPSR) is true # -# or false. # -# If a BSUN exception should be indicated, the BSUN and ABSUN # -# bits are set in the stacked FPSR. If the BSUN exception is enabled, # -# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # -# enabled BSUN should not be flagged and the predicate is true, then # -# the ftrapcc_flg is set in the SPCOND_FLG location. These special # -# flags indicate to the calling routine to emulate the exceptional # -# condition. # -# # -######################################################################### - - global _ftrapcc -_ftrapcc: - mov.w EXC_CMDREG(%a6),%d0 # fetch predicate - - clr.l %d1 # clear scratch reg - mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes - ror.l &0x8,%d1 # rotate to top byte - fmov.l %d1,%fpsr # insert into FPSR - - mov.w (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table - jmp (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine - -tbl_ftrapcc: - short ftrapcc_f - tbl_ftrapcc # 00 - short ftrapcc_eq - tbl_ftrapcc # 01 - short ftrapcc_ogt - tbl_ftrapcc # 02 - short ftrapcc_oge - tbl_ftrapcc # 03 - short ftrapcc_olt - tbl_ftrapcc # 04 - short ftrapcc_ole - tbl_ftrapcc # 05 - short ftrapcc_ogl - tbl_ftrapcc # 06 - short ftrapcc_or - tbl_ftrapcc # 07 - short ftrapcc_un - tbl_ftrapcc # 08 - short ftrapcc_ueq - tbl_ftrapcc # 09 - short ftrapcc_ugt - tbl_ftrapcc # 10 - short ftrapcc_uge - tbl_ftrapcc # 11 - short ftrapcc_ult - tbl_ftrapcc # 12 - short ftrapcc_ule - tbl_ftrapcc # 13 - short ftrapcc_neq - tbl_ftrapcc # 14 - short ftrapcc_t - tbl_ftrapcc # 15 - short ftrapcc_sf - tbl_ftrapcc # 16 - short ftrapcc_seq - tbl_ftrapcc # 17 - short ftrapcc_gt - tbl_ftrapcc # 18 - short ftrapcc_ge - tbl_ftrapcc # 19 - short ftrapcc_lt - tbl_ftrapcc # 20 - short ftrapcc_le - tbl_ftrapcc # 21 - short ftrapcc_gl - tbl_ftrapcc # 22 - short ftrapcc_gle - tbl_ftrapcc # 23 - short ftrapcc_ngle - tbl_ftrapcc # 24 - short ftrapcc_ngl - tbl_ftrapcc # 25 - short ftrapcc_nle - tbl_ftrapcc # 26 - short ftrapcc_nlt - tbl_ftrapcc # 27 - short ftrapcc_nge - tbl_ftrapcc # 28 - short ftrapcc_ngt - tbl_ftrapcc # 29 - short ftrapcc_sneq - tbl_ftrapcc # 30 - short ftrapcc_st - tbl_ftrapcc # 31 - -######################################################################### -# # -# IEEE Nonaware tests # -# # -# For the IEEE nonaware tests, we set the result based on the # -# floating point condition codes. In addition, we check to see # -# if the NAN bit is set, in which case BSUN and AIOP will be set. # -# # -# The cases EQ and NE are shared by the Aware and Nonaware groups # -# and are incapable of setting the BSUN exception bit. # -# # -# Typically, only one of the two possible branch directions could # -# have the NAN bit set. # -# # -######################################################################### - -# -# equal: -# -# Z -# -ftrapcc_eq: - fbeq.w ftrapcc_trap # equal? -ftrapcc_eq_no: - rts # do nothing - -# -# not equal: -# _ -# Z -# -ftrapcc_neq: - fbneq.w ftrapcc_trap # not equal? -ftrapcc_neq_no: - rts # do nothing - -# -# greater than: -# _______ -# NANvZvN -# -ftrapcc_gt: - fbgt.w ftrapcc_trap # greater than? -ftrapcc_gt_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b ftrapcc_gt_done # no - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_gt_done: - rts # no; do nothing - -# -# not greater than: -# -# NANvZvN -# -ftrapcc_ngt: - fbngt.w ftrapcc_ngt_yes # not greater than? -ftrapcc_ngt_no: - rts # do nothing -ftrapcc_ngt_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# greater than or equal: -# _____ -# Zv(NANvN) -# -ftrapcc_ge: - fbge.w ftrapcc_ge_yes # greater than or equal? -ftrapcc_ge_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b ftrapcc_ge_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_ge_done: - rts # no; do nothing -ftrapcc_ge_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# not (greater than or equal): -# _ -# NANv(N^Z) -# -ftrapcc_nge: - fbnge.w ftrapcc_nge_yes # not (greater than or equal)? -ftrapcc_nge_no: - rts # do nothing -ftrapcc_nge_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# less than: -# _____ -# N^(NANvZ) -# -ftrapcc_lt: - fblt.w ftrapcc_trap # less than? -ftrapcc_lt_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b ftrapcc_lt_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_lt_done: - rts # no; do nothing - -# -# not less than: -# _ -# NANv(ZvN) -# -ftrapcc_nlt: - fbnlt.w ftrapcc_nlt_yes # not less than? -ftrapcc_nlt_no: - rts # do nothing -ftrapcc_nlt_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# less than or equal: -# ___ -# Zv(N^NAN) -# -ftrapcc_le: - fble.w ftrapcc_le_yes # less than or equal? -ftrapcc_le_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b ftrapcc_le_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_le_done: - rts # no; do nothing -ftrapcc_le_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# not (less than or equal): -# ___ -# NANv(NvZ) -# -ftrapcc_nle: - fbnle.w ftrapcc_nle_yes # not (less than or equal)? -ftrapcc_nle_no: - rts # do nothing -ftrapcc_nle_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# greater or less than: -# _____ -# NANvZ -# -ftrapcc_gl: - fbgl.w ftrapcc_trap # greater or less than? -ftrapcc_gl_no: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.b ftrapcc_gl_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_gl_done: - rts # no; do nothing - -# -# not (greater or less than): -# -# NANvZ -# -ftrapcc_ngl: - fbngl.w ftrapcc_ngl_yes # not (greater or less than)? -ftrapcc_ngl_no: - rts # do nothing -ftrapcc_ngl_yes: - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# greater, less, or equal: -# ___ -# NAN -# -ftrapcc_gle: - fbgle.w ftrapcc_trap # greater, less, or equal? -ftrapcc_gle_no: - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - rts # no; do nothing - -# -# not (greater, less, or equal): -# -# NAN -# -ftrapcc_ngle: - fbngle.w ftrapcc_ngle_yes # not (greater, less, or equal)? -ftrapcc_ngle_no: - rts # do nothing -ftrapcc_ngle_yes: - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -######################################################################### -# # -# Miscellaneous tests # -# # -# For the IEEE aware tests, we only have to set the result based on the # -# floating point condition codes. The BSUN exception will not be # -# set for any of these tests. # -# # -######################################################################### - -# -# false: -# -# False -# -ftrapcc_f: - rts # do nothing - -# -# true: -# -# True -# -ftrapcc_t: - bra.w ftrapcc_trap # go take trap - -# -# signalling false: -# -# False -# -ftrapcc_sf: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.b ftrapcc_sf_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_sf_done: - rts # no; do nothing - -# -# signalling true: -# -# True -# -ftrapcc_st: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# signalling equal: -# -# Z -# -ftrapcc_seq: - fbseq.w ftrapcc_seq_yes # signalling equal? -ftrapcc_seq_no: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w ftrapcc_seq_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_seq_done: - rts # no; do nothing -ftrapcc_seq_yes: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -# -# signalling not equal: -# _ -# Z -# -ftrapcc_sneq: - fbsneq.w ftrapcc_sneq_yes # signalling equal? -ftrapcc_sneq_no: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w ftrapcc_sneq_no_done # no; go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes -ftrapcc_sneq_no_done: - rts # do nothing -ftrapcc_sneq_yes: - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w ftrapcc_trap # no; go take trap - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? - bne.w ftrapcc_bsun # yes - bra.w ftrapcc_trap # no; go take trap - -######################################################################### -# # -# IEEE Aware tests # -# # -# For the IEEE aware tests, we only have to set the result based on the # -# floating point condition codes. The BSUN exception will not be # -# set for any of these tests. # -# # -######################################################################### - -# -# ordered greater than: -# _______ -# NANvZvN -# -ftrapcc_ogt: - fbogt.w ftrapcc_trap # ordered greater than? -ftrapcc_ogt_no: - rts # do nothing - -# -# unordered or less or equal: -# _______ -# NANvZvN -# -ftrapcc_ule: - fbule.w ftrapcc_trap # unordered or less or equal? -ftrapcc_ule_no: - rts # do nothing - -# -# ordered greater than or equal: -# _____ -# Zv(NANvN) -# -ftrapcc_oge: - fboge.w ftrapcc_trap # ordered greater than or equal? -ftrapcc_oge_no: - rts # do nothing - -# -# unordered or less than: -# _ -# NANv(N^Z) -# -ftrapcc_ult: - fbult.w ftrapcc_trap # unordered or less than? -ftrapcc_ult_no: - rts # do nothing - -# -# ordered less than: -# _____ -# N^(NANvZ) -# -ftrapcc_olt: - fbolt.w ftrapcc_trap # ordered less than? -ftrapcc_olt_no: - rts # do nothing - -# -# unordered or greater or equal: -# -# NANvZvN -# -ftrapcc_uge: - fbuge.w ftrapcc_trap # unordered or greater than? -ftrapcc_uge_no: - rts # do nothing - -# -# ordered less than or equal: -# ___ -# Zv(N^NAN) -# -ftrapcc_ole: - fbole.w ftrapcc_trap # ordered greater or less than? -ftrapcc_ole_no: - rts # do nothing - -# -# unordered or greater than: -# ___ -# NANv(NvZ) -# -ftrapcc_ugt: - fbugt.w ftrapcc_trap # unordered or greater than? -ftrapcc_ugt_no: - rts # do nothing - -# -# ordered greater or less than: -# _____ -# NANvZ -# -ftrapcc_ogl: - fbogl.w ftrapcc_trap # ordered greater or less than? -ftrapcc_ogl_no: - rts # do nothing - -# -# unordered or equal: -# -# NANvZ -# -ftrapcc_ueq: - fbueq.w ftrapcc_trap # unordered or equal? -ftrapcc_ueq_no: - rts # do nothing - -# -# ordered: -# ___ -# NAN -# -ftrapcc_or: - fbor.w ftrapcc_trap # ordered? -ftrapcc_or_no: - rts # do nothing - -# -# unordered: -# -# NAN -# -ftrapcc_un: - fbun.w ftrapcc_trap # unordered? -ftrapcc_un_no: - rts # do nothing - -####################################################################### - -# the bsun exception bit was not set. -# we will need to jump to the ftrapcc vector. the stack frame -# is the same size as that of the fp unimp instruction. the -# only difference is that the <ea> field should hold the PC -# of the ftrapcc instruction and the vector offset field -# should denote the ftrapcc trap. -ftrapcc_trap: - mov.b &ftrapcc_flg,SPCOND_FLG(%a6) - rts - -# the emulation routine set bsun and BSUN was enabled. have to -# fix stack and jump to the bsun handler. -# let the caller of this routine shift the stack frame up to -# eliminate the effective address field. -ftrapcc_bsun: - mov.b &fbsun_flg,SPCOND_FLG(%a6) - rts - -######################################################################### -# fscc(): routine to emulate the fscc instruction # -# # -# XDEF **************************************************************** # -# _fscc() # -# # -# XREF **************************************************************** # -# store_dreg_b() - store result to data register file # -# dec_areg() - decrement an areg for -(an) mode # -# inc_areg() - increment an areg for (an)+ mode # -# _dmem_write_byte() - store result to memory # -# # -# INPUT *************************************************************** # -# none # -# # -# OUTPUT ************************************************************** # -# none # -# # -# ALGORITHM *********************************************************** # -# This routine checks which conditional predicate is specified by # -# the stacked fscc instruction opcode and then branches to a routine # -# for that predicate. The corresponding fbcc instruction is then used # -# to see whether the condition (specified by the stacked FPSR) is true # -# or false. # -# If a BSUN exception should be indicated, the BSUN and ABSUN # -# bits are set in the stacked FPSR. If the BSUN exception is enabled, # -# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # -# enabled BSUN should not be flagged and the predicate is true, then # -# the result is stored to the data register file or memory # -# # -######################################################################### - - global _fscc -_fscc: - mov.w EXC_CMDREG(%a6),%d0 # fetch predicate - - clr.l %d1 # clear scratch reg - mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes - ror.l &0x8,%d1 # rotate to top byte - fmov.l %d1,%fpsr # insert into FPSR - - mov.w (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table - jmp (tbl_fscc.b,%pc,%d1.w) # jump to fscc routine - -tbl_fscc: - short fscc_f - tbl_fscc # 00 - short fscc_eq - tbl_fscc # 01 - short fscc_ogt - tbl_fscc # 02 - short fscc_oge - tbl_fscc # 03 - short fscc_olt - tbl_fscc # 04 - short fscc_ole - tbl_fscc # 05 - short fscc_ogl - tbl_fscc # 06 - short fscc_or - tbl_fscc # 07 - short fscc_un - tbl_fscc # 08 - short fscc_ueq - tbl_fscc # 09 - short fscc_ugt - tbl_fscc # 10 - short fscc_uge - tbl_fscc # 11 - short fscc_ult - tbl_fscc # 12 - short fscc_ule - tbl_fscc # 13 - short fscc_neq - tbl_fscc # 14 - short fscc_t - tbl_fscc # 15 - short fscc_sf - tbl_fscc # 16 - short fscc_seq - tbl_fscc # 17 - short fscc_gt - tbl_fscc # 18 - short fscc_ge - tbl_fscc # 19 - short fscc_lt - tbl_fscc # 20 - short fscc_le - tbl_fscc # 21 - short fscc_gl - tbl_fscc # 22 - short fscc_gle - tbl_fscc # 23 - short fscc_ngle - tbl_fscc # 24 - short fscc_ngl - tbl_fscc # 25 - short fscc_nle - tbl_fscc # 26 - short fscc_nlt - tbl_fscc # 27 - short fscc_nge - tbl_fscc # 28 - short fscc_ngt - tbl_fscc # 29 - short fscc_sneq - tbl_fscc # 30 - short fscc_st - tbl_fscc # 31 - -######################################################################### -# # -# IEEE Nonaware tests # -# # -# For the IEEE nonaware tests, we set the result based on the # -# floating point condition codes. In addition, we check to see # -# if the NAN bit is set, in which case BSUN and AIOP will be set. # -# # -# The cases EQ and NE are shared by the Aware and Nonaware groups # -# and are incapable of setting the BSUN exception bit. # -# # -# Typically, only one of the two possible branch directions could # -# have the NAN bit set. # -# # -######################################################################### - -# -# equal: -# -# Z -# -fscc_eq: - fbeq.w fscc_eq_yes # equal? -fscc_eq_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_eq_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# not equal: -# _ -# Z -# -fscc_neq: - fbneq.w fscc_neq_yes # not equal? -fscc_neq_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_neq_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# greater than: -# _______ -# NANvZvN -# -fscc_gt: - fbgt.w fscc_gt_yes # greater than? -fscc_gt_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_gt_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# not greater than: -# -# NANvZvN -# -fscc_ngt: - fbngt.w fscc_ngt_yes # not greater than? -fscc_ngt_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ngt_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# greater than or equal: -# _____ -# Zv(NANvN) -# -fscc_ge: - fbge.w fscc_ge_yes # greater than or equal? -fscc_ge_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_ge_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# not (greater than or equal): -# _ -# NANv(N^Z) -# -fscc_nge: - fbnge.w fscc_nge_yes # not (greater than or equal)? -fscc_nge_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_nge_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# less than: -# _____ -# N^(NANvZ) -# -fscc_lt: - fblt.w fscc_lt_yes # less than? -fscc_lt_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_lt_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# not less than: -# _ -# NANv(ZvN) -# -fscc_nlt: - fbnlt.w fscc_nlt_yes # not less than? -fscc_nlt_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_nlt_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# less than or equal: -# ___ -# Zv(N^NAN) -# -fscc_le: - fble.w fscc_le_yes # less than or equal? -fscc_le_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_le_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# not (less than or equal): -# ___ -# NANv(NvZ) -# -fscc_nle: - fbnle.w fscc_nle_yes # not (less than or equal)? -fscc_nle_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_nle_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# greater or less than: -# _____ -# NANvZ -# -fscc_gl: - fbgl.w fscc_gl_yes # greater or less than? -fscc_gl_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_gl_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# not (greater or less than): -# -# NANvZ -# -fscc_ngl: - fbngl.w fscc_ngl_yes # not (greater or less than)? -fscc_ngl_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ngl_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# greater, less, or equal: -# ___ -# NAN -# -fscc_gle: - fbgle.w fscc_gle_yes # greater, less, or equal? -fscc_gle_no: - clr.b %d0 # set false - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_gle_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# not (greater, less, or equal): -# -# NAN -# -fscc_ngle: - fbngle.w fscc_ngle_yes # not (greater, less, or equal)? -fscc_ngle_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ngle_yes: - st %d0 # set true - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -######################################################################### -# # -# Miscellaneous tests # -# # -# For the IEEE aware tests, we only have to set the result based on the # -# floating point condition codes. The BSUN exception will not be # -# set for any of these tests. # -# # -######################################################################### - -# -# false: -# -# False -# -fscc_f: - clr.b %d0 # set false - bra.w fscc_done # go finish - -# -# true: -# -# True -# -fscc_t: - st %d0 # set true - bra.w fscc_done # go finish - -# -# signalling false: -# -# False -# -fscc_sf: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# signalling true: -# -# True -# -fscc_st: - st %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# signalling equal: -# -# Z -# -fscc_seq: - fbseq.w fscc_seq_yes # signalling equal? -fscc_seq_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_seq_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -# -# signalling not equal: -# _ -# Z -# -fscc_sneq: - fbsneq.w fscc_sneq_yes # signalling equal? -fscc_sneq_no: - clr.b %d0 # set false - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish -fscc_sneq_yes: - st %d0 # set true - btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit - beq.w fscc_done # no;go finish - ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit - bra.w fscc_chk_bsun # go finish - -######################################################################### -# # -# IEEE Aware tests # -# # -# For the IEEE aware tests, we only have to set the result based on the # -# floating point condition codes. The BSUN exception will not be # -# set for any of these tests. # -# # -######################################################################### - -# -# ordered greater than: -# _______ -# NANvZvN -# -fscc_ogt: - fbogt.w fscc_ogt_yes # ordered greater than? -fscc_ogt_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ogt_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# unordered or less or equal: -# _______ -# NANvZvN -# -fscc_ule: - fbule.w fscc_ule_yes # unordered or less or equal? -fscc_ule_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ule_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# ordered greater than or equal: -# _____ -# Zv(NANvN) -# -fscc_oge: - fboge.w fscc_oge_yes # ordered greater than or equal? -fscc_oge_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_oge_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# unordered or less than: -# _ -# NANv(N^Z) -# -fscc_ult: - fbult.w fscc_ult_yes # unordered or less than? -fscc_ult_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ult_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# ordered less than: -# _____ -# N^(NANvZ) -# -fscc_olt: - fbolt.w fscc_olt_yes # ordered less than? -fscc_olt_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_olt_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# unordered or greater or equal: -# -# NANvZvN -# -fscc_uge: - fbuge.w fscc_uge_yes # unordered or greater than? -fscc_uge_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_uge_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# ordered less than or equal: -# ___ -# Zv(N^NAN) -# -fscc_ole: - fbole.w fscc_ole_yes # ordered greater or less than? -fscc_ole_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ole_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# unordered or greater than: -# ___ -# NANv(NvZ) -# -fscc_ugt: - fbugt.w fscc_ugt_yes # unordered or greater than? -fscc_ugt_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ugt_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# ordered greater or less than: -# _____ -# NANvZ -# -fscc_ogl: - fbogl.w fscc_ogl_yes # ordered greater or less than? -fscc_ogl_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ogl_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# unordered or equal: -# -# NANvZ -# -fscc_ueq: - fbueq.w fscc_ueq_yes # unordered or equal? -fscc_ueq_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_ueq_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# ordered: -# ___ -# NAN -# -fscc_or: - fbor.w fscc_or_yes # ordered? -fscc_or_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_or_yes: - st %d0 # set true - bra.w fscc_done # go finish - -# -# unordered: -# -# NAN -# -fscc_un: - fbun.w fscc_un_yes # unordered? -fscc_un_no: - clr.b %d0 # set false - bra.w fscc_done # go finish -fscc_un_yes: - st %d0 # set true - bra.w fscc_done # go finish - -####################################################################### - -# -# the bsun exception bit was set. now, check to see is BSUN -# is enabled. if so, don't store result and correct stack frame -# for a bsun exception. -# -fscc_chk_bsun: - btst &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set? - bne.w fscc_bsun - -# -# the bsun exception bit was not set. -# the result has been selected. -# now, check to see if the result is to be stored in the data register -# file or in memory. -# -fscc_done: - mov.l %d0,%a0 # save result for a moment - - mov.b 1+EXC_OPWORD(%a6),%d1 # fetch lo opword - mov.l %d1,%d0 # make a copy - andi.b &0x38,%d1 # extract src mode - - bne.b fscc_mem_op # it's a memory operation - - mov.l %d0,%d1 - andi.w &0x7,%d1 # pass index in d1 - mov.l %a0,%d0 # pass result in d0 - bsr.l store_dreg_b # save result in regfile - rts - -# -# the stacked <ea> is correct with the exception of: -# -> Dn : <ea> is garbage -# -# if the addressing mode is post-increment or pre-decrement, -# then the address registers have not been updated. -# -fscc_mem_op: - cmpi.b %d1,&0x18 # is <ea> (An)+ ? - beq.b fscc_mem_inc # yes - cmpi.b %d1,&0x20 # is <ea> -(An) ? - beq.b fscc_mem_dec # yes - - mov.l %a0,%d0 # pass result in d0 - mov.l EXC_EA(%a6),%a0 # fetch <ea> - bsr.l _dmem_write_byte # write result byte - - tst.l %d1 # did dstore fail? - bne.w fscc_err # yes - - rts - -# addressing mode is post-increment. write the result byte. if the write -# fails then don't update the address register. if write passes then -# call inc_areg() to update the address register. -fscc_mem_inc: - mov.l %a0,%d0 # pass result in d0 - mov.l EXC_EA(%a6),%a0 # fetch <ea> - bsr.l _dmem_write_byte # write result byte - - tst.l %d1 # did dstore fail? - bne.w fscc_err # yes - - mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword - andi.w &0x7,%d1 # pass index in d1 - movq.l &0x1,%d0 # pass amt to inc by - bsr.l inc_areg # increment address register - - rts - -# addressing mode is pre-decrement. write the result byte. if the write -# fails then don't update the address register. if the write passes then -# call dec_areg() to update the address register. -fscc_mem_dec: - mov.l %a0,%d0 # pass result in d0 - mov.l EXC_EA(%a6),%a0 # fetch <ea> - bsr.l _dmem_write_byte # write result byte - - tst.l %d1 # did dstore fail? - bne.w fscc_err # yes - - mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword - andi.w &0x7,%d1 # pass index in d1 - movq.l &0x1,%d0 # pass amt to dec by - bsr.l dec_areg # decrement address register - - rts - -# the emulation routine set bsun and BSUN was enabled. have to -# fix stack and jump to the bsun handler. -# let the caller of this routine shift the stack frame up to -# eliminate the effective address field. -fscc_bsun: - mov.b &fbsun_flg,SPCOND_FLG(%a6) - rts - -# the byte write to memory has failed. pass the failing effective address -# and a FSLW to funimp_dacc(). -fscc_err: - mov.w &0x00a1,EXC_VOFF(%a6) - bra.l facc_finish - -######################################################################### -# XDEF **************************************************************** # -# fmovm_dynamic(): emulate "fmovm" dynamic instruction # -# # -# XREF **************************************************************** # -# fetch_dreg() - fetch data register # -# {i,d,}mem_read() - fetch data from memory # -# _mem_write() - write data to memory # -# iea_iacc() - instruction memory access error occurred # -# iea_dacc() - data memory access error occurred # -# restore() - restore An index regs if access error occurred # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If instr is "fmovm Dn,-(A7)" from supervisor mode, # -# d0 = size of dump # -# d1 = Dn # -# Else if instruction access error, # -# d0 = FSLW # -# Else if data access error, # -# d0 = FSLW # -# a0 = address of fault # -# Else # -# none. # -# # -# ALGORITHM *********************************************************** # -# The effective address must be calculated since this is entered # -# from an "Unimplemented Effective Address" exception handler. So, we # -# have our own fcalc_ea() routine here. If an access error is flagged # -# by a _{i,d,}mem_read() call, we must exit through the special # -# handler. # -# The data register is determined and its value loaded to get the # -# string of FP registers affected. This value is used as an index into # -# a lookup table such that we can determine the number of bytes # -# involved. # -# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # -# to read in all FP values. Again, _mem_read() may fail and require a # -# special exit. # -# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # -# to write all FP values. _mem_write() may also fail. # -# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # -# then we return the size of the dump and the string to the caller # -# so that the move can occur outside of this routine. This special # -# case is required so that moves to the system stack are handled # -# correctly. # -# # -# DYNAMIC: # -# fmovm.x dn, <ea> # -# fmovm.x <ea>, dn # -# # -# <WORD 1> <WORD2> # -# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # -# # -# & = (0): predecrement addressing mode # -# (1): postincrement or control addressing mode # -# @ = (0): move listed regs from memory to the FPU # -# (1): move listed regs from the FPU to memory # -# $$$ : index of data register holding reg select mask # -# # -# NOTES: # -# If the data register holds a zero, then the # -# instruction is a nop. # -# # -######################################################################### - - global fmovm_dynamic -fmovm_dynamic: - -# extract the data register in which the bit string resides... - mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword - andi.w &0x70,%d1 # extract reg bits - lsr.b &0x4,%d1 # shift into lo bits - -# fetch the bit string into d0... - bsr.l fetch_dreg # fetch reg string - - andi.l &0x000000ff,%d0 # keep only lo byte - - mov.l %d0,-(%sp) # save strg - mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 - mov.l %d0,-(%sp) # save size - bsr.l fmovm_calc_ea # calculate <ea> - mov.l (%sp)+,%d0 # restore size - mov.l (%sp)+,%d1 # restore strg - -# if the bit string is a zero, then the operation is a no-op -# but, make sure that we've calculated ea and advanced the opword pointer - beq.w fmovm_data_done - -# separate move ins from move outs... - btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? - beq.w fmovm_data_in # it's a move out - -############# -# MOVE OUT: # -############# -fmovm_data_out: - btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? - bne.w fmovm_out_ctrl # control - -############################ -fmovm_out_predec: -# for predecrement mode, the bit string is the opposite of both control -# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) -# here, we convert it to be just like the others... - mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 - - btst &0x5,EXC_SR(%a6) # user or supervisor mode? - beq.b fmovm_out_ctrl # user - -fmovm_out_predec_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? - bne.b fmovm_out_ctrl - -# the operation was unfortunately an: fmovm.x dn,-(sp) -# called from supervisor mode. -# we're also passing "size" and "strg" back to the calling routine - rts - -############################ -fmovm_out_ctrl: - mov.l %a0,%a1 # move <ea> to a1 - - sub.l %d0,%sp # subtract size of dump - lea (%sp),%a0 - - tst.b %d1 # should FP0 be moved? - bpl.b fmovm_out_ctrl_fp1 # no - - mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes - mov.l 0x4+EXC_FP0(%a6),(%a0)+ - mov.l 0x8+EXC_FP0(%a6),(%a0)+ - -fmovm_out_ctrl_fp1: - lsl.b &0x1,%d1 # should FP1 be moved? - bpl.b fmovm_out_ctrl_fp2 # no - - mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes - mov.l 0x4+EXC_FP1(%a6),(%a0)+ - mov.l 0x8+EXC_FP1(%a6),(%a0)+ - -fmovm_out_ctrl_fp2: - lsl.b &0x1,%d1 # should FP2 be moved? - bpl.b fmovm_out_ctrl_fp3 # no - - fmovm.x &0x20,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp3: - lsl.b &0x1,%d1 # should FP3 be moved? - bpl.b fmovm_out_ctrl_fp4 # no - - fmovm.x &0x10,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp4: - lsl.b &0x1,%d1 # should FP4 be moved? - bpl.b fmovm_out_ctrl_fp5 # no - - fmovm.x &0x08,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp5: - lsl.b &0x1,%d1 # should FP5 be moved? - bpl.b fmovm_out_ctrl_fp6 # no - - fmovm.x &0x04,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp6: - lsl.b &0x1,%d1 # should FP6 be moved? - bpl.b fmovm_out_ctrl_fp7 # no - - fmovm.x &0x02,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp7: - lsl.b &0x1,%d1 # should FP7 be moved? - bpl.b fmovm_out_ctrl_done # no - - fmovm.x &0x01,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_done: - mov.l %a1,L_SCR1(%a6) - - lea (%sp),%a0 # pass: supervisor src - mov.l %d0,-(%sp) # save size - bsr.l _dmem_write # copy data to user mem - - mov.l (%sp)+,%d0 - add.l %d0,%sp # clear fpreg data from stack - - tst.l %d1 # did dstore err? - bne.w fmovm_out_err # yes - - rts - -############ -# MOVE IN: # -############ -fmovm_data_in: - mov.l %a0,L_SCR1(%a6) - - sub.l %d0,%sp # make room for fpregs - lea (%sp),%a1 - - mov.l %d1,-(%sp) # save bit string for later - mov.l %d0,-(%sp) # save # of bytes - - bsr.l _dmem_read # copy data from user mem - - mov.l (%sp)+,%d0 # retrieve # of bytes - - tst.l %d1 # did dfetch fail? - bne.w fmovm_in_err # yes - - mov.l (%sp)+,%d1 # load bit string - - lea (%sp),%a0 # addr of stack - - tst.b %d1 # should FP0 be moved? - bpl.b fmovm_data_in_fp1 # no - - mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes - mov.l (%a0)+,0x4+EXC_FP0(%a6) - mov.l (%a0)+,0x8+EXC_FP0(%a6) - -fmovm_data_in_fp1: - lsl.b &0x1,%d1 # should FP1 be moved? - bpl.b fmovm_data_in_fp2 # no - - mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes - mov.l (%a0)+,0x4+EXC_FP1(%a6) - mov.l (%a0)+,0x8+EXC_FP1(%a6) - -fmovm_data_in_fp2: - lsl.b &0x1,%d1 # should FP2 be moved? - bpl.b fmovm_data_in_fp3 # no - - fmovm.x (%a0)+,&0x20 # yes - -fmovm_data_in_fp3: - lsl.b &0x1,%d1 # should FP3 be moved? - bpl.b fmovm_data_in_fp4 # no - - fmovm.x (%a0)+,&0x10 # yes - -fmovm_data_in_fp4: - lsl.b &0x1,%d1 # should FP4 be moved? - bpl.b fmovm_data_in_fp5 # no - - fmovm.x (%a0)+,&0x08 # yes - -fmovm_data_in_fp5: - lsl.b &0x1,%d1 # should FP5 be moved? - bpl.b fmovm_data_in_fp6 # no - - fmovm.x (%a0)+,&0x04 # yes - -fmovm_data_in_fp6: - lsl.b &0x1,%d1 # should FP6 be moved? - bpl.b fmovm_data_in_fp7 # no - - fmovm.x (%a0)+,&0x02 # yes - -fmovm_data_in_fp7: - lsl.b &0x1,%d1 # should FP7 be moved? - bpl.b fmovm_data_in_done # no - - fmovm.x (%a0)+,&0x01 # yes - -fmovm_data_in_done: - add.l %d0,%sp # remove fpregs from stack - rts - -##################################### - -fmovm_data_done: - rts - -############################################################################## - -# -# table indexed by the operation's bit string that gives the number -# of bytes that will be moved. -# -# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) -# -tbl_fmovm_size: - byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 - -# -# table to convert a pre-decrement bit string into a post-increment -# or control bit string. -# ex: 0x00 ==> 0x00 -# 0x01 ==> 0x80 -# 0x02 ==> 0x40 -# . -# . -# 0xfd ==> 0xbf -# 0xfe ==> 0x7f -# 0xff ==> 0xff -# -tbl_fmovm_convert: - byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 - byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 - byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 - byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 - byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 - byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 - byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec - byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc - byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 - byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 - byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea - byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa - byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 - byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 - byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee - byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe - byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 - byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 - byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 - byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 - byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 - byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 - byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed - byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd - byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 - byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 - byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb - byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb - byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 - byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 - byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef - byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff - - global fmovm_calc_ea -############################################### -# _fmovm_calc_ea: calculate effective address # -############################################### -fmovm_calc_ea: - mov.l %d0,%a0 # move # bytes to a0 - -# currently, MODE and REG are taken from the EXC_OPWORD. this could be -# easily changed if they were inputs passed in registers. - mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.w %d0,%d1 # make a copy - - andi.w &0x3f,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - -# jump to the corresponding function for each {MODE,REG} pair. - mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance - jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode - - swbeg &64 -tbl_fea_mode: - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - - short faddr_ind_a0 - tbl_fea_mode - short faddr_ind_a1 - tbl_fea_mode - short faddr_ind_a2 - tbl_fea_mode - short faddr_ind_a3 - tbl_fea_mode - short faddr_ind_a4 - tbl_fea_mode - short faddr_ind_a5 - tbl_fea_mode - short faddr_ind_a6 - tbl_fea_mode - short faddr_ind_a7 - tbl_fea_mode - - short faddr_ind_p_a0 - tbl_fea_mode - short faddr_ind_p_a1 - tbl_fea_mode - short faddr_ind_p_a2 - tbl_fea_mode - short faddr_ind_p_a3 - tbl_fea_mode - short faddr_ind_p_a4 - tbl_fea_mode - short faddr_ind_p_a5 - tbl_fea_mode - short faddr_ind_p_a6 - tbl_fea_mode - short faddr_ind_p_a7 - tbl_fea_mode - - short faddr_ind_m_a0 - tbl_fea_mode - short faddr_ind_m_a1 - tbl_fea_mode - short faddr_ind_m_a2 - tbl_fea_mode - short faddr_ind_m_a3 - tbl_fea_mode - short faddr_ind_m_a4 - tbl_fea_mode - short faddr_ind_m_a5 - tbl_fea_mode - short faddr_ind_m_a6 - tbl_fea_mode - short faddr_ind_m_a7 - tbl_fea_mode - - short faddr_ind_disp_a0 - tbl_fea_mode - short faddr_ind_disp_a1 - tbl_fea_mode - short faddr_ind_disp_a2 - tbl_fea_mode - short faddr_ind_disp_a3 - tbl_fea_mode - short faddr_ind_disp_a4 - tbl_fea_mode - short faddr_ind_disp_a5 - tbl_fea_mode - short faddr_ind_disp_a6 - tbl_fea_mode - short faddr_ind_disp_a7 - tbl_fea_mode - - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - - short fabs_short - tbl_fea_mode - short fabs_long - tbl_fea_mode - short fpc_ind - tbl_fea_mode - short fpc_ind_ext - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - -################################### -# Address register indirect: (An) # -################################### -faddr_ind_a0: - mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 - rts - -faddr_ind_a1: - mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 - rts - -faddr_ind_a2: - mov.l %a2,%a0 # Get current a2 - rts - -faddr_ind_a3: - mov.l %a3,%a0 # Get current a3 - rts - -faddr_ind_a4: - mov.l %a4,%a0 # Get current a4 - rts - -faddr_ind_a5: - mov.l %a5,%a0 # Get current a5 - rts - -faddr_ind_a6: - mov.l (%a6),%a0 # Get current a6 - rts - -faddr_ind_a7: - mov.l EXC_A7(%a6),%a0 # Get current a7 - rts - -##################################################### -# Address register indirect w/ postincrement: (An)+ # -##################################################### -faddr_ind_p_a0: - mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a1: - mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a2: - mov.l %a2,%d0 # Get current a2 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a2 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a3: - mov.l %a3,%d0 # Get current a3 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a3 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a4: - mov.l %a4,%d0 # Get current a4 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a4 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a5: - mov.l %a5,%d0 # Get current a5 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a5 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a6: - mov.l (%a6),%d0 # Get current a6 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a7: - mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_A7(%a6) # Save incr value - mov.l %d0,%a0 - rts - -#################################################### -# Address register indirect w/ predecrement: -(An) # -#################################################### -faddr_ind_m_a0: - mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a1: - mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a2: - mov.l %a2,%d0 # Get current a2 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a2 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a3: - mov.l %a3,%d0 # Get current a3 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a3 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a4: - mov.l %a4,%d0 # Get current a4 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a4 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a5: - mov.l %a5,%d0 # Get current a5 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a5 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a6: - mov.l (%a6),%d0 # Get current a6 - sub.l %a0,%d0 # Decrement - mov.l %d0,(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a7: - mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A7(%a6) # Save decr value - mov.l %d0,%a0 - rts - -######################################################## -# Address register indirect w/ displacement: (d16, An) # -######################################################## -faddr_ind_disp_a0: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 - rts - -faddr_ind_disp_a1: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 - rts - -faddr_ind_disp_a2: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a2,%a0 # a2 + d16 - rts - -faddr_ind_disp_a3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a3,%a0 # a3 + d16 - rts - -faddr_ind_disp_a4: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a4,%a0 # a4 + d16 - rts - -faddr_ind_disp_a5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a5,%a0 # a5 + d16 - rts - -faddr_ind_disp_a6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l (%a6),%a0 # a6 + d16 - rts - -faddr_ind_disp_a7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_A7(%a6),%a0 # a7 + d16 - rts - -######################################################################## -# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # -# " " " w/ " (base displacement): (bd, An, Xn) # -# Memory indirect postindexed: ([bd, An], Xn, od) # -# Memory indirect preindexed: ([bd, An, Xn], od) # -######################################################################## -faddr_ind_ext: - addq.l &0x8,%d1 - bsr.l fetch_dreg # fetch base areg - mov.l %d0,-(%sp) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch extword in d0 - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l (%sp)+,%a0 - - btst &0x8,%d0 - bne.w fcalc_mem_ind - - mov.l %d0,L_SCR1(%a6) # hold opword - - mov.l %d0,%d1 - rol.w &0x4,%d1 - andi.w &0xf,%d1 # extract index regno - -# count on fetch_dreg() not to alter a0... - bsr.l fetch_dreg # fetch index - - mov.l %d2,-(%sp) # save d2 - mov.l L_SCR1(%a6),%d2 # fetch opword - - btst &0xb,%d2 # is it word or long? - bne.b faii8_long - ext.l %d0 # sign extend word index -faii8_long: - mov.l %d2,%d1 - rol.w &0x7,%d1 - andi.l &0x3,%d1 # extract scale value - - lsl.l %d1,%d0 # shift index by scale - - extb.l %d2 # sign extend displacement - add.l %d2,%d0 # index + disp - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore old d2 - rts - -########################### -# Absolute short: (XXX).W # -########################### -fabs_short: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch short address - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # return <ea> in a0 - rts - -########################## -# Absolute long: (XXX).L # -########################## -fabs_long: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch long address - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,%a0 # return <ea> in a0 - rts - -####################################################### -# Program counter indirect w/ displacement: (d16, PC) # -####################################################### -fpc_ind: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch word displacement - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 - -# _imem_read_word() increased the extwptr by 2. need to adjust here. - subq.l &0x2,%a0 # adjust <ea> - rts - -########################################################## -# PC indirect w/ index(8-bit displacement): (d8, PC, An) # -# " " w/ " (base displacement): (bd, PC, An) # -# PC memory indirect postindexed: ([bd, PC], Xn, od) # -# PC memory indirect preindexed: ([bd, PC, Xn], od) # -########################################################## -fpc_ind_ext: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch ext word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 - subq.l &0x2,%a0 # adjust base - - btst &0x8,%d0 # is disp only 8 bits? - bne.w fcalc_mem_ind # calc memory indirect - - mov.l %d0,L_SCR1(%a6) # store opword - - mov.l %d0,%d1 # make extword copy - rol.w &0x4,%d1 # rotate reg num into place - andi.w &0xf,%d1 # extract register number - -# count on fetch_dreg() not to alter a0... - bsr.l fetch_dreg # fetch index - - mov.l %d2,-(%sp) # save d2 - mov.l L_SCR1(%a6),%d2 # fetch opword - - btst &0xb,%d2 # is index word or long? - bne.b fpii8_long # long - ext.l %d0 # sign extend word index -fpii8_long: - mov.l %d2,%d1 - rol.w &0x7,%d1 # rotate scale value into place - andi.l &0x3,%d1 # extract scale value - - lsl.l %d1,%d0 # shift index by scale - - extb.l %d2 # sign extend displacement - add.l %d2,%d0 # disp + index - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore temp register - rts - -# d2 = index -# d3 = base -# d4 = od -# d5 = extword -fcalc_mem_ind: - btst &0x6,%d0 # is the index suppressed? - beq.b fcalc_index - - movm.l &0x3c00,-(%sp) # save d2-d5 - - mov.l %d0,%d5 # put extword in d5 - mov.l %a0,%d3 # put base in d3 - - clr.l %d2 # yes, so index = 0 - bra.b fbase_supp_ck - -# index: -fcalc_index: - mov.l %d0,L_SCR1(%a6) # save d0 (opword) - bfextu %d0{&16:&4},%d1 # fetch dreg index - bsr.l fetch_dreg - - movm.l &0x3c00,-(%sp) # save d2-d5 - mov.l %d0,%d2 # put index in d2 - mov.l L_SCR1(%a6),%d5 - mov.l %a0,%d3 - - btst &0xb,%d5 # is index word or long? - bne.b fno_ext - ext.l %d2 - -fno_ext: - bfextu %d5{&21:&2},%d0 - lsl.l %d0,%d2 - -# base address (passed as parameter in d3): -# we clear the value here if it should actually be suppressed. -fbase_supp_ck: - btst &0x7,%d5 # is the bd suppressed? - beq.b fno_base_sup - clr.l %d3 - -# base displacement: -fno_base_sup: - bfextu %d5{&26:&2},%d0 # get bd size -# beq.l fmovm_error # if (size == 0) it's reserved - - cmpi.b %d0,&0x2 - blt.b fno_bd - beq.b fget_word_bd - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - bra.b fchk_ind - -fget_word_bd: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - ext.l %d0 # sign extend bd - -fchk_ind: - add.l %d0,%d3 # base += bd - -# outer displacement: -fno_bd: - bfextu %d5{&30:&2},%d0 # is od suppressed? - beq.w faii_bd - - cmpi.b %d0,&0x2 - blt.b fnull_od - beq.b fword_od - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - bra.b fadd_them - -fword_od: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - ext.l %d0 # sign extend od - bra.b fadd_them - -fnull_od: - clr.l %d0 - -fadd_them: - mov.l %d0,%d4 - - btst &0x2,%d5 # pre or post indexing? - beq.b fpre_indexed - - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # did dfetch fail? - bne.w fcea_err # yes - - add.l %d2,%d0 # <ea> += index - add.l %d4,%d0 # <ea> += od - bra.b fdone_ea - -fpre_indexed: - add.l %d2,%d3 # preindexing - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # did dfetch fail? - bne.w fcea_err # yes - - add.l %d4,%d0 # ea += od - bra.b fdone_ea - -faii_bd: - add.l %d2,%d3 # ea = (base + bd) + index - mov.l %d3,%d0 -fdone_ea: - mov.l %d0,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - rts - -######################################################### -fcea_err: - mov.l %d3,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - mov.w &0x0101,%d0 - bra.l iea_dacc - -fcea_iacc: - movm.l (%sp)+,&0x003c # restore d2-d5 - bra.l iea_iacc - -fmovm_out_err: - bsr.l restore - mov.w &0x00e1,%d0 - bra.b fmovm_err - -fmovm_in_err: - bsr.l restore - mov.w &0x0161,%d0 - -fmovm_err: - mov.l L_SCR1(%a6),%a0 - bra.l iea_dacc - -######################################################################### -# XDEF **************************************************************** # -# fmovm_ctrl(): emulate fmovm.l of control registers instr # -# # -# XREF **************************************************************** # -# _imem_read_long() - read longword from memory # -# iea_iacc() - _imem_read_long() failed; error recovery # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If _imem_read_long() doesn't fail: # -# USER_FPCR(a6) = new FPCR value # -# USER_FPSR(a6) = new FPSR value # -# USER_FPIAR(a6) = new FPIAR value # -# # -# ALGORITHM *********************************************************** # -# Decode the instruction type by looking at the extension word # -# in order to see how many control registers to fetch from memory. # -# Fetch them using _imem_read_long(). If this fetch fails, exit through # -# the special access error exit handler iea_iacc(). # -# # -# Instruction word decoding: # -# # -# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # -# # -# WORD1 WORD2 # -# 1111 0010 00 111100 100$ $$00 0000 0000 # -# # -# $$$ (100): FPCR # -# (010): FPSR # -# (001): FPIAR # -# (000): FPIAR # -# # -######################################################################### - - global fmovm_ctrl -fmovm_ctrl: - mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits - cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? - beq.w fctrl_in_7 # yes - cmpi.b %d0,&0x98 # fpcr & fpsr ? - beq.w fctrl_in_6 # yes - cmpi.b %d0,&0x94 # fpcr & fpiar ? - beq.b fctrl_in_5 # yes - -# fmovem.l #<data>, fpsr/fpiar -fctrl_in_3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack - rts - -# fmovem.l #<data>, fpcr/fpiar -fctrl_in_5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack - rts - -# fmovem.l #<data>, fpcr/fpsr -fctrl_in_6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem - rts - -# fmovem.l #<data>, fpcr/fpsr/fpiar -fctrl_in_7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem - rts - -######################################################################### -# XDEF **************************************************************** # -# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # -# # -# XREF **************************************************************** # -# inc_areg() - increment an address register # -# dec_areg() - decrement an address register # -# # -# INPUT *************************************************************** # -# d0 = number of bytes to adjust <ea> by # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# "Dummy" CALCulate Effective Address: # -# The stacked <ea> for FP unimplemented instructions and opclass # -# two packed instructions is correct with the exception of... # -# # -# 1) -(An) : The register is not updated regardless of size. # -# Also, for extended precision and packed, the # -# stacked <ea> value is 8 bytes too big # -# 2) (An)+ : The register is not updated. # -# 3) #<data> : The upper longword of the immediate operand is # -# stacked b,w,l and s sizes are completely stacked. # -# d,x, and p are not. # -# # -######################################################################### - - global _dcalc_ea -_dcalc_ea: - mov.l %d0, %a0 # move # bytes to %a0 - - mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word - mov.l %d0, %d1 # make a copy - - andi.w &0x38, %d0 # extract mode field - andi.l &0x7, %d1 # extract reg field - - cmpi.b %d0,&0x18 # is mode (An)+ ? - beq.b dcea_pi # yes - - cmpi.b %d0,&0x20 # is mode -(An) ? - beq.b dcea_pd # yes - - or.w %d1,%d0 # concat mode,reg - cmpi.b %d0,&0x3c # is mode #<data>? - - beq.b dcea_imm # yes - - mov.l EXC_EA(%a6),%a0 # return <ea> - rts - -# need to set immediate data flag here since we'll need to do -# an imem_read to fetch this later. -dcea_imm: - mov.b &immed_flg,SPCOND_FLG(%a6) - lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> - rts - -# here, the <ea> is stacked correctly. however, we must update the -# address register... -dcea_pi: - mov.l %a0,%d0 # pass amt to inc by - bsr.l inc_areg # inc addr register - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - rts - -# the <ea> is stacked correctly for all but extended and packed which -# the <ea>s are 8 bytes too large. -# it would make no sense to have a pre-decrement to a7 in supervisor -# mode so we don't even worry about this tricky case here : ) -dcea_pd: - mov.l %a0,%d0 # pass amt to dec by - bsr.l dec_areg # dec addr register - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - - cmpi.b %d0,&0xc # is opsize ext or packed? - beq.b dcea_pd2 # yes - rts -dcea_pd2: - sub.l &0x8,%a0 # correct <ea> - mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack - rts - -######################################################################### -# XDEF **************************************************************** # -# _calc_ea_fout(): calculate correct stacked <ea> for extended # -# and packed data opclass 3 operations. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# a0 = return correct effective address # -# # -# ALGORITHM *********************************************************** # -# For opclass 3 extended and packed data operations, the <ea> # -# stacked for the exception is incorrect for -(an) and (an)+ addressing # -# modes. Also, while we're at it, the index register itself must get # -# updated. # -# So, for -(an), we must subtract 8 off of the stacked <ea> value # -# and return that value as the correct <ea> and store that value in An. # -# For (an)+, the stacked <ea> is correct but we must adjust An by +12. # -# # -######################################################################### - -# This calc_ea is currently used to retrieve the correct <ea> -# for fmove outs of type extended and packed. - global _calc_ea_fout -_calc_ea_fout: - mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.l %d0,%d1 # make a copy - - andi.w &0x38,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - - cmpi.b %d0,&0x18 # is mode (An)+ ? - beq.b ceaf_pi # yes - - cmpi.b %d0,&0x20 # is mode -(An) ? - beq.w ceaf_pd # yes - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - rts - -# (An)+ : extended and packed fmove out -# : stacked <ea> is correct -# : "An" not updated -ceaf_pi: - mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 - mov.l EXC_EA(%a6),%a0 - jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) - - swbeg &0x8 -tbl_ceaf_pi: - short ceaf_pi0 - tbl_ceaf_pi - short ceaf_pi1 - tbl_ceaf_pi - short ceaf_pi2 - tbl_ceaf_pi - short ceaf_pi3 - tbl_ceaf_pi - short ceaf_pi4 - tbl_ceaf_pi - short ceaf_pi5 - tbl_ceaf_pi - short ceaf_pi6 - tbl_ceaf_pi - short ceaf_pi7 - tbl_ceaf_pi - -ceaf_pi0: - addi.l &0xc,EXC_DREGS+0x8(%a6) - rts -ceaf_pi1: - addi.l &0xc,EXC_DREGS+0xc(%a6) - rts -ceaf_pi2: - add.l &0xc,%a2 - rts -ceaf_pi3: - add.l &0xc,%a3 - rts -ceaf_pi4: - add.l &0xc,%a4 - rts -ceaf_pi5: - add.l &0xc,%a5 - rts -ceaf_pi6: - addi.l &0xc,EXC_A6(%a6) - rts -ceaf_pi7: - mov.b &mia7_flg,SPCOND_FLG(%a6) - addi.l &0xc,EXC_A7(%a6) - rts - -# -(An) : extended and packed fmove out -# : stacked <ea> = actual <ea> + 8 -# : "An" not updated -ceaf_pd: - mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 - mov.l EXC_EA(%a6),%a0 - sub.l &0x8,%a0 - sub.l &0x8,EXC_EA(%a6) - jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) - - swbeg &0x8 -tbl_ceaf_pd: - short ceaf_pd0 - tbl_ceaf_pd - short ceaf_pd1 - tbl_ceaf_pd - short ceaf_pd2 - tbl_ceaf_pd - short ceaf_pd3 - tbl_ceaf_pd - short ceaf_pd4 - tbl_ceaf_pd - short ceaf_pd5 - tbl_ceaf_pd - short ceaf_pd6 - tbl_ceaf_pd - short ceaf_pd7 - tbl_ceaf_pd - -ceaf_pd0: - mov.l %a0,EXC_DREGS+0x8(%a6) - rts -ceaf_pd1: - mov.l %a0,EXC_DREGS+0xc(%a6) - rts -ceaf_pd2: - mov.l %a0,%a2 - rts -ceaf_pd3: - mov.l %a0,%a3 - rts -ceaf_pd4: - mov.l %a0,%a4 - rts -ceaf_pd5: - mov.l %a0,%a5 - rts -ceaf_pd6: - mov.l %a0,EXC_A6(%a6) - rts -ceaf_pd7: - mov.l %a0,EXC_A7(%a6) - mov.b &mda7_flg,SPCOND_FLG(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# _load_fop(): load operand for unimplemented FP exception # -# # -# XREF **************************************************************** # -# set_tag_x() - determine ext prec optype tag # -# set_tag_s() - determine sgl prec optype tag # -# set_tag_d() - determine dbl prec optype tag # -# unnorm_fix() - convert normalized number to denorm or zero # -# norm() - normalize a denormalized number # -# get_packed() - fetch a packed operand from memory # -# _dcalc_ea() - calculate <ea>, fixing An in process # -# # -# _imem_read_{word,long}() - read from instruction memory # -# _dmem_read() - read from data memory # -# _dmem_read_{byte,word,long}() - read from data memory # -# # -# facc_in_{b,w,l,d,x}() - mem read failed; special exit point # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If memory access doesn't fail: # -# FP_SRC(a6) = source operand in extended precision # -# FP_DST(a6) = destination operand in extended precision # -# # -# ALGORITHM *********************************************************** # -# This is called from the Unimplemented FP exception handler in # -# order to load the source and maybe destination operand into # -# FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load # -# the source and destination from the FP register file. Set the optype # -# tags for both if dyadic, one for monadic. If a number is an UNNORM, # -# convert it to a DENORM or a ZERO. # -# If the instruction is opclass two (memory->reg), then fetch # -# the destination from the register file and the source operand from # -# memory. Tag and fix both as above w/ opclass zero instructions. # -# If the source operand is byte,word,long, or single, it may be # -# in the data register file. If it's actually out in memory, use one of # -# the mem_read() routines to fetch it. If the mem_read() access returns # -# a failing value, exit through the special facc_in() routine which # -# will create an access error exception frame from the current exception # -# frame. # -# Immediate data and regular data accesses are separated because # -# if an immediate data access fails, the resulting fault status # -# longword stacked for the access error exception must have the # -# instruction bit set. # -# # -######################################################################### - - global _load_fop -_load_fop: - -# 15 13 12 10 9 7 6 0 -# / \ / \ / \ / \ -# --------------------------------- -# | opclass | RX | RY | EXTENSION | (2nd word of general FP instruction) -# --------------------------------- -# - -# bfextu EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass -# cmpi.b %d0, &0x2 # which class is it? ('000,'010,'011) -# beq.w op010 # handle <ea> -> fpn -# bgt.w op011 # handle fpn -> <ea> - -# we're not using op011 for now... - btst &0x6,EXC_CMDREG(%a6) - bne.b op010 - -############################ -# OPCLASS '000: reg -> reg # -############################ -op000: - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension word lo - btst &0x5,%d0 # testing extension bits - beq.b op000_src # (bit 5 == 0) => monadic - btst &0x4,%d0 # (bit 5 == 1) - beq.b op000_dst # (bit 4 == 0) => dyadic - and.w &0x007f,%d0 # extract extension bits {6:0} - cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ? - bne.b op000_src # it's an fcmp - -op000_dst: - bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field - bsr.l load_fpn2 # fetch dst fpreg into FP_DST - - bsr.l set_tag_x # get dst optype tag - - cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM? - beq.b op000_dst_unnorm # yes -op000_dst_cont: - mov.b %d0, DTAG(%a6) # store the dst optype tag - -op000_src: - bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field - bsr.l load_fpn1 # fetch src fpreg into FP_SRC - - bsr.l set_tag_x # get src optype tag - - cmpi.b %d0, &UNNORM # is src fpreg an UNNORM? - beq.b op000_src_unnorm # yes -op000_src_cont: - mov.b %d0, STAG(%a6) # store the src optype tag - rts - -op000_dst_unnorm: - bsr.l unnorm_fix # fix the dst UNNORM - bra.b op000_dst_cont -op000_src_unnorm: - bsr.l unnorm_fix # fix the src UNNORM - bra.b op000_src_cont - -############################# -# OPCLASS '010: <ea> -> reg # -############################# -op010: - mov.w EXC_CMDREG(%a6),%d0 # fetch extension word - btst &0x5,%d0 # testing extension bits - beq.b op010_src # (bit 5 == 0) => monadic - btst &0x4,%d0 # (bit 5 == 1) - beq.b op010_dst # (bit 4 == 0) => dyadic - and.w &0x007f,%d0 # extract extension bits {6:0} - cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ? - bne.b op010_src # it's an fcmp - -op010_dst: - bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field - bsr.l load_fpn2 # fetch dst fpreg ptr - - bsr.l set_tag_x # get dst type tag - - cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM? - beq.b op010_dst_unnorm # yes -op010_dst_cont: - mov.b %d0, DTAG(%a6) # store the dst optype tag - -op010_src: - bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field - - bfextu EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field - bne.w fetch_from_mem # src op is in memory - -op010_dreg: - clr.b STAG(%a6) # either NORM or ZERO - bfextu EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field - - mov.w (tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype - jmp (tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg - -op010_dst_unnorm: - bsr.l unnorm_fix # fix the dst UNNORM - bra.b op010_dst_cont - - swbeg &0x8 -tbl_op010_dreg: - short opd_long - tbl_op010_dreg - short opd_sgl - tbl_op010_dreg - short tbl_op010_dreg - tbl_op010_dreg - short tbl_op010_dreg - tbl_op010_dreg - short opd_word - tbl_op010_dreg - short tbl_op010_dreg - tbl_op010_dreg - short opd_byte - tbl_op010_dreg - short tbl_op010_dreg - tbl_op010_dreg - -# -# LONG: can be either NORM or ZERO... -# -opd_long: - bsr.l fetch_dreg # fetch long in d0 - fmov.l %d0, %fp0 # load a long - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - fbeq.w opd_long_zero # long is a ZERO - rts -opd_long_zero: - mov.b &ZERO, STAG(%a6) # set ZERO optype flag - rts - -# -# WORD: can be either NORM or ZERO... -# -opd_word: - bsr.l fetch_dreg # fetch word in d0 - fmov.w %d0, %fp0 # load a word - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - fbeq.w opd_word_zero # WORD is a ZERO - rts -opd_word_zero: - mov.b &ZERO, STAG(%a6) # set ZERO optype flag - rts - -# -# BYTE: can be either NORM or ZERO... -# -opd_byte: - bsr.l fetch_dreg # fetch word in d0 - fmov.b %d0, %fp0 # load a byte - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - fbeq.w opd_byte_zero # byte is a ZERO - rts -opd_byte_zero: - mov.b &ZERO, STAG(%a6) # set ZERO optype flag - rts - -# -# SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM -# -# separate SNANs and DENORMs so they can be loaded w/ special care. -# all others can simply be moved "in" using fmove. -# -opd_sgl: - bsr.l fetch_dreg # fetch sgl in d0 - mov.l %d0,L_SCR1(%a6) - - lea L_SCR1(%a6), %a0 # pass: ptr to the sgl - bsr.l set_tag_s # determine sgl type - mov.b %d0, STAG(%a6) # save the src tag - - cmpi.b %d0, &SNAN # is it an SNAN? - beq.w get_sgl_snan # yes - - cmpi.b %d0, &DENORM # is it a DENORM? - beq.w get_sgl_denorm # yes - - fmov.s (%a0), %fp0 # no, so can load it regular - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - rts - -############################################################################## - -######################################################################### -# fetch_from_mem(): # -# - src is out in memory. must: # -# (1) calc ea - must read AFTER you know the src type since # -# if the ea is -() or ()+, need to know # of bytes. # -# (2) read it in from either user or supervisor space # -# (3) if (b || w || l) then simply read in # -# if (s || d || x) then check for SNAN,UNNORM,DENORM # -# if (packed) then punt for now # -# INPUT: # -# %d0 : src type field # -######################################################################### -fetch_from_mem: - clr.b STAG(%a6) # either NORM or ZERO - - mov.w (tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field - jmp (tbl_fp_type.b,%pc,%d0.w*1) - - swbeg &0x8 -tbl_fp_type: - short load_long - tbl_fp_type - short load_sgl - tbl_fp_type - short load_ext - tbl_fp_type - short load_packed - tbl_fp_type - short load_word - tbl_fp_type - short load_dbl - tbl_fp_type - short load_byte - tbl_fp_type - short tbl_fp_type - tbl_fp_type - -######################################### -# load a LONG into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 4 bytes into L_SCR1 # -# (3) fmov.l into %fp0 # -######################################### -load_long: - movq.l &0x4, %d0 # pass: 4 (bytes) - bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 - - cmpi.b SPCOND_FLG(%a6),&immed_flg - beq.b load_long_immed - - bsr.l _dmem_read_long # fetch src operand from memory - - tst.l %d1 # did dfetch fail? - bne.l facc_in_l # yes - -load_long_cont: - fmov.l %d0, %fp0 # read into %fp0;convert to xprec - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - - fbeq.w load_long_zero # src op is a ZERO - rts -load_long_zero: - mov.b &ZERO, STAG(%a6) # set optype tag to ZERO - rts - -load_long_immed: - bsr.l _imem_read_long # fetch src operand immed data - - tst.l %d1 # did ifetch fail? - bne.l funimp_iacc # yes - bra.b load_long_cont - -######################################### -# load a WORD into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 2 bytes into L_SCR1 # -# (3) fmov.w into %fp0 # -######################################### -load_word: - movq.l &0x2, %d0 # pass: 2 (bytes) - bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 - - cmpi.b SPCOND_FLG(%a6),&immed_flg - beq.b load_word_immed - - bsr.l _dmem_read_word # fetch src operand from memory - - tst.l %d1 # did dfetch fail? - bne.l facc_in_w # yes - -load_word_cont: - fmov.w %d0, %fp0 # read into %fp0;convert to xprec - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - - fbeq.w load_word_zero # src op is a ZERO - rts -load_word_zero: - mov.b &ZERO, STAG(%a6) # set optype tag to ZERO - rts - -load_word_immed: - bsr.l _imem_read_word # fetch src operand immed data - - tst.l %d1 # did ifetch fail? - bne.l funimp_iacc # yes - bra.b load_word_cont - -######################################### -# load a BYTE into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 1 byte into L_SCR1 # -# (3) fmov.b into %fp0 # -######################################### -load_byte: - movq.l &0x1, %d0 # pass: 1 (byte) - bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 - - cmpi.b SPCOND_FLG(%a6),&immed_flg - beq.b load_byte_immed - - bsr.l _dmem_read_byte # fetch src operand from memory - - tst.l %d1 # did dfetch fail? - bne.l facc_in_b # yes - -load_byte_cont: - fmov.b %d0, %fp0 # read into %fp0;convert to xprec - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - - fbeq.w load_byte_zero # src op is a ZERO - rts -load_byte_zero: - mov.b &ZERO, STAG(%a6) # set optype tag to ZERO - rts - -load_byte_immed: - bsr.l _imem_read_word # fetch src operand immed data - - tst.l %d1 # did ifetch fail? - bne.l funimp_iacc # yes - bra.b load_byte_cont - -######################################### -# load a SGL into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 4 bytes into L_SCR1 # -# (3) fmov.s into %fp0 # -######################################### -load_sgl: - movq.l &0x4, %d0 # pass: 4 (bytes) - bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 - - cmpi.b SPCOND_FLG(%a6),&immed_flg - beq.b load_sgl_immed - - bsr.l _dmem_read_long # fetch src operand from memory - mov.l %d0, L_SCR1(%a6) # store src op on stack - - tst.l %d1 # did dfetch fail? - bne.l facc_in_l # yes - -load_sgl_cont: - lea L_SCR1(%a6), %a0 # pass: ptr to sgl src op - bsr.l set_tag_s # determine src type tag - mov.b %d0, STAG(%a6) # save src optype tag on stack - - cmpi.b %d0, &DENORM # is it a sgl DENORM? - beq.w get_sgl_denorm # yes - - cmpi.b %d0, &SNAN # is it a sgl SNAN? - beq.w get_sgl_snan # yes - - fmov.s L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - rts - -load_sgl_immed: - bsr.l _imem_read_long # fetch src operand immed data - - tst.l %d1 # did ifetch fail? - bne.l funimp_iacc # yes - bra.b load_sgl_cont - -# must convert sgl denorm format to an Xprec denorm fmt suitable for -# normalization... -# %a0 : points to sgl denorm -get_sgl_denorm: - clr.w FP_SRC_EX(%a6) - bfextu (%a0){&9:&23}, %d0 # fetch sgl hi(_mantissa) - lsl.l &0x8, %d0 - mov.l %d0, FP_SRC_HI(%a6) # set ext hi(_mantissa) - clr.l FP_SRC_LO(%a6) # set ext lo(_mantissa) - - clr.w FP_SRC_EX(%a6) - btst &0x7, (%a0) # is sgn bit set? - beq.b sgl_dnrm_norm - bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value - -sgl_dnrm_norm: - lea FP_SRC(%a6), %a0 - bsr.l norm # normalize number - mov.w &0x3f81, %d1 # xprec exp = 0x3f81 - sub.w %d0, %d1 # exp = 0x3f81 - shft amt. - or.w %d1, FP_SRC_EX(%a6) # {sgn,exp} - - mov.b &NORM, STAG(%a6) # fix src type tag - rts - -# convert sgl to ext SNAN -# %a0 : points to sgl SNAN -get_sgl_snan: - mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN - bfextu (%a0){&9:&23}, %d0 - lsl.l &0x8, %d0 # extract and insert hi(man) - mov.l %d0, FP_SRC_HI(%a6) - clr.l FP_SRC_LO(%a6) - - btst &0x7, (%a0) # see if sign of SNAN is set - beq.b no_sgl_snan_sgn - bset &0x7, FP_SRC_EX(%a6) -no_sgl_snan_sgn: - rts - -######################################### -# load a DBL into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 8 bytes into L_SCR(1,2)# -# (3) fmov.d into %fp0 # -######################################### -load_dbl: - movq.l &0x8, %d0 # pass: 8 (bytes) - bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 - - cmpi.b SPCOND_FLG(%a6),&immed_flg - beq.b load_dbl_immed - - lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space - movq.l &0x8, %d0 # pass: # bytes to read - bsr.l _dmem_read # fetch src operand from memory - - tst.l %d1 # did dfetch fail? - bne.l facc_in_d # yes - -load_dbl_cont: - lea L_SCR1(%a6), %a0 # pass: ptr to input dbl - bsr.l set_tag_d # determine src type tag - mov.b %d0, STAG(%a6) # set src optype tag - - cmpi.b %d0, &DENORM # is it a dbl DENORM? - beq.w get_dbl_denorm # yes - - cmpi.b %d0, &SNAN # is it a dbl SNAN? - beq.w get_dbl_snan # yes - - fmov.d L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec - fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC - rts - -load_dbl_immed: - lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space - movq.l &0x8, %d0 # pass: # bytes to read - bsr.l _imem_read # fetch src operand from memory - - tst.l %d1 # did ifetch fail? - bne.l funimp_iacc # yes - bra.b load_dbl_cont - -# must convert dbl denorm format to an Xprec denorm fmt suitable for -# normalization... -# %a0 : loc. of dbl denorm -get_dbl_denorm: - clr.w FP_SRC_EX(%a6) - bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa) - mov.l %d0, FP_SRC_HI(%a6) - bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa) - mov.l &0xb, %d1 - lsl.l %d1, %d0 - mov.l %d0, FP_SRC_LO(%a6) - - btst &0x7, (%a0) # is sgn bit set? - beq.b dbl_dnrm_norm - bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value - -dbl_dnrm_norm: - lea FP_SRC(%a6), %a0 - bsr.l norm # normalize number - mov.w &0x3c01, %d1 # xprec exp = 0x3c01 - sub.w %d0, %d1 # exp = 0x3c01 - shft amt. - or.w %d1, FP_SRC_EX(%a6) # {sgn,exp} - - mov.b &NORM, STAG(%a6) # fix src type tag - rts - -# convert dbl to ext SNAN -# %a0 : points to dbl SNAN -get_dbl_snan: - mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN - - bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa) - mov.l %d0, FP_SRC_HI(%a6) - bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa) - mov.l &0xb, %d1 - lsl.l %d1, %d0 - mov.l %d0, FP_SRC_LO(%a6) - - btst &0x7, (%a0) # see if sign of SNAN is set - beq.b no_dbl_snan_sgn - bset &0x7, FP_SRC_EX(%a6) -no_dbl_snan_sgn: - rts - -################################################# -# load a Xprec into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 12 bytes into L_SCR(1,2) # -# (3) fmov.x into %fp0 # -################################################# -load_ext: - mov.l &0xc, %d0 # pass: 12 (bytes) - bsr.l _dcalc_ea # calc <ea> - - lea FP_SRC(%a6), %a1 # pass: ptr to input ext tmp space - mov.l &0xc, %d0 # pass: # of bytes to read - bsr.l _dmem_read # fetch src operand from memory - - tst.l %d1 # did dfetch fail? - bne.l facc_in_x # yes - - lea FP_SRC(%a6), %a0 # pass: ptr to src op - bsr.l set_tag_x # determine src type tag - - cmpi.b %d0, &UNNORM # is the src op an UNNORM? - beq.b load_ext_unnorm # yes - - mov.b %d0, STAG(%a6) # store the src optype tag - rts - -load_ext_unnorm: - bsr.l unnorm_fix # fix the src UNNORM - mov.b %d0, STAG(%a6) # store the src optype tag - rts - -################################################# -# load a packed into %fp0: # -# -number can't fault # -# (1) calc ea # -# (2) read 12 bytes into L_SCR(1,2,3) # -# (3) fmov.x into %fp0 # -################################################# -load_packed: - bsr.l get_packed - - lea FP_SRC(%a6),%a0 # pass ptr to src op - bsr.l set_tag_x # determine src type tag - cmpi.b %d0,&UNNORM # is the src op an UNNORM ZERO? - beq.b load_packed_unnorm # yes - - mov.b %d0,STAG(%a6) # store the src optype tag - rts - -load_packed_unnorm: - bsr.l unnorm_fix # fix the UNNORM ZERO - mov.b %d0,STAG(%a6) # store the src optype tag - rts - -######################################################################### -# XDEF **************************************************************** # -# fout(): move from fp register to memory or data register # -# # -# XREF **************************************************************** # -# _round() - needed to create EXOP for sgl/dbl precision # -# norm() - needed to create EXOP for extended precision # -# ovf_res() - create default overflow result for sgl/dbl precision# -# unf_res() - create default underflow result for sgl/dbl prec. # -# dst_dbl() - create rounded dbl precision result. # -# dst_sgl() - create rounded sgl precision result. # -# fetch_dreg() - fetch dynamic k-factor reg for packed. # -# bindec() - convert FP binary number to packed number. # -# _mem_write() - write data to memory. # -# _mem_write2() - write data to memory unless supv mode -(a7) exc.# -# _dmem_write_{byte,word,long}() - write data to memory. # -# store_dreg_{b,w,l}() - store data to data register file. # -# facc_out_{b,w,l,d,x}() - data access error occurred. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 : intermediate underflow or overflow result if # -# OVFL/UNFL occurred for a sgl or dbl operand # -# # -# ALGORITHM *********************************************************** # -# This routine is accessed by many handlers that need to do an # -# opclass three move of an operand out to memory. # -# Decode an fmove out (opclass 3) instruction to determine if # -# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # -# register or memory. The algorithm uses a standard "fmove" to create # -# the rounded result. Also, since exceptions are disabled, this also # -# create the correct OPERR default result if appropriate. # -# For sgl or dbl precision, overflow or underflow can occur. If # -# either occurs and is enabled, the EXOP. # -# For extended precision, the stacked <ea> must be fixed along # -# w/ the address index register as appropriate w/ _calc_ea_fout(). If # -# the source is a denorm and if underflow is enabled, an EXOP must be # -# created. # -# For packed, the k-factor must be fetched from the instruction # -# word or a data register. The <ea> must be fixed as w/ extended # -# precision. Then, bindec() is called to create the appropriate # -# packed result. # -# If at any time an access error is flagged by one of the move- # -# to-memory routines, then a special exit must be made so that the # -# access error can be handled properly. # -# # -######################################################################### - - global fout -fout: - bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt - mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index - jmp (tbl_fout.b,%pc,%a1) # jump to routine - - swbeg &0x8 -tbl_fout: - short fout_long - tbl_fout - short fout_sgl - tbl_fout - short fout_ext - tbl_fout - short fout_pack - tbl_fout - short fout_word - tbl_fout - short fout_dbl - tbl_fout - short fout_byte - tbl_fout - short fout_pack - tbl_fout - -################################################################# -# fmove.b out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_byte: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_byte_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_byte_norm: - fmov.l %d0,%fpcr # insert rnd prec,mode - - fmov.b %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_byte_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_byte # write byte - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - rts - -fout_byte_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_b - rts - -fout_byte_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_byte_norm - -################################################################# -# fmove.w out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_word: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_word_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_word_norm: - fmov.l %d0,%fpcr # insert rnd prec:mode - - fmov.w %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_word_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_word # write word - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - rts - -fout_word_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_w - rts - -fout_word_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_word_norm - -################################################################# -# fmove.l out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_long: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_long_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_long_norm: - fmov.l %d0,%fpcr # insert rnd prec:mode - - fmov.l %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - -fout_long_write: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_long_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - rts - -fout_long_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - rts - -fout_long_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_long_norm - -################################################################# -# fmove.x out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -# The DENORM causes an Underflow exception. -fout_ext: - -# we copy the extended precision result to FP_SCR0 so that the reserved -# 16-bit field gets zeroed. we do this since we promise not to disturb -# what's at SRC(a0). - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - clr.w 2+FP_SCR0_EX(%a6) # clear reserved field - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - fmovm.x SRC(%a0),&0x80 # return result - - bsr.l _calc_ea_fout # fix stacked <ea> - - mov.l %a0,%a1 # pass: dst addr - lea FP_SCR0(%a6),%a0 # pass: src addr - mov.l &0xc,%d0 # pass: opsize is 12 bytes - -# we must not yet write the extended precision data to the stack -# in the pre-decrement case from supervisor mode or else we'll corrupt -# the stack frame. so, leave it in FP_SRC for now and deal with it later... - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.b fout_ext_a7 - - bsr.l _dmem_write # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - tst.b STAG(%a6) # is operand normalized? - bne.b fout_ext_denorm # no - rts - -# the number is a DENORM. must set the underflow exception bit -fout_ext_denorm: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit - - mov.b FPCR_ENABLE(%a6),%d0 - andi.b &0x0a,%d0 # is UNFL or INEX enabled? - bne.b fout_ext_exc # yes - rts - -# we don't want to do the write if the exception occurred in supervisor mode -# so _mem_write2() handles this for us. -fout_ext_a7: - bsr.l _mem_write2 # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - tst.b STAG(%a6) # is operand normalized? - bne.b fout_ext_denorm # no - rts - -fout_ext_exc: - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the mantissa - neg.w %d0 # new exp = -(shft amt) - andi.w &0x7fff,%d0 - andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign - or.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -fout_ext_err: - mov.l EXC_A6(%a6),(%a6) # fix stacked a6 - bra.l facc_out_x - -######################################################################### -# fmove.s out ########################################################### -######################################################################### -fout_sgl: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack - -# -# operand is a normalized number. first, we check to see if the move out -# would cause either an underflow or overflow. these cases are handled -# separately. otherwise, set the FPCR to the proper rounding mode and -# execute the move. -# - mov.w SRC_EX(%a0),%d0 # extract exponent - andi.w &0x7fff,%d0 # strip sign - - cmpi.w %d0,&SGL_HI # will operand overflow? - bgt.w fout_sgl_ovfl # yes; go handle OVFL - beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL - cmpi.w %d0,&SGL_LO # will operand underflow? - blt.w fout_sgl_unfl # yes; go handle underflow - -# -# NORMs(in range) can be stored out by a simple "fmov.s" -# Unnormalized inputs can come through this point. -# -fout_sgl_exg: - fmovm.x SRC(%a0),&0x80 # fetch fop from stack - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmov.s %fp0,%d0 # store does convert and round - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex - -fout_sgl_exg_write: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_exg_write_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - rts - -fout_sgl_exg_write_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - rts - -# -# here, we know that the operand would UNFL if moved out to single prec, -# so, denorm and round and then use generic store single routine to -# write the value to memory. -# -fout_sgl_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l %a0,-(%sp) - - clr.l %d0 # pass: S.F. = 0 - - cmpi.b STAG(%a6),&DENORM # fetch src optype tag - bne.b fout_sgl_unfl_cont # let DENORMs fall through - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the DENORM - -fout_sgl_unfl_cont: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calc default underflow result - - lea FP_SCR0(%a6),%a0 # pass: ptr to fop - bsr.l dst_sgl # convert to single prec - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_unfl_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.b fout_sgl_unfl_chkexc - -fout_sgl_unfl_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - -fout_sgl_unfl_chkexc: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_unfl # yes - addq.l &0x4,%sp - rts - -# -# it's definitely an overflow so call ovf_res to get the correct answer -# -fout_sgl_ovfl: - tst.b 3+SRC_HI(%a0) # is result inexact? - bne.b fout_sgl_ovfl_inex2 - tst.l SRC_LO(%a0) # is result inexact? - bne.b fout_sgl_ovfl_inex2 - ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - bra.b fout_sgl_ovfl_cont -fout_sgl_ovfl_inex2: - ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 - -fout_sgl_ovfl_cont: - mov.l %a0,-(%sp) - -# call ovf_res() w/ sgl prec and the correct rnd mode to create the default -# overflow result. DON'T save the returned ccodes from ovf_res() since -# fmove out doesn't alter them. - tst.b SRC_EX(%a0) # is operand negative? - smi %d1 # set if so - mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode - bsr.l ovf_res # calc OVFL result - fmovm.x (%a0),&0x80 # load default overflow result - fmov.s %fp0,%d0 # store to single - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_ovfl_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.b fout_sgl_ovfl_chkexc - -fout_sgl_ovfl_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - -fout_sgl_ovfl_chkexc: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_ovfl # yes - addq.l &0x4,%sp - rts - -# -# move out MAY overflow: -# (1) force the exp to 0x3fff -# (2) do a move w/ appropriate rnd mode -# (3) if exp still equals zero, then insert original exponent -# for the correct result. -# if exp now equals one, then it overflowed so call ovf_res. -# -fout_sgl_may_ovfl: - mov.w SRC_EX(%a0),%d1 # fetch current sign - andi.w &0x8000,%d1 # keep it,clear exp - ori.w &0x3fff,%d1 # insert exp = 0 - mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # need absolute value - fcmp.b %fp0,&0x2 # did exponent increase? - fblt.w fout_sgl_exg # no; go finish NORM - bra.w fout_sgl_ovfl # yes; go handle overflow - -################ - -fout_sd_exc_unfl: - mov.l (%sp)+,%a0 - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - cmpi.b STAG(%a6),&DENORM # was src a DENORM? - bne.b fout_sd_exc_cont # no - - lea FP_SCR0(%a6),%a0 - bsr.l norm - neg.l %d0 - andi.w &0x7fff,%d0 - bfins %d0,FP_SCR0_EX(%a6){&1:&15} - bra.b fout_sd_exc_cont - -fout_sd_exc: -fout_sd_exc_ovfl: - mov.l (%sp)+,%a0 # restore a0 - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - -fout_sd_exc_cont: - bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit - sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit - lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM - - mov.b 3+L_SCR3(%a6),%d1 - lsr.b &0x4,%d1 - andi.w &0x0c,%d1 - swap %d1 - mov.b 3+L_SCR3(%a6),%d1 - lsr.b &0x4,%d1 - andi.w &0x03,%d1 - clr.l %d0 # pass: zero g,r,s - bsr.l _round # round the DENORM - - tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? - beq.b fout_sd_exc_done # no - bset &0x7,FP_SCR0_EX(%a6) # yes - -fout_sd_exc_done: - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -################################################################# -# fmove.d out ################################################### -################################################################# -fout_dbl: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack - -# -# operand is a normalized number. first, we check to see if the move out -# would cause either an underflow or overflow. these cases are handled -# separately. otherwise, set the FPCR to the proper rounding mode and -# execute the move. -# - mov.w SRC_EX(%a0),%d0 # extract exponent - andi.w &0x7fff,%d0 # strip sign - - cmpi.w %d0,&DBL_HI # will operand overflow? - bgt.w fout_dbl_ovfl # yes; go handle OVFL - beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL - cmpi.w %d0,&DBL_LO # will operand underflow? - blt.w fout_dbl_unfl # yes; go handle underflow - -# -# NORMs(in range) can be stored out by a simple "fmov.d" -# Unnormalized inputs can come through this point. -# -fout_dbl_exg: - fmovm.x SRC(%a0),&0x80 # fetch fop from stack - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmov.d %fp0,L_SCR1(%a6) # store does convert and round - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d0 # save FPSR - - or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - rts # no; so we're finished - -# -# here, we know that the operand would UNFL if moved out to double prec, -# so, denorm and round and then use generic store double routine to -# write the value to memory. -# -fout_dbl_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l %a0,-(%sp) - - clr.l %d0 # pass: S.F. = 0 - - cmpi.b STAG(%a6),&DENORM # fetch src optype tag - bne.b fout_dbl_unfl_cont # let DENORMs fall through - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the DENORM - -fout_dbl_unfl_cont: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calc default underflow result - - lea FP_SCR0(%a6),%a0 # pass: ptr to fop - bsr.l dst_dbl # convert to single prec - mov.l %d0,L_SCR1(%a6) - mov.l %d1,L_SCR2(%a6) - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_unfl # yes - addq.l &0x4,%sp - rts - -# -# it's definitely an overflow so call ovf_res to get the correct answer -# -fout_dbl_ovfl: - mov.w 2+SRC_LO(%a0),%d0 - andi.w &0x7ff,%d0 - bne.b fout_dbl_ovfl_inex2 - - ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - bra.b fout_dbl_ovfl_cont -fout_dbl_ovfl_inex2: - ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 - -fout_dbl_ovfl_cont: - mov.l %a0,-(%sp) - -# call ovf_res() w/ dbl prec and the correct rnd mode to create the default -# overflow result. DON'T save the returned ccodes from ovf_res() since -# fmove out doesn't alter them. - tst.b SRC_EX(%a0) # is operand negative? - smi %d1 # set if so - mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode - bsr.l ovf_res # calc OVFL result - fmovm.x (%a0),&0x80 # load default overflow result - fmov.d %fp0,L_SCR1(%a6) # store to double - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_ovfl # yes - addq.l &0x4,%sp - rts - -# -# move out MAY overflow: -# (1) force the exp to 0x3fff -# (2) do a move w/ appropriate rnd mode -# (3) if exp still equals zero, then insert original exponent -# for the correct result. -# if exp now equals one, then it overflowed so call ovf_res. -# -fout_dbl_may_ovfl: - mov.w SRC_EX(%a0),%d1 # fetch current sign - andi.w &0x8000,%d1 # keep it,clear exp - ori.w &0x3fff,%d1 # insert exp = 0 - mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # need absolute value - fcmp.b %fp0,&0x2 # did exponent increase? - fblt.w fout_dbl_exg # no; go finish NORM - bra.w fout_dbl_ovfl # yes; go handle overflow - -######################################################################### -# XDEF **************************************************************** # -# dst_dbl(): create double precision value from extended prec. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand in extended precision # -# # -# OUTPUT ************************************************************** # -# d0 = hi(double precision result) # -# d1 = lo(double precision result) # -# # -# ALGORITHM *********************************************************** # -# # -# Changes extended precision to double precision. # -# Note: no attempt is made to round the extended value to double. # -# dbl_sign = ext_sign # -# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # -# get rid of ext integer bit # -# dbl_mant = ext_mant{62:12} # -# # -# --------------- --------------- --------------- # -# extended -> |s| exp | |1| ms mant | | ls mant | # -# --------------- --------------- --------------- # -# 95 64 63 62 32 31 11 0 # -# | | # -# | | # -# | | # -# v v # -# --------------- --------------- # -# double -> |s|exp| mant | | mant | # -# --------------- --------------- # -# 63 51 32 31 0 # -# # -######################################################################### - -dst_dbl: - clr.l %d0 # clear d0 - mov.w FTEMP_EX(%a0),%d0 # get exponent - subi.w &EXT_BIAS,%d0 # subtract extended precision bias - addi.w &DBL_BIAS,%d0 # add double precision bias - tst.b FTEMP_HI(%a0) # is number a denorm? - bmi.b dst_get_dupper # no - subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 -dst_get_dupper: - swap %d0 # d0 now in upper word - lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp - tst.b FTEMP_EX(%a0) # test sign - bpl.b dst_get_dman # if positive, go process mantissa - bset &0x1f,%d0 # if negative, set sign -dst_get_dman: - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms - or.l %d1,%d0 # put these bits in ms word of double - mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - mov.l &21,%d0 # load shift count - lsl.l %d0,%d1 # put lower 11 bits in upper bits - mov.l %d1,L_SCR2(%a6) # build lower lword in memory - mov.l FTEMP_LO(%a0),%d1 # get ls mantissa - bfextu %d1{&0:&21},%d0 # get ls 21 bits of double - mov.l L_SCR2(%a6),%d1 - or.l %d0,%d1 # put them in double result - mov.l L_SCR1(%a6),%d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# dst_sgl(): create single precision value from extended prec # -# # -# XREF **************************************************************** # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand in extended precision # -# # -# OUTPUT ************************************************************** # -# d0 = single precision result # -# # -# ALGORITHM *********************************************************** # -# # -# Changes extended precision to single precision. # -# sgl_sign = ext_sign # -# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # -# get rid of ext integer bit # -# sgl_mant = ext_mant{62:12} # -# # -# --------------- --------------- --------------- # -# extended -> |s| exp | |1| ms mant | | ls mant | # -# --------------- --------------- --------------- # -# 95 64 63 62 40 32 31 12 0 # -# | | # -# | | # -# | | # -# v v # -# --------------- # -# single -> |s|exp| mant | # -# --------------- # -# 31 22 0 # -# # -######################################################################### - -dst_sgl: - clr.l %d0 - mov.w FTEMP_EX(%a0),%d0 # get exponent - subi.w &EXT_BIAS,%d0 # subtract extended precision bias - addi.w &SGL_BIAS,%d0 # add single precision bias - tst.b FTEMP_HI(%a0) # is number a denorm? - bmi.b dst_get_supper # no - subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 -dst_get_supper: - swap %d0 # put exp in upper word of d0 - lsl.l &0x7,%d0 # shift it into single exp bits - tst.b FTEMP_EX(%a0) # test sign - bpl.b dst_get_sman # if positive, continue - bset &0x1f,%d0 # if negative, put in sign first -dst_get_sman: - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - andi.l &0x7fffff00,%d1 # get upper 23 bits of ms - lsr.l &0x8,%d1 # and put them flush right - or.l %d1,%d0 # put these bits in ms word of single - rts - -############################################################################## -fout_pack: - bsr.l _calc_ea_fout # fetch the <ea> - mov.l %a0,-(%sp) - - mov.b STAG(%a6),%d0 # fetch input type - bne.w fout_pack_not_norm # input is not NORM - -fout_pack_norm: - btst &0x4,EXC_CMDREG(%a6) # static or dynamic? - beq.b fout_pack_s # static - -fout_pack_d: - mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg - lsr.b &0x4,%d1 - andi.w &0x7,%d1 - - bsr.l fetch_dreg # fetch Dn w/ k-factor - - bra.b fout_pack_type -fout_pack_s: - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field - -fout_pack_type: - bfexts %d0{&25:&7},%d0 # extract k-factor - mov.l %d0,-(%sp) - - lea FP_SRC(%a6),%a0 # pass: ptr to input - -# bindec is currently scrambling FP_SRC for denorm inputs. -# we'll have to change this, but for now, tough luck!!! - bsr.l bindec # convert xprec to packed - -# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields - andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields - - mov.l (%sp)+,%d0 - - tst.b 3+FP_SCR0_EX(%a6) - bne.b fout_pack_set - tst.l FP_SCR0_HI(%a6) - bne.b fout_pack_set - tst.l FP_SCR0_LO(%a6) - bne.b fout_pack_set - -# add the extra condition that only if the k-factor was zero, too, should -# we zero the exponent - tst.l %d0 - bne.b fout_pack_set -# "mantissa" is all zero which means that the answer is zero. but, the '040 -# algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore, -# if the mantissa is zero, I will zero the exponent, too. -# the question now is whether the exponents sign bit is allowed to be non-zero -# for a zero, also... - andi.w &0xf000,FP_SCR0(%a6) - -fout_pack_set: - - lea FP_SCR0(%a6),%a0 # pass: src addr - -fout_pack_write: - mov.l (%sp)+,%a1 # pass: dst addr - mov.l &0xc,%d0 # pass: opsize is 12 bytes - - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.b fout_pack_a7 - - bsr.l _dmem_write # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - rts - -# we don't want to do the write if the exception occurred in supervisor mode -# so _mem_write2() handles this for us. -fout_pack_a7: - bsr.l _mem_write2 # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - rts - -fout_pack_not_norm: - cmpi.b %d0,&DENORM # is it a DENORM? - beq.w fout_pack_norm # yes - lea FP_SRC(%a6),%a0 - clr.w 2+FP_SRC_EX(%a6) - cmpi.b %d0,&SNAN # is it an SNAN? - beq.b fout_pack_snan # yes - bra.b fout_pack_write # no - -fout_pack_snan: - ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP - bset &0x6,FP_SRC_HI(%a6) # set snan bit - bra.b fout_pack_write - -######################################################################### -# XDEF **************************************************************** # -# fetch_dreg(): fetch register according to index in d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# d0 = value of register fetched # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1 which can range from zero # -# to fifteen, load the corresponding register file value (where # -# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # -# stack. The rest should still be in their original places. # -# # -######################################################################### - -# this routine leaves d1 intact for subsequent store_dreg calls. - global fetch_dreg -fetch_dreg: - mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 - jmp (tbl_fdreg.b,%pc,%d0.w*1) - -tbl_fdreg: - short fdreg0 - tbl_fdreg - short fdreg1 - tbl_fdreg - short fdreg2 - tbl_fdreg - short fdreg3 - tbl_fdreg - short fdreg4 - tbl_fdreg - short fdreg5 - tbl_fdreg - short fdreg6 - tbl_fdreg - short fdreg7 - tbl_fdreg - short fdreg8 - tbl_fdreg - short fdreg9 - tbl_fdreg - short fdrega - tbl_fdreg - short fdregb - tbl_fdreg - short fdregc - tbl_fdreg - short fdregd - tbl_fdreg - short fdrege - tbl_fdreg - short fdregf - tbl_fdreg - -fdreg0: - mov.l EXC_DREGS+0x0(%a6),%d0 - rts -fdreg1: - mov.l EXC_DREGS+0x4(%a6),%d0 - rts -fdreg2: - mov.l %d2,%d0 - rts -fdreg3: - mov.l %d3,%d0 - rts -fdreg4: - mov.l %d4,%d0 - rts -fdreg5: - mov.l %d5,%d0 - rts -fdreg6: - mov.l %d6,%d0 - rts -fdreg7: - mov.l %d7,%d0 - rts -fdreg8: - mov.l EXC_DREGS+0x8(%a6),%d0 - rts -fdreg9: - mov.l EXC_DREGS+0xc(%a6),%d0 - rts -fdrega: - mov.l %a2,%d0 - rts -fdregb: - mov.l %a3,%d0 - rts -fdregc: - mov.l %a4,%d0 - rts -fdregd: - mov.l %a5,%d0 - rts -fdrege: - mov.l (%a6),%d0 - rts -fdregf: - mov.l EXC_A7(%a6),%d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_l(): store longword to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = longowrd value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the longword value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_l -store_dreg_l: - mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregl.b,%pc,%d1.w*1) - -tbl_sdregl: - short sdregl0 - tbl_sdregl - short sdregl1 - tbl_sdregl - short sdregl2 - tbl_sdregl - short sdregl3 - tbl_sdregl - short sdregl4 - tbl_sdregl - short sdregl5 - tbl_sdregl - short sdregl6 - tbl_sdregl - short sdregl7 - tbl_sdregl - -sdregl0: - mov.l %d0,EXC_DREGS+0x0(%a6) - rts -sdregl1: - mov.l %d0,EXC_DREGS+0x4(%a6) - rts -sdregl2: - mov.l %d0,%d2 - rts -sdregl3: - mov.l %d0,%d3 - rts -sdregl4: - mov.l %d0,%d4 - rts -sdregl5: - mov.l %d0,%d5 - rts -sdregl6: - mov.l %d0,%d6 - rts -sdregl7: - mov.l %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_w(): store word to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = word value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the word value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_w -store_dreg_w: - mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregw.b,%pc,%d1.w*1) - -tbl_sdregw: - short sdregw0 - tbl_sdregw - short sdregw1 - tbl_sdregw - short sdregw2 - tbl_sdregw - short sdregw3 - tbl_sdregw - short sdregw4 - tbl_sdregw - short sdregw5 - tbl_sdregw - short sdregw6 - tbl_sdregw - short sdregw7 - tbl_sdregw - -sdregw0: - mov.w %d0,2+EXC_DREGS+0x0(%a6) - rts -sdregw1: - mov.w %d0,2+EXC_DREGS+0x4(%a6) - rts -sdregw2: - mov.w %d0,%d2 - rts -sdregw3: - mov.w %d0,%d3 - rts -sdregw4: - mov.w %d0,%d4 - rts -sdregw5: - mov.w %d0,%d5 - rts -sdregw6: - mov.w %d0,%d6 - rts -sdregw7: - mov.w %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_b(): store byte to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = byte value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the byte value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_b -store_dreg_b: - mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregb.b,%pc,%d1.w*1) - -tbl_sdregb: - short sdregb0 - tbl_sdregb - short sdregb1 - tbl_sdregb - short sdregb2 - tbl_sdregb - short sdregb3 - tbl_sdregb - short sdregb4 - tbl_sdregb - short sdregb5 - tbl_sdregb - short sdregb6 - tbl_sdregb - short sdregb7 - tbl_sdregb - -sdregb0: - mov.b %d0,3+EXC_DREGS+0x0(%a6) - rts -sdregb1: - mov.b %d0,3+EXC_DREGS+0x4(%a6) - rts -sdregb2: - mov.b %d0,%d2 - rts -sdregb3: - mov.b %d0,%d3 - rts -sdregb4: - mov.b %d0,%d4 - rts -sdregb5: - mov.b %d0,%d5 - rts -sdregb6: - mov.b %d0,%d6 - rts -sdregb7: - mov.b %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# inc_areg(): increment an address register by the value in d0 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = amount to increment by # -# d1 = index of address register to increment # -# # -# OUTPUT ************************************************************** # -# (address register is updated) # -# # -# ALGORITHM *********************************************************** # -# Typically used for an instruction w/ a post-increment <ea>, # -# this routine adds the increment value in d0 to the address register # -# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # -# in their original places. # -# For a7, if the increment amount is one, then we have to # -# increment by two. For any a7 update, set the mia7_flag so that if # -# an access error exception occurs later in emulation, this address # -# register update can be undone. # -# # -######################################################################### - - global inc_areg -inc_areg: - mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 - jmp (tbl_iareg.b,%pc,%d1.w*1) - -tbl_iareg: - short iareg0 - tbl_iareg - short iareg1 - tbl_iareg - short iareg2 - tbl_iareg - short iareg3 - tbl_iareg - short iareg4 - tbl_iareg - short iareg5 - tbl_iareg - short iareg6 - tbl_iareg - short iareg7 - tbl_iareg - -iareg0: add.l %d0,EXC_DREGS+0x8(%a6) - rts -iareg1: add.l %d0,EXC_DREGS+0xc(%a6) - rts -iareg2: add.l %d0,%a2 - rts -iareg3: add.l %d0,%a3 - rts -iareg4: add.l %d0,%a4 - rts -iareg5: add.l %d0,%a5 - rts -iareg6: add.l %d0,(%a6) - rts -iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) - cmpi.b %d0,&0x1 - beq.b iareg7b - add.l %d0,EXC_A7(%a6) - rts -iareg7b: - addq.l &0x2,EXC_A7(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# dec_areg(): decrement an address register by the value in d0 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = amount to decrement by # -# d1 = index of address register to decrement # -# # -# OUTPUT ************************************************************** # -# (address register is updated) # -# # -# ALGORITHM *********************************************************** # -# Typically used for an instruction w/ a pre-decrement <ea>, # -# this routine adds the decrement value in d0 to the address register # -# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # -# in their original places. # -# For a7, if the decrement amount is one, then we have to # -# decrement by two. For any a7 update, set the mda7_flag so that if # -# an access error exception occurs later in emulation, this address # -# register update can be undone. # -# # -######################################################################### - - global dec_areg -dec_areg: - mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 - jmp (tbl_dareg.b,%pc,%d1.w*1) - -tbl_dareg: - short dareg0 - tbl_dareg - short dareg1 - tbl_dareg - short dareg2 - tbl_dareg - short dareg3 - tbl_dareg - short dareg4 - tbl_dareg - short dareg5 - tbl_dareg - short dareg6 - tbl_dareg - short dareg7 - tbl_dareg - -dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) - rts -dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) - rts -dareg2: sub.l %d0,%a2 - rts -dareg3: sub.l %d0,%a3 - rts -dareg4: sub.l %d0,%a4 - rts -dareg5: sub.l %d0,%a5 - rts -dareg6: sub.l %d0,(%a6) - rts -dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) - cmpi.b %d0,&0x1 - beq.b dareg7b - sub.l %d0,EXC_A7(%a6) - rts -dareg7b: - subq.l &0x2,EXC_A7(%a6) - rts - -############################################################################## - -######################################################################### -# XDEF **************************************************************** # -# load_fpn1(): load FP register value into FP_SRC(a6). # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = index of FP register to load # -# # -# OUTPUT ************************************************************** # -# FP_SRC(a6) = value loaded from FP register file # -# # -# ALGORITHM *********************************************************** # -# Using the index in d0, load FP_SRC(a6) with a number from the # -# FP register file. # -# # -######################################################################### - - global load_fpn1 -load_fpn1: - mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 - jmp (tbl_load_fpn1.b,%pc,%d0.w*1) - -tbl_load_fpn1: - short load_fpn1_0 - tbl_load_fpn1 - short load_fpn1_1 - tbl_load_fpn1 - short load_fpn1_2 - tbl_load_fpn1 - short load_fpn1_3 - tbl_load_fpn1 - short load_fpn1_4 - tbl_load_fpn1 - short load_fpn1_5 - tbl_load_fpn1 - short load_fpn1_6 - tbl_load_fpn1 - short load_fpn1_7 - tbl_load_fpn1 - -load_fpn1_0: - mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) - mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) - mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_1: - mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) - mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) - mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_2: - fmovm.x &0x20, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_3: - fmovm.x &0x10, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_4: - fmovm.x &0x08, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_5: - fmovm.x &0x04, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_6: - fmovm.x &0x02, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_7: - fmovm.x &0x01, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts - -############################################################################# - -######################################################################### -# XDEF **************************************************************** # -# load_fpn2(): load FP register value into FP_DST(a6). # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = index of FP register to load # -# # -# OUTPUT ************************************************************** # -# FP_DST(a6) = value loaded from FP register file # -# # -# ALGORITHM *********************************************************** # -# Using the index in d0, load FP_DST(a6) with a number from the # -# FP register file. # -# # -######################################################################### - - global load_fpn2 -load_fpn2: - mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 - jmp (tbl_load_fpn2.b,%pc,%d0.w*1) - -tbl_load_fpn2: - short load_fpn2_0 - tbl_load_fpn2 - short load_fpn2_1 - tbl_load_fpn2 - short load_fpn2_2 - tbl_load_fpn2 - short load_fpn2_3 - tbl_load_fpn2 - short load_fpn2_4 - tbl_load_fpn2 - short load_fpn2_5 - tbl_load_fpn2 - short load_fpn2_6 - tbl_load_fpn2 - short load_fpn2_7 - tbl_load_fpn2 - -load_fpn2_0: - mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) - mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) - mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_1: - mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) - mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) - mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_2: - fmovm.x &0x20, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_3: - fmovm.x &0x10, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_4: - fmovm.x &0x08, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_5: - fmovm.x &0x04, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_6: - fmovm.x &0x02, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_7: - fmovm.x &0x01, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts - -############################################################################# - -######################################################################### -# XDEF **************************************************************** # -# store_fpreg(): store an fp value to the fpreg designated d0. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# fp0 = extended precision value to store # -# d0 = index of floating-point register # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Store the value in fp0 to the FP register designated by the # -# value in d0. The FP number can be DENORM or SNAN so we have to be # -# careful that we don't take an exception here. # -# # -######################################################################### - - global store_fpreg -store_fpreg: - mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 - jmp (tbl_store_fpreg.b,%pc,%d0.w*1) - -tbl_store_fpreg: - short store_fpreg_0 - tbl_store_fpreg - short store_fpreg_1 - tbl_store_fpreg - short store_fpreg_2 - tbl_store_fpreg - short store_fpreg_3 - tbl_store_fpreg - short store_fpreg_4 - tbl_store_fpreg - short store_fpreg_5 - tbl_store_fpreg - short store_fpreg_6 - tbl_store_fpreg - short store_fpreg_7 - tbl_store_fpreg - -store_fpreg_0: - fmovm.x &0x80, EXC_FP0(%a6) - rts -store_fpreg_1: - fmovm.x &0x80, EXC_FP1(%a6) - rts -store_fpreg_2: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x20 - rts -store_fpreg_3: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x10 - rts -store_fpreg_4: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x08 - rts -store_fpreg_5: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x04 - rts -store_fpreg_6: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x02 - rts -store_fpreg_7: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x01 - rts - -######################################################################### -# XDEF **************************************************************** # -# _denorm(): denormalize an intermediate result # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = points to the operand to be denormalized # -# (in the internal extended format) # -# # -# d0 = rounding precision # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to the denormalized result # -# (in the internal extended format) # -# # -# d0 = guard,round,sticky # -# # -# ALGORITHM *********************************************************** # -# According to the exponent underflow threshold for the given # -# precision, shift the mantissa bits to the right in order raise the # -# exponent of the operand to the threshold value. While shifting the # -# mantissa bits right, maintain the value of the guard, round, and # -# sticky bits. # -# other notes: # -# (1) _denorm() is called by the underflow routines # -# (2) _denorm() does NOT affect the status register # -# # -######################################################################### - -# -# table of exponent threshold values for each precision -# -tbl_thresh: - short 0x0 - short sgl_thresh - short dbl_thresh - - global _denorm -_denorm: -# -# Load the exponent threshold for the precision selected and check -# to see if (threshold - exponent) is > 65 in which case we can -# simply calculate the sticky bit and zero the mantissa. otherwise -# we have to call the denormalization routine. -# - lsr.b &0x2, %d0 # shift prec to lo bits - mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold - mov.w %d1, %d0 # copy d1 into d0 - sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp - cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) - bpl.b denorm_set_stky # yes; just calc sticky - - clr.l %d0 # clear g,r,s - btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? - beq.b denorm_call # no; don't change anything - bset &29, %d0 # yes; set sticky bit - -denorm_call: - bsr.l dnrm_lp # denormalize the number - rts - -# -# all bit would have been shifted off during the denorm so simply -# calculate if the sticky should be set and clear the entire mantissa. -# -denorm_set_stky: - mov.l &0x20000000, %d0 # set sticky bit in return value - mov.w %d1, FTEMP_EX(%a0) # load exp with threshold - clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) - clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) - rts - -# # -# dnrm_lp(): normalize exponent/mantissa to specified threshold # -# # -# INPUT: # -# %a0 : points to the operand to be denormalized # -# %d0{31:29} : initial guard,round,sticky # -# %d1{15:0} : denormalization threshold # -# OUTPUT: # -# %a0 : points to the denormalized operand # -# %d0{31:29} : final guard,round,sticky # -# # - -# *** Local Equates *** # -set GRS, L_SCR2 # g,r,s temp storage -set FTEMP_LO2, L_SCR1 # FTEMP_LO copy - - global dnrm_lp -dnrm_lp: - -# -# make a copy of FTEMP_LO and place the g,r,s bits directly after it -# in memory so as to make the bitfield extraction for denormalization easier. -# - mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy - mov.l %d0, GRS(%a6) # place g,r,s after it - -# -# check to see how much less than the underflow threshold the operand -# exponent is. -# - mov.l %d1, %d0 # copy the denorm threshold - sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent - ble.b dnrm_no_lp # d1 <= 0 - cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? - blt.b case_1 # yes - cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? - blt.b case_2 # yes - bra.w case_3 # (d1 >= 64) - -# -# No normalization necessary -# -dnrm_no_lp: - mov.l GRS(%a6), %d0 # restore original g,r,s - rts - -# -# case (0<d1<32) -# -# %d0 = denorm threshold -# %d1 = "n" = amt to shift -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> -# --------------------------------------------------------- -# |0.....0| NEW_HI | NEW_FTEMP_LO |grs | -# --------------------------------------------------------- -# -case_1: - mov.l %d2, -(%sp) # create temp storage - - mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold - mov.l &32, %d0 - sub.w %d1, %d0 # %d0 = 32 - %d1 - - cmpi.w %d1, &29 # is shft amt >= 29 - blt.b case1_extract # no; no fix needed - mov.b GRS(%a6), %d2 - or.b %d2, 3+FTEMP_LO2(%a6) - -case1_extract: - bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI - bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO - bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S - - mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI - mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO - - bftst %d0{&2:&30} # were bits shifted off? - beq.b case1_sticky_clear # no; go finish - bset &rnd_stky_bit, %d0 # yes; set sticky bit - -case1_sticky_clear: - and.l &0xe0000000, %d0 # clear all but G,R,S - mov.l (%sp)+, %d2 # restore temp register - rts - -# -# case (32<=d1<64) -# -# %d0 = denorm threshold -# %d1 = "n" = amt to shift -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> -# \ \ \ -# \ \ \ -# \ \ ------------------- -# \ -------------------- \ -# ------------------- \ \ -# \ \ \ -# \ \ \ -# \ \ \ -# <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> -# --------------------------------------------------------- -# |0...............0|0....0| NEW_LO |grs | -# --------------------------------------------------------- -# -case_2: - mov.l %d2, -(%sp) # create temp storage - - mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold - subi.w &0x20, %d1 # %d1 now between 0 and 32 - mov.l &0x20, %d0 - sub.w %d1, %d0 # %d0 = 32 - %d1 - -# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize -# the number of bits to check for the sticky detect. -# it only plays a role in shift amounts of 61-63. - mov.b GRS(%a6), %d2 - or.b %d2, 3+FTEMP_LO2(%a6) - - bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO - bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S - - bftst %d1{&2:&30} # were any bits shifted off? - bne.b case2_set_sticky # yes; set sticky bit - bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? - bne.b case2_set_sticky # yes; set sticky bit - - mov.l %d1, %d0 # move new G,R,S to %d0 - bra.b case2_end - -case2_set_sticky: - mov.l %d1, %d0 # move new G,R,S to %d0 - bset &rnd_stky_bit, %d0 # set sticky bit - -case2_end: - clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 - mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO - and.l &0xe0000000, %d0 # clear all but G,R,S - - mov.l (%sp)+,%d2 # restore temp register - rts - -# -# case (d1>=64) -# -# %d0 = denorm threshold -# %d1 = amt to shift -# -case_3: - mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold - - cmpi.w %d1, &65 # is shift amt > 65? - blt.b case3_64 # no; it's == 64 - beq.b case3_65 # no; it's == 65 - -# -# case (d1>65) -# -# Shift value is > 65 and out of range. All bits are shifted off. -# Return a zero mantissa with the sticky bit set -# - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - mov.l &0x20000000, %d0 # set sticky bit - rts - -# -# case (d1 == 64) -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-------(32)------> -# \ \ -# \ \ -# \ \ -# \ ------------------------------ -# ------------------------------- \ -# \ \ -# \ \ -# \ \ -# <-------(32)------> -# --------------------------------------------------------- -# |0...............0|0................0|grs | -# --------------------------------------------------------- -# -case3_64: - mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) - mov.l %d0, %d1 # make a copy - and.l &0xc0000000, %d0 # extract G,R - and.l &0x3fffffff, %d1 # extract other bits - - bra.b case3_complete - -# -# case (d1 == 65) -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-------(32)------> -# \ \ -# \ \ -# \ \ -# \ ------------------------------ -# -------------------------------- \ -# \ \ -# \ \ -# \ \ -# <-------(31)-----> -# --------------------------------------------------------- -# |0...............0|0................0|0rs | -# --------------------------------------------------------- -# -case3_65: - mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) - and.l &0x80000000, %d0 # extract R bit - lsr.l &0x1, %d0 # shift high bit into R bit - and.l &0x7fffffff, %d1 # extract other bits - -case3_complete: -# last operation done was an "and" of the bits shifted off so the condition -# codes are already set so branch accordingly. - bne.b case3_set_sticky # yes; go set new sticky - tst.l FTEMP_LO(%a0) # were any bits shifted off? - bne.b case3_set_sticky # yes; go set new sticky - tst.b GRS(%a6) # were any bits shifted off? - bne.b case3_set_sticky # yes; go set new sticky - -# -# no bits were shifted off so don't set the sticky bit. -# the guard and -# the entire mantissa is zero. -# - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - rts - -# -# some bits were shifted off so set the sticky bit. -# the entire mantissa is zero. -# -case3_set_sticky: - bset &rnd_stky_bit,%d0 # set new sticky bit - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - rts - -######################################################################### -# XDEF **************************************************************** # -# _round(): round result according to precision/mode # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = ptr to input operand in internal extended format # -# d1(hi) = contains rounding precision: # -# ext = $0000xxxx # -# sgl = $0004xxxx # -# dbl = $0008xxxx # -# d1(lo) = contains rounding mode: # -# RN = $xxxx0000 # -# RZ = $xxxx0001 # -# RM = $xxxx0002 # -# RP = $xxxx0003 # -# d0{31:29} = contains the g,r,s bits (extended) # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to rounded result # -# # -# ALGORITHM *********************************************************** # -# On return the value pointed to by a0 is correctly rounded, # -# a0 is preserved and the g-r-s bits in d0 are cleared. # -# The result is not typed - the tag field is invalid. The # -# result is still in the internal extended format. # -# # -# The INEX bit of USER_FPSR will be set if the rounded result was # -# inexact (i.e. if any of the g-r-s bits were set). # -# # -######################################################################### - - global _round -_round: -# -# ext_grs() looks at the rounding precision and sets the appropriate -# G,R,S bits. -# If (G,R,S == 0) then result is exact and round is done, else set -# the inex flag in status reg and continue. -# - bsr.l ext_grs # extract G,R,S - - tst.l %d0 # are G,R,S zero? - beq.w truncate # yes; round is complete - - or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex - -# -# Use rounding mode as an index into a jump table for these modes. -# All of the following assumes grs != 0. -# - mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset - jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler - -tbl_mode: - short rnd_near - tbl_mode - short truncate - tbl_mode # RZ always truncates - short rnd_mnus - tbl_mode - short rnd_plus - tbl_mode - -################################################################# -# ROUND PLUS INFINITY # -# # -# If sign of fp number = 0 (positive), then add 1 to l. # -################################################################# -rnd_plus: - tst.b FTEMP_SGN(%a0) # check for sign - bmi.w truncate # if positive then truncate - - mov.l &0xffffffff, %d0 # force g,r,s to be all f's - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -################################################################# -# ROUND MINUS INFINITY # -# # -# If sign of fp number = 1 (negative), then add 1 to l. # -################################################################# -rnd_mnus: - tst.b FTEMP_SGN(%a0) # check for sign - bpl.w truncate # if negative then truncate - - mov.l &0xffffffff, %d0 # force g,r,s to be all f's - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -################################################################# -# ROUND NEAREST # -# # -# If (g=1), then add 1 to l and if (r=s=0), then clear l # -# Note that this will round to even in case of a tie. # -################################################################# -rnd_near: - asl.l &0x1, %d0 # shift g-bit to c-bit - bcc.w truncate # if (g=1) then - - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -# *** LOCAL EQUATES *** -set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec -set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec - -######################### -# ADD SINGLE # -######################### -add_sgl: - add.l &ad_1_sgl, FTEMP_HI(%a0) - bcc.b scc_clr # no mantissa overflow - roxr.w FTEMP_HI(%a0) # shift v-bit back in - roxr.w FTEMP_HI+2(%a0) # shift v-bit back in - add.w &0x1, FTEMP_EX(%a0) # and incr exponent -scc_clr: - tst.l %d0 # test for rs = 0 - bne.b sgl_done - and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit -sgl_done: - and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit - clr.l FTEMP_LO(%a0) # clear d2 - rts - -######################### -# ADD EXTENDED # -######################### -add_ext: - addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit - bcc.b xcc_clr # test for carry out - addq.l &1,FTEMP_HI(%a0) # propagate carry - bcc.b xcc_clr - roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_LO(%a0) - roxr.w FTEMP_LO+2(%a0) - add.w &0x1,FTEMP_EX(%a0) # and inc exp -xcc_clr: - tst.l %d0 # test rs = 0 - bne.b add_ext_done - and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit -add_ext_done: - rts - -######################### -# ADD DOUBLE # -######################### -add_dbl: - add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb - bcc.b dcc_clr # no carry - addq.l &0x1, FTEMP_HI(%a0) # propagate carry - bcc.b dcc_clr # no carry - - roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_LO(%a0) - roxr.w FTEMP_LO+2(%a0) - addq.w &0x1, FTEMP_EX(%a0) # incr exponent -dcc_clr: - tst.l %d0 # test for rs = 0 - bne.b dbl_done - and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit - -dbl_done: - and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit - rts - -########################### -# Truncate all other bits # -########################### -truncate: - swap %d1 # select rnd prec - - cmpi.b %d1, &s_mode # is prec sgl? - beq.w sgl_done # yes - bgt.b dbl_done # no; it's dbl - rts # no; it's ext - - -# -# ext_grs(): extract guard, round and sticky bits according to -# rounding precision. -# -# INPUT -# d0 = extended precision g,r,s (in d0{31:29}) -# d1 = {PREC,ROUND} -# OUTPUT -# d0{31:29} = guard, round, sticky -# -# The ext_grs extract the guard/round/sticky bits according to the -# selected rounding precision. It is called by the round subroutine -# only. All registers except d0 are kept intact. d0 becomes an -# updated guard,round,sticky in d0{31:29} -# -# Notes: the ext_grs uses the round PREC, and therefore has to swap d1 -# prior to usage, and needs to restore d1 to original. this -# routine is tightly tied to the round routine and not meant to -# uphold standard subroutine calling practices. -# - -ext_grs: - swap %d1 # have d1.w point to round precision - tst.b %d1 # is rnd prec = extended? - bne.b ext_grs_not_ext # no; go handle sgl or dbl - -# -# %d0 actually already hold g,r,s since _round() had it before calling -# this function. so, as long as we don't disturb it, we are "returning" it. -# -ext_grs_ext: - swap %d1 # yes; return to correct positions - rts - -ext_grs_not_ext: - movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} - - cmpi.b %d1, &s_mode # is rnd prec = sgl? - bne.b ext_grs_dbl # no; go handle dbl - -# -# sgl: -# 96 64 40 32 0 -# ----------------------------------------------------- -# | EXP |XXXXXXX| |xx | |grs| -# ----------------------------------------------------- -# <--(24)--->nn\ / -# ee --------------------- -# ww | -# v -# gr new sticky -# -ext_grs_sgl: - bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right - mov.l &30, %d2 # of the sgl prec. limits - lsl.l %d2, %d3 # shift g-r bits to MSB of d3 - mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test - and.l &0x0000003f, %d2 # s bit is the or of all other - bne.b ext_grs_st_stky # bits to the right of g-r - tst.l FTEMP_LO(%a0) # test lower mantissa - bne.b ext_grs_st_stky # if any are set, set sticky - tst.l %d0 # test original g,r,s - bne.b ext_grs_st_stky # if any are set, set sticky - bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit - -# -# dbl: -# 96 64 32 11 0 -# ----------------------------------------------------- -# | EXP |XXXXXXX| | |xx |grs| -# ----------------------------------------------------- -# nn\ / -# ee ------- -# ww | -# v -# gr new sticky -# -ext_grs_dbl: - bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right - mov.l &30, %d2 # of the dbl prec. limits - lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 - mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test - and.l &0x000001ff, %d2 # s bit is the or-ing of all - bne.b ext_grs_st_stky # other bits to the right of g-r - tst.l %d0 # test word original g,r,s - bne.b ext_grs_st_stky # if any are set, set sticky - bra.b ext_grs_end_sd # if clear, exit - -ext_grs_st_stky: - bset &rnd_stky_bit, %d3 # set sticky bit -ext_grs_end_sd: - mov.l %d3, %d0 # return grs to d0 - - movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} - - swap %d1 # restore d1 to original - rts - -######################################################################### -# norm(): normalize the mantissa of an extended precision input. the # -# input operand should not be normalized already. # -# # -# XDEF **************************************************************** # -# norm() # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# a0 = pointer fp extended precision operand to normalize # -# # -# OUTPUT ************************************************************** # -# d0 = number of bit positions the mantissa was shifted # -# a0 = the input operand's mantissa is normalized; the exponent # -# is unchanged. # -# # -######################################################################### - global norm -norm: - mov.l %d2, -(%sp) # create some temp regs - mov.l %d3, -(%sp) - - mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) - mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) - - bfffo %d0{&0:&32}, %d2 # how many places to shift? - beq.b norm_lo # hi(man) is all zeroes! - -norm_hi: - lsl.l %d2, %d0 # left shift hi(man) - bfextu %d1{&0:%d2}, %d3 # extract lo bits - - or.l %d3, %d0 # create hi(man) - lsl.l %d2, %d1 # create lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - mov.l %d1, FTEMP_LO(%a0) # store new lo(man) - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -norm_lo: - bfffo %d1{&0:&32}, %d2 # how many places to shift? - lsl.l %d2, %d1 # shift lo(man) - add.l &32, %d2 # add 32 to shft amount - - mov.l %d1, FTEMP_HI(%a0) # store hi(man) - clr.l FTEMP_LO(%a0) # lo(man) is now zero - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -######################################################################### -# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # -# - returns corresponding optype tag # -# # -# XDEF **************************************************************** # -# unnorm_fix() # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa # -# # -# INPUT *************************************************************** # -# a0 = pointer to unnormalized extended precision number # -# # -# OUTPUT ************************************************************** # -# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # -# a0 = input operand has been converted to a norm, denorm, or # -# zero; both the exponent and mantissa are changed. # -# # -######################################################################### - - global unnorm_fix -unnorm_fix: - bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? - bne.b unnorm_shift # hi(man) is not all zeroes - -# -# hi(man) is all zeroes so see if any bits in lo(man) are set -# -unnorm_chk_lo: - bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? - beq.w unnorm_zero # yes - - add.w &32, %d0 # no; fix shift distance - -# -# d0 = # shifts needed for complete normalization -# -unnorm_shift: - clr.l %d1 # clear top word - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 # strip off sgn - - cmp.w %d0, %d1 # will denorm push exp < 0? - bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 - -# -# exponent would not go < 0. Therefore, number stays normalized -# - sub.w %d0, %d1 # shift exponent value - mov.w FTEMP_EX(%a0), %d0 # load old exponent - and.w &0x8000, %d0 # save old sign - or.w %d0, %d1 # {sgn,new exp} - mov.w %d1, FTEMP_EX(%a0) # insert new exponent - - bsr.l norm # normalize UNNORM - - mov.b &NORM, %d0 # return new optype tag - rts - -# -# exponent would go < 0, so only denormalize until exp = 0 -# -unnorm_nrm_zero: - cmp.b %d1, &32 # is exp <= 32? - bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent - - bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) - mov.l %d0, FTEMP_HI(%a0) # save new hi(man) - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # extract new lo(man) - mov.l %d0, FTEMP_LO(%a0) # save new lo(man) - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# only mantissa bits set are in lo(man) -# -unnorm_nrm_zero_lrg: - sub.w &32, %d1 # adjust shft amt by 32 - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # left shift lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - clr.l FTEMP_LO(%a0) # lo(man) = 0 - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# whole mantissa is zero so this UNNORM is actually a zero -# -unnorm_zero: - and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero - - mov.b &ZERO, %d0 # fix optype tag - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_x(): return the optype of the input ext fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# If it's an unnormalized zero, alter the operand and force it # -# to be a normal zero. # -# # -######################################################################### - - global set_tag_x -set_tag_x: - mov.w FTEMP_EX(%a0), %d0 # extract exponent - andi.w &0x7fff, %d0 # strip off sign - cmpi.w %d0, &0x7fff # is (EXP == MAX)? - beq.b inf_or_nan_x -not_inf_or_nan_x: - btst &0x7,FTEMP_HI(%a0) - beq.b not_norm_x -is_norm_x: - mov.b &NORM, %d0 - rts -not_norm_x: - tst.w %d0 # is exponent = 0? - bne.b is_unnorm_x -not_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_denorm_x - tst.l FTEMP_LO(%a0) - bne.b is_denorm_x -is_zero_x: - mov.b &ZERO, %d0 - rts -is_denorm_x: - mov.b &DENORM, %d0 - rts -# must distinguish now "Unnormalized zeroes" which we -# must convert to zero. -is_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_unnorm_reg_x - tst.l FTEMP_LO(%a0) - bne.b is_unnorm_reg_x -# it's an "unnormalized zero". let's convert it to an actual zero... - andi.w &0x8000,FTEMP_EX(%a0) # clear exponent - mov.b &ZERO, %d0 - rts -is_unnorm_reg_x: - mov.b &UNNORM, %d0 - rts -inf_or_nan_x: - tst.l FTEMP_LO(%a0) - bne.b is_nan_x - mov.l FTEMP_HI(%a0), %d0 - and.l &0x7fffffff, %d0 # msb is a don't care! - bne.b is_nan_x -is_inf_x: - mov.b &INF, %d0 - rts -is_nan_x: - btst &0x6, FTEMP_HI(%a0) - beq.b is_snan_x - mov.b &QNAN, %d0 - rts -is_snan_x: - mov.b &SNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_d(): return the optype of the input dbl fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = points to double precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# # -######################################################################### - - global set_tag_d -set_tag_d: - mov.l FTEMP(%a0), %d0 - mov.l %d0, %d1 - - andi.l &0x7ff00000, %d0 - beq.b zero_or_denorm_d - - cmpi.l %d0, &0x7ff00000 - beq.b inf_or_nan_d - -is_norm_d: - mov.b &NORM, %d0 - rts -zero_or_denorm_d: - and.l &0x000fffff, %d1 - bne is_denorm_d - tst.l 4+FTEMP(%a0) - bne is_denorm_d -is_zero_d: - mov.b &ZERO, %d0 - rts -is_denorm_d: - mov.b &DENORM, %d0 - rts -inf_or_nan_d: - and.l &0x000fffff, %d1 - bne is_nan_d - tst.l 4+FTEMP(%a0) - bne is_nan_d -is_inf_d: - mov.b &INF, %d0 - rts -is_nan_d: - btst &19, %d1 - bne is_qnan_d -is_snan_d: - mov.b &SNAN, %d0 - rts -is_qnan_d: - mov.b &QNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_s(): return the optype of the input sgl fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to single precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# # -######################################################################### - - global set_tag_s -set_tag_s: - mov.l FTEMP(%a0), %d0 - mov.l %d0, %d1 - - andi.l &0x7f800000, %d0 - beq.b zero_or_denorm_s - - cmpi.l %d0, &0x7f800000 - beq.b inf_or_nan_s - -is_norm_s: - mov.b &NORM, %d0 - rts -zero_or_denorm_s: - and.l &0x007fffff, %d1 - bne is_denorm_s -is_zero_s: - mov.b &ZERO, %d0 - rts -is_denorm_s: - mov.b &DENORM, %d0 - rts -inf_or_nan_s: - and.l &0x007fffff, %d1 - bne is_nan_s -is_inf_s: - mov.b &INF, %d0 - rts -is_nan_s: - btst &22, %d1 - bne is_qnan_s -is_snan_s: - mov.b &SNAN, %d0 - rts -is_qnan_s: - mov.b &QNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# unf_res(): routine to produce default underflow result of a # -# scaled extended precision number; this is used by # -# fadd/fdiv/fmul/etc. emulation routines. # -# unf_res4(): same as above but for fsglmul/fsgldiv which use # -# single round prec and extended prec mode. # -# # -# XREF **************************************************************** # -# _denorm() - denormalize according to scale factor # -# _round() - round denormalized number according to rnd prec # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precison operand # -# d0 = scale factor # -# d1 = rounding precision/mode # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to default underflow result in extended precision # -# d0.b = result FPSR_cc which caller may or may not want to save # -# # -# ALGORITHM *********************************************************** # -# Convert the input operand to "internal format" which means the # -# exponent is extended to 16 bits and the sign is stored in the unused # -# portion of the extended precison operand. Denormalize the number # -# according to the scale factor passed in d0. Then, round the # -# denormalized result. # -# Set the FPSR_exc bits as appropriate but return the cc bits in # -# d0 in case the caller doesn't want to save them (as is the case for # -# fmove out). # -# unf_res4() for fsglmul/fsgldiv forces the denorm to extended # -# precision and the rounding mode to single. # -# # -######################################################################### - global unf_res -unf_res: - mov.l %d1, -(%sp) # save rnd prec,mode on stack - - btst &0x7, FTEMP_EX(%a0) # make "internal" format - sne FTEMP_SGN(%a0) - - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 - sub.w %d0, %d1 - mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent - - mov.l %a0, -(%sp) # save operand ptr during calls - - mov.l 0x4(%sp),%d0 # pass rnd prec. - andi.w &0x00c0,%d0 - lsr.w &0x4,%d0 - bsr.l _denorm # denorm result - - mov.l (%sp),%a0 - mov.w 0x6(%sp),%d1 # load prec:mode into %d1 - andi.w &0xc0,%d1 # extract rnd prec - lsr.w &0x4,%d1 - swap %d1 - mov.w 0x6(%sp),%d1 - andi.w &0x30,%d1 - lsr.w &0x4,%d1 - bsr.l _round # round the denorm - - mov.l (%sp)+, %a0 - -# result is now rounded properly. convert back to normal format - bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue - tst.b FTEMP_SGN(%a0) # is "internal result" sign set? - beq.b unf_res_chkifzero # no; result is positive - bset &0x7, FTEMP_EX(%a0) # set result sgn - clr.b FTEMP_SGN(%a0) # clear temp sign - -# the number may have become zero after rounding. set ccodes accordingly. -unf_res_chkifzero: - clr.l %d0 - tst.l FTEMP_HI(%a0) # is value now a zero? - bne.b unf_res_cont # no - tst.l FTEMP_LO(%a0) - bne.b unf_res_cont # no -# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit - bset &z_bit, %d0 # yes; set zero ccode bit - -unf_res_cont: - -# -# can inex1 also be set along with unfl and inex2??? -# -# we know that underflow has occurred. aunfl should be set if INEX2 is also set. -# - btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? - beq.b unf_res_end # no - bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl - -unf_res_end: - add.l &0x4, %sp # clear stack - rts - -# unf_res() for fsglmul() and fsgldiv(). - global unf_res4 -unf_res4: - mov.l %d1,-(%sp) # save rnd prec,mode on stack - - btst &0x7,FTEMP_EX(%a0) # make "internal" format - sne FTEMP_SGN(%a0) - - mov.w FTEMP_EX(%a0),%d1 # extract exponent - and.w &0x7fff,%d1 - sub.w %d0,%d1 - mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent - - mov.l %a0,-(%sp) # save operand ptr during calls - - clr.l %d0 # force rnd prec = ext - bsr.l _denorm # denorm result - - mov.l (%sp),%a0 - mov.w &s_mode,%d1 # force rnd prec = sgl - swap %d1 - mov.w 0x6(%sp),%d1 # load rnd mode - andi.w &0x30,%d1 # extract rnd prec - lsr.w &0x4,%d1 - bsr.l _round # round the denorm - - mov.l (%sp)+,%a0 - -# result is now rounded properly. convert back to normal format - bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue - tst.b FTEMP_SGN(%a0) # is "internal result" sign set? - beq.b unf_res4_chkifzero # no; result is positive - bset &0x7,FTEMP_EX(%a0) # set result sgn - clr.b FTEMP_SGN(%a0) # clear temp sign - -# the number may have become zero after rounding. set ccodes accordingly. -unf_res4_chkifzero: - clr.l %d0 - tst.l FTEMP_HI(%a0) # is value now a zero? - bne.b unf_res4_cont # no - tst.l FTEMP_LO(%a0) - bne.b unf_res4_cont # no -# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit - bset &z_bit,%d0 # yes; set zero ccode bit - -unf_res4_cont: - -# -# can inex1 also be set along with unfl and inex2??? -# -# we know that underflow has occurred. aunfl should be set if INEX2 is also set. -# - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.b unf_res4_end # no - bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl - -unf_res4_end: - add.l &0x4,%sp # clear stack - rts - -######################################################################### -# XDEF **************************************************************** # -# ovf_res(): routine to produce the default overflow result of # -# an overflowing number. # -# ovf_res2(): same as above but the rnd mode/prec are passed # -# differently. # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# d1.b = '-1' => (-); '0' => (+) # -# ovf_res(): # -# d0 = rnd mode/prec # -# ovf_res2(): # -# hi(d0) = rnd prec # -# lo(d0) = rnd mode # -# # -# OUTPUT ************************************************************** # -# a0 = points to extended precision result # -# d0.b = condition code bits # -# # -# ALGORITHM *********************************************************** # -# The default overflow result can be determined by the sign of # -# the result and the rounding mode/prec in effect. These bits are # -# concatenated together to create an index into the default result # -# table. A pointer to the correct result is returned in a0. The # -# resulting condition codes are returned in d0 in case the caller # -# doesn't want FPSR_cc altered (as is the case for fmove out). # -# # -######################################################################### - - global ovf_res -ovf_res: - andi.w &0x10,%d1 # keep result sign - lsr.b &0x4,%d0 # shift prec/mode - or.b %d0,%d1 # concat the two - mov.w %d1,%d0 # make a copy - lsl.b &0x1,%d1 # multiply d1 by 2 - bra.b ovf_res_load - - global ovf_res2 -ovf_res2: - and.w &0x10, %d1 # keep result sign - or.b %d0, %d1 # insert rnd mode - swap %d0 - or.b %d0, %d1 # insert rnd prec - mov.w %d1, %d0 # make a copy - lsl.b &0x1, %d1 # shift left by 1 - -# -# use the rounding mode, precision, and result sign as in index into the -# two tables below to fetch the default result and the result ccodes. -# -ovf_res_load: - mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes - lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr - - rts - -tbl_ovfl_cc: - byte 0x2, 0x0, 0x0, 0x2 - byte 0x2, 0x0, 0x0, 0x2 - byte 0x2, 0x0, 0x0, 0x2 - byte 0x0, 0x0, 0x0, 0x0 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - -tbl_ovfl_result: - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ - long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ - long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ - long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP - -######################################################################### -# XDEF **************************************************************** # -# get_packed(): fetch a packed operand from memory and then # -# convert it to a floating-point binary number. # -# # -# XREF **************************************************************** # -# _dcalc_ea() - calculate the correct <ea> # -# _mem_read() - fetch the packed operand from memory # -# facc_in_x() - the fetch failed so jump to special exit code # -# decbin() - convert packed to binary extended precision # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If no failure on _mem_read(): # -# FP_SRC(a6) = packed operand now as a binary FP number # -# # -# ALGORITHM *********************************************************** # -# Get the correct <ea> which is the value on the exception stack # -# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # -# Then, fetch the operand from memory. If the fetch fails, exit # -# through facc_in_x(). # -# If the packed operand is a ZERO,NAN, or INF, convert it to # -# its binary representation here. Else, call decbin() which will # -# convert the packed value to an extended precision binary value. # -# # -######################################################################### - -# the stacked <ea> for packed is correct except for -(An). -# the base reg must be updated for both -(An) and (An)+. - global get_packed -get_packed: - mov.l &0xc,%d0 # packed is 12 bytes - bsr.l _dcalc_ea # fetch <ea>; correct An - - lea FP_SRC(%a6),%a1 # pass: ptr to super dst - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _dmem_read # read packed operand - - tst.l %d1 # did dfetch fail? - bne.l facc_in_x # yes - -# The packed operand is an INF or a NAN if the exponent field is all ones. - bfextu FP_SRC(%a6){&1:&15},%d0 # get exp - cmpi.w %d0,&0x7fff # INF or NAN? - bne.b gp_try_zero # no - rts # operand is an INF or NAN - -# The packed operand is a zero if the mantissa is all zero, else it's -# a normal packed op. -gp_try_zero: - mov.b 3+FP_SRC(%a6),%d0 # get byte 4 - andi.b &0x0f,%d0 # clear all but last nybble - bne.b gp_not_spec # not a zero - tst.l FP_SRC_HI(%a6) # is lw 2 zero? - bne.b gp_not_spec # not a zero - tst.l FP_SRC_LO(%a6) # is lw 3 zero? - bne.b gp_not_spec # not a zero - rts # operand is a ZERO -gp_not_spec: - lea FP_SRC(%a6),%a0 # pass: ptr to packed op - bsr.l decbin # convert to extended - fmovm.x &0x80,FP_SRC(%a6) # make this the srcop - rts - -######################################################################### -# decbin(): Converts normalized packed bcd value pointed to by register # -# a0 to extended-precision value in fp0. # -# # -# INPUT *************************************************************** # -# a0 = pointer to normalized packed bcd value # -# # -# OUTPUT ************************************************************** # -# fp0 = exact fp representation of the packed bcd value. # -# # -# ALGORITHM *********************************************************** # -# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # -# and NaN operands are dispatched without entering this routine) # -# value in 68881/882 format at location (a0). # -# # -# A1. Convert the bcd exponent to binary by successive adds and # -# muls. Set the sign according to SE. Subtract 16 to compensate # -# for the mantissa which is to be interpreted as 17 integer # -# digits, rather than 1 integer and 16 fraction digits. # -# Note: this operation can never overflow. # -# # -# A2. Convert the bcd mantissa to binary by successive # -# adds and muls in FP0. Set the sign according to SM. # -# The mantissa digits will be converted with the decimal point # -# assumed following the least-significant digit. # -# Note: this operation can never overflow. # -# # -# A3. Count the number of leading/trailing zeros in the # -# bcd string. If SE is positive, count the leading zeros; # -# if negative, count the trailing zeros. Set the adjusted # -# exponent equal to the exponent from A1 and the zero count # -# added if SM = 1 and subtracted if SM = 0. Scale the # -# mantissa the equivalent of forcing in the bcd value: # -# # -# SM = 0 a non-zero digit in the integer position # -# SM = 1 a non-zero digit in Mant0, lsd of the fraction # -# # -# this will insure that any value, regardless of its # -# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # -# consistently. # -# # -# A4. Calculate the factor 10^exp in FP1 using a table of # -# 10^(2^n) values. To reduce the error in forming factors # -# greater than 10^27, a directed rounding scheme is used with # -# tables rounded to RN, RM, and RP, according to the table # -# in the comments of the pwrten section. # -# # -# A5. Form the final binary number by scaling the mantissa by # -# the exponent factor. This is done by multiplying the # -# mantissa in FP0 by the factor in FP1 if the adjusted # -# exponent sign is positive, and dividing FP0 by FP1 if # -# it is negative. # -# # -# Clean up and return. Check if the final mul or div was inexact. # -# If so, set INEX1 in USER_FPSR. # -# # -######################################################################### - -# -# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded -# to nearest, minus, and plus, respectively. The tables include -# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding -# is required until the power is greater than 27, however, all -# tables include the first 5 for ease of indexing. -# -RTABLE: - byte 0,0,0,0 - byte 2,3,2,3 - byte 2,3,3,2 - byte 3,2,2,3 - - set FNIBS,7 - set FSTRT,0 - - set ESTRT,4 - set EDIGITS,2 - - global decbin -decbin: - mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input - mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it - mov.l 0x8(%a0),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 - - movm.l &0x3c00,-(%sp) # save d2-d5 - fmovm.x &0x1,-(%sp) # save fp1 -# -# Calculate exponent: -# 1. Copy bcd value in memory for use as a working copy. -# 2. Calculate absolute value of exponent in d1 by mul and add. -# 3. Correct for exponent sign. -# 4. Subtract 16 to compensate for interpreting the mant as all integer digits. -# (i.e., all digits assumed left of the decimal point.) -# -# Register usage: -# -# calc_e: -# (*) d0: temp digit storage -# (*) d1: accumulator for binary exponent -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: first word of bcd -# ( ) a0: pointer to working bcd value -# ( ) a6: pointer to original bcd value -# (*) FP_SCR1: working copy of original bcd value -# (*) L_SCR1: copy of original exponent word -# -calc_e: - mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part - mov.l &ESTRT,%d3 # counter to pick up digits - mov.l (%a0),%d4 # get first word of bcd - clr.l %d1 # zero d1 for accumulator -e_gd: - mulu.l &0xa,%d1 # mul partial product by one digit place - bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 - add.l %d0,%d1 # d1 = d1 + d0 - addq.b &4,%d3 # advance d3 to the next digit - dbf.w %d2,e_gd # if we have used all 3 digits, exit loop - btst &30,%d4 # get SE - beq.b e_pos # don't negate if pos - neg.l %d1 # negate before subtracting -e_pos: - sub.l &16,%d1 # sub to compensate for shift of mant - bge.b e_save # if still pos, do not neg - neg.l %d1 # now negative, make pos and set SE - or.l &0x40000000,%d4 # set SE in d4, - or.l &0x40000000,(%a0) # and in working bcd -e_save: - mov.l %d1,-(%sp) # save exp on stack -# -# -# Calculate mantissa: -# 1. Calculate absolute value of mantissa in fp0 by mul and add. -# 2. Correct for mantissa sign. -# (i.e., all digits assumed left of the decimal point.) -# -# Register usage: -# -# calc_m: -# (*) d0: temp digit storage -# (*) d1: lword counter -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: words 2 and 3 of bcd -# ( ) a0: pointer to working bcd value -# ( ) a6: pointer to original bcd value -# (*) fp0: mantissa accumulator -# ( ) FP_SCR1: working copy of original bcd value -# ( ) L_SCR1: copy of original exponent word -# -calc_m: - mov.l &1,%d1 # word counter, init to 1 - fmov.s &0x00000000,%fp0 # accumulator -# -# -# Since the packed number has a long word between the first & second parts, -# get the integer digit then skip down & get the rest of the -# mantissa. We will unroll the loop once. -# - bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word - fadd.b %d0,%fp0 # add digit to sum in fp0 -# -# -# Get the rest of the mantissa. -# -loadlw: - mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 - mov.l &FSTRT,%d3 # counter to pick up digits - mov.l &FNIBS,%d2 # reset number of digits per a0 ptr -md2b: - fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 - bfextu %d4{%d3:&4},%d0 # get the digit and zero extend - fadd.b %d0,%fp0 # fp0 = fp0 + digit -# -# -# If all the digits (8) in that long word have been converted (d2=0), -# then inc d1 (=2) to point to the next long word and reset d3 to 0 -# to initialize the digit offset, and set d2 to 7 for the digit count; -# else continue with this long word. -# - addq.b &4,%d3 # advance d3 to the next digit - dbf.w %d2,md2b # check for last digit in this lw -nextlw: - addq.l &1,%d1 # inc lw pointer in mantissa - cmp.l %d1,&2 # test for last lw - ble.b loadlw # if not, get last one -# -# Check the sign of the mant and make the value in fp0 the same sign. -# -m_sign: - btst &31,(%a0) # test sign of the mantissa - beq.b ap_st_z # if clear, go to append/strip zeros - fneg.x %fp0 # if set, negate fp0 -# -# Append/strip zeros: -# -# For adjusted exponents which have an absolute value greater than 27*, -# this routine calculates the amount needed to normalize the mantissa -# for the adjusted exponent. That number is subtracted from the exp -# if the exp was positive, and added if it was negative. The purpose -# of this is to reduce the value of the exponent and the possibility -# of error in calculation of pwrten. -# -# 1. Branch on the sign of the adjusted exponent. -# 2p.(positive exp) -# 2. Check M16 and the digits in lwords 2 and 3 in decending order. -# 3. Add one for each zero encountered until a non-zero digit. -# 4. Subtract the count from the exp. -# 5. Check if the exp has crossed zero in #3 above; make the exp abs -# and set SE. -# 6. Multiply the mantissa by 10**count. -# 2n.(negative exp) -# 2. Check the digits in lwords 3 and 2 in decending order. -# 3. Add one for each zero encountered until a non-zero digit. -# 4. Add the count to the exp. -# 5. Check if the exp has crossed zero in #3 above; clear SE. -# 6. Divide the mantissa by 10**count. -# -# *Why 27? If the adjusted exponent is within -28 < expA < 28, than -# any adjustment due to append/strip zeros will drive the resultane -# exponent towards zero. Since all pwrten constants with a power -# of 27 or less are exact, there is no need to use this routine to -# attempt to lessen the resultant exponent. -# -# Register usage: -# -# ap_st_z: -# (*) d0: temp digit storage -# (*) d1: zero count -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: first word of bcd -# (*) d5: lword counter -# ( ) a0: pointer to working bcd value -# ( ) FP_SCR1: working copy of original bcd value -# ( ) L_SCR1: copy of original exponent word -# -# -# First check the absolute value of the exponent to see if this -# routine is necessary. If so, then check the sign of the exponent -# and do append (+) or strip (-) zeros accordingly. -# This section handles a positive adjusted exponent. -# -ap_st_z: - mov.l (%sp),%d1 # load expA for range test - cmp.l %d1,&27 # test is with 27 - ble.w pwrten # if abs(expA) <28, skip ap/st zeros - btst &30,(%a0) # check sign of exp - bne.b ap_st_n # if neg, go to neg side - clr.l %d1 # zero count reg - mov.l (%a0),%d4 # load lword 1 to d4 - bfextu %d4{&28:&4},%d0 # get M16 in d0 - bne.b ap_p_fx # if M16 is non-zero, go fix exp - addq.l &1,%d1 # inc zero count - mov.l &1,%d5 # init lword counter - mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 - bne.b ap_p_cl # if lw 2 is zero, skip it - addq.l &8,%d1 # and inc count by 8 - addq.l &1,%d5 # inc lword counter - mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 -ap_p_cl: - clr.l %d3 # init offset reg - mov.l &7,%d2 # init digit counter -ap_p_gd: - bfextu %d4{%d3:&4},%d0 # get digit - bne.b ap_p_fx # if non-zero, go to fix exp - addq.l &4,%d3 # point to next digit - addq.l &1,%d1 # inc digit counter - dbf.w %d2,ap_p_gd # get next digit -ap_p_fx: - mov.l %d1,%d0 # copy counter to d2 - mov.l (%sp),%d1 # get adjusted exp from memory - sub.l %d0,%d1 # subtract count from exp - bge.b ap_p_fm # if still pos, go to pwrten - neg.l %d1 # now its neg; get abs - mov.l (%a0),%d4 # load lword 1 to d4 - or.l &0x40000000,%d4 # and set SE in d4 - or.l &0x40000000,(%a0) # and in memory -# -# Calculate the mantissa multiplier to compensate for the striping of -# zeros from the mantissa. -# -ap_p_fm: - lea.l PTENRN(%pc),%a1 # get address of power-of-ten table - clr.l %d3 # init table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 - mov.l &3,%d2 # init d2 to count bits in counter -ap_p_el: - asr.l &1,%d0 # shift lsb into carry - bcc.b ap_p_en # if 1, mul fp1 by pwrten factor - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -ap_p_en: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b ap_p_el # if not, get next bit - fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) - bra.b pwrten # go calc pwrten -# -# This section handles a negative adjusted exponent. -# -ap_st_n: - clr.l %d1 # clr counter - mov.l &2,%d5 # set up d5 to point to lword 3 - mov.l (%a0,%d5.L*4),%d4 # get lword 3 - bne.b ap_n_cl # if not zero, check digits - sub.l &1,%d5 # dec d5 to point to lword 2 - addq.l &8,%d1 # inc counter by 8 - mov.l (%a0,%d5.L*4),%d4 # get lword 2 -ap_n_cl: - mov.l &28,%d3 # point to last digit - mov.l &7,%d2 # init digit counter -ap_n_gd: - bfextu %d4{%d3:&4},%d0 # get digit - bne.b ap_n_fx # if non-zero, go to exp fix - subq.l &4,%d3 # point to previous digit - addq.l &1,%d1 # inc digit counter - dbf.w %d2,ap_n_gd # get next digit -ap_n_fx: - mov.l %d1,%d0 # copy counter to d0 - mov.l (%sp),%d1 # get adjusted exp from memory - sub.l %d0,%d1 # subtract count from exp - bgt.b ap_n_fm # if still pos, go fix mantissa - neg.l %d1 # take abs of exp and clr SE - mov.l (%a0),%d4 # load lword 1 to d4 - and.l &0xbfffffff,%d4 # and clr SE in d4 - and.l &0xbfffffff,(%a0) # and in memory -# -# Calculate the mantissa multiplier to compensate for the appending of -# zeros to the mantissa. -# -ap_n_fm: - lea.l PTENRN(%pc),%a1 # get address of power-of-ten table - clr.l %d3 # init table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 - mov.l &3,%d2 # init d2 to count bits in counter -ap_n_el: - asr.l &1,%d0 # shift lsb into carry - bcc.b ap_n_en # if 1, mul fp1 by pwrten factor - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -ap_n_en: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b ap_n_el # if not, get next bit - fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) -# -# -# Calculate power-of-ten factor from adjusted and shifted exponent. -# -# Register usage: -# -# pwrten: -# (*) d0: temp -# ( ) d1: exponent -# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp -# (*) d3: FPCR work copy -# ( ) d4: first word of bcd -# (*) a1: RTABLE pointer -# calc_p: -# (*) d0: temp -# ( ) d1: exponent -# (*) d3: PWRTxx table index -# ( ) a0: pointer to working copy of bcd -# (*) a1: PWRTxx pointer -# (*) fp1: power-of-ten accumulator -# -# Pwrten calculates the exponent factor in the selected rounding mode -# according to the following table: -# -# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode -# -# ANY ANY RN RN -# -# + + RP RP -# - + RP RM -# + - RP RM -# - - RP RP -# -# + + RM RM -# - + RM RP -# + - RM RP -# - - RM RM -# -# + + RZ RM -# - + RZ RM -# + - RZ RP -# - - RZ RP -# -# -pwrten: - mov.l USER_FPCR(%a6),%d3 # get user's FPCR - bfextu %d3{&26:&2},%d2 # isolate rounding mode bits - mov.l (%a0),%d4 # reload 1st bcd word to d4 - asl.l &2,%d2 # format d2 to be - bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} - add.l %d0,%d2 # in d2 as index into RTABLE - lea.l RTABLE(%pc),%a1 # load rtable base - mov.b (%a1,%d2),%d0 # load new rounding bits from table - clr.l %d3 # clear d3 to force no exc and extended - bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR - fmov.l %d3,%fpcr # write new FPCR - asr.l &1,%d0 # write correct PTENxx table - bcc.b not_rp # to a1 - lea.l PTENRP(%pc),%a1 # it is RP - bra.b calc_p # go to init section -not_rp: - asr.l &1,%d0 # keep checking - bcc.b not_rm - lea.l PTENRM(%pc),%a1 # it is RM - bra.b calc_p # go to init section -not_rm: - lea.l PTENRN(%pc),%a1 # it is RN -calc_p: - mov.l %d1,%d0 # copy exp to d0;use d0 - bpl.b no_neg # if exp is negative, - neg.l %d0 # invert it - or.l &0x40000000,(%a0) # and set SE bit -no_neg: - clr.l %d3 # table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 -e_loop: - asr.l &1,%d0 # shift next bit into carry - bcc.b e_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -e_next: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b e_loop # not zero, continue shifting -# -# -# Check the sign of the adjusted exp and make the value in fp0 the -# same sign. If the exp was pos then multiply fp1*fp0; -# else divide fp0/fp1. -# -# Register Usage: -# norm: -# ( ) a0: pointer to working bcd value -# (*) fp0: mantissa accumulator -# ( ) fp1: scaling factor - 10**(abs(exp)) -# -pnorm: - btst &30,(%a0) # test the sign of the exponent - beq.b mul # if clear, go to multiply -div: - fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp - bra.b end_dec -mul: - fmul.x %fp1,%fp0 # exp is positive, so multiply by exp -# -# -# Clean up and return with result in fp0. -# -# If the final mul/div in decbin incurred an inex exception, -# it will be inex2, but will be reported as inex1 by get_op. -# -end_dec: - fmov.l %fpsr,%d0 # get status register - bclr &inex2_bit+8,%d0 # test for inex2 and clear it - beq.b no_exc # skip this if no exc - ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX -no_exc: - add.l &0x4,%sp # clear 1 lw param - fmovm.x (%sp)+,&0x40 # restore fp1 - movm.l (%sp)+,&0x3c # restore d2-d5 - fmov.l &0x0,%fpcr - fmov.l &0x0,%fpsr - rts - -######################################################################### -# bindec(): Converts an input in extended precision format to bcd format# -# # -# INPUT *************************************************************** # -# a0 = pointer to the input extended precision value in memory. # -# the input may be either normalized, unnormalized, or # -# denormalized. # -# d0 = contains the k-factor sign-extended to 32-bits. # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = bcd format result on the stack. # -# # -# ALGORITHM *********************************************************** # -# # -# A1. Set RM and size ext; Set SIGMA = sign of input. # -# The k-factor is saved for use in d7. Clear the # -# BINDEC_FLG for separating normalized/denormalized # -# input. If input is unnormalized or denormalized, # -# normalize it. # -# # -# A2. Set X = abs(input). # -# # -# A3. Compute ILOG. # -# ILOG is the log base 10 of the input value. It is # -# approximated by adding e + 0.f when the original # -# value is viewed as 2^^e * 1.f in extended precision. # -# This value is stored in d6. # -# # -# A4. Clr INEX bit. # -# The operation in A3 above may have set INEX2. # -# # -# A5. Set ICTR = 0; # -# ICTR is a flag used in A13. It must be set before the # -# loop entry A6. # -# # -# A6. Calculate LEN. # -# LEN is the number of digits to be displayed. The # -# k-factor can dictate either the total number of digits, # -# if it is a positive number, or the number of digits # -# after the decimal point which are to be included as # -# significant. See the 68882 manual for examples. # -# If LEN is computed to be greater than 17, set OPERR in # -# USER_FPSR. LEN is stored in d4. # -# # -# A7. Calculate SCALE. # -# SCALE is equal to 10^ISCALE, where ISCALE is the number # -# of decimal places needed to insure LEN integer digits # -# in the output before conversion to bcd. LAMBDA is the # -# sign of ISCALE, used in A9. Fp1 contains # -# 10^^(abs(ISCALE)) using a rounding mode which is a # -# function of the original rounding mode and the signs # -# of ISCALE and X. A table is given in the code. # -# # -# A8. Clr INEX; Force RZ. # -# The operation in A3 above may have set INEX2. # -# RZ mode is forced for the scaling operation to insure # -# only one rounding error. The grs bits are collected in # -# the INEX flag for use in A10. # -# # -# A9. Scale X -> Y. # -# The mantissa is scaled to the desired number of # -# significant digits. The excess digits are collected # -# in INEX2. # -# # -# A10. Or in INEX. # -# If INEX is set, round error occurred. This is # -# compensated for by 'or-ing' in the INEX2 flag to # -# the lsb of Y. # -# # -# A11. Restore original FPCR; set size ext. # -# Perform FINT operation in the user's rounding mode. # -# Keep the size to extended. # -# # -# A12. Calculate YINT = FINT(Y) according to user's rounding # -# mode. The FPSP routine sintd0 is used. The output # -# is in fp0. # -# # -# A13. Check for LEN digits. # -# If the int operation results in more than LEN digits, # -# or less than LEN -1 digits, adjust ILOG and repeat from # -# A6. This test occurs only on the first pass. If the # -# result is exactly 10^LEN, decrement ILOG and divide # -# the mantissa by 10. # -# # -# A14. Convert the mantissa to bcd. # -# The binstr routine is used to convert the LEN digit # -# mantissa to bcd in memory. The input to binstr is # -# to be a fraction; i.e. (mantissa)/10^LEN and adjusted # -# such that the decimal point is to the left of bit 63. # -# The bcd digits are stored in the correct position in # -# the final string area in memory. # -# # -# A15. Convert the exponent to bcd. # -# As in A14 above, the exp is converted to bcd and the # -# digits are stored in the final string. # -# Test the length of the final exponent string. If the # -# length is 4, set operr. # -# # -# A16. Write sign bits to final string. # -# # -######################################################################### - -set BINDEC_FLG, EXC_TEMP # DENORM flag - -# Constants in extended precision -PLOG2: - long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 -PLOG2UP1: - long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 - -# Constants in single precision -FONE: - long 0x3F800000,0x00000000,0x00000000,0x00000000 -FTWO: - long 0x40000000,0x00000000,0x00000000,0x00000000 -FTEN: - long 0x41200000,0x00000000,0x00000000,0x00000000 -F4933: - long 0x459A2800,0x00000000,0x00000000,0x00000000 - -RBDTBL: - byte 0,0,0,0 - byte 3,3,2,2 - byte 3,2,2,3 - byte 2,3,3,2 - -# Implementation Notes: -# -# The registers are used as follows: -# -# d0: scratch; LEN input to binstr -# d1: scratch -# d2: upper 32-bits of mantissa for binstr -# d3: scratch;lower 32-bits of mantissa for binstr -# d4: LEN -# d5: LAMBDA/ICTR -# d6: ILOG -# d7: k-factor -# a0: ptr for original operand/final result -# a1: scratch pointer -# a2: pointer to FP_X; abs(original value) in ext -# fp0: scratch -# fp1: scratch -# fp2: scratch -# F_SCR1: -# F_SCR2: -# L_SCR1: -# L_SCR2: - - global bindec -bindec: - movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} - fmovm.x &0x7,-(%sp) # {%fp0-%fp2} - -# A1. Set RM and size ext. Set SIGMA = sign input; -# The k-factor is saved for use in d7. Clear BINDEC_FLG for -# separating normalized/denormalized input. If the input -# is a denormalized number, set the BINDEC_FLG memory word -# to signal denorm. If the input is unnormalized, normalize -# the input and test for denormalized result. -# - fmov.l &rm_mode*0x10,%fpcr # set RM and ext - mov.l (%a0),L_SCR2(%a6) # save exponent for sign check - mov.l %d0,%d7 # move k-factor to d7 - - clr.b BINDEC_FLG(%a6) # clr norm/denorm flag - cmpi.b STAG(%a6),&DENORM # is input a DENORM? - bne.w A2_str # no; input is a NORM - -# -# Normalize the denorm -# -un_de_norm: - mov.w (%a0),%d0 - and.w &0x7fff,%d0 # strip sign of normalized exp - mov.l 4(%a0),%d1 - mov.l 8(%a0),%d2 -norm_loop: - sub.w &1,%d0 - lsl.l &1,%d2 - roxl.l &1,%d1 - tst.l %d1 - bge.b norm_loop -# -# Test if the normalized input is denormalized -# - tst.w %d0 - bgt.b pos_exp # if greater than zero, it is a norm - st BINDEC_FLG(%a6) # set flag for denorm -pos_exp: - and.w &0x7fff,%d0 # strip sign of normalized exp - mov.w %d0,(%a0) - mov.l %d1,4(%a0) - mov.l %d2,8(%a0) - -# A2. Set X = abs(input). -# -A2_str: - mov.l (%a0),FP_SCR1(%a6) # move input to work space - mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space - mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space - and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) - -# A3. Compute ILOG. -# ILOG is the log base 10 of the input value. It is approx- -# imated by adding e + 0.f when the original value is viewed -# as 2^^e * 1.f in extended precision. This value is stored -# in d6. -# -# Register usage: -# Input/Output -# d0: k-factor/exponent -# d2: x/x -# d3: x/x -# d4: x/x -# d5: x/x -# d6: x/ILOG -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/x -# a2: x/x -# fp0: x/float(ILOG) -# fp1: x/x -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X)/Abs(X) with $3fff exponent -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - - tst.b BINDEC_FLG(%a6) # check for denorm - beq.b A3_cont # if clr, continue with norm - mov.l &-4933,%d6 # force ILOG = -4933 - bra.b A4_str -A3_cont: - mov.w FP_SCR1(%a6),%d0 # move exp to d0 - mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff - fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f - sub.w &0x3fff,%d0 # strip off bias - fadd.w %d0,%fp0 # add in exp - fsub.s FONE(%pc),%fp0 # subtract off 1.0 - fbge.w pos_res # if pos, branch - fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 - fmov.l %fp0,%d6 # put ILOG in d6 as a lword - bra.b A4_str # go move out ILOG -pos_res: - fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 - fmov.l %fp0,%d6 # put ILOG in d6 as a lword - - -# A4. Clr INEX bit. -# The operation in A3 above may have set INEX2. - -A4_str: - fmov.l &0,%fpsr # zero all of fpsr - nothing needed - - -# A5. Set ICTR = 0; -# ICTR is a flag used in A13. It must be set before the -# loop entry A6. The lower word of d5 is used for ICTR. - - clr.w %d5 # clear ICTR - -# A6. Calculate LEN. -# LEN is the number of digits to be displayed. The k-factor -# can dictate either the total number of digits, if it is -# a positive number, or the number of digits after the -# original decimal point which are to be included as -# significant. See the 68882 manual for examples. -# If LEN is computed to be greater than 17, set OPERR in -# USER_FPSR. LEN is stored in d4. -# -# Register usage: -# Input/Output -# d0: exponent/Unchanged -# d2: x/x/scratch -# d3: x/x -# d4: exc picture/LEN -# d5: ICTR/Unchanged -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/x -# a2: x/x -# fp0: float(ILOG)/Unchanged -# fp1: x/x -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A6_str: - tst.l %d7 # branch on sign of k - ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k - mov.l %d7,%d4 # if k > 0, LEN = k - bra.b len_ck # skip to LEN check -k_neg: - mov.l %d6,%d4 # first load ILOG to d4 - sub.l %d7,%d4 # subtract off k - addq.l &1,%d4 # add in the 1 -len_ck: - tst.l %d4 # LEN check: branch on sign of LEN - ble.b LEN_ng # if neg, set LEN = 1 - cmp.l %d4,&17 # test if LEN > 17 - ble.b A7_str # if not, forget it - mov.l &17,%d4 # set max LEN = 17 - tst.l %d7 # if negative, never set OPERR - ble.b A7_str # if positive, continue - or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR - bra.b A7_str # finished here -LEN_ng: - mov.l &1,%d4 # min LEN is 1 - - -# A7. Calculate SCALE. -# SCALE is equal to 10^ISCALE, where ISCALE is the number -# of decimal places needed to insure LEN integer digits -# in the output before conversion to bcd. LAMBDA is the sign -# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using -# the rounding mode as given in the following table (see -# Coonen, p. 7.23 as ref.; however, the SCALE variable is -# of opposite sign in bindec.sa from Coonen). -# -# Initial USE -# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] -# ---------------------------------------------- -# RN 00 0 0 00/0 RN -# RN 00 0 1 00/0 RN -# RN 00 1 0 00/0 RN -# RN 00 1 1 00/0 RN -# RZ 01 0 0 11/3 RP -# RZ 01 0 1 11/3 RP -# RZ 01 1 0 10/2 RM -# RZ 01 1 1 10/2 RM -# RM 10 0 0 11/3 RP -# RM 10 0 1 10/2 RM -# RM 10 1 0 10/2 RM -# RM 10 1 1 11/3 RP -# RP 11 0 0 10/2 RM -# RP 11 0 1 11/3 RP -# RP 11 1 0 11/3 RP -# RP 11 1 1 10/2 RM -# -# Register usage: -# Input/Output -# d0: exponent/scratch - final is 0 -# d2: x/0 or 24 for A9 -# d3: x/scratch - offset ptr into PTENRM array -# d4: LEN/Unchanged -# d5: 0/ICTR:LAMBDA -# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/ptr to PTENRM array -# a2: x/x -# fp0: float(ILOG)/Unchanged -# fp1: x/10^ISCALE -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A7_str: - tst.l %d7 # test sign of k - bgt.b k_pos # if pos and > 0, skip this - cmp.l %d7,%d6 # test k - ILOG - blt.b k_pos # if ILOG >= k, skip this - mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k -k_pos: - mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 - addq.l &1,%d0 # add the 1 - sub.l %d4,%d0 # sub off LEN - swap %d5 # use upper word of d5 for LAMBDA - clr.w %d5 # set it zero initially - clr.w %d2 # set up d2 for very small case - tst.l %d0 # test sign of ISCALE - bge.b iscale # if pos, skip next inst - addq.w &1,%d5 # if neg, set LAMBDA true - cmp.l %d0,&0xffffecd4 # test iscale <= -4908 - bgt.b no_inf # if false, skip rest - add.l &24,%d0 # add in 24 to iscale - mov.l &24,%d2 # put 24 in d2 for A9 -no_inf: - neg.l %d0 # and take abs of ISCALE -iscale: - fmov.s FONE(%pc),%fp1 # init fp1 to 1 - bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits - lsl.w &1,%d1 # put them in bits 2:1 - add.w %d5,%d1 # add in LAMBDA - lsl.w &1,%d1 # put them in bits 3:1 - tst.l L_SCR2(%a6) # test sign of original x - bge.b x_pos # if pos, don't set bit 0 - addq.l &1,%d1 # if neg, set bit 0 -x_pos: - lea.l RBDTBL(%pc),%a2 # load rbdtbl base - mov.b (%a2,%d1),%d3 # load d3 with new rmode - lsl.l &4,%d3 # put bits in proper position - fmov.l %d3,%fpcr # load bits into fpu - lsr.l &4,%d3 # put bits in proper position - tst.b %d3 # decode new rmode for pten table - bne.b not_rn # if zero, it is RN - lea.l PTENRN(%pc),%a1 # load a1 with RN table base - bra.b rmode # exit decode -not_rn: - lsr.b &1,%d3 # get lsb in carry - bcc.b not_rp2 # if carry clear, it is RM - lea.l PTENRP(%pc),%a1 # load a1 with RP table base - bra.b rmode # exit decode -not_rp2: - lea.l PTENRM(%pc),%a1 # load a1 with RM table base -rmode: - clr.l %d3 # clr table index -e_loop2: - lsr.l &1,%d0 # shift next bit into carry - bcc.b e_next2 # if zero, skip the mul - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -e_next2: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if ISCALE is zero - bne.b e_loop2 # if not, loop - -# A8. Clr INEX; Force RZ. -# The operation in A3 above may have set INEX2. -# RZ mode is forced for the scaling operation to insure -# only one rounding error. The grs bits are collected in -# the INEX flag for use in A10. -# -# Register usage: -# Input/Output - - fmov.l &0,%fpsr # clr INEX - fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode - -# A9. Scale X -> Y. -# The mantissa is scaled to the desired number of significant -# digits. The excess digits are collected in INEX2. If mul, -# Check d2 for excess 10 exponential value. If not zero, -# the iscale value would have caused the pwrten calculation -# to overflow. Only a negative iscale can cause this, so -# multiply by 10^(d2), which is now only allowed to be 24, -# with a multiply by 10^8 and 10^16, which is exact since -# 10^24 is exact. If the input was denormalized, we must -# create a busy stack frame with the mul command and the -# two operands, and allow the fpu to complete the multiply. -# -# Register usage: -# Input/Output -# d0: FPCR with RZ mode/Unchanged -# d2: 0 or 24/unchanged -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: ptr to PTENRM array/Unchanged -# a2: x/x -# fp0: float(ILOG)/X adjusted for SCALE (Y) -# fp1: 10^ISCALE/Unchanged -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A9_str: - fmov.x (%a0),%fp0 # load X from memory - fabs.x %fp0 # use abs(X) - tst.w %d5 # LAMBDA is in lower word of d5 - bne.b sc_mul # if neg (LAMBDA = 1), scale by mul - fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 - bra.w A10_st # branch to A10 - -sc_mul: - tst.b BINDEC_FLG(%a6) # check for denorm - beq.w A9_norm # if norm, continue with mul - -# for DENORM, we must calculate: -# fp0 = input_op * 10^ISCALE * 10^24 -# since the input operand is a DENORM, we can't multiply it directly. -# so, we do the multiplication of the exponents and mantissas separately. -# in this way, we avoid underflow on intermediate stages of the -# multiplication and guarantee a result without exception. - fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack - - mov.w (%sp),%d3 # grab exponent - andi.w &0x7fff,%d3 # clear sign - ori.w &0x8000,(%a0) # make DENORM exp negative - add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp - subi.w &0x3fff,%d3 # subtract BIAS - add.w 36(%a1),%d3 - subi.w &0x3fff,%d3 # subtract BIAS - add.w 48(%a1),%d3 - subi.w &0x3fff,%d3 # subtract BIAS - - bmi.w sc_mul_err # is result is DENORM, punt!!! - - andi.w &0x8000,(%sp) # keep sign - or.w %d3,(%sp) # insert new exponent - andi.w &0x7fff,(%a0) # clear sign bit on DENORM again - mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk - mov.l 0x4(%a0),-(%sp) - mov.l &0x3fff0000,-(%sp) # force exp to zero - fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 - fmul.x (%sp)+,%fp0 - -# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 -# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 - mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa - mov.l 36+4(%a1),-(%sp) - mov.l &0x3fff0000,-(%sp) # force exp to zero - mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa - mov.l 48+4(%a1),-(%sp) - mov.l &0x3fff0000,-(%sp)# force exp to zero - fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 - fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 - bra.b A10_st - -sc_mul_err: - bra.b sc_mul_err - -A9_norm: - tst.w %d2 # test for small exp case - beq.b A9_con # if zero, continue as normal - fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 - fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 -A9_con: - fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 - -# A10. Or in INEX. -# If INEX is set, round error occurred. This is compensated -# for by 'or-ing' in the INEX2 flag to the lsb of Y. -# -# Register usage: -# Input/Output -# d0: FPCR with RZ mode/FPSR with INEX2 isolated -# d2: x/x -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: ptr to PTENxx array/Unchanged -# a2: x/ptr to FP_SCR1(a6) -# fp0: Y/Y with lsb adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: x/x - -A10_st: - fmov.l %fpsr,%d0 # get FPSR - fmov.x %fp0,FP_SCR1(%a6) # move Y to memory - lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 - btst &9,%d0 # check if INEX2 set - beq.b A11_st # if clear, skip rest - or.l &1,8(%a2) # or in 1 to lsb of mantissa - fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu - - -# A11. Restore original FPCR; set size ext. -# Perform FINT operation in the user's rounding mode. Keep -# the size to extended. The sintdo entry point in the sint -# routine expects the FPCR value to be in USER_FPCR for -# mode and precision. The original FPCR is saved in L_SCR1. - -A11_st: - mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later - and.l &0x00000030,USER_FPCR(%a6) # set size to ext, -# ;block exceptions - - -# A12. Calculate YINT = FINT(Y) according to user's rounding mode. -# The FPSP routine sintd0 is used. The output is in fp0. -# -# Register usage: -# Input/Output -# d0: FPSR with AINEX cleared/FPCR with size set to ext -# d2: x/x/scratch -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/Unchanged -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/src ptr for sintdo -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored -# fp0: Y/YINT -# fp1: 10^ISCALE/Unchanged -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Y adjusted for inex/Y with original exponent -# L_SCR1:x/original USER_FPCR -# L_SCR2:first word of X packed/Unchanged - -A12_st: - movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} - mov.l L_SCR1(%a6),-(%sp) - mov.l L_SCR2(%a6),-(%sp) - - lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) - fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) - tst.l L_SCR2(%a6) # test sign of original operand - bge.b do_fint12 # if pos, use Y - or.l &0x80000000,(%a0) # if neg, use -Y -do_fint12: - mov.l USER_FPSR(%a6),-(%sp) -# bsr sintdo # sint routine returns int in fp0 - - fmov.l USER_FPCR(%a6),%fpcr - fmov.l &0x0,%fpsr # clear the AEXC bits!!! -## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode -## andi.l &0x00000030,%d0 -## fmov.l %d0,%fpcr - fint.x FP_SCR1(%a6),%fp0 # do fint() - fmov.l %fpsr,%d0 - or.w %d0,FPSR_EXCEPT(%a6) -## fmov.l &0x0,%fpcr -## fmov.l %fpsr,%d0 # don't keep ccodes -## or.w %d0,FPSR_EXCEPT(%a6) - - mov.b (%sp),USER_FPSR(%a6) - add.l &4,%sp - - mov.l (%sp)+,L_SCR2(%a6) - mov.l (%sp)+,L_SCR1(%a6) - movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} - - mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent - mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR - -# A13. Check for LEN digits. -# If the int operation results in more than LEN digits, -# or less than LEN -1 digits, adjust ILOG and repeat from -# A6. This test occurs only on the first pass. If the -# result is exactly 10^LEN, decrement ILOG and divide -# the mantissa by 10. The calculation of 10^LEN cannot -# be inexact, since all powers of ten up to 10^27 are exact -# in extended precision, so the use of a previous power-of-ten -# table will introduce no error. -# -# -# Register usage: -# Input/Output -# d0: FPCR with size set to ext/scratch final = 0 -# d2: x/x -# d3: x/scratch final = x -# d4: LEN/LEN adjusted -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG/ILOG adjusted -# d7: k-factor/Unchanged -# a0: pointer into memory for packed bcd string formation -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: int portion of Y/abs(YINT) adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: x/10^LEN -# F_SCR1:x/x -# F_SCR2:Y with original exponent/Unchanged -# L_SCR1:original USER_FPCR/Unchanged -# L_SCR2:first word of X packed/Unchanged - -A13_st: - swap %d5 # put ICTR in lower word of d5 - tst.w %d5 # check if ICTR = 0 - bne not_zr # if non-zero, go to second test -# -# Compute 10^(LEN-1) -# - fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 - mov.l %d4,%d0 # put LEN in d0 - subq.l &1,%d0 # d0 = LEN -1 - clr.l %d3 # clr table index -l_loop: - lsr.l &1,%d0 # shift next bit into carry - bcc.b l_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) -l_next: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if LEN is zero - bne.b l_loop # if not, loop -# -# 10^LEN-1 is computed for this test and A14. If the input was -# denormalized, check only the case in which YINT > 10^LEN. -# - tst.b BINDEC_FLG(%a6) # check if input was norm - beq.b A13_con # if norm, continue with checking - fabs.x %fp0 # take abs of YINT - bra test_2 -# -# Compare abs(YINT) to 10^(LEN-1) and 10^LEN -# -A13_con: - fabs.x %fp0 # take abs of YINT - fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) - fbge.w test_2 # if greater, do next test - subq.l &1,%d6 # subtract 1 from ILOG - mov.w &1,%d5 # set ICTR - fmov.l &rm_mode*0x10,%fpcr # set rmode to RM - fmul.s FTEN(%pc),%fp2 # compute 10^LEN - bra.w A6_str # return to A6 and recompute YINT -test_2: - fmul.s FTEN(%pc),%fp2 # compute 10^LEN - fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN - fblt.w A14_st # if less, all is ok, go to A14 - fbgt.w fix_ex # if greater, fix and redo - fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 - addq.l &1,%d6 # and inc ILOG - bra.b A14_st # and continue elsewhere -fix_ex: - addq.l &1,%d6 # increment ILOG by 1 - mov.w &1,%d5 # set ICTR - fmov.l &rm_mode*0x10,%fpcr # set rmode to RM - bra.w A6_str # return to A6 and recompute YINT -# -# Since ICTR <> 0, we have already been through one adjustment, -# and shouldn't have another; this is to check if abs(YINT) = 10^LEN -# 10^LEN is again computed using whatever table is in a1 since the -# value calculated cannot be inexact. -# -not_zr: - fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 - mov.l %d4,%d0 # put LEN in d0 - clr.l %d3 # clr table index -z_loop: - lsr.l &1,%d0 # shift next bit into carry - bcc.b z_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) -z_next: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if LEN is zero - bne.b z_loop # if not, loop - fabs.x %fp0 # get abs(YINT) - fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN - fbneq.w A14_st # if not, skip this - fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 - addq.l &1,%d6 # and inc ILOG by 1 - addq.l &1,%d4 # and inc LEN - fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN - -# A14. Convert the mantissa to bcd. -# The binstr routine is used to convert the LEN digit -# mantissa to bcd in memory. The input to binstr is -# to be a fraction; i.e. (mantissa)/10^LEN and adjusted -# such that the decimal point is to the left of bit 63. -# The bcd digits are stored in the correct position in -# the final string area in memory. -# -# -# Register usage: -# Input/Output -# d0: x/LEN call to binstr - final is 0 -# d1: x/0 -# d2: x/ms 32-bits of mant of abs(YINT) -# d3: x/ls 32-bits of mant of abs(YINT) -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG -# d7: k-factor/Unchanged -# a0: pointer into memory for packed bcd string formation -# /ptr to first mantissa byte in result string -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: int portion of Y/abs(YINT) adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:x/Work area for final result -# F_SCR2:Y with original exponent/Unchanged -# L_SCR1:original USER_FPCR/Unchanged -# L_SCR2:first word of X packed/Unchanged - -A14_st: - fmov.l &rz_mode*0x10,%fpcr # force rz for conversion - fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN - lea.l FP_SCR0(%a6),%a0 - fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory - mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 - mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 - clr.l 4(%a0) # zero word 2 of FP_RES - clr.l 8(%a0) # zero word 3 of FP_RES - mov.l (%a0),%d0 # move exponent to d0 - swap %d0 # put exponent in lower word - beq.b no_sft # if zero, don't shift - sub.l &0x3ffd,%d0 # sub bias less 2 to make fract - tst.l %d0 # check if > 1 - bgt.b no_sft # if so, don't shift - neg.l %d0 # make exp positive -m_loop: - lsr.l &1,%d2 # shift d2:d3 right, add 0s - roxr.l &1,%d3 # the number of places - dbf.w %d0,m_loop # given in d0 -no_sft: - tst.l %d2 # check for mantissa of zero - bne.b no_zr # if not, go on - tst.l %d3 # continue zero check - beq.b zer_m # if zero, go directly to binstr -no_zr: - clr.l %d1 # put zero in d1 for addx - add.l &0x00000080,%d3 # inc at bit 7 - addx.l %d1,%d2 # continue inc - and.l &0xffffff80,%d3 # strip off lsb not used by 882 -zer_m: - mov.l %d4,%d0 # put LEN in d0 for binstr call - addq.l &3,%a0 # a0 points to M16 byte in result - bsr binstr # call binstr to convert mant - - -# A15. Convert the exponent to bcd. -# As in A14 above, the exp is converted to bcd and the -# digits are stored in the final string. -# -# Digits are stored in L_SCR1(a6) on return from BINDEC as: -# -# 32 16 15 0 -# ----------------------------------------- -# | 0 | e3 | e2 | e1 | e4 | X | X | X | -# ----------------------------------------- -# -# And are moved into their proper places in FP_SCR0. If digit e4 -# is non-zero, OPERR is signaled. In all cases, all 4 digits are -# written as specified in the 881/882 manual for packed decimal. -# -# Register usage: -# Input/Output -# d0: x/LEN call to binstr - final is 0 -# d1: x/scratch (0);shift count for final exponent packing -# d2: x/ms 32-bits of exp fraction/scratch -# d3: x/ls 32-bits of exp fraction -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG -# d7: k-factor/Unchanged -# a0: ptr to result string/ptr to L_SCR1(a6) -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: abs(YINT) adjusted/float(ILOG) -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:Work area for final result/BCD result -# F_SCR2:Y with original exponent/ILOG/10^4 -# L_SCR1:original USER_FPCR/Exponent digits on return from binstr -# L_SCR2:first word of X packed/Unchanged - -A15_st: - tst.b BINDEC_FLG(%a6) # check for denorm - beq.b not_denorm - ftest.x %fp0 # test for zero - fbeq.w den_zero # if zero, use k-factor or 4933 - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG - bra.b convrt -den_zero: - tst.l %d7 # check sign of the k-factor - blt.b use_ilog # if negative, use ILOG - fmov.s F4933(%pc),%fp0 # force exponent to 4933 - bra.b convrt # do it -use_ilog: - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG - bra.b convrt -not_denorm: - ftest.x %fp0 # test for zero - fbneq.w not_zero # if zero, force exponent - fmov.s FONE(%pc),%fp0 # force exponent to 1 - bra.b convrt # do it -not_zero: - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG -convrt: - fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 - fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory - mov.l 4(%a2),%d2 # move word 2 to d2 - mov.l 8(%a2),%d3 # move word 3 to d3 - mov.w (%a2),%d0 # move exp to d0 - beq.b x_loop_fin # if zero, skip the shift - sub.w &0x3ffd,%d0 # subtract off bias - neg.w %d0 # make exp positive -x_loop: - lsr.l &1,%d2 # shift d2:d3 right - roxr.l &1,%d3 # the number of places - dbf.w %d0,x_loop # given in d0 -x_loop_fin: - clr.l %d1 # put zero in d1 for addx - add.l &0x00000080,%d3 # inc at bit 6 - addx.l %d1,%d2 # continue inc - and.l &0xffffff80,%d3 # strip off lsb not used by 882 - mov.l &4,%d0 # put 4 in d0 for binstr call - lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits - bsr binstr # call binstr to convert exp - mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 - mov.l &12,%d1 # use d1 for shift count - lsr.l %d1,%d0 # shift d0 right by 12 - bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 - lsr.l %d1,%d0 # shift d0 right by 12 - bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 - tst.b %d0 # check if e4 is zero - beq.b A16_st # if zero, skip rest - or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR - - -# A16. Write sign bits to final string. -# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). -# -# Register usage: -# Input/Output -# d0: x/scratch - final is x -# d2: x/x -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG/ILOG adjusted -# d7: k-factor/Unchanged -# a0: ptr to L_SCR1(a6)/Unchanged -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: float(ILOG)/Unchanged -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:BCD result with correct signs -# F_SCR2:ILOG/10^4 -# L_SCR1:Exponent digits on return from binstr -# L_SCR2:first word of X packed/Unchanged - -A16_st: - clr.l %d0 # clr d0 for collection of signs - and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 - tst.l L_SCR2(%a6) # check sign of original mantissa - bge.b mant_p # if pos, don't set SM - mov.l &2,%d0 # move 2 in to d0 for SM -mant_p: - tst.l %d6 # check sign of ILOG - bge.b wr_sgn # if pos, don't set SE - addq.l &1,%d0 # set bit 0 in d0 for SE -wr_sgn: - bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 - -# Clean up and restore all registers used. - - fmov.l &0,%fpsr # clear possible inex2/ainex bits - fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} - movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} - rts - - global PTENRN -PTENRN: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - - global PTENRP -PTENRP: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - - global PTENRM -PTENRM: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 - -######################################################################### -# binstr(): Converts a 64-bit binary integer to bcd. # -# # -# INPUT *************************************************************** # -# d2:d3 = 64-bit binary integer # -# d0 = desired length (LEN) # -# a0 = pointer to start in memory for bcd characters # -# (This pointer must point to byte 4 of the first # -# lword of the packed decimal memory string.) # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to LEN bcd digits representing the 64-bit integer. # -# # -# ALGORITHM *********************************************************** # -# The 64-bit binary is assumed to have a decimal point before # -# bit 63. The fraction is multiplied by 10 using a mul by 2 # -# shift and a mul by 8 shift. The bits shifted out of the # -# msb form a decimal digit. This process is iterated until # -# LEN digits are formed. # -# # -# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # -# digit formed will be assumed the least significant. This is # -# to force the first byte formed to have a 0 in the upper 4 bits. # -# # -# A2. Beginning of the loop: # -# Copy the fraction in d2:d3 to d4:d5. # -# # -# A3. Multiply the fraction in d2:d3 by 8 using bit-field # -# extracts and shifts. The three msbs from d2 will go into d1. # -# # -# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # -# will be collected by the carry. # -# # -# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # -# into d2:d3. D1 will contain the bcd digit formed. # -# # -# A6. Test d7. If zero, the digit formed is the ms digit. If non- # -# zero, it is the ls digit. Put the digit in its place in the # -# upper word of d0. If it is the ls digit, write the word # -# from d0 to memory. # -# # -# A7. Decrement d6 (LEN counter) and repeat the loop until zero. # -# # -######################################################################### - -# Implementation Notes: -# -# The registers are used as follows: -# -# d0: LEN counter -# d1: temp used to form the digit -# d2: upper 32-bits of fraction for mul by 8 -# d3: lower 32-bits of fraction for mul by 8 -# d4: upper 32-bits of fraction for mul by 2 -# d5: lower 32-bits of fraction for mul by 2 -# d6: temp for bit-field extracts -# d7: byte digit formation word;digit count {0,1} -# a0: pointer into memory for packed bcd string formation -# - - global binstr -binstr: - movm.l &0xff00,-(%sp) # {%d0-%d7} - -# -# A1: Init d7 -# - mov.l &1,%d7 # init d7 for second digit - subq.l &1,%d0 # for dbf d0 would have LEN+1 passes -# -# A2. Copy d2:d3 to d4:d5. Start loop. -# -loop: - mov.l %d2,%d4 # copy the fraction before muls - mov.l %d3,%d5 # to d4:d5 -# -# A3. Multiply d2:d3 by 8; extract msbs into d1. -# - bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 - asl.l &3,%d2 # shift d2 left by 3 places - bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 - asl.l &3,%d3 # shift d3 left by 3 places - or.l %d6,%d2 # or in msbs from d3 into d2 -# -# A4. Multiply d4:d5 by 2; add carry out to d1. -# - asl.l &1,%d5 # mul d5 by 2 - roxl.l &1,%d4 # mul d4 by 2 - swap %d6 # put 0 in d6 lower word - addx.w %d6,%d1 # add in extend from mul by 2 -# -# A5. Add mul by 8 to mul by 2. D1 contains the digit formed. -# - add.l %d5,%d3 # add lower 32 bits - nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) - addx.l %d4,%d2 # add with extend upper 32 bits - nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) - addx.w %d6,%d1 # add in extend from add to d1 - swap %d6 # with d6 = 0; put 0 in upper word -# -# A6. Test d7 and branch. -# - tst.w %d7 # if zero, store digit & to loop - beq.b first_d # if non-zero, form byte & write -sec_d: - swap %d7 # bring first digit to word d7b - asl.w &4,%d7 # first digit in upper 4 bits d7b - add.w %d1,%d7 # add in ls digit to d7b - mov.b %d7,(%a0)+ # store d7b byte in memory - swap %d7 # put LEN counter in word d7a - clr.w %d7 # set d7a to signal no digits done - dbf.w %d0,loop # do loop some more! - bra.b end_bstr # finished, so exit -first_d: - swap %d7 # put digit word in d7b - mov.w %d1,%d7 # put new digit in d7b - swap %d7 # put LEN counter in word d7a - addq.w &1,%d7 # set d7a to signal first digit done - dbf.w %d0,loop # do loop some more! - swap %d7 # put last digit in string - lsl.w &4,%d7 # move it to upper 4 bits - mov.b %d7,(%a0)+ # store it in memory string -# -# Clean up and return with result in fp0. -# -end_bstr: - movm.l (%sp)+,&0xff # {%d0-%d7} - rts - -######################################################################### -# XDEF **************************************************************** # -# facc_in_b(): dmem_read_byte failed # -# facc_in_w(): dmem_read_word failed # -# facc_in_l(): dmem_read_long failed # -# facc_in_d(): dmem_read of dbl prec failed # -# facc_in_x(): dmem_read of ext prec failed # -# # -# facc_out_b(): dmem_write_byte failed # -# facc_out_w(): dmem_write_word failed # -# facc_out_l(): dmem_write_long failed # -# facc_out_d(): dmem_write of dbl prec failed # -# facc_out_x(): dmem_write of ext prec failed # -# # -# XREF **************************************************************** # -# _real_access() - exit through access error handler # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Flow jumps here when an FP data fetch call gets an error # -# result. This means the operating system wants an access error frame # -# made out of the current exception stack frame. # -# So, we first call restore() which makes sure that any updated # -# -(an)+ register gets returned to its pre-exception value and then # -# we change the stack to an access error stack frame. # -# # -######################################################################### - -facc_in_b: - movq.l &0x1,%d0 # one byte - bsr.w restore # fix An - - mov.w &0x0121,EXC_VOFF(%a6) # set FSLW - bra.w facc_finish - -facc_in_w: - movq.l &0x2,%d0 # two bytes - bsr.w restore # fix An - - mov.w &0x0141,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_l: - movq.l &0x4,%d0 # four bytes - bsr.w restore # fix An - - mov.w &0x0101,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_d: - movq.l &0x8,%d0 # eight bytes - bsr.w restore # fix An - - mov.w &0x0161,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_x: - movq.l &0xc,%d0 # twelve bytes - bsr.w restore # fix An - - mov.w &0x0161,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -################################################################ - -facc_out_b: - movq.l &0x1,%d0 # one byte - bsr.w restore # restore An - - mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_w: - movq.l &0x2,%d0 # two bytes - bsr.w restore # restore An - - mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_l: - movq.l &0x4,%d0 # four bytes - bsr.w restore # restore An - - mov.w &0x0081,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_d: - movq.l &0x8,%d0 # eight bytes - bsr.w restore # restore An - - mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_x: - mov.l &0xc,%d0 # twelve bytes - bsr.w restore # restore An - - mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW - -# here's where we actually create the access error frame from the -# current exception stack frame. -facc_finish: - mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - mov.l (%sp),-(%sp) # store SR, hi(PC) - mov.l 0x8(%sp),0x4(%sp) # store lo(PC) - mov.l 0xc(%sp),0x8(%sp) # store EA - mov.l &0x00000001,0xc(%sp) # store FSLW - mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) - mov.w &0x4008,0x6(%sp) # store voff - - btst &0x5,(%sp) # supervisor or user mode? - beq.b facc_out2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -facc_out2: - bra.l _real_access - -################################################################## - -# if the effective addressing mode was predecrement or postincrement, -# the emulation has already changed its value to the correct post- -# instruction value. but since we're exiting to the access error -# handler, then AN must be returned to its pre-instruction value. -# we do that here. -restore: - mov.b EXC_OPWORD+0x1(%a6),%d1 - andi.b &0x38,%d1 # extract opmode - cmpi.b %d1,&0x18 # postinc? - beq.w rest_inc - cmpi.b %d1,&0x20 # predec? - beq.w rest_dec - rts - -rest_inc: - mov.b EXC_OPWORD+0x1(%a6),%d1 - andi.w &0x0007,%d1 # fetch An - - mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 - jmp (tbl_rest_inc.b,%pc,%d1.w*1) - -tbl_rest_inc: - short ri_a0 - tbl_rest_inc - short ri_a1 - tbl_rest_inc - short ri_a2 - tbl_rest_inc - short ri_a3 - tbl_rest_inc - short ri_a4 - tbl_rest_inc - short ri_a5 - tbl_rest_inc - short ri_a6 - tbl_rest_inc - short ri_a7 - tbl_rest_inc - -ri_a0: - sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 - rts -ri_a1: - sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 - rts -ri_a2: - sub.l %d0,%a2 # fix a2 - rts -ri_a3: - sub.l %d0,%a3 # fix a3 - rts -ri_a4: - sub.l %d0,%a4 # fix a4 - rts -ri_a5: - sub.l %d0,%a5 # fix a5 - rts -ri_a6: - sub.l %d0,(%a6) # fix stacked a6 - rts -# if it's a fmove out instruction, we don't have to fix a7 -# because we hadn't changed it yet. if it's an opclass two -# instruction (data moved in) and the exception was in supervisor -# mode, then also also wasn't updated. if it was user mode, then -# restore the correct a7 which is in the USP currently. -ri_a7: - cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? - bne.b ri_a7_done # out - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.b ri_a7_done # supervisor - movc %usp,%a0 # restore USP - sub.l %d0,%a0 - movc %a0,%usp -ri_a7_done: - rts - -# need to invert adjustment value if the <ea> was predec -rest_dec: - neg.l %d0 - bra.b rest_inc diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S deleted file mode 100644 index 1f947915..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S +++ /dev/null @@ -1,1456 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -############################################# -set SREGS, -64 -set IREGS, -128 -set IFPREGS, -224 -set SFPREGS, -320 -set IFPCREGS, -332 -set SFPCREGS, -344 -set ICCR, -346 -set SCCR, -348 -set TESTCTR, -352 -set DATA, -384 - -############################################# -TESTTOP: - bra.l _060TESTS_ - short 0x0000 - - bra.l _060TESTS_unimp - short 0x0000 - - bra.l _060TESTS_enable - short 0x0000 - -start_str: - string "Testing 68060 FPSP started:\n" - -start_str_unimp: - string "Testing 68060 FPSP unimplemented instruction started:\n" - -start_str_enable: - string "Testing 68060 FPSP exception enabled started:\n" - -pass_str: - string "passed\n" - -fail_str: - string " failed\n" - - align 0x4 -chk_test: - tst.l %d0 - bne.b test_fail -test_pass: - pea pass_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - rts -test_fail: - mov.l %d1,-(%sp) - bsr.l _print_num - addq.l &0x4,%sp - - pea fail_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - rts - -############################################# -_060TESTS_: - link %a6,&-384 - - movm.l &0x3f3c,-(%sp) - fmovm.x &0xff,-(%sp) - - pea start_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - -### effadd - clr.l TESTCTR(%a6) - pea effadd_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l effadd_0 - - bsr.l chk_test - -### unsupp - clr.l TESTCTR(%a6) - pea unsupp_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l unsupp_0 - - bsr.l chk_test - -### ovfl non-maskable - clr.l TESTCTR(%a6) - pea ovfl_nm_str(%pc) - bsr.l _print_str - bsr.l ovfl_nm_0 - - bsr.l chk_test - -### unfl non-maskable - clr.l TESTCTR(%a6) - pea unfl_nm_str(%pc) - bsr.l _print_str - bsr.l unfl_nm_0 - - bsr.l chk_test - - movm.l (%sp)+,&0x3cfc - fmovm.x (%sp)+,&0xff - - unlk %a6 - rts - -_060TESTS_unimp: - link %a6,&-384 - - movm.l &0x3f3c,-(%sp) - fmovm.x &0xff,-(%sp) - - pea start_str_unimp(%pc) - bsr.l _print_str - addq.l &0x4,%sp - -### unimp - clr.l TESTCTR(%a6) - pea unimp_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l unimp_0 - - bsr.l chk_test - - movm.l (%sp)+,&0x3cfc - fmovm.x (%sp)+,&0xff - - unlk %a6 - rts - -_060TESTS_enable: - link %a6,&-384 - - movm.l &0x3f3c,-(%sp) - fmovm.x &0xff,-(%sp) - - pea start_str_enable(%pc) - bsr.l _print_str - addq.l &0x4,%sp - -### snan - clr.l TESTCTR(%a6) - pea snan_str(%pc) - bsr.l _print_str - bsr.l snan_0 - - bsr.l chk_test - -### operr - clr.l TESTCTR(%a6) - pea operr_str(%pc) - bsr.l _print_str - bsr.l operr_0 - - bsr.l chk_test - -### ovfl - clr.l TESTCTR(%a6) - pea ovfl_str(%pc) - bsr.l _print_str - bsr.l ovfl_0 - - bsr.l chk_test - -### unfl - clr.l TESTCTR(%a6) - pea unfl_str(%pc) - bsr.l _print_str - bsr.l unfl_0 - - bsr.l chk_test - -### dz - clr.l TESTCTR(%a6) - pea dz_str(%pc) - bsr.l _print_str - bsr.l dz_0 - - bsr.l chk_test - -### inexact - clr.l TESTCTR(%a6) - pea inex_str(%pc) - bsr.l _print_str - bsr.l inex_0 - - bsr.l chk_test - - movm.l (%sp)+,&0x3cfc - fmovm.x (%sp)+,&0xff - - unlk %a6 - rts - -############################################# -############################################# - -unimp_str: - string "\tUnimplemented FP instructions..." - - align 0x4 -unimp_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x40000000,DATA+0x0(%a6) - mov.l &0xc90fdaa2,DATA+0x4(%a6) - mov.l &0x2168c235,DATA+0x8(%a6) - - mov.w &0x0000,%cc -unimp_0_pc: - fsin.x DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0xbfbf0000,IFPREGS+0x0(%a6) - mov.l &0x80000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x08000208,IFPCREGS+0x4(%a6) - lea unimp_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -unimp_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x3ffe0000,DATA+0x0(%a6) - mov.l &0xc90fdaa2,DATA+0x4(%a6) - mov.l &0x2168c235,DATA+0x8(%a6) - - mov.w &0x0000,%cc -unimp_1_pc: - ftan.x DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x3fff0000,IFPREGS+0x0(%a6) - mov.l &0x80000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x00000208,IFPCREGS+0x4(%a6) - lea unimp_1_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# fmovecr -unimp_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.w &0x0000,%cc -unimp_2_pc: - fmovcr.x &0x31,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x40000000,IFPREGS+0x0(%a6) - mov.l &0x935d8ddd,IFPREGS+0x4(%a6) - mov.l &0xaaa8ac17,IFPREGS+0x8(%a6) - mov.l &0x00000208,IFPCREGS+0x4(%a6) - lea unimp_2_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# fscc -unimp_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - fmov.l &0x0f000000,%fpsr - mov.l &0x00,%d7 - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.w &0x0000,%cc -unimp_3_pc: - fsgt %d7 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.l &0x0f008080,IFPCREGS+0x4(%a6) - lea unimp_3_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# fdbcc -unimp_4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - fmov.l &0x0f000000,%fpsr - mov.l &0x2,%d7 - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.w &0x0000,%cc -unimp_4_pc: - fdbgt.w %d7,unimp_4_pc - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.w &0xffff,IREGS+28+2(%a6) - mov.l &0x0f008080,IFPCREGS+0x4(%a6) - lea unimp_4_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# ftrapcc -unimp_5: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - fmov.l &0x0f000000,%fpsr - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.w &0x0000,%cc -unimp_5_pc: - ftpgt.l &0xabcdef01 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.l &0x0f008080,IFPCREGS+0x4(%a6) - lea unimp_5_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -############################################# - -effadd_str: - string "\tUnimplemented <ea>..." - - align 0x4 -effadd_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmov.b &0x2,%fp0 - - mov.w &0x0000,%cc -effadd_0_pc: - fmul.x &0xc00000008000000000000000,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0xc0010000,IFPREGS+0x0(%a6) - mov.l &0x80000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x08000000,IFPCREGS+0x4(%a6) - lea effadd_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -effadd_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.w &0x0000,%cc -effadd_1_pc: - fabs.p &0xc12300012345678912345678,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x3e660000,IFPREGS+0x0(%a6) - mov.l &0xd0ed23e8,IFPREGS+0x4(%a6) - mov.l &0xd14035bc,IFPREGS+0x8(%a6) - mov.l &0x00000108,IFPCREGS+0x4(%a6) - lea effadd_1_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -fmovml_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmovm.l &0xffffffffffffffff,%fpcr,%fpsr - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.l &0x0000fff0,IFPCREGS+0x0(%a6) - mov.l &0x0ffffff8,IFPCREGS+0x4(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -fmovml_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmovm.l &0xffffffffffffffff,%fpcr,%fpiar - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.l &0x0000fff0,IFPCREGS+0x0(%a6) - mov.l &0xffffffff,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -fmovml_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmovm.l &0xffffffffffffffff,%fpsr,%fpiar - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.l &0x0ffffff8,IFPCREGS+0x4(%a6) - mov.l &0xffffffff,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -fmovml_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmovm.l &0xffffffffffffffffffffffff,%fpcr,%fpsr,%fpiar - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - mov.l &0x0000fff0,IFPCREGS+0x0(%a6) - mov.l &0x0ffffff8,IFPCREGS+0x4(%a6) - mov.l &0xffffffff,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# fmovmx dynamic -fmovmx_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - fmov.b &0x1,%fp0 - fmov.b &0x2,%fp1 - fmov.b &0x3,%fp2 - fmov.b &0x4,%fp3 - fmov.b &0x5,%fp4 - fmov.b &0x6,%fp5 - fmov.b &0x7,%fp6 - fmov.b &0x8,%fp7 - - fmov.l &0x0,%fpiar - mov.l &0xffffffaa,%d0 - - mov.w &0x0000,ICCR(%a6) - movm.l &0xffff,IREGS(%a6) - - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - - mov.w &0x0000,%cc - - fmovm.x %d0,-(%sp) - - mov.w %cc,SCCR(%a6) - - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - fmov.s &0x7f800000,%fp1 - fmov.s &0x7f800000,%fp3 - fmov.s &0x7f800000,%fp5 - fmov.s &0x7f800000,%fp7 - - fmov.x (%sp)+,%fp1 - fmov.x (%sp)+,%fp3 - fmov.x (%sp)+,%fp5 - fmov.x (%sp)+,%fp7 - - movm.l &0xffff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -fmovmx_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - fmov.b &0x1,%fp0 - fmov.b &0x2,%fp1 - fmov.b &0x3,%fp2 - fmov.b &0x4,%fp3 - fmov.b &0x5,%fp4 - fmov.b &0x6,%fp5 - fmov.b &0x7,%fp6 - fmov.b &0x8,%fp7 - - fmov.x %fp6,-(%sp) - fmov.x %fp4,-(%sp) - fmov.x %fp2,-(%sp) - fmov.x %fp0,-(%sp) - - fmovm.x &0xff,IFPREGS(%a6) - - fmov.s &0x7f800000,%fp6 - fmov.s &0x7f800000,%fp4 - fmov.s &0x7f800000,%fp2 - fmov.s &0x7f800000,%fp0 - - fmov.l &0x0,%fpiar - fmov.l &0x0,%fpsr - mov.l &0xffffffaa,%d0 - - mov.w &0x0000,ICCR(%a6) - movm.l &0xffff,IREGS(%a6) - - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.w &0x0000,%cc - - fmovm.x (%sp)+,%d0 - - mov.w %cc,SCCR(%a6) - - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - movm.l &0xffff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -fmovmx_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - fmov.b &0x1,%fp0 - fmov.b &0x2,%fp1 - fmov.b &0x3,%fp2 - fmov.b &0x4,%fp3 - fmov.b &0x5,%fp4 - fmov.b &0x6,%fp5 - fmov.b &0x7,%fp6 - fmov.b &0x8,%fp7 - - fmov.l &0x0,%fpiar - mov.l &0xffffff00,%d0 - - mov.w &0x0000,ICCR(%a6) - movm.l &0xffff,IREGS(%a6) - - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - - mov.w &0x0000,%cc - - fmovm.x %d0,-(%sp) - - mov.w %cc,SCCR(%a6) - - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - movm.l &0xffff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -########################################################### - -# This test will take a non-maskable overflow directly. -ovfl_nm_str: - string "\tNon-maskable overflow..." - - align 0x4 -ovfl_nm_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmov.b &0x2,%fp0 - mov.l &0x7ffe0000,DATA+0x0(%a6) - mov.l &0x80000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - - mov.w &0x0000,%cc -ovfl_nm_0_pc: - fmul.x DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x7fff0000,IFPREGS+0x0(%a6) - mov.l &0x00000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x02001048,IFPCREGS+0x4(%a6) - lea ovfl_nm_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -########################################################### - -# This test will take an overflow directly. -ovfl_str: - string "\tEnabled overflow..." - - align 0x4 -ovfl_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmov.l &0x00001000,%fpcr - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - fmov.b &0x2,%fp0 - mov.l &0x7ffe0000,DATA+0x0(%a6) - mov.l &0x80000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - - mov.w &0x0000,%cc -ovfl_0_pc: - fmul.x DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x7fff0000,IFPREGS+0x0(%a6) - mov.l &0x00000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x02001048,IFPCREGS+0x4(%a6) - lea ovfl_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -# This test will take an underflow directly. -unfl_str: - string "\tEnabled underflow..." - - align 0x4 -unfl_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmov.l &0x00000800,%fpcr - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x00000000,DATA+0x0(%a6) - mov.l &0x80000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - fmovm.x DATA(%a6),&0x80 - - mov.w &0x0000,%cc -unfl_0_pc: - fdiv.b &0x2,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x00000000,IFPREGS+0x0(%a6) - mov.l &0x40000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x00000800,IFPCREGS+0x4(%a6) - lea unfl_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -# This test will take a non-maskable underflow directly. -unfl_nm_str: - string "\tNon-maskable underflow..." - - align 0x4 -unfl_nm_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x00000000,DATA+0x0(%a6) - mov.l &0x80000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - fmovm.x DATA(%a6),&0x80 - - mov.w &0x0000,%cc -unfl_nm_0_pc: - fdiv.b &0x2,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x00000000,IFPREGS+0x0(%a6) - mov.l &0x40000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x00000800,IFPCREGS+0x4(%a6) - lea unfl_nm_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -inex_str: - string "\tEnabled inexact..." - - align 0x4 -inex_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmov.l &0x00000200,%fpcr # enable inexact - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x50000000,DATA+0x0(%a6) - mov.l &0x80000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - fmovm.x DATA(%a6),&0x80 - - mov.w &0x0000,%cc -inex_0_pc: - fadd.b &0x2,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x50000000,IFPREGS+0x0(%a6) - mov.l &0x80000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x00000208,IFPCREGS+0x4(%a6) - lea inex_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -snan_str: - string "\tEnabled SNAN..." - - align 0x4 -snan_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmov.l &0x00004000,%fpcr # enable SNAN - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0xffff0000,DATA+0x0(%a6) - mov.l &0x00000000,DATA+0x4(%a6) - mov.l &0x00000001,DATA+0x8(%a6) - fmovm.x DATA(%a6),&0x80 - - mov.w &0x0000,%cc -snan_0_pc: - fadd.b &0x2,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0xffff0000,IFPREGS+0x0(%a6) - mov.l &0x00000000,IFPREGS+0x4(%a6) - mov.l &0x00000001,IFPREGS+0x8(%a6) - mov.l &0x09004080,IFPCREGS+0x4(%a6) - lea snan_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -operr_str: - string "\tEnabled OPERR..." - - align 0x4 -operr_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmov.l &0x00002000,%fpcr # enable OPERR - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0xffff0000,DATA+0x0(%a6) - mov.l &0x00000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - fmovm.x DATA(%a6),&0x80 - - mov.w &0x0000,%cc -operr_0_pc: - fadd.s &0x7f800000,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0xffff0000,IFPREGS+0x0(%a6) - mov.l &0x00000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x01002080,IFPCREGS+0x4(%a6) - lea operr_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -dz_str: - string "\tEnabled DZ..." - - align 0x4 -dz_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmov.l &0x00000400,%fpcr # enable DZ - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x40000000,DATA+0x0(%a6) - mov.l &0x80000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - fmovm.x DATA(%a6),&0x80 - - mov.w &0x0000,%cc -dz_0_pc: - fdiv.b &0x0,%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x40000000,IFPREGS+0x0(%a6) - mov.l &0x80000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x02000410,IFPCREGS+0x4(%a6) - lea dz_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -##################################################################### - -unsupp_str: - string "\tUnimplemented data type/format..." - -# an unnormalized number - align 0x4 -unsupp_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0xc03f0000,DATA+0x0(%a6) - mov.l &0x00000000,DATA+0x4(%a6) - mov.l &0x00000001,DATA+0x8(%a6) - fmov.b &0x2,%fp0 - mov.w &0x0000,%cc -unsupp_0_pc: - fmul.x DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0xc0010000,IFPREGS+0x0(%a6) - mov.l &0x80000000,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x08000000,IFPCREGS+0x4(%a6) - lea unsupp_0_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# a denormalized number -unsupp_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0x80000000,DATA+0x0(%a6) - mov.l &0x01000000,DATA+0x4(%a6) - mov.l &0x00000000,DATA+0x8(%a6) - fmov.l &0x7fffffff,%fp0 - - mov.w &0x0000,%cc -unsupp_1_pc: - fmul.x DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x80170000,IFPREGS+0x0(%a6) - mov.l &0xfffffffe,IFPREGS+0x4(%a6) - mov.l &0x00000000,IFPREGS+0x8(%a6) - mov.l &0x08000000,IFPCREGS+0x4(%a6) - lea unsupp_1_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - -# packed -unsupp_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - fmovm.x DEF_FPREGS(%pc),&0xff - fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar - - mov.w &0x0000,ICCR(%a6) - movm.l &0x7fff,IREGS(%a6) - fmovm.x &0xff,IFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) - - mov.l &0xc1230001,DATA+0x0(%a6) - mov.l &0x23456789,DATA+0x4(%a6) - mov.l &0x12345678,DATA+0x8(%a6) - - mov.w &0x0000,%cc -unsupp_2_pc: - fabs.p DATA(%a6),%fp0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - fmovm.x &0xff,SFPREGS(%a6) - fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) - - mov.l &0x3e660000,IFPREGS+0x0(%a6) - mov.l &0xd0ed23e8,IFPREGS+0x4(%a6) - mov.l &0xd14035bc,IFPREGS+0x8(%a6) - mov.l &0x00000108,IFPCREGS+0x4(%a6) - lea unsupp_2_pc(%pc),%a0 - mov.l %a0,IFPCREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - bsr.l chkfpregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -########################################################### -########################################################### - -chkregs: - lea IREGS(%a6),%a0 - lea SREGS(%a6),%a1 - mov.l &14,%d0 -chkregs_loop: - cmp.l (%a0)+,(%a1)+ - bne.l chkregs_error - dbra.w %d0,chkregs_loop - - mov.w ICCR(%a6),%d0 - mov.w SCCR(%a6),%d1 - cmp.w %d0,%d1 - bne.l chkregs_error - - clr.l %d0 - rts - -chkregs_error: - movq.l &0x1,%d0 - rts - -error: - mov.l TESTCTR(%a6),%d1 - movq.l &0x1,%d0 - rts - -chkfpregs: - lea IFPREGS(%a6),%a0 - lea SFPREGS(%a6),%a1 - mov.l &23,%d0 -chkfpregs_loop: - cmp.l (%a0)+,(%a1)+ - bne.l chkfpregs_error - dbra.w %d0,chkfpregs_loop - - lea IFPCREGS(%a6),%a0 - lea SFPCREGS(%a6),%a1 - cmp.l (%a0)+,(%a1)+ - bne.l chkfpregs_error - cmp.l (%a0)+,(%a1)+ - bne.l chkfpregs_error - cmp.l (%a0)+,(%a1)+ - bne.l chkfpregs_error - - clr.l %d0 - rts - -chkfpregs_error: - movq.l &0x1,%d0 - rts - -DEF_REGS: - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - -DEF_FPREGS: - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - long 0x7fff0000, 0xffffffff, 0xffffffff - -DEF_FPCREGS: - long 0x00000000, 0x00000000, 0x00000000 - -############################################################ - -_print_str: - mov.l %d0,-(%sp) - mov.l (TESTTOP-0x80+0x0,%pc),%d0 - pea (TESTTOP-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -_print_num: - mov.l %d0,-(%sp) - mov.l (TESTTOP-0x80+0x4,%pc),%d0 - pea (TESTTOP-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -############################################################ diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S deleted file mode 100644 index 970abaf3..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S +++ /dev/null @@ -1,932 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# litop.s: -# This file is appended to the top of the 060FPLSP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located here. -# - - bra.l _060LSP__idivs64_ - short 0x0000 - bra.l _060LSP__idivu64_ - short 0x0000 - - bra.l _060LSP__imuls64_ - short 0x0000 - bra.l _060LSP__imulu64_ - short 0x0000 - - bra.l _060LSP__cmp2_Ab_ - short 0x0000 - bra.l _060LSP__cmp2_Aw_ - short 0x0000 - bra.l _060LSP__cmp2_Al_ - short 0x0000 - bra.l _060LSP__cmp2_Db_ - short 0x0000 - bra.l _060LSP__cmp2_Dw_ - short 0x0000 - bra.l _060LSP__cmp2_Dl_ - short 0x0000 - -# leave room for future possible aditions. - align 0x200 - -######################################################################### -# XDEF **************************************************************** # -# _060LSP__idivu64_(): Emulate 64-bit unsigned div instruction. # -# _060LSP__idivs64_(): Emulate 64-bit signed div instruction. # -# # -# This is the library version which is accessed as a subroutine # -# and therefore does not work exactly like the 680X0 div{s,u}.l # -# 64-bit divide instruction. # -# # -# XREF **************************************************************** # -# None. # -# # -# INPUT *************************************************************** # -# 0x4(sp) = divisor # -# 0x8(sp) = hi(dividend) # -# 0xc(sp) = lo(dividend) # -# 0x10(sp) = pointer to location to place quotient/remainder # -# # -# OUTPUT ************************************************************** # -# 0x10(sp) = points to location of remainder/quotient. # -# remainder is in first longword, quotient is in 2nd. # -# # -# ALGORITHM *********************************************************** # -# If the operands are signed, make them unsigned and save the # -# sign info for later. Separate out special cases like divide-by-zero # -# or 32-bit divides if possible. Else, use a special math algorithm # -# to calculate the result. # -# Restore sign info if signed instruction. Set the condition # -# codes before performing the final "rts". If the divisor was equal to # -# zero, then perform a divide-by-zero using a 16-bit implemented # -# divide instruction. This way, the operating system can record that # -# the event occurred even though it may not point to the correct place. # -# # -######################################################################### - -set POSNEG, -1 -set NDIVISOR, -2 -set NDIVIDEND, -3 -set DDSECOND, -4 -set DDNORMAL, -8 -set DDQUOTIENT, -12 -set DIV64_CC, -16 - -########## -# divs.l # -########## - global _060LSP__idivs64_ -_060LSP__idivs64_: -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-16 - movm.l &0x3f00,-(%sp) # save d2-d7 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,DIV64_CC(%a6) - st POSNEG(%a6) # signed operation - bra.b ldiv64_cont - -########## -# divu.l # -########## - global _060LSP__idivu64_ -_060LSP__idivu64_: -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-16 - movm.l &0x3f00,-(%sp) # save d2-d7 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,DIV64_CC(%a6) - sf POSNEG(%a6) # unsigned operation - -ldiv64_cont: - mov.l 0x8(%a6),%d7 # fetch divisor - - beq.w ldiv64eq0 # divisor is = 0!!! - - mov.l 0xc(%a6), %d5 # get dividend hi - mov.l 0x10(%a6), %d6 # get dividend lo - -# separate signed and unsigned divide - tst.b POSNEG(%a6) # signed or unsigned? - beq.b ldspecialcases # use positive divide - -# save the sign of the divisor -# make divisor unsigned if it's negative - tst.l %d7 # chk sign of divisor - slt NDIVISOR(%a6) # save sign of divisor - bpl.b ldsgndividend - neg.l %d7 # complement negative divisor - -# save the sign of the dividend -# make dividend unsigned if it's negative -ldsgndividend: - tst.l %d5 # chk sign of hi(dividend) - slt NDIVIDEND(%a6) # save sign of dividend - bpl.b ldspecialcases - - mov.w &0x0, %cc # clear 'X' cc bit - negx.l %d6 # complement signed dividend - negx.l %d5 - -# extract some special cases: -# - is (dividend == 0) ? -# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) -ldspecialcases: - tst.l %d5 # is (hi(dividend) == 0) - bne.b ldnormaldivide # no, so try it the long way - - tst.l %d6 # is (lo(dividend) == 0), too - beq.w lddone # yes, so (dividend == 0) - - cmp.l %d7,%d6 # is (divisor <= lo(dividend)) - bls.b ld32bitdivide # yes, so use 32 bit divide - - exg %d5,%d6 # q = 0, r = dividend - bra.w ldivfinish # can't divide, we're done. - -ld32bitdivide: - tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! - - bra.b ldivfinish - -ldnormaldivide: -# last special case: -# - is hi(dividend) >= divisor ? if yes, then overflow - cmp.l %d7,%d5 - bls.b lddovf # answer won't fit in 32 bits - -# perform the divide algorithm: - bsr.l ldclassical # do int divide - -# separate into signed and unsigned finishes. -ldivfinish: - tst.b POSNEG(%a6) # do divs, divu separately - beq.b lddone # divu has no processing!!! - -# it was a divs.l, so ccode setting is a little more complicated... - tst.b NDIVIDEND(%a6) # remainder has same sign - beq.b ldcc # as dividend. - neg.l %d5 # sgn(rem) = sgn(dividend) -ldcc: - mov.b NDIVISOR(%a6), %d0 - eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative - beq.b ldqpos # branch to quot positive - -# 0x80000000 is the largest number representable as a 32-bit negative -# number. the negative of 0x80000000 is 0x80000000. - cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? - bhi.b lddovf - - neg.l %d6 # make (-quot) 2's comp - - bra.b lddone - -ldqpos: - btst &0x1f, %d6 # will (+quot) fit in 32 bits? - bne.b lddovf - -lddone: -# if the register numbers are the same, only the quotient gets saved. -# so, if we always save the quotient second, we save ourselves a cmp&beq - andi.w &0x10,DIV64_CC(%a6) - mov.w DIV64_CC(%a6),%cc - tst.l %d6 # may set 'N' ccode bit - -# here, the result is in d1 and d0. the current strategy is to save -# the values at the location pointed to by a0. -# use movm here to not disturb the condition codes. -ldexit: - movm.l &0x0060,([0x14,%a6]) # save result - -# EPILOGUE BEGIN ######################################################## -# fmovm.l (%sp)+,&0x0 # restore no fpregs - movm.l (%sp)+,&0x00fc # restore d2-d7 - unlk %a6 -# EPILOGUE END ########################################################## - - rts - -# the result should be the unchanged dividend -lddovf: - mov.l 0xc(%a6), %d5 # get dividend hi - mov.l 0x10(%a6), %d6 # get dividend lo - - andi.w &0x1c,DIV64_CC(%a6) - ori.w &0x02,DIV64_CC(%a6) # set 'V' ccode bit - mov.w DIV64_CC(%a6),%cc - - bra.b ldexit - -ldiv64eq0: - mov.l 0xc(%a6),([0x14,%a6]) - mov.l 0x10(%a6),([0x14,%a6],0x4) - - mov.w DIV64_CC(%a6),%cc - -# EPILOGUE BEGIN ######################################################## -# fmovm.l (%sp)+,&0x0 # restore no fpregs - movm.l (%sp)+,&0x00fc # restore d2-d7 - unlk %a6 -# EPILOGUE END ########################################################## - - divu.w &0x0,%d0 # force a divbyzero exception - rts - -########################################################################### -######################################################################### -# This routine uses the 'classical' Algorithm D from Donald Knuth's # -# Art of Computer Programming, vol II, Seminumerical Algorithms. # -# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # -# where U,V are words of the quadword dividend and longword divisor, # -# and U1, V1 are the most significant words. # -# # -# The most sig. longword of the 64 bit dividend must be in %d5, least # -# in %d6. The divisor must be in the variable ddivisor, and the # -# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # -# The quotient is returned in %d6, remainder in %d5, unless the # -# v (overflow) bit is set in the saved %ccr. If overflow, the dividend # -# is unchanged. # -######################################################################### -ldclassical: -# if the divisor msw is 0, use simpler algorithm then the full blown -# one at ddknuth: - - cmpi.l %d7, &0xffff - bhi.b lddknuth # go use D. Knuth algorithm - -# Since the divisor is only a word (and larger than the mslw of the dividend), -# a simpler algorithm may be used : -# In the general case, four quotient words would be created by -# dividing the divisor word into each dividend word. In this case, -# the first two quotient words must be zero, or overflow would occur. -# Since we already checked this case above, we can treat the most significant -# longword of the dividend as (0) remainder (see Knuth) and merely complete -# the last two divisions to get a quotient longword and word remainder: - - clr.l %d1 - swap %d5 # same as r*b if previous step rqd - swap %d6 # get u3 to lsw position - mov.w %d6, %d5 # rb + u3 - - divu.w %d7, %d5 - - mov.w %d5, %d1 # first quotient word - swap %d6 # get u4 - mov.w %d6, %d5 # rb + u4 - - divu.w %d7, %d5 - - swap %d1 - mov.w %d5, %d1 # 2nd quotient 'digit' - clr.w %d5 - swap %d5 # now remainder - mov.l %d1, %d6 # and quotient - - rts - -lddknuth: -# In this algorithm, the divisor is treated as a 2 digit (word) number -# which is divided into a 3 digit (word) dividend to get one quotient -# digit (word). After subtraction, the dividend is shifted and the -# process repeated. Before beginning, the divisor and quotient are -# 'normalized' so that the process of estimating the quotient digit -# will yield verifiably correct results.. - - clr.l DDNORMAL(%a6) # count of shifts for normalization - clr.b DDSECOND(%a6) # clear flag for quotient digits - clr.l %d1 # %d1 will hold trial quotient -lddnchk: - btst &31, %d7 # must we normalize? first word of - bne.b lddnormalized # divisor (V1) must be >= 65536/2 - addq.l &0x1, DDNORMAL(%a6) # count normalization shifts - lsl.l &0x1, %d7 # shift the divisor - lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 - roxl.l &0x1, %d5 # shift u1,u2 - bra.w lddnchk -lddnormalized: - -# Now calculate an estimate of the quotient words (msw first, then lsw). -# The comments use subscripts for the first quotient digit determination. - mov.l %d7, %d3 # divisor - mov.l %d5, %d2 # dividend mslw - swap %d2 - swap %d3 - cmp.w %d2, %d3 # V1 = U1 ? - bne.b lddqcalc1 - mov.w &0xffff, %d1 # use max trial quotient word - bra.b lddadj0 -lddqcalc1: - mov.l %d5, %d1 - - divu.w %d3, %d1 # use quotient of mslw/msw - - andi.l &0x0000ffff, %d1 # zero any remainder -lddadj0: - -# now test the trial quotient and adjust. This step plus the -# normalization assures (according to Knuth) that the trial -# quotient will be at worst 1 too large. - mov.l %d6, -(%sp) - clr.w %d6 # word u3 left - swap %d6 # in lsw position -lddadj1: mov.l %d7, %d3 - mov.l %d1, %d2 - mulu.w %d7, %d2 # V2q - swap %d3 - mulu.w %d1, %d3 # V1q - mov.l %d5, %d4 # U1U2 - sub.l %d3, %d4 # U1U2 - V1q - - swap %d4 - - mov.w %d4,%d0 - mov.w %d6,%d4 # insert lower word (U3) - - tst.w %d0 # is upper word set? - bne.w lddadjd1 - -# add.l %d6, %d4 # (U1U2 - V1q) + U3 - - cmp.l %d2, %d4 - bls.b lddadjd1 # is V2q > (U1U2-V1q) + U3 ? - subq.l &0x1, %d1 # yes, decrement and recheck - bra.b lddadj1 -lddadjd1: -# now test the word by multiplying it by the divisor (V1V2) and comparing -# the 3 digit (word) result with the current dividend words - mov.l %d5, -(%sp) # save %d5 (%d6 already saved) - mov.l %d1, %d6 - swap %d6 # shift answer to ms 3 words - mov.l %d7, %d5 - bsr.l ldmm2 - mov.l %d5, %d2 # now %d2,%d3 are trial*divisor - mov.l %d6, %d3 - mov.l (%sp)+, %d5 # restore dividend - mov.l (%sp)+, %d6 - sub.l %d3, %d6 - subx.l %d2, %d5 # subtract double precision - bcc ldd2nd # no carry, do next quotient digit - subq.l &0x1, %d1 # q is one too large -# need to add back divisor longword to current ms 3 digits of dividend -# - according to Knuth, this is done only 2 out of 65536 times for random -# divisor, dividend selection. - clr.l %d2 - mov.l %d7, %d3 - swap %d3 - clr.w %d3 # %d3 now ls word of divisor - add.l %d3, %d6 # aligned with 3rd word of dividend - addx.l %d2, %d5 - mov.l %d7, %d3 - clr.w %d3 # %d3 now ms word of divisor - swap %d3 # aligned with 2nd word of dividend - add.l %d3, %d5 -ldd2nd: - tst.b DDSECOND(%a6) # both q words done? - bne.b lddremain -# first quotient digit now correct. store digit and shift the -# (subtracted) dividend - mov.w %d1, DDQUOTIENT(%a6) - clr.l %d1 - swap %d5 - swap %d6 - mov.w %d6, %d5 - clr.w %d6 - st DDSECOND(%a6) # second digit - bra.w lddnormalized -lddremain: -# add 2nd word to quotient, get the remainder. - mov.w %d1, DDQUOTIENT+2(%a6) -# shift down one word/digit to renormalize remainder. - mov.w %d5, %d6 - swap %d6 - swap %d5 - mov.l DDNORMAL(%a6), %d7 # get norm shift count - beq.b lddrn - subq.l &0x1, %d7 # set for loop count -lddnlp: - lsr.l &0x1, %d5 # shift into %d6 - roxr.l &0x1, %d6 - dbf %d7, lddnlp -lddrn: - mov.l %d6, %d5 # remainder - mov.l DDQUOTIENT(%a6), %d6 # quotient - - rts -ldmm2: -# factors for the 32X32->64 multiplication are in %d5 and %d6. -# returns 64 bit result in %d5 (hi) %d6(lo). -# destroys %d2,%d3,%d4. - -# multiply hi,lo words of each factor to get 4 intermediate products - mov.l %d6, %d2 - mov.l %d6, %d3 - mov.l %d5, %d4 - swap %d3 - swap %d4 - mulu.w %d5, %d6 # %d6 <- lsw*lsw - mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source - mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest - mulu.w %d4, %d3 # %d3 <- msw*msw -# now use swap and addx to consolidate to two longwords - clr.l %d4 - swap %d6 - add.w %d5, %d6 # add msw of l*l to lsw of m*l product - addx.w %d4, %d3 # add any carry to m*m product - add.w %d2, %d6 # add in lsw of other m*l product - addx.w %d4, %d3 # add any carry to m*m product - swap %d6 # %d6 is low 32 bits of final product - clr.w %d5 - clr.w %d2 # lsw of two mixed products used, - swap %d5 # now use msws of longwords - swap %d2 - add.l %d2, %d5 - add.l %d3, %d5 # %d5 now ms 32 bits of final product - rts - -######################################################################### -# XDEF **************************************************************** # -# _060LSP__imulu64_(): Emulate 64-bit unsigned mul instruction # -# _060LSP__imuls64_(): Emulate 64-bit signed mul instruction. # -# # -# This is the library version which is accessed as a subroutine # -# and therefore does not work exactly like the 680X0 mul{s,u}.l # -# 64-bit multiply instruction. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# 0x4(sp) = multiplier # -# 0x8(sp) = multiplicand # -# 0xc(sp) = pointer to location to place 64-bit result # -# # -# OUTPUT ************************************************************** # -# 0xc(sp) = points to location of 64-bit result # -# # -# ALGORITHM *********************************************************** # -# Perform the multiply in pieces using 16x16->32 unsigned # -# multiplies and "add" instructions. # -# Set the condition codes as appropriate before performing an # -# "rts". # -# # -######################################################################### - -set MUL64_CC, -4 - - global _060LSP__imulu64_ -_060LSP__imulu64_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,MUL64_CC(%a6) # save incoming ccodes - - mov.l 0x8(%a6),%d0 # store multiplier in d0 - beq.w mulu64_zero # handle zero separately - - mov.l 0xc(%a6),%d1 # get multiplicand in d1 - beq.w mulu64_zero # handle zero separately - -######################################################################### -# 63 32 0 # -# ---------------------------- # -# | hi(mplier) * hi(mplicand)| # -# ---------------------------- # -# ----------------------------- # -# | hi(mplier) * lo(mplicand) | # -# ----------------------------- # -# ----------------------------- # -# | lo(mplier) * hi(mplicand) | # -# ----------------------------- # -# | ----------------------------- # -# --|-- | lo(mplier) * lo(mplicand) | # -# | ----------------------------- # -# ======================================================== # -# -------------------------------------------------------- # -# | hi(result) | lo(result) | # -# -------------------------------------------------------- # -######################################################################### -mulu64_alg: -# load temp registers with operands - mov.l %d0,%d2 # mr in d2 - mov.l %d0,%d3 # mr in d3 - mov.l %d1,%d4 # md in d4 - swap %d3 # hi(mr) in lo d3 - swap %d4 # hi(md) in lo d4 - -# complete necessary multiplies: - mulu.w %d1,%d0 # [1] lo(mr) * lo(md) - mulu.w %d3,%d1 # [2] hi(mr) * lo(md) - mulu.w %d4,%d2 # [3] lo(mr) * hi(md) - mulu.w %d4,%d3 # [4] hi(mr) * hi(md) - -# add lo portions of [2],[3] to hi portion of [1]. -# add carries produced from these adds to [4]. -# lo([1]) is the final lo 16 bits of the result. - clr.l %d4 # load d4 w/ zero value - swap %d0 # hi([1]) <==> lo([1]) - add.w %d1,%d0 # hi([1]) + lo([2]) - addx.l %d4,%d3 # [4] + carry - add.w %d2,%d0 # hi([1]) + lo([3]) - addx.l %d4,%d3 # [4] + carry - swap %d0 # lo([1]) <==> hi([1]) - -# lo portions of [2],[3] have been added in to final result. -# now, clear lo, put hi in lo reg, and add to [4] - clr.w %d1 # clear lo([2]) - clr.w %d2 # clear hi([3]) - swap %d1 # hi([2]) in lo d1 - swap %d2 # hi([3]) in lo d2 - add.l %d2,%d1 # [4] + hi([2]) - add.l %d3,%d1 # [4] + hi([3]) - -# now, grab the condition codes. only one that can be set is 'N'. -# 'N' CAN be set if the operation is unsigned if bit 63 is set. - mov.w MUL64_CC(%a6),%d4 - andi.b &0x10,%d4 # keep old 'X' bit - tst.l %d1 # may set 'N' bit - bpl.b mulu64_ddone - ori.b &0x8,%d4 # set 'N' bit -mulu64_ddone: - mov.w %d4,%cc - -# here, the result is in d1 and d0. the current strategy is to save -# the values at the location pointed to by a0. -# use movm here to not disturb the condition codes. -mulu64_end: - exg %d1,%d0 - movm.l &0x0003,([0x10,%a6]) # save result - -# EPILOGUE BEGIN ######################################################## -# fmovm.l (%sp)+,&0x0 # restore no fpregs - movm.l (%sp)+,&0x001c # restore d2-d4 - unlk %a6 -# EPILOGUE END ########################################################## - - rts - -# one or both of the operands is zero so the result is also zero. -# save the zero result to the register file and set the 'Z' ccode bit. -mulu64_zero: - clr.l %d0 - clr.l %d1 - - mov.w MUL64_CC(%a6),%d4 - andi.b &0x10,%d4 - ori.b &0x4,%d4 - mov.w %d4,%cc # set 'Z' ccode bit - - bra.b mulu64_end - -########## -# muls.l # -########## - global _060LSP__imuls64_ -_060LSP__imuls64_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3c00,-(%sp) # save d2-d5 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,MUL64_CC(%a6) # save incoming ccodes - - mov.l 0x8(%a6),%d0 # store multiplier in d0 - beq.b mulu64_zero # handle zero separately - - mov.l 0xc(%a6),%d1 # get multiplicand in d1 - beq.b mulu64_zero # handle zero separately - - clr.b %d5 # clear sign tag - tst.l %d0 # is multiplier negative? - bge.b muls64_chk_md_sgn # no - neg.l %d0 # make multiplier positive - - ori.b &0x1,%d5 # save multiplier sgn - -# the result sign is the exclusive or of the operand sign bits. -muls64_chk_md_sgn: - tst.l %d1 # is multiplicand negative? - bge.b muls64_alg # no - neg.l %d1 # make multiplicand positive - - eori.b &0x1,%d5 # calculate correct sign - -######################################################################### -# 63 32 0 # -# ---------------------------- # -# | hi(mplier) * hi(mplicand)| # -# ---------------------------- # -# ----------------------------- # -# | hi(mplier) * lo(mplicand) | # -# ----------------------------- # -# ----------------------------- # -# | lo(mplier) * hi(mplicand) | # -# ----------------------------- # -# | ----------------------------- # -# --|-- | lo(mplier) * lo(mplicand) | # -# | ----------------------------- # -# ======================================================== # -# -------------------------------------------------------- # -# | hi(result) | lo(result) | # -# -------------------------------------------------------- # -######################################################################### -muls64_alg: -# load temp registers with operands - mov.l %d0,%d2 # mr in d2 - mov.l %d0,%d3 # mr in d3 - mov.l %d1,%d4 # md in d4 - swap %d3 # hi(mr) in lo d3 - swap %d4 # hi(md) in lo d4 - -# complete necessary multiplies: - mulu.w %d1,%d0 # [1] lo(mr) * lo(md) - mulu.w %d3,%d1 # [2] hi(mr) * lo(md) - mulu.w %d4,%d2 # [3] lo(mr) * hi(md) - mulu.w %d4,%d3 # [4] hi(mr) * hi(md) - -# add lo portions of [2],[3] to hi portion of [1]. -# add carries produced from these adds to [4]. -# lo([1]) is the final lo 16 bits of the result. - clr.l %d4 # load d4 w/ zero value - swap %d0 # hi([1]) <==> lo([1]) - add.w %d1,%d0 # hi([1]) + lo([2]) - addx.l %d4,%d3 # [4] + carry - add.w %d2,%d0 # hi([1]) + lo([3]) - addx.l %d4,%d3 # [4] + carry - swap %d0 # lo([1]) <==> hi([1]) - -# lo portions of [2],[3] have been added in to final result. -# now, clear lo, put hi in lo reg, and add to [4] - clr.w %d1 # clear lo([2]) - clr.w %d2 # clear hi([3]) - swap %d1 # hi([2]) in lo d1 - swap %d2 # hi([3]) in lo d2 - add.l %d2,%d1 # [4] + hi([2]) - add.l %d3,%d1 # [4] + hi([3]) - - tst.b %d5 # should result be signed? - beq.b muls64_done # no - -# result should be a signed negative number. -# compute 2's complement of the unsigned number: -# -negate all bits and add 1 -muls64_neg: - not.l %d0 # negate lo(result) bits - not.l %d1 # negate hi(result) bits - addq.l &1,%d0 # add 1 to lo(result) - addx.l %d4,%d1 # add carry to hi(result) - -muls64_done: - mov.w MUL64_CC(%a6),%d4 - andi.b &0x10,%d4 # keep old 'X' bit - tst.l %d1 # may set 'N' bit - bpl.b muls64_ddone - ori.b &0x8,%d4 # set 'N' bit -muls64_ddone: - mov.w %d4,%cc - -# here, the result is in d1 and d0. the current strategy is to save -# the values at the location pointed to by a0. -# use movm here to not disturb the condition codes. -muls64_end: - exg %d1,%d0 - movm.l &0x0003,([0x10,%a6]) # save result at (a0) - -# EPILOGUE BEGIN ######################################################## -# fmovm.l (%sp)+,&0x0 # restore no fpregs - movm.l (%sp)+,&0x003c # restore d2-d5 - unlk %a6 -# EPILOGUE END ########################################################## - - rts - -# one or both of the operands is zero so the result is also zero. -# save the zero result to the register file and set the 'Z' ccode bit. -muls64_zero: - clr.l %d0 - clr.l %d1 - - mov.w MUL64_CC(%a6),%d4 - andi.b &0x10,%d4 - ori.b &0x4,%d4 - mov.w %d4,%cc # set 'Z' ccode bit - - bra.b muls64_end - -######################################################################### -# XDEF **************************************************************** # -# _060LSP__cmp2_Ab_(): Emulate "cmp2.b An,<ea>". # -# _060LSP__cmp2_Aw_(): Emulate "cmp2.w An,<ea>". # -# _060LSP__cmp2_Al_(): Emulate "cmp2.l An,<ea>". # -# _060LSP__cmp2_Db_(): Emulate "cmp2.b Dn,<ea>". # -# _060LSP__cmp2_Dw_(): Emulate "cmp2.w Dn,<ea>". # -# _060LSP__cmp2_Dl_(): Emulate "cmp2.l Dn,<ea>". # -# # -# This is the library version which is accessed as a subroutine # -# and therefore does not work exactly like the 680X0 "cmp2" # -# instruction. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# 0x4(sp) = Rn # -# 0x8(sp) = pointer to boundary pair # -# # -# OUTPUT ************************************************************** # -# cc = condition codes are set correctly # -# # -# ALGORITHM *********************************************************** # -# In the interest of simplicity, all operands are converted to # -# longword size whether the operation is byte, word, or long. The # -# bounds are sign extended accordingly. If Rn is a data regsiter, Rn is # -# also sign extended. If Rn is an address register, it need not be sign # -# extended since the full register is always used. # -# The condition codes are set correctly before the final "rts". # -# # -######################################################################### - -set CMP2_CC, -4 - - global _060LSP__cmp2_Ab_ -_060LSP__cmp2_Ab_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,CMP2_CC(%a6) - mov.l 0x8(%a6), %d2 # get regval - - mov.b ([0xc,%a6],0x0),%d0 - mov.b ([0xc,%a6],0x1),%d1 - - extb.l %d0 # sign extend lo bnd - extb.l %d1 # sign extend hi bnd - bra.w l_cmp2_cmp # go do the compare emulation - - global _060LSP__cmp2_Aw_ -_060LSP__cmp2_Aw_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,CMP2_CC(%a6) - mov.l 0x8(%a6), %d2 # get regval - - mov.w ([0xc,%a6],0x0),%d0 - mov.w ([0xc,%a6],0x2),%d1 - - ext.l %d0 # sign extend lo bnd - ext.l %d1 # sign extend hi bnd - bra.w l_cmp2_cmp # go do the compare emulation - - global _060LSP__cmp2_Al_ -_060LSP__cmp2_Al_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,CMP2_CC(%a6) - mov.l 0x8(%a6), %d2 # get regval - - mov.l ([0xc,%a6],0x0),%d0 - mov.l ([0xc,%a6],0x4),%d1 - bra.w l_cmp2_cmp # go do the compare emulation - - global _060LSP__cmp2_Db_ -_060LSP__cmp2_Db_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,CMP2_CC(%a6) - mov.l 0x8(%a6), %d2 # get regval - - mov.b ([0xc,%a6],0x0),%d0 - mov.b ([0xc,%a6],0x1),%d1 - - extb.l %d0 # sign extend lo bnd - extb.l %d1 # sign extend hi bnd - -# operation is a data register compare. -# sign extend byte to long so we can do simple longword compares. - extb.l %d2 # sign extend data byte - bra.w l_cmp2_cmp # go do the compare emulation - - global _060LSP__cmp2_Dw_ -_060LSP__cmp2_Dw_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,CMP2_CC(%a6) - mov.l 0x8(%a6), %d2 # get regval - - mov.w ([0xc,%a6],0x0),%d0 - mov.w ([0xc,%a6],0x2),%d1 - - ext.l %d0 # sign extend lo bnd - ext.l %d1 # sign extend hi bnd - -# operation is a data register compare. -# sign extend word to long so we can do simple longword compares. - ext.l %d2 # sign extend data word - bra.w l_cmp2_cmp # go emulate compare - - global _060LSP__cmp2_Dl_ -_060LSP__cmp2_Dl_: - -# PROLOGUE BEGIN ######################################################## - link.w %a6,&-4 - movm.l &0x3800,-(%sp) # save d2-d4 -# fmovm.l &0x0,-(%sp) # save no fpregs -# PROLOGUE END ########################################################## - - mov.w %cc,CMP2_CC(%a6) - mov.l 0x8(%a6), %d2 # get regval - - mov.l ([0xc,%a6],0x0),%d0 - mov.l ([0xc,%a6],0x4),%d1 - -# -# To set the ccodes correctly: -# (1) save 'Z' bit from (Rn - lo) -# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) -# (3) keep 'X', 'N', and 'V' from before instruction -# (4) combine ccodes -# -l_cmp2_cmp: - sub.l %d0, %d2 # (Rn - lo) - mov.w %cc, %d3 # fetch resulting ccodes - andi.b &0x4, %d3 # keep 'Z' bit - sub.l %d0, %d1 # (hi - lo) - cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) - - mov.w %cc, %d4 # fetch resulting ccodes - or.b %d4, %d3 # combine w/ earlier ccodes - andi.b &0x5, %d3 # keep 'Z' and 'N' - - mov.w CMP2_CC(%a6), %d4 # fetch old ccodes - andi.b &0x1a, %d4 # keep 'X','N','V' bits - or.b %d3, %d4 # insert new ccodes - mov.w %d4,%cc # save new ccodes - -# EPILOGUE BEGIN ######################################################## -# fmovm.l (%sp)+,&0x0 # restore no fpregs - movm.l (%sp)+,&0x001c # restore d2-d4 - unlk %a6 -# EPILOGUE END ########################################################## - - rts diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S deleted file mode 100644 index 6dccda76..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S +++ /dev/null @@ -1,4299 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# ireal.s: -# This file is appended to the top of the 060ISP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located -# after _060ISP_TABLE. -# Also, subroutine stubs exist in this file (_isp_done for -# example) that are referenced by the ISP package itself in order -# to call a given routine. The stub routine actually performs the -# callout. The ISP code does a "bsr" to the stub routine. This -# extra layer of hierarchy adds a slight performance penalty but -# it makes the ISP code easier to read and more mainatinable. -# - -set _off_chk, 0x00 -set _off_divbyzero, 0x04 -set _off_trace, 0x08 -set _off_access, 0x0c -set _off_done, 0x10 - -set _off_cas, 0x14 -set _off_cas2, 0x18 -set _off_lock, 0x1c -set _off_unlock, 0x20 - -set _off_imr, 0x40 -set _off_dmr, 0x44 -set _off_dmw, 0x48 -set _off_irw, 0x4c -set _off_irl, 0x50 -set _off_drb, 0x54 -set _off_drw, 0x58 -set _off_drl, 0x5c -set _off_dwb, 0x60 -set _off_dww, 0x64 -set _off_dwl, 0x68 - -_060ISP_TABLE: - -# Here's the table of ENTRY POINTS for those linking the package. - bra.l _isp_unimp - short 0x0000 - - bra.l _isp_cas - short 0x0000 - - bra.l _isp_cas2 - short 0x0000 - - bra.l _isp_cas_finish - short 0x0000 - - bra.l _isp_cas2_finish - short 0x0000 - - bra.l _isp_cas_inrange - short 0x0000 - - bra.l _isp_cas_terminate - short 0x0000 - - bra.l _isp_cas_restart - short 0x0000 - - space 64 - -############################################################# - - global _real_chk -_real_chk: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_chk,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_divbyzero -_real_divbyzero: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trace -_real_trace: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_trace,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_access -_real_access: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_access,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _isp_done -_isp_done: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_done,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -####################################### - - global _real_cas -_real_cas: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_cas,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_cas2 -_real_cas2: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_lock_page -_real_lock_page: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_lock,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_unlock_page -_real_unlock_page: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -####################################### - - global _imem_read -_imem_read: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_imr,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read -_dmem_read: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write -_dmem_write: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_word -_imem_read_word: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_irw,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_long -_imem_read_long: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_irl,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_byte -_dmem_read_byte: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_drb,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_word -_dmem_read_word: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_drw,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_long -_dmem_read_long: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_drl,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_byte -_dmem_write_byte: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_word -_dmem_write_word: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_dww,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_long -_dmem_write_long: - mov.l %d0,-(%sp) - mov.l (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0 - pea.l (_060ISP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -# -# This file contains a set of define statements for constants -# in oreder to promote readability within the core code itself. -# - -set LOCAL_SIZE, 96 # stack frame size(bytes) -set LV, -LOCAL_SIZE # stack offset - -set EXC_ISR, 0x4 # stack status register -set EXC_IPC, 0x6 # stack pc -set EXC_IVOFF, 0xa # stacked vector offset - -set EXC_AREGS, LV+64 # offset of all address regs -set EXC_DREGS, LV+32 # offset of all data regs - -set EXC_A7, EXC_AREGS+(7*4) # offset of a7 -set EXC_A6, EXC_AREGS+(6*4) # offset of a6 -set EXC_A5, EXC_AREGS+(5*4) # offset of a5 -set EXC_A4, EXC_AREGS+(4*4) # offset of a4 -set EXC_A3, EXC_AREGS+(3*4) # offset of a3 -set EXC_A2, EXC_AREGS+(2*4) # offset of a2 -set EXC_A1, EXC_AREGS+(1*4) # offset of a1 -set EXC_A0, EXC_AREGS+(0*4) # offset of a0 -set EXC_D7, EXC_DREGS+(7*4) # offset of d7 -set EXC_D6, EXC_DREGS+(6*4) # offset of d6 -set EXC_D5, EXC_DREGS+(5*4) # offset of d5 -set EXC_D4, EXC_DREGS+(4*4) # offset of d4 -set EXC_D3, EXC_DREGS+(3*4) # offset of d3 -set EXC_D2, EXC_DREGS+(2*4) # offset of d2 -set EXC_D1, EXC_DREGS+(1*4) # offset of d1 -set EXC_D0, EXC_DREGS+(0*4) # offset of d0 - -set EXC_TEMP, LV+16 # offset of temp stack space - -set EXC_SAVVAL, LV+12 # offset of old areg value -set EXC_SAVREG, LV+11 # offset of old areg index - -set SPCOND_FLG, LV+10 # offset of spc condition flg - -set EXC_CC, LV+8 # offset of cc register -set EXC_EXTWPTR, LV+4 # offset of current PC -set EXC_EXTWORD, LV+2 # offset of current ext opword -set EXC_OPWORD, LV+0 # offset of current opword - -########################### -# SPecial CONDition FLaGs # -########################### -set mia7_flg, 0x04 # (a7)+ flag -set mda7_flg, 0x08 # -(a7) flag -set ichk_flg, 0x10 # chk exception flag -set idbyz_flg, 0x20 # divbyzero flag -set restore_flg, 0x40 # restore -(an)+ flag -set immed_flg, 0x80 # immediate data flag - -set mia7_bit, 0x2 # (a7)+ bit -set mda7_bit, 0x3 # -(a7) bit -set ichk_bit, 0x4 # chk exception bit -set idbyz_bit, 0x5 # divbyzero bit -set restore_bit, 0x6 # restore -(a7)+ bit -set immed_bit, 0x7 # immediate data bit - -######### -# Misc. # -######### -set BYTE, 1 # len(byte) == 1 byte -set WORD, 2 # len(word) == 2 bytes -set LONG, 4 # len(longword) == 4 bytes - -######################################################################### -# XDEF **************************************************************** # -# _isp_unimp(): 060ISP entry point for Unimplemented Instruction # -# # -# This handler should be the first code executed upon taking the # -# "Unimplemented Integer Instruction" exception in an operating # -# system. # -# # -# XREF **************************************************************** # -# _imem_read_{word,long}() - read instruction word/longword # -# _mul64() - emulate 64-bit multiply # -# _div64() - emulate 64-bit divide # -# _moveperipheral() - emulate "movep" # -# _compandset() - emulate misaligned "cas" # -# _compandset2() - emulate "cas2" # -# _chk2_cmp2() - emulate "cmp2" and "chk2" # -# _isp_done() - "callout" for normal final exit # -# _real_trace() - "callout" for Trace exception # -# _real_chk() - "callout" for Chk exception # -# _real_divbyzero() - "callout" for DZ exception # -# _real_access() - "callout" for access error exception # -# # -# INPUT *************************************************************** # -# - The system stack contains the Unimp Int Instr stack frame # -# # -# OUTPUT ************************************************************** # -# If Trace exception: # -# - The system stack changed to contain Trace exc stack frame # -# If Chk exception: # -# - The system stack changed to contain Chk exc stack frame # -# If DZ exception: # -# - The system stack changed to contain DZ exc stack frame # -# If access error exception: # -# - The system stack changed to contain access err exc stk frame # -# Else: # -# - Results saved as appropriate # -# # -# ALGORITHM *********************************************************** # -# This handler fetches the first instruction longword from # -# memory and decodes it to determine which of the unimplemented # -# integer instructions caused this exception. This handler then calls # -# one of _mul64(), _div64(), _moveperipheral(), _compandset(), # -# _compandset2(), or _chk2_cmp2() as appropriate. # -# Some of these instructions, by their nature, may produce other # -# types of exceptions. "div" can produce a divide-by-zero exception, # -# and "chk2" can cause a "Chk" exception. In both cases, the current # -# exception stack frame must be converted to an exception stack frame # -# of the correct exception type and an exit must be made through # -# _real_divbyzero() or _real_chk() as appropriate. In addition, all # -# instructions may be executing while Trace is enabled. If so, then # -# a Trace exception stack frame must be created and an exit made # -# through _real_trace(). # -# Meanwhile, if any read or write to memory using the # -# _mem_{read,write}() "callout"s returns a failing value, then an # -# access error frame must be created and an exit made through # -# _real_access(). # -# If none of these occur, then a normal exit is made through # -# _isp_done(). # -# # -# This handler, upon entry, saves almost all user-visible # -# address and data registers to the stack. Although this may seem to # -# cause excess memory traffic, it was found that due to having to # -# access these register files for things like data retrieval and <ea> # -# calculations, it was more efficient to have them on the stack where # -# they could be accessed by indexing rather than to make subroutine # -# calls to retrieve a register of a particular index. # -# # -######################################################################### - - global _isp_unimp -_isp_unimp: - link.w %a6,&-LOCAL_SIZE # create room for stack frame - - movm.l &0x3fff,EXC_DREGS(%a6) # store d0-d7/a0-a5 - mov.l (%a6),EXC_A6(%a6) # store a6 - - btst &0x5,EXC_ISR(%a6) # from s or u mode? - bne.b uieh_s # supervisor mode -uieh_u: - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # store a7 - bra.b uieh_cont -uieh_s: - lea 0xc(%a6),%a0 - mov.l %a0,EXC_A7(%a6) # store corrected sp - -############################################################################### - -uieh_cont: - clr.b SPCOND_FLG(%a6) # clear "special case" flag - - mov.w EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack - mov.l EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack - -# -# fetch the opword and first extension word pointed to by the stacked pc -# and store them to the stack for now -# - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch opword & extword - mov.l %d0,EXC_OPWORD(%a6) # store extword on stack - - -######################################################################### -# muls.l 0100 1100 00 |<ea>| 0*** 1100 0000 0*** # -# mulu.l 0100 1100 00 |<ea>| 0*** 0100 0000 0*** # -# # -# divs.l 0100 1100 01 |<ea>| 0*** 1100 0000 0*** # -# divu.l 0100 1100 01 |<ea>| 0*** 0100 0000 0*** # -# # -# movep.w m2r 0000 ***1 00 001*** | <displacement> | # -# movep.l m2r 0000 ***1 01 001*** | <displacement> | # -# movep.w r2m 0000 ***1 10 001*** | <displacement> | # -# movep.l r2m 0000 ***1 11 001*** | <displacement> | # -# # -# cas.w 0000 1100 11 |<ea>| 0000 000* **00 0*** # -# cas.l 0000 1110 11 |<ea>| 0000 000* **00 0*** # -# # -# cas2.w 0000 1100 11 111100 **** 000* **00 0*** # -# **** 000* **00 0*** # -# cas2.l 0000 1110 11 111100 **** 000* **00 0*** # -# **** 000* **00 0*** # -# # -# chk2.b 0000 0000 11 |<ea>| **** 1000 0000 0000 # -# chk2.w 0000 0010 11 |<ea>| **** 1000 0000 0000 # -# chk2.l 0000 0100 11 |<ea>| **** 1000 0000 0000 # -# # -# cmp2.b 0000 0000 11 |<ea>| **** 0000 0000 0000 # -# cmp2.w 0000 0010 11 |<ea>| **** 0000 0000 0000 # -# cmp2.l 0000 0100 11 |<ea>| **** 0000 0000 0000 # -######################################################################### - -# -# using bit 14 of the operation word, separate into 2 groups: -# (group1) mul64, div64 -# (group2) movep, chk2, cmp2, cas2, cas -# - btst &0x1e,%d0 # group1 or group2 - beq.b uieh_group2 # go handle group2 - -# -# now, w/ group1, make mul64's decode the fastest since it will -# most likely be used the most. -# -uieh_group1: - btst &0x16,%d0 # test for div64 - bne.b uieh_div64 # go handle div64 - -uieh_mul64: -# mul64() may use ()+ addressing and may, therefore, alter a7 - - bsr.l _mul64 # _mul64() - - btst &0x5,EXC_ISR(%a6) # supervisor mode? - beq.w uieh_done - btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? - beq.w uieh_done # no - btst &0x7,EXC_ISR(%a6) # is trace enabled? - bne.w uieh_trace_a7 # yes - bra.w uieh_a7 # no - -uieh_div64: -# div64() may use ()+ addressing and may, therefore, alter a7. -# div64() may take a divide by zero exception. - - bsr.l _div64 # _div64() - -# here, we sort out all of the special cases that may have happened. - btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? - bne.b uieh_div64_a7 # yes -uieh_div64_dbyz: - btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? - bne.w uieh_divbyzero # yes - bra.w uieh_done # no -uieh_div64_a7: - btst &0x5,EXC_ISR(%a6) # supervisor mode? - beq.b uieh_div64_dbyz # no -# here, a7 has been incremented by 4 bytes in supervisor mode. we still -# may have the following 3 cases: -# (i) (a7)+ -# (ii) (a7)+; trace -# (iii) (a7)+; divide-by-zero -# - btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? - bne.w uieh_divbyzero_a7 # yes - tst.b EXC_ISR(%a6) # no; is trace enabled? - bmi.w uieh_trace_a7 # yes - bra.w uieh_a7 # no - -# -# now, w/ group2, make movep's decode the fastest since it will -# most likely be used the most. -# -uieh_group2: - btst &0x18,%d0 # test for not movep - beq.b uieh_not_movep - - - bsr.l _moveperipheral # _movep() - bra.w uieh_done - -uieh_not_movep: - btst &0x1b,%d0 # test for chk2,cmp2 - beq.b uieh_chk2cmp2 # go handle chk2,cmp2 - - swap %d0 # put opword in lo word - cmpi.b %d0,&0xfc # test for cas2 - beq.b uieh_cas2 # go handle cas2 - -uieh_cas: - - bsr.l _compandset # _cas() - -# the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor -# mode are simply not considered valid and therefore are not handled. - - bra.w uieh_done - -uieh_cas2: - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # read extension word - - tst.l %d1 # ifetch error? - bne.w isp_iacc # yes - - bsr.l _compandset2 # _cas2() - bra.w uieh_done - -uieh_chk2cmp2: -# chk2 may take a chk exception - - bsr.l _chk2_cmp2 # _chk2_cmp2() - -# here we check to see if a chk trap should be taken - cmpi.b SPCOND_FLG(%a6),&ichk_flg - bne.w uieh_done - bra.b uieh_chk_trap - -########################################################################### - -# -# the required emulation has been completed. now, clean up the necessary stack -# info and prepare for rte -# -uieh_done: - mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes - -# if exception occurred in user mode, then we have to restore a7 in case it -# changed. we don't have to update a7 for supervisor mose because that case -# doesn't flow through here - btst &0x5,EXC_ISR(%a6) # user or supervisor? - bne.b uieh_finish # supervisor - - mov.l EXC_A7(%a6),%a0 # fetch user stack pointer - mov.l %a0,%usp # restore it - -uieh_finish: - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - - btst &0x7,EXC_ISR(%a6) # is trace mode on? - bne.b uieh_trace # yes;go handle trace mode - - mov.l EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame - mov.l EXC_A6(%a6),(%a6) # prepare new a6 for unlink - unlk %a6 # unlink stack frame - bra.l _isp_done - -# -# The instruction that was just emulated was also being traced. The trace -# trap for this instruction will be lost unless we jump to the trace handler. -# So, here we create a Trace Exception format number two exception stack -# frame from the Unimplemented Integer Intruction Exception stack frame -# format number zero and jump to the user supplied hook "_real_trace()". -# -# UIEH FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f4 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ->* Old * ***************** -# from link -->* A6 * * SR * -# ***************** ***************** -# /* A7 * * New * <-- for final unlink -# / * * * A6 * -# link frame < ***************** ***************** -# \ ~ ~ ~ ~ -# \***************** ***************** -# -uieh_trace: - mov.l EXC_A6(%a6),-0x4(%a6) - mov.w EXC_ISR(%a6),0x0(%a6) - mov.l EXC_IPC(%a6),0x8(%a6) - mov.l EXC_EXTWPTR(%a6),0x2(%a6) - mov.w &0x2024,0x6(%a6) - sub.l &0x4,%a6 - unlk %a6 - bra.l _real_trace - -# -# UIEH FRAME CHK FRAME -# ***************** ***************** -# * 0x0 * 0x0f4 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x018 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# (4 words) ***************** -# * SR * -# ***************** -# (6 words) -# -# the chk2 instruction should take a chk trap. so, here we must create a -# chk stack frame from an unimplemented integer instruction exception frame -# and jump to the user supplied entry point "_real_chk()". -# -uieh_chk_trap: - mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - - mov.w EXC_ISR(%a6),(%a6) # put new SR on stack - mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack - mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack - mov.w &0x2018,0x6(%a6) # put Vector Offset on stack - - mov.l EXC_A6(%a6),%a6 # restore a6 - add.l &LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_chk - -# -# UIEH FRAME DIVBYZERO FRAME -# ***************** ***************** -# * 0x0 * 0x0f4 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x014 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# (4 words) ***************** -# * SR * -# ***************** -# (6 words) -# -# the divide instruction should take an integer divide by zero trap. so, here -# we must create a divbyzero stack frame from an unimplemented integer -# instruction exception frame and jump to the user supplied entry point -# "_real_divbyzero()". -# -uieh_divbyzero: - mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - - mov.w EXC_ISR(%a6),(%a6) # put new SR on stack - mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack - mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack - mov.w &0x2014,0x6(%a6) # put Vector Offset on stack - - mov.l EXC_A6(%a6),%a6 # restore a6 - add.l &LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_divbyzero - -# -# DIVBYZERO FRAME -# ***************** -# * Current * -# UIEH FRAME * PC * -# ***************** ***************** -# * 0x0 * 0x0f4 * * 0x2 * 0x014 * -# ***************** ***************** -# * Current * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# (4 words) (6 words) -# -# the divide instruction should take an integer divide by zero trap. so, here -# we must create a divbyzero stack frame from an unimplemented integer -# instruction exception frame and jump to the user supplied entry point -# "_real_divbyzero()". -# -# However, we must also deal with the fact that (a7)+ was used from supervisor -# mode, thereby shifting the stack frame up 4 bytes. -# -uieh_divbyzero_a7: - mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - - mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack - mov.w &0x2014,0xa(%a6) # put Vector Offset on stack - mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack - - mov.l EXC_A6(%a6),%a6 # restore a6 - add.l &4+LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_divbyzero - -# -# TRACE FRAME -# ***************** -# * Current * -# UIEH FRAME * PC * -# ***************** ***************** -# * 0x0 * 0x0f4 * * 0x2 * 0x024 * -# ***************** ***************** -# * Current * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# (4 words) (6 words) -# -# -# The instruction that was just emulated was also being traced. The trace -# trap for this instruction will be lost unless we jump to the trace handler. -# So, here we create a Trace Exception format number two exception stack -# frame from the Unimplemented Integer Intruction Exception stack frame -# format number zero and jump to the user supplied hook "_real_trace()". -# -# However, we must also deal with the fact that (a7)+ was used from supervisor -# mode, thereby shifting the stack frame up 4 bytes. -# -uieh_trace_a7: - mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - - mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack - mov.w &0x2024,0xa(%a6) # put Vector Offset on stack - mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack - - mov.l EXC_A6(%a6),%a6 # restore a6 - add.l &4+LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_trace - -# -# UIEH FRAME -# ***************** -# * 0x0 * 0x0f4 * -# UIEH FRAME ***************** -# ***************** * Next * -# * 0x0 * 0x0f4 * * PC * -# ***************** ***************** -# * Current * * SR * -# * PC * ***************** -# ***************** (4 words) -# * SR * -# ***************** -# (4 words) -uieh_a7: - mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - - mov.w &0x00f4,0xe(%a6) # put Vector Offset on stack - mov.l EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack - mov.w EXC_ISR(%a6),0x8(%a6) # put SR on stack - - mov.l EXC_A6(%a6),%a6 # restore a6 - add.l &8+LOCAL_SIZE,%sp # clear stack frame - bra.l _isp_done - -########## - -# this is the exit point if a data read or write fails. -# a0 = failing address -# d0 = fslw -isp_dacc: - mov.l %a0,(%a6) # save address - mov.l %d0,-0x4(%a6) # save partial fslw - - lea -64(%a6),%sp - movm.l (%sp)+,&0x7fff # restore d0-d7/a0-a6 - - mov.l 0xc(%sp),-(%sp) # move voff,hi(pc) - mov.l 0x4(%sp),0x10(%sp) # store fslw - mov.l 0xc(%sp),0x4(%sp) # store sr,lo(pc) - mov.l 0x8(%sp),0xc(%sp) # store address - mov.l (%sp)+,0x4(%sp) # store voff,hi(pc) - mov.w &0x4008,0x6(%sp) # store new voff - - bra.b isp_acc_exit - -# this is the exit point if an instruction word read fails. -# FSLW: -# misaligned = true -# read = true -# size = word -# instruction = true -# software emulation error = true -isp_iacc: - movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 - unlk %a6 # unlink frame - sub.w &0x8,%sp # make room for acc frame - mov.l 0x8(%sp),(%sp) # store sr,lo(pc) - mov.w 0xc(%sp),0x4(%sp) # store hi(pc) - mov.w &0x4008,0x6(%sp) # store new voff - mov.l 0x2(%sp),0x8(%sp) # store address (=pc) - mov.l &0x09428001,0xc(%sp) # store fslw - -isp_acc_exit: - btst &0x5,(%sp) # user or supervisor? - beq.b isp_acc_exit2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit -isp_acc_exit2: - bra.l _real_access - -# if the addressing mode was (an)+ or -(an), the address register must -# be restored to its pre-exception value before entering _real_access. -isp_restore: - cmpi.b SPCOND_FLG(%a6),&restore_flg # do we need a restore? - bne.b isp_restore_done # no - clr.l %d0 - mov.b EXC_SAVREG(%a6),%d0 # regno to restore - mov.l EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value -isp_restore_done: - rts - -######################################################################### -# XDEF **************************************************************** # -# _calc_ea(): routine to calculate effective address # -# # -# XREF **************************************************************** # -# _imem_read_word() - read instruction word # -# _imem_read_long() - read instruction longword # -# _dmem_read_long() - read data longword (for memory indirect) # -# isp_iacc() - handle instruction access error exception # -# isp_dacc() - handle data access error exception # -# # -# INPUT *************************************************************** # -# d0 = number of bytes related to effective address (w,l) # -# # -# OUTPUT ************************************************************** # -# If exiting through isp_dacc... # -# a0 = failing address # -# d0 = FSLW # -# elsif exiting though isp_iacc... # -# none # -# else # -# a0 = effective address # -# # -# ALGORITHM *********************************************************** # -# The effective address type is decoded from the opword residing # -# on the stack. A jump table is used to vector to a routine for the # -# appropriate mode. Since none of the emulated integer instructions # -# uses byte-sized operands, only handle word and long operations. # -# # -# Dn,An - shouldn't enter here # -# (An) - fetch An value from stack # -# -(An) - fetch An value from stack; return decr value; # -# place decr value on stack; store old value in case of # -# future access error; if -(a7), set mda7_flg in # -# SPCOND_FLG # -# (An)+ - fetch An value from stack; return value; # -# place incr value on stack; store old value in case of # -# future access error; if (a7)+, set mia7_flg in # -# SPCOND_FLG # -# (d16,An) - fetch An value from stack; read d16 using # -# _imem_read_word(); fetch may fail -> branch to # -# isp_iacc() # -# (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch # -# address; fetch may fail # -# #<data> - return address of immediate value; set immed_flg # -# in SPCOND_FLG # -# (d16,PC) - fetch stacked PC value; read d16 using # -# _imem_read_word(); fetch may fail -> branch to # -# isp_iacc() # -# everything else - read needed displacements as appropriate w/ # -# _imem_read_{word,long}(); read may fail; if memory # -# indirect, read indirect address using # -# _dmem_read_long() which may also fail # -# # -######################################################################### - - global _calc_ea -_calc_ea: - mov.l %d0,%a0 # move # bytes to a0 - -# MODE and REG are taken from the EXC_OPWORD. - mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.w %d0,%d1 # make a copy - - andi.w &0x3f,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - -# jump to the corresponding function for each {MODE,REG} pair. - mov.w (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance - jmp (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode - - swbeg &64 -tbl_ea_mode: - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - - short addr_ind_a0 - tbl_ea_mode - short addr_ind_a1 - tbl_ea_mode - short addr_ind_a2 - tbl_ea_mode - short addr_ind_a3 - tbl_ea_mode - short addr_ind_a4 - tbl_ea_mode - short addr_ind_a5 - tbl_ea_mode - short addr_ind_a6 - tbl_ea_mode - short addr_ind_a7 - tbl_ea_mode - - short addr_ind_p_a0 - tbl_ea_mode - short addr_ind_p_a1 - tbl_ea_mode - short addr_ind_p_a2 - tbl_ea_mode - short addr_ind_p_a3 - tbl_ea_mode - short addr_ind_p_a4 - tbl_ea_mode - short addr_ind_p_a5 - tbl_ea_mode - short addr_ind_p_a6 - tbl_ea_mode - short addr_ind_p_a7 - tbl_ea_mode - - short addr_ind_m_a0 - tbl_ea_mode - short addr_ind_m_a1 - tbl_ea_mode - short addr_ind_m_a2 - tbl_ea_mode - short addr_ind_m_a3 - tbl_ea_mode - short addr_ind_m_a4 - tbl_ea_mode - short addr_ind_m_a5 - tbl_ea_mode - short addr_ind_m_a6 - tbl_ea_mode - short addr_ind_m_a7 - tbl_ea_mode - - short addr_ind_disp_a0 - tbl_ea_mode - short addr_ind_disp_a1 - tbl_ea_mode - short addr_ind_disp_a2 - tbl_ea_mode - short addr_ind_disp_a3 - tbl_ea_mode - short addr_ind_disp_a4 - tbl_ea_mode - short addr_ind_disp_a5 - tbl_ea_mode - short addr_ind_disp_a6 - tbl_ea_mode - short addr_ind_disp_a7 - tbl_ea_mode - - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - short _addr_ind_ext - tbl_ea_mode - - short abs_short - tbl_ea_mode - short abs_long - tbl_ea_mode - short pc_ind - tbl_ea_mode - short pc_ind_ext - tbl_ea_mode - short immediate - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - short tbl_ea_mode - tbl_ea_mode - -################################### -# Address register indirect: (An) # -################################### -addr_ind_a0: - mov.l EXC_A0(%a6),%a0 # Get current a0 - rts - -addr_ind_a1: - mov.l EXC_A1(%a6),%a0 # Get current a1 - rts - -addr_ind_a2: - mov.l EXC_A2(%a6),%a0 # Get current a2 - rts - -addr_ind_a3: - mov.l EXC_A3(%a6),%a0 # Get current a3 - rts - -addr_ind_a4: - mov.l EXC_A4(%a6),%a0 # Get current a4 - rts - -addr_ind_a5: - mov.l EXC_A5(%a6),%a0 # Get current a5 - rts - -addr_ind_a6: - mov.l EXC_A6(%a6),%a0 # Get current a6 - rts - -addr_ind_a7: - mov.l EXC_A7(%a6),%a0 # Get current a7 - rts - -##################################################### -# Address register indirect w/ postincrement: (An)+ # -##################################################### -addr_ind_p_a0: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A0(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A0(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x0,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a1: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A1(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A1(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x1,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a2: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A2(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A2(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x2,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a3: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A3(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A3(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x3,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a4: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A4(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A4(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x4,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a5: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A5(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A5(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x5,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a6: - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A6(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A6(%a6) # save incremented value - - mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error - mov.b &0x6,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_p_a7: - mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l %a0,%d0 # copy no. bytes - mov.l EXC_A7(%a6),%a0 # load current value - add.l %a0,%d0 # increment - mov.l %d0,EXC_A7(%a6) # save incremented value - rts - -#################################################### -# Address register indirect w/ predecrement: -(An) # -#################################################### -addr_ind_m_a0: - mov.l EXC_A0(%a6),%d0 # Get current a0 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A0(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x0,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a1: - mov.l EXC_A1(%a6),%d0 # Get current a1 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A1(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x1,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a2: - mov.l EXC_A2(%a6),%d0 # Get current a2 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A2(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x2,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a3: - mov.l EXC_A3(%a6),%d0 # Get current a3 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A3(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x3,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a4: - mov.l EXC_A4(%a6),%d0 # Get current a4 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A4(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x4,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a5: - mov.l EXC_A5(%a6),%d0 # Get current a5 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A5(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x5,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a6: - mov.l EXC_A6(%a6),%d0 # Get current a6 - mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A6(%a6) # Save decr value - mov.l %d0,%a0 - - mov.b &0x6,EXC_SAVREG(%a6) # save regno, too - mov.b &restore_flg,SPCOND_FLG(%a6) # set flag - rts - -addr_ind_m_a7: - mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A7(%a6) # Save decr value - mov.l %d0,%a0 - rts - -######################################################## -# Address register indirect w/ displacement: (d16, An) # -######################################################## -addr_ind_disp_a0: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A0(%a6),%a0 # a0 + d16 - rts - -addr_ind_disp_a1: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A1(%a6),%a0 # a1 + d16 - rts - -addr_ind_disp_a2: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A2(%a6),%a0 # a2 + d16 - rts - -addr_ind_disp_a3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A3(%a6),%a0 # a3 + d16 - rts - -addr_ind_disp_a4: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A4(%a6),%a0 # a4 + d16 - rts - -addr_ind_disp_a5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A5(%a6),%a0 # a5 + d16 - rts - -addr_ind_disp_a6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A6(%a6),%a0 # a6 + d16 - rts - -addr_ind_disp_a7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - add.l EXC_A7(%a6),%a0 # a7 + d16 - rts - -######################################################################## -# Address register indirect w/ index(8-bit displacement): (dn, An, Xn) # -# " " " w/ " (base displacement): (bd, An, Xn) # -# Memory indirect postindexed: ([bd, An], Xn, od) # -# Memory indirect preindexed: ([bd, An, Xn], od) # -######################################################################## -_addr_ind_ext: - mov.l %d1,-(%sp) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch extword in d0 - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.l (%sp)+,%d1 - - mov.l (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0 - - btst &0x8,%d0 - beq.b addr_ind_index_8bit # for ext word or not? - - movm.l &0x3c00,-(%sp) # save d2-d5 - - mov.l %d0,%d5 # put extword in d5 - mov.l %a0,%d3 # put base in d3 - - bra.l calc_mem_ind # calc memory indirect - -addr_ind_index_8bit: - mov.l %d2,-(%sp) # save old d2 - - mov.l %d0,%d1 - rol.w &0x4,%d1 - andi.w &0xf,%d1 # extract index regno - - mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value - - btst &0xb,%d0 # is it word or long? - bne.b aii8_long - ext.l %d1 # sign extend word index -aii8_long: - mov.l %d0,%d2 - rol.w &0x7,%d2 - andi.l &0x3,%d2 # extract scale value - - lsl.l %d2,%d1 # shift index by scale - - extb.l %d0 # sign extend displacement - add.l %d1,%d0 # index + disp - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore old d2 - rts - -###################### -# Immediate: #<data> # -######################################################################### -# word, long: <ea> of the data is the current extension word # -# pointer value. new extension word pointer is simply the old # -# plus the number of bytes in the data type(2 or 4). # -######################################################################### -immediate: - mov.b &immed_flg,SPCOND_FLG(%a6) # set immediate flag - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch extension word ptr - rts - -########################### -# Absolute short: (XXX).W # -########################### -abs_short: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch short address - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # return <ea> in a0 - rts - -########################## -# Absolute long: (XXX).L # -########################## -abs_long: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch long address - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.l %d0,%a0 # return <ea> in a0 - rts - -####################################################### -# Program counter indirect w/ displacement: (d16, PC) # -####################################################### -pc_ind: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch word displacement - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 - -# _imem_read_word() increased the extwptr by 2. need to adjust here. - subq.l &0x2,%a0 # adjust <ea> - - rts - -########################################################## -# PC indirect w/ index(8-bit displacement): (d8, PC, An) # -# " " w/ " (base displacement): (bd, PC, An) # -# PC memory indirect postindexed: ([bd, PC], Xn, od) # -# PC memory indirect preindexed: ([bd, PC, Xn], od) # -########################################################## -pc_ind_ext: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch ext word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 - subq.l &0x2,%a0 # adjust base - - btst &0x8,%d0 # is disp only 8 bits? - beq.b pc_ind_index_8bit # yes - -# the indexed addressing mode uses a base displacement of size -# word or long - movm.l &0x3c00,-(%sp) # save d2-d5 - - mov.l %d0,%d5 # put extword in d5 - mov.l %a0,%d3 # put base in d3 - - bra.l calc_mem_ind # calc memory indirect - -pc_ind_index_8bit: - mov.l %d2,-(%sp) # create a temp register - - mov.l %d0,%d1 # make extword copy - rol.w &0x4,%d1 # rotate reg num into place - andi.w &0xf,%d1 # extract register number - - mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value - - btst &0xb,%d0 # is index word or long? - bne.b pii8_long # long - ext.l %d1 # sign extend word index -pii8_long: - mov.l %d0,%d2 # make extword copy - rol.w &0x7,%d2 # rotate scale value into place - andi.l &0x3,%d2 # extract scale value - - lsl.l %d2,%d1 # shift index by scale - - extb.l %d0 # sign extend displacement - add.l %d1,%d0 # index + disp - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore temp register - - rts - -# a5 = exc_extwptr (global to uaeh) -# a4 = exc_opword (global to uaeh) -# a3 = exc_dregs (global to uaeh) - -# d2 = index (internal " " ) -# d3 = base (internal " " ) -# d4 = od (internal " " ) -# d5 = extword (internal " " ) -calc_mem_ind: - btst &0x6,%d5 # is the index suppressed? - beq.b calc_index - clr.l %d2 # yes, so index = 0 - bra.b base_supp_ck -calc_index: - bfextu %d5{&16:&4},%d2 - mov.l (EXC_DREGS,%a6,%d2.w*4),%d2 - btst &0xb,%d5 # is index word or long? - bne.b no_ext - ext.l %d2 -no_ext: - bfextu %d5{&21:&2},%d0 - lsl.l %d0,%d2 -base_supp_ck: - btst &0x7,%d5 # is the bd suppressed? - beq.b no_base_sup - clr.l %d3 -no_base_sup: - bfextu %d5{&26:&2},%d0 # get bd size -# beq.l _error # if (size == 0) it's reserved - cmpi.b %d0,&2 - blt.b no_bd - beq.b get_word_bd - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - bra.b chk_ind -get_word_bd: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - ext.l %d0 # sign extend bd - -chk_ind: - add.l %d0,%d3 # base += bd -no_bd: - bfextu %d5{&30:&2},%d0 # is od suppressed? - beq.w aii_bd - cmpi.b %d0,&0x2 - blt.b null_od - beq.b word_od - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - bra.b add_them - -word_od: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - ext.l %d0 # sign extend od - bra.b add_them - -null_od: - clr.l %d0 -add_them: - mov.l %d0,%d4 - btst &0x2,%d5 # pre or post indexing? - beq.b pre_indexed - - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # dfetch error? - bne.b calc_ea_err # yes - - add.l %d2,%d0 # <ea> += index - add.l %d4,%d0 # <ea> += od - bra.b done_ea - -pre_indexed: - add.l %d2,%d3 # preindexing - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # ifetch error? - bne.b calc_ea_err # yes - - add.l %d4,%d0 # ea += od - bra.b done_ea - -aii_bd: - add.l %d2,%d3 # ea = (base + bd) + index - mov.l %d3,%d0 -done_ea: - mov.l %d0,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - rts - -# if dmem_read_long() returns a fail message in d1, the package -# must create an access error frame. here, we pass a skeleton fslw -# and the failing address to the routine that creates the new frame. -# FSLW: -# read = true -# size = longword -# TM = data -# software emulation error = true -calc_ea_err: - mov.l %d3,%a0 # pass failing address - mov.l &0x01010001,%d0 # pass fslw - bra.l isp_dacc - -######################################################################### -# XDEF **************************************************************** # -# _moveperipheral(): routine to emulate movep instruction # -# # -# XREF **************************************************************** # -# _dmem_read_byte() - read byte from memory # -# _dmem_write_byte() - write byte to memory # -# isp_dacc() - handle data access error exception # -# # -# INPUT *************************************************************** # -# none # -# # -# OUTPUT ************************************************************** # -# If exiting through isp_dacc... # -# a0 = failing address # -# d0 = FSLW # -# else # -# none # -# # -# ALGORITHM *********************************************************** # -# Decode the movep instruction words stored at EXC_OPWORD and # -# either read or write the required bytes from/to memory. Use the # -# _dmem_{read,write}_byte() routines. If one of the memory routines # -# returns a failing value, we must pass the failing address and a FSLW # -# to the _isp_dacc() routine. # -# Since this instruction is used to access peripherals, make sure # -# to only access the required bytes. # -# # -######################################################################### - -########################### -# movep.(w,l) Dx,(d,Ay) # -# movep.(w,l) (d,Ay),Dx # -########################### - global _moveperipheral -_moveperipheral: - mov.w EXC_OPWORD(%a6),%d1 # fetch the opcode word - - mov.b %d1,%d0 - and.w &0x7,%d0 # extract Ay from opcode word - - mov.l (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay - - add.w EXC_EXTWORD(%a6),%a0 # add: an + sgn_ext(disp) - - btst &0x7,%d1 # (reg 2 mem) or (mem 2 reg) - beq.w mem2reg - -# reg2mem: fetch dx, then write it to memory -reg2mem: - mov.w %d1,%d0 - rol.w &0x7,%d0 - and.w &0x7,%d0 # extract Dx from opcode word - - mov.l (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx - - btst &0x6,%d1 # word or long operation? - beq.b r2mwtrans - -# a0 = dst addr -# d0 = Dx -r2mltrans: - mov.l %d0,%d2 # store data - mov.l %a0,%a2 # store addr - rol.l &0x8,%d2 - mov.l %d2,%d0 - - bsr.l _dmem_write_byte # os : write hi - - tst.l %d1 # dfetch error? - bne.w movp_write_err # yes - - add.w &0x2,%a2 # incr addr - mov.l %a2,%a0 - rol.l &0x8,%d2 - mov.l %d2,%d0 - - bsr.l _dmem_write_byte # os : write lo - - tst.l %d1 # dfetch error? - bne.w movp_write_err # yes - - add.w &0x2,%a2 # incr addr - mov.l %a2,%a0 - rol.l &0x8,%d2 - mov.l %d2,%d0 - - bsr.l _dmem_write_byte # os : write lo - - tst.l %d1 # dfetch error? - bne.w movp_write_err # yes - - add.w &0x2,%a2 # incr addr - mov.l %a2,%a0 - rol.l &0x8,%d2 - mov.l %d2,%d0 - - bsr.l _dmem_write_byte # os : write lo - - tst.l %d1 # dfetch error? - bne.w movp_write_err # yes - - rts - -# a0 = dst addr -# d0 = Dx -r2mwtrans: - mov.l %d0,%d2 # store data - mov.l %a0,%a2 # store addr - lsr.w &0x8,%d0 - - bsr.l _dmem_write_byte # os : write hi - - tst.l %d1 # dfetch error? - bne.w movp_write_err # yes - - add.w &0x2,%a2 - mov.l %a2,%a0 - mov.l %d2,%d0 - - bsr.l _dmem_write_byte # os : write lo - - tst.l %d1 # dfetch error? - bne.w movp_write_err # yes - - rts - -# mem2reg: read bytes from memory. -# determines the dest register, and then writes the bytes into it. -mem2reg: - btst &0x6,%d1 # word or long operation? - beq.b m2rwtrans - -# a0 = dst addr -m2rltrans: - mov.l %a0,%a2 # store addr - - bsr.l _dmem_read_byte # read first byte - - tst.l %d1 # dfetch error? - bne.w movp_read_err # yes - - mov.l %d0,%d2 - - add.w &0x2,%a2 # incr addr by 2 bytes - mov.l %a2,%a0 - - bsr.l _dmem_read_byte # read second byte - - tst.l %d1 # dfetch error? - bne.w movp_read_err # yes - - lsl.w &0x8,%d2 - mov.b %d0,%d2 # append bytes - - add.w &0x2,%a2 # incr addr by 2 bytes - mov.l %a2,%a0 - - bsr.l _dmem_read_byte # read second byte - - tst.l %d1 # dfetch error? - bne.w movp_read_err # yes - - lsl.l &0x8,%d2 - mov.b %d0,%d2 # append bytes - - add.w &0x2,%a2 # incr addr by 2 bytes - mov.l %a2,%a0 - - bsr.l _dmem_read_byte # read second byte - - tst.l %d1 # dfetch error? - bne.w movp_read_err # yes - - lsl.l &0x8,%d2 - mov.b %d0,%d2 # append bytes - - mov.b EXC_OPWORD(%a6),%d1 - lsr.b &0x1,%d1 - and.w &0x7,%d1 # extract Dx from opcode word - - mov.l %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx - - rts - -# a0 = dst addr -m2rwtrans: - mov.l %a0,%a2 # store addr - - bsr.l _dmem_read_byte # read first byte - - tst.l %d1 # dfetch error? - bne.w movp_read_err # yes - - mov.l %d0,%d2 - - add.w &0x2,%a2 # incr addr by 2 bytes - mov.l %a2,%a0 - - bsr.l _dmem_read_byte # read second byte - - tst.l %d1 # dfetch error? - bne.w movp_read_err # yes - - lsl.w &0x8,%d2 - mov.b %d0,%d2 # append bytes - - mov.b EXC_OPWORD(%a6),%d1 - lsr.b &0x1,%d1 - and.w &0x7,%d1 # extract Dx from opcode word - - mov.w %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx - - rts - -# if dmem_{read,write}_byte() returns a fail message in d1, the package -# must create an access error frame. here, we pass a skeleton fslw -# and the failing address to the routine that creates the new frame. -# FSLW: -# write = true -# size = byte -# TM = data -# software emulation error = true -movp_write_err: - mov.l %a2,%a0 # pass failing address - mov.l &0x00a10001,%d0 # pass fslw - bra.l isp_dacc - -# FSLW: -# read = true -# size = byte -# TM = data -# software emulation error = true -movp_read_err: - mov.l %a2,%a0 # pass failing address - mov.l &0x01210001,%d0 # pass fslw - bra.l isp_dacc - -######################################################################### -# XDEF **************************************************************** # -# _chk2_cmp2(): routine to emulate chk2/cmp2 instructions # -# # -# XREF **************************************************************** # -# _calc_ea(): calculate effective address # -# _dmem_read_long(): read operands # -# _dmem_read_word(): read operands # -# isp_dacc(): handle data access error exception # -# # -# INPUT *************************************************************** # -# none # -# # -# OUTPUT ************************************************************** # -# If exiting through isp_dacc... # -# a0 = failing address # -# d0 = FSLW # -# else # -# none # -# # -# ALGORITHM *********************************************************** # -# First, calculate the effective address, then fetch the byte, # -# word, or longword sized operands. Then, in the interest of # -# simplicity, all operands are converted to longword size whether the # -# operation is byte, word, or long. The bounds are sign extended # -# accordingly. If Rn is a data regsiter, Rn is also sign extended. If # -# Rn is an address register, it need not be sign extended since the # -# full register is always used. # -# The comparisons are made and the condition codes calculated. # -# If the instruction is chk2 and the Rn value is out-of-bounds, set # -# the ichk_flg in SPCOND_FLG. # -# If the memory fetch returns a failing value, pass the failing # -# address and FSLW to the isp_dacc() routine. # -# # -######################################################################### - - global _chk2_cmp2 -_chk2_cmp2: - -# passing size parameter doesn't matter since chk2 & cmp2 can't do -# either predecrement, postincrement, or immediate. - bsr.l _calc_ea # calculate <ea> - - mov.b EXC_EXTWORD(%a6), %d0 # fetch hi extension word - rol.b &0x4, %d0 # rotate reg bits into lo - and.w &0xf, %d0 # extract reg bits - - mov.l (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval - - cmpi.b EXC_OPWORD(%a6), &0x2 # what size is operation? - blt.b chk2_cmp2_byte # size == byte - beq.b chk2_cmp2_word # size == word - -# the bounds are longword size. call routine to read the lower -# bound into d0 and the higher bound into d1. -chk2_cmp2_long: - mov.l %a0,%a2 # save copy of <ea> - bsr.l _dmem_read_long # fetch long lower bound - - tst.l %d1 # dfetch error? - bne.w chk2_cmp2_err_l # yes - - mov.l %d0,%d3 # save long lower bound - addq.l &0x4,%a2 - mov.l %a2,%a0 # pass <ea> of long upper bound - bsr.l _dmem_read_long # fetch long upper bound - - tst.l %d1 # dfetch error? - bne.w chk2_cmp2_err_l # yes - - mov.l %d0,%d1 # long upper bound in d1 - mov.l %d3,%d0 # long lower bound in d0 - bra.w chk2_cmp2_compare # go do the compare emulation - -# the bounds are word size. fetch them in one subroutine call by -# reading a longword. sign extend both. if it's a data operation, -# sign extend Rn to long, also. -chk2_cmp2_word: - mov.l %a0,%a2 - bsr.l _dmem_read_long # fetch 2 word bounds - - tst.l %d1 # dfetch error? - bne.w chk2_cmp2_err_l # yes - - mov.w %d0, %d1 # place hi in %d1 - swap %d0 # place lo in %d0 - - ext.l %d0 # sign extend lo bnd - ext.l %d1 # sign extend hi bnd - - btst &0x7, EXC_EXTWORD(%a6) # address compare? - bne.w chk2_cmp2_compare # yes; don't sign extend - -# operation is a data register compare. -# sign extend word to long so we can do simple longword compares. - ext.l %d2 # sign extend data word - bra.w chk2_cmp2_compare # go emulate compare - -# the bounds are byte size. fetch them in one subroutine call by -# reading a word. sign extend both. if it's a data operation, -# sign extend Rn to long, also. -chk2_cmp2_byte: - mov.l %a0,%a2 - bsr.l _dmem_read_word # fetch 2 byte bounds - - tst.l %d1 # dfetch error? - bne.w chk2_cmp2_err_w # yes - - mov.b %d0, %d1 # place hi in %d1 - lsr.w &0x8, %d0 # place lo in %d0 - - extb.l %d0 # sign extend lo bnd - extb.l %d1 # sign extend hi bnd - - btst &0x7, EXC_EXTWORD(%a6) # address compare? - bne.b chk2_cmp2_compare # yes; don't sign extend - -# operation is a data register compare. -# sign extend byte to long so we can do simple longword compares. - extb.l %d2 # sign extend data byte - -# -# To set the ccodes correctly: -# (1) save 'Z' bit from (Rn - lo) -# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) -# (3) keep 'X', 'N', and 'V' from before instruction -# (4) combine ccodes -# -chk2_cmp2_compare: - sub.l %d0, %d2 # (Rn - lo) - mov.w %cc, %d3 # fetch resulting ccodes - andi.b &0x4, %d3 # keep 'Z' bit - sub.l %d0, %d1 # (hi - lo) - cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) - - mov.w %cc, %d4 # fetch resulting ccodes - or.b %d4, %d3 # combine w/ earlier ccodes - andi.b &0x5, %d3 # keep 'Z' and 'N' - - mov.w EXC_CC(%a6), %d4 # fetch old ccodes - andi.b &0x1a, %d4 # keep 'X','N','V' bits - or.b %d3, %d4 # insert new ccodes - mov.w %d4, EXC_CC(%a6) # save new ccodes - - btst &0x3, EXC_EXTWORD(%a6) # separate chk2,cmp2 - bne.b chk2_finish # it's a chk2 - - rts - -# this code handles the only difference between chk2 and cmp2. chk2 would -# have trapped out if the value was out of bounds. we check this by seeing -# if the 'N' bit was set by the operation. -chk2_finish: - btst &0x0, %d4 # is 'N' bit set? - bne.b chk2_trap # yes;chk2 should trap - rts -chk2_trap: - mov.b &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag - rts - -# if dmem_read_{long,word}() returns a fail message in d1, the package -# must create an access error frame. here, we pass a skeleton fslw -# and the failing address to the routine that creates the new frame. -# FSLW: -# read = true -# size = longword -# TM = data -# software emulation error = true -chk2_cmp2_err_l: - mov.l %a2,%a0 # pass failing address - mov.l &0x01010001,%d0 # pass fslw - bra.l isp_dacc - -# FSLW: -# read = true -# size = word -# TM = data -# software emulation error = true -chk2_cmp2_err_w: - mov.l %a2,%a0 # pass failing address - mov.l &0x01410001,%d0 # pass fslw - bra.l isp_dacc - -######################################################################### -# XDEF **************************************************************** # -# _div64(): routine to emulate div{u,s}.l <ea>,Dr:Dq # -# 64/32->32r:32q # -# # -# XREF **************************************************************** # -# _calc_ea() - calculate effective address # -# isp_iacc() - handle instruction access error exception # -# isp_dacc() - handle data access error exception # -# isp_restore() - restore An on access error w/ -() or ()+ # -# # -# INPUT *************************************************************** # -# none # -# # -# OUTPUT ************************************************************** # -# If exiting through isp_dacc... # -# a0 = failing address # -# d0 = FSLW # -# else # -# none # -# # -# ALGORITHM *********************************************************** # -# First, decode the operand location. If it's in Dn, fetch from # -# the stack. If it's in memory, use _calc_ea() to calculate the # -# effective address. Use _dmem_read_long() to fetch at that address. # -# Unless the operand is immediate data. Then use _imem_read_long(). # -# Send failures to isp_dacc() or isp_iacc() as appropriate. # -# If the operands are signed, make them unsigned and save the # -# sign info for later. Separate out special cases like divide-by-zero # -# or 32-bit divides if possible. Else, use a special math algorithm # -# to calculate the result. # -# Restore sign info if signed instruction. Set the condition # -# codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the # -# quotient and remainder in the appropriate data registers on the stack.# -# # -######################################################################### - -set NDIVISOR, EXC_TEMP+0x0 -set NDIVIDEND, EXC_TEMP+0x1 -set NDRSAVE, EXC_TEMP+0x2 -set NDQSAVE, EXC_TEMP+0x4 -set DDSECOND, EXC_TEMP+0x6 -set DDQUOTIENT, EXC_TEMP+0x8 -set DDNORMAL, EXC_TEMP+0xc - - global _div64 -############# -# div(u,s)l # -############# -_div64: - mov.b EXC_OPWORD+1(%a6), %d0 - andi.b &0x38, %d0 # extract src mode - - bne.w dcontrolmodel_s # %dn dest or control mode? - - mov.b EXC_OPWORD+1(%a6), %d0 # extract Dn from opcode - andi.w &0x7, %d0 - mov.l (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register - -dgotsrcl: - beq.w div64eq0 # divisor is = 0!!! - - mov.b EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword - mov.b EXC_EXTWORD(%a6), %d1 # extract Dq from extword - and.w &0x7, %d0 - lsr.b &0x4, %d1 - and.w &0x7, %d1 - mov.w %d0, NDRSAVE(%a6) # save Dr for later - mov.w %d1, NDQSAVE(%a6) # save Dq for later - -# fetch %dr and %dq directly off stack since all regs are saved there - mov.l (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi - mov.l (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo - -# separate signed and unsigned divide - btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? - beq.b dspecialcases # use positive divide - -# save the sign of the divisor -# make divisor unsigned if it's negative - tst.l %d7 # chk sign of divisor - slt NDIVISOR(%a6) # save sign of divisor - bpl.b dsgndividend - neg.l %d7 # complement negative divisor - -# save the sign of the dividend -# make dividend unsigned if it's negative -dsgndividend: - tst.l %d5 # chk sign of hi(dividend) - slt NDIVIDEND(%a6) # save sign of dividend - bpl.b dspecialcases - - mov.w &0x0, %cc # clear 'X' cc bit - negx.l %d6 # complement signed dividend - negx.l %d5 - -# extract some special cases: -# - is (dividend == 0) ? -# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) -dspecialcases: - tst.l %d5 # is (hi(dividend) == 0) - bne.b dnormaldivide # no, so try it the long way - - tst.l %d6 # is (lo(dividend) == 0), too - beq.w ddone # yes, so (dividend == 0) - - cmp.l %d7,%d6 # is (divisor <= lo(dividend)) - bls.b d32bitdivide # yes, so use 32 bit divide - - exg %d5,%d6 # q = 0, r = dividend - bra.w divfinish # can't divide, we're done. - -d32bitdivide: - tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! - - bra.b divfinish - -dnormaldivide: -# last special case: -# - is hi(dividend) >= divisor ? if yes, then overflow - cmp.l %d7,%d5 - bls.b ddovf # answer won't fit in 32 bits - -# perform the divide algorithm: - bsr.l dclassical # do int divide - -# separate into signed and unsigned finishes. -divfinish: - btst &0x3, EXC_EXTWORD(%a6) # do divs, divu separately - beq.b ddone # divu has no processing!!! - -# it was a divs.l, so ccode setting is a little more complicated... - tst.b NDIVIDEND(%a6) # remainder has same sign - beq.b dcc # as dividend. - neg.l %d5 # sgn(rem) = sgn(dividend) -dcc: - mov.b NDIVISOR(%a6), %d0 - eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative - beq.b dqpos # branch to quot positive - -# 0x80000000 is the largest number representable as a 32-bit negative -# number. the negative of 0x80000000 is 0x80000000. - cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? - bhi.b ddovf - - neg.l %d6 # make (-quot) 2's comp - - bra.b ddone - -dqpos: - btst &0x1f, %d6 # will (+quot) fit in 32 bits? - bne.b ddovf - -ddone: -# at this point, result is normal so ccodes are set based on result. - mov.w EXC_CC(%a6), %cc - tst.l %d6 # set %ccode bits - mov.w %cc, EXC_CC(%a6) - - mov.w NDRSAVE(%a6), %d0 # get Dr off stack - mov.w NDQSAVE(%a6), %d1 # get Dq off stack - -# if the register numbers are the same, only the quotient gets saved. -# so, if we always save the quotient second, we save ourselves a cmp&beq - mov.l %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder - mov.l %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient - - rts - -ddovf: - bset &0x1, EXC_CC+1(%a6) # 'V' set on overflow - bclr &0x0, EXC_CC+1(%a6) # 'C' cleared on overflow - - rts - -div64eq0: - andi.b &0x1e, EXC_CC+1(%a6) # clear 'C' bit on divbyzero - ori.b &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag - rts - -########################################################################### -######################################################################### -# This routine uses the 'classical' Algorithm D from Donald Knuth's # -# Art of Computer Programming, vol II, Seminumerical Algorithms. # -# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # -# where U,V are words of the quadword dividend and longword divisor, # -# and U1, V1 are the most significant words. # -# # -# The most sig. longword of the 64 bit dividend must be in %d5, least # -# in %d6. The divisor must be in the variable ddivisor, and the # -# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # -# The quotient is returned in %d6, remainder in %d5, unless the # -# v (overflow) bit is set in the saved %ccr. If overflow, the dividend # -# is unchanged. # -######################################################################### -dclassical: -# if the divisor msw is 0, use simpler algorithm then the full blown -# one at ddknuth: - - cmpi.l %d7, &0xffff - bhi.b ddknuth # go use D. Knuth algorithm - -# Since the divisor is only a word (and larger than the mslw of the dividend), -# a simpler algorithm may be used : -# In the general case, four quotient words would be created by -# dividing the divisor word into each dividend word. In this case, -# the first two quotient words must be zero, or overflow would occur. -# Since we already checked this case above, we can treat the most significant -# longword of the dividend as (0) remainder (see Knuth) and merely complete -# the last two divisions to get a quotient longword and word remainder: - - clr.l %d1 - swap %d5 # same as r*b if previous step rqd - swap %d6 # get u3 to lsw position - mov.w %d6, %d5 # rb + u3 - - divu.w %d7, %d5 - - mov.w %d5, %d1 # first quotient word - swap %d6 # get u4 - mov.w %d6, %d5 # rb + u4 - - divu.w %d7, %d5 - - swap %d1 - mov.w %d5, %d1 # 2nd quotient 'digit' - clr.w %d5 - swap %d5 # now remainder - mov.l %d1, %d6 # and quotient - - rts - -ddknuth: -# In this algorithm, the divisor is treated as a 2 digit (word) number -# which is divided into a 3 digit (word) dividend to get one quotient -# digit (word). After subtraction, the dividend is shifted and the -# process repeated. Before beginning, the divisor and quotient are -# 'normalized' so that the process of estimating the quotient digit -# will yield verifiably correct results.. - - clr.l DDNORMAL(%a6) # count of shifts for normalization - clr.b DDSECOND(%a6) # clear flag for quotient digits - clr.l %d1 # %d1 will hold trial quotient -ddnchk: - btst &31, %d7 # must we normalize? first word of - bne.b ddnormalized # divisor (V1) must be >= 65536/2 - addq.l &0x1, DDNORMAL(%a6) # count normalization shifts - lsl.l &0x1, %d7 # shift the divisor - lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 - roxl.l &0x1, %d5 # shift u1,u2 - bra.w ddnchk -ddnormalized: - -# Now calculate an estimate of the quotient words (msw first, then lsw). -# The comments use subscripts for the first quotient digit determination. - mov.l %d7, %d3 # divisor - mov.l %d5, %d2 # dividend mslw - swap %d2 - swap %d3 - cmp.w %d2, %d3 # V1 = U1 ? - bne.b ddqcalc1 - mov.w &0xffff, %d1 # use max trial quotient word - bra.b ddadj0 -ddqcalc1: - mov.l %d5, %d1 - - divu.w %d3, %d1 # use quotient of mslw/msw - - andi.l &0x0000ffff, %d1 # zero any remainder -ddadj0: - -# now test the trial quotient and adjust. This step plus the -# normalization assures (according to Knuth) that the trial -# quotient will be at worst 1 too large. - mov.l %d6, -(%sp) - clr.w %d6 # word u3 left - swap %d6 # in lsw position -ddadj1: mov.l %d7, %d3 - mov.l %d1, %d2 - mulu.w %d7, %d2 # V2q - swap %d3 - mulu.w %d1, %d3 # V1q - mov.l %d5, %d4 # U1U2 - sub.l %d3, %d4 # U1U2 - V1q - - swap %d4 - - mov.w %d4,%d0 - mov.w %d6,%d4 # insert lower word (U3) - - tst.w %d0 # is upper word set? - bne.w ddadjd1 - -# add.l %d6, %d4 # (U1U2 - V1q) + U3 - - cmp.l %d2, %d4 - bls.b ddadjd1 # is V2q > (U1U2-V1q) + U3 ? - subq.l &0x1, %d1 # yes, decrement and recheck - bra.b ddadj1 -ddadjd1: -# now test the word by multiplying it by the divisor (V1V2) and comparing -# the 3 digit (word) result with the current dividend words - mov.l %d5, -(%sp) # save %d5 (%d6 already saved) - mov.l %d1, %d6 - swap %d6 # shift answer to ms 3 words - mov.l %d7, %d5 - bsr.l dmm2 - mov.l %d5, %d2 # now %d2,%d3 are trial*divisor - mov.l %d6, %d3 - mov.l (%sp)+, %d5 # restore dividend - mov.l (%sp)+, %d6 - sub.l %d3, %d6 - subx.l %d2, %d5 # subtract double precision - bcc dd2nd # no carry, do next quotient digit - subq.l &0x1, %d1 # q is one too large -# need to add back divisor longword to current ms 3 digits of dividend -# - according to Knuth, this is done only 2 out of 65536 times for random -# divisor, dividend selection. - clr.l %d2 - mov.l %d7, %d3 - swap %d3 - clr.w %d3 # %d3 now ls word of divisor - add.l %d3, %d6 # aligned with 3rd word of dividend - addx.l %d2, %d5 - mov.l %d7, %d3 - clr.w %d3 # %d3 now ms word of divisor - swap %d3 # aligned with 2nd word of dividend - add.l %d3, %d5 -dd2nd: - tst.b DDSECOND(%a6) # both q words done? - bne.b ddremain -# first quotient digit now correct. store digit and shift the -# (subtracted) dividend - mov.w %d1, DDQUOTIENT(%a6) - clr.l %d1 - swap %d5 - swap %d6 - mov.w %d6, %d5 - clr.w %d6 - st DDSECOND(%a6) # second digit - bra.w ddnormalized -ddremain: -# add 2nd word to quotient, get the remainder. - mov.w %d1, DDQUOTIENT+2(%a6) -# shift down one word/digit to renormalize remainder. - mov.w %d5, %d6 - swap %d6 - swap %d5 - mov.l DDNORMAL(%a6), %d7 # get norm shift count - beq.b ddrn - subq.l &0x1, %d7 # set for loop count -ddnlp: - lsr.l &0x1, %d5 # shift into %d6 - roxr.l &0x1, %d6 - dbf %d7, ddnlp -ddrn: - mov.l %d6, %d5 # remainder - mov.l DDQUOTIENT(%a6), %d6 # quotient - - rts -dmm2: -# factors for the 32X32->64 multiplication are in %d5 and %d6. -# returns 64 bit result in %d5 (hi) %d6(lo). -# destroys %d2,%d3,%d4. - -# multiply hi,lo words of each factor to get 4 intermediate products - mov.l %d6, %d2 - mov.l %d6, %d3 - mov.l %d5, %d4 - swap %d3 - swap %d4 - mulu.w %d5, %d6 # %d6 <- lsw*lsw - mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source - mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest - mulu.w %d4, %d3 # %d3 <- msw*msw -# now use swap and addx to consolidate to two longwords - clr.l %d4 - swap %d6 - add.w %d5, %d6 # add msw of l*l to lsw of m*l product - addx.w %d4, %d3 # add any carry to m*m product - add.w %d2, %d6 # add in lsw of other m*l product - addx.w %d4, %d3 # add any carry to m*m product - swap %d6 # %d6 is low 32 bits of final product - clr.w %d5 - clr.w %d2 # lsw of two mixed products used, - swap %d5 # now use msws of longwords - swap %d2 - add.l %d2, %d5 - add.l %d3, %d5 # %d5 now ms 32 bits of final product - rts - -########## -dcontrolmodel_s: - movq.l &LONG,%d0 - bsr.l _calc_ea # calc <ea> - - cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? - beq.b dimmed # yes - - mov.l %a0,%a2 - bsr.l _dmem_read_long # fetch divisor from <ea> - - tst.l %d1 # dfetch error? - bne.b div64_err # yes - - mov.l %d0, %d7 - bra.w dgotsrcl - -# we have to split out immediate data here because it must be read using -# imem_read() instead of dmem_read(). this becomes especially important -# if the fetch runs into some deadly fault. -dimmed: - addq.l &0x4,EXC_EXTWPTR(%a6) - bsr.l _imem_read_long # read immediate value - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.l %d0,%d7 - bra.w dgotsrcl - -########## - -# if dmem_read_long() returns a fail message in d1, the package -# must create an access error frame. here, we pass a skeleton fslw -# and the failing address to the routine that creates the new frame. -# also, we call isp_restore in case the effective addressing mode was -# (an)+ or -(an) in which case the previous "an" value must be restored. -# FSLW: -# read = true -# size = longword -# TM = data -# software emulation error = true -div64_err: - bsr.l isp_restore # restore addr reg - mov.l %a2,%a0 # pass failing address - mov.l &0x01010001,%d0 # pass fslw - bra.l isp_dacc - -######################################################################### -# XDEF **************************************************************** # -# _mul64(): routine to emulate mul{u,s}.l <ea>,Dh:Dl 32x32->64 # -# # -# XREF **************************************************************** # -# _calc_ea() - calculate effective address # -# isp_iacc() - handle instruction access error exception # -# isp_dacc() - handle data access error exception # -# isp_restore() - restore An on access error w/ -() or ()+ # -# # -# INPUT *************************************************************** # -# none # -# # -# OUTPUT ************************************************************** # -# If exiting through isp_dacc... # -# a0 = failing address # -# d0 = FSLW # -# else # -# none # -# # -# ALGORITHM *********************************************************** # -# First, decode the operand location. If it's in Dn, fetch from # -# the stack. If it's in memory, use _calc_ea() to calculate the # -# effective address. Use _dmem_read_long() to fetch at that address. # -# Unless the operand is immediate data. Then use _imem_read_long(). # -# Send failures to isp_dacc() or isp_iacc() as appropriate. # -# If the operands are signed, make them unsigned and save the # -# sign info for later. Perform the multiplication using 16x16->32 # -# unsigned multiplies and "add" instructions. Store the high and low # -# portions of the result in the appropriate data registers on the # -# stack. Calculate the condition codes, also. # -# # -######################################################################### - -############# -# mul(u,s)l # -############# - global _mul64 -_mul64: - mov.b EXC_OPWORD+1(%a6), %d0 # extract src {mode,reg} - cmpi.b %d0, &0x7 # is src mode Dn or other? - bgt.w mul64_memop # src is in memory - -# multiplier operand in the data register file. -# must extract the register number and fetch the operand from the stack. -mul64_regop: - andi.w &0x7, %d0 # extract Dn - mov.l (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier - -# multiplier is in %d3. now, extract Dl and Dh fields and fetch the -# multiplicand from the data register specified by Dl. -mul64_multiplicand: - mov.w EXC_EXTWORD(%a6), %d2 # fetch ext word - clr.w %d1 # clear Dh reg - mov.b %d2, %d1 # grab Dh - rol.w &0x4, %d2 # align Dl byte - andi.w &0x7, %d2 # extract Dl - - mov.l (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand - -# check for the case of "zero" result early - tst.l %d4 # test multiplicand - beq.w mul64_zero # handle zero separately - tst.l %d3 # test multiplier - beq.w mul64_zero # handle zero separately - -# multiplier is in %d3 and multiplicand is in %d4. -# if the operation is to be signed, then the operands are converted -# to unsigned and the result sign is saved for the end. - clr.b EXC_TEMP(%a6) # clear temp space - btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? - beq.b mul64_alg # unsigned; skip sgn calc - - tst.l %d3 # is multiplier negative? - bge.b mul64_chk_md_sgn # no - neg.l %d3 # make multiplier positive - ori.b &0x1, EXC_TEMP(%a6) # save multiplier sgn - -# the result sign is the exclusive or of the operand sign bits. -mul64_chk_md_sgn: - tst.l %d4 # is multiplicand negative? - bge.b mul64_alg # no - neg.l %d4 # make multiplicand positive - eori.b &0x1, EXC_TEMP(%a6) # calculate correct sign - -######################################################################### -# 63 32 0 # -# ---------------------------- # -# | hi(mplier) * hi(mplicand)| # -# ---------------------------- # -# ----------------------------- # -# | hi(mplier) * lo(mplicand) | # -# ----------------------------- # -# ----------------------------- # -# | lo(mplier) * hi(mplicand) | # -# ----------------------------- # -# | ----------------------------- # -# --|-- | lo(mplier) * lo(mplicand) | # -# | ----------------------------- # -# ======================================================== # -# -------------------------------------------------------- # -# | hi(result) | lo(result) | # -# -------------------------------------------------------- # -######################################################################### -mul64_alg: -# load temp registers with operands - mov.l %d3, %d5 # mr in %d5 - mov.l %d3, %d6 # mr in %d6 - mov.l %d4, %d7 # md in %d7 - swap %d6 # hi(mr) in lo %d6 - swap %d7 # hi(md) in lo %d7 - -# complete necessary multiplies: - mulu.w %d4, %d3 # [1] lo(mr) * lo(md) - mulu.w %d6, %d4 # [2] hi(mr) * lo(md) - mulu.w %d7, %d5 # [3] lo(mr) * hi(md) - mulu.w %d7, %d6 # [4] hi(mr) * hi(md) - -# add lo portions of [2],[3] to hi portion of [1]. -# add carries produced from these adds to [4]. -# lo([1]) is the final lo 16 bits of the result. - clr.l %d7 # load %d7 w/ zero value - swap %d3 # hi([1]) <==> lo([1]) - add.w %d4, %d3 # hi([1]) + lo([2]) - addx.l %d7, %d6 # [4] + carry - add.w %d5, %d3 # hi([1]) + lo([3]) - addx.l %d7, %d6 # [4] + carry - swap %d3 # lo([1]) <==> hi([1]) - -# lo portions of [2],[3] have been added in to final result. -# now, clear lo, put hi in lo reg, and add to [4] - clr.w %d4 # clear lo([2]) - clr.w %d5 # clear hi([3]) - swap %d4 # hi([2]) in lo %d4 - swap %d5 # hi([3]) in lo %d5 - add.l %d5, %d4 # [4] + hi([2]) - add.l %d6, %d4 # [4] + hi([3]) - -# unsigned result is now in {%d4,%d3} - tst.b EXC_TEMP(%a6) # should result be signed? - beq.b mul64_done # no - -# result should be a signed negative number. -# compute 2's complement of the unsigned number: -# -negate all bits and add 1 -mul64_neg: - not.l %d3 # negate lo(result) bits - not.l %d4 # negate hi(result) bits - addq.l &1, %d3 # add 1 to lo(result) - addx.l %d7, %d4 # add carry to hi(result) - -# the result is saved to the register file. -# for '040 compatibility, if Dl == Dh then only the hi(result) is -# saved. so, saving hi after lo accomplishes this without need to -# check Dl,Dh equality. -mul64_done: - mov.l %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result) - mov.w &0x0, %cc - mov.l %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result) - -# now, grab the condition codes. only one that can be set is 'N'. -# 'N' CAN be set if the operation is unsigned if bit 63 is set. - mov.w %cc, %d7 # fetch %ccr to see if 'N' set - andi.b &0x8, %d7 # extract 'N' bit - -mul64_ccode_set: - mov.b EXC_CC+1(%a6), %d6 # fetch previous %ccr - andi.b &0x10, %d6 # all but 'X' bit changes - - or.b %d7, %d6 # group 'X' and 'N' - mov.b %d6, EXC_CC+1(%a6) # save new %ccr - - rts - -# one or both of the operands is zero so the result is also zero. -# save the zero result to the register file and set the 'Z' ccode bit. -mul64_zero: - clr.l (EXC_DREGS,%a6,%d2.w*4) # save lo(result) - clr.l (EXC_DREGS,%a6,%d1.w*4) # save hi(result) - - movq.l &0x4, %d7 # set 'Z' ccode bit - bra.b mul64_ccode_set # finish ccode set - -########## - -# multiplier operand is in memory at the effective address. -# must calculate the <ea> and go fetch the 32-bit operand. -mul64_memop: - movq.l &LONG, %d0 # pass # of bytes - bsr.l _calc_ea # calculate <ea> - - cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? - beq.b mul64_immed # yes - - mov.l %a0,%a2 - bsr.l _dmem_read_long # fetch src from addr (%a0) - - tst.l %d1 # dfetch error? - bne.w mul64_err # yes - - mov.l %d0, %d3 # store multiplier in %d3 - - bra.w mul64_multiplicand - -# we have to split out immediate data here because it must be read using -# imem_read() instead of dmem_read(). this becomes especially important -# if the fetch runs into some deadly fault. -mul64_immed: - addq.l &0x4,EXC_EXTWPTR(%a6) - bsr.l _imem_read_long # read immediate value - - tst.l %d1 # ifetch error? - bne.l isp_iacc # yes - - mov.l %d0,%d3 - bra.w mul64_multiplicand - -########## - -# if dmem_read_long() returns a fail message in d1, the package -# must create an access error frame. here, we pass a skeleton fslw -# and the failing address to the routine that creates the new frame. -# also, we call isp_restore in case the effective addressing mode was -# (an)+ or -(an) in which case the previous "an" value must be restored. -# FSLW: -# read = true -# size = longword -# TM = data -# software emulation error = true -mul64_err: - bsr.l isp_restore # restore addr reg - mov.l %a2,%a0 # pass failing address - mov.l &0x01010001,%d0 # pass fslw - bra.l isp_dacc - -######################################################################### -# XDEF **************************************************************** # -# _compandset2(): routine to emulate cas2() # -# (internal to package) # -# # -# _isp_cas2_finish(): store ccodes, store compare regs # -# (external to package) # -# # -# XREF **************************************************************** # -# _real_lock_page() - "callout" to lock op's page from page-outs # -# _cas_terminate2() - access error exit # -# _real_cas2() - "callout" to core cas2 emulation code # -# _real_unlock_page() - "callout" to unlock page # -# # -# INPUT *************************************************************** # -# _compandset2(): # -# d0 = instruction extension word # -# # -# _isp_cas2_finish(): # -# see cas2 core emulation code # -# # -# OUTPUT ************************************************************** # -# _compandset2(): # -# see cas2 core emulation code # -# # -# _isp_cas_finish(): # -# None (register file or memroy changed as appropriate) # -# # -# ALGORITHM *********************************************************** # -# compandset2(): # -# Decode the instruction and fetch the appropriate Update and # -# Compare operands. Then call the "callout" _real_lock_page() for each # -# memory operand address so that the operating system can keep these # -# pages from being paged out. If either _real_lock_page() fails, exit # -# through _cas_terminate2(). Don't forget to unlock the 1st locked page # -# using _real_unlock_paged() if the 2nd lock-page fails. # -# Finally, branch to the core cas2 emulation code by calling the # -# "callout" _real_cas2(). # -# # -# _isp_cas2_finish(): # -# Re-perform the comparison so we can determine the condition # -# codes which were too much trouble to keep around during the locked # -# emulation. Then unlock each operands page by calling the "callout" # -# _real_unlock_page(). # -# # -######################################################################### - -set ADDR1, EXC_TEMP+0xc -set ADDR2, EXC_TEMP+0x0 -set DC2, EXC_TEMP+0xa -set DC1, EXC_TEMP+0x8 - - global _compandset2 -_compandset2: - mov.l %d0,EXC_TEMP+0x4(%a6) # store for possible restart - mov.l %d0,%d1 # extension word in d0 - - rol.w &0x4,%d0 - andi.w &0xf,%d0 # extract Rn2 - mov.l (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2 - mov.l %a1,ADDR2(%a6) - - mov.l %d1,%d0 - - lsr.w &0x6,%d1 - andi.w &0x7,%d1 # extract Du2 - mov.l (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op - - andi.w &0x7,%d0 # extract Dc2 - mov.l (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op - mov.w %d0,DC2(%a6) - - mov.w EXC_EXTWORD(%a6),%d0 - mov.l %d0,%d1 - - rol.w &0x4,%d0 - andi.w &0xf,%d0 # extract Rn1 - mov.l (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1 - mov.l %a0,ADDR1(%a6) - - mov.l %d1,%d0 - - lsr.w &0x6,%d1 - andi.w &0x7,%d1 # extract Du1 - mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op - - andi.w &0x7,%d0 # extract Dc1 - mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op - mov.w %d0,DC1(%a6) - - btst &0x1,EXC_OPWORD(%a6) # word or long? - sne %d7 - - btst &0x5,EXC_ISR(%a6) # user or supervisor? - sne %d6 - - mov.l %a0,%a2 - mov.l %a1,%a3 - - mov.l %d7,%d1 # pass size - mov.l %d6,%d0 # pass mode - bsr.l _real_lock_page # lock page - mov.l %a2,%a0 - tst.l %d0 # error? - bne.l _cas_terminate2 # yes - - mov.l %d7,%d1 # pass size - mov.l %d6,%d0 # pass mode - mov.l %a3,%a0 # pass addr - bsr.l _real_lock_page # lock page - mov.l %a3,%a0 - tst.l %d0 # error? - bne.b cas_preterm # yes - - mov.l %a2,%a0 - mov.l %a3,%a1 - - bra.l _real_cas2 - -# if the 2nd lock attempt fails, then we must still unlock the -# first page(s). -cas_preterm: - mov.l %d0,-(%sp) # save FSLW - mov.l %d7,%d1 # pass size - mov.l %d6,%d0 # pass mode - mov.l %a2,%a0 # pass ADDR1 - bsr.l _real_unlock_page # unlock first page(s) - mov.l (%sp)+,%d0 # restore FSLW - mov.l %a3,%a0 # pass failing addr - bra.l _cas_terminate2 - -############################################################# - - global _isp_cas2_finish -_isp_cas2_finish: - btst &0x1,EXC_OPWORD(%a6) - bne.b cas2_finish_l - - mov.w EXC_CC(%a6),%cc # load old ccodes - cmp.w %d0,%d2 - bne.b cas2_finish_w_save - cmp.w %d1,%d3 -cas2_finish_w_save: - mov.w %cc,EXC_CC(%a6) # save new ccodes - - tst.b %d4 # update compare reg? - bne.b cas2_finish_w_done # no - - mov.w DC2(%a6),%d3 # fetch Dc2 - mov.w %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op - - mov.w DC1(%a6),%d2 # fetch Dc1 - mov.w %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op - -cas2_finish_w_done: - btst &0x5,EXC_ISR(%a6) - sne %d2 - mov.l %d2,%d0 # pass mode - sf %d1 # pass size - mov.l ADDR1(%a6),%a0 # pass ADDR1 - bsr.l _real_unlock_page # unlock page - - mov.l %d2,%d0 # pass mode - sf %d1 # pass size - mov.l ADDR2(%a6),%a0 # pass ADDR2 - bsr.l _real_unlock_page # unlock page - rts - -cas2_finish_l: - mov.w EXC_CC(%a6),%cc # load old ccodes - cmp.l %d0,%d2 - bne.b cas2_finish_l_save - cmp.l %d1,%d3 -cas2_finish_l_save: - mov.w %cc,EXC_CC(%a6) # save new ccodes - - tst.b %d4 # update compare reg? - bne.b cas2_finish_l_done # no - - mov.w DC2(%a6),%d3 # fetch Dc2 - mov.l %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op - - mov.w DC1(%a6),%d2 # fetch Dc1 - mov.l %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op - -cas2_finish_l_done: - btst &0x5,EXC_ISR(%a6) - sne %d2 - mov.l %d2,%d0 # pass mode - st %d1 # pass size - mov.l ADDR1(%a6),%a0 # pass ADDR1 - bsr.l _real_unlock_page # unlock page - - mov.l %d2,%d0 # pass mode - st %d1 # pass size - mov.l ADDR2(%a6),%a0 # pass ADDR2 - bsr.l _real_unlock_page # unlock page - rts - -######## - global cr_cas2 -cr_cas2: - mov.l EXC_TEMP+0x4(%a6),%d0 - bra.w _compandset2 - -######################################################################### -# XDEF **************************************************************** # -# _compandset(): routine to emulate cas w/ misaligned <ea> # -# (internal to package) # -# _isp_cas_finish(): routine called when cas emulation completes # -# (external and internal to package) # -# _isp_cas_restart(): restart cas emulation after a fault # -# (external to package) # -# _isp_cas_terminate(): create access error stack frame on fault # -# (external and internal to package) # -# _isp_cas_inrange(): checks whether instr addess is within range # -# of core cas/cas2emulation code # -# (external to package) # -# # -# XREF **************************************************************** # -# _calc_ea(): calculate effective address # -# # -# INPUT *************************************************************** # -# compandset(): # -# none # -# _isp_cas_restart(): # -# d6 = previous sfc/dfc # -# _isp_cas_finish(): # -# _isp_cas_terminate(): # -# a0 = failing address # -# d0 = FSLW # -# d6 = previous sfc/dfc # -# _isp_cas_inrange(): # -# a0 = instruction address to be checked # -# # -# OUTPUT ************************************************************** # -# compandset(): # -# none # -# _isp_cas_restart(): # -# a0 = effective address # -# d7 = word or longword flag # -# _isp_cas_finish(): # -# a0 = effective address # -# _isp_cas_terminate(): # -# initial register set before emulation exception # -# _isp_cas_inrange(): # -# d0 = 0 => in range; -1 => out of range # -# # -# ALGORITHM *********************************************************** # -# # -# compandset(): # -# First, calculate the effective address. Then, decode the # -# instruction word and fetch the "compare" (DC) and "update" (Du) # -# operands. # -# Next, call the external routine _real_lock_page() so that the # -# operating system can keep this page from being paged out while we're # -# in this routine. If this call fails, jump to _cas_terminate2(). # -# The routine then branches to _real_cas(). This external routine # -# that actually emulates cas can be supplied by the external os or # -# made to point directly back into the 060ISP which has a routine for # -# this purpose. # -# # -# _isp_cas_finish(): # -# Either way, after emulation, the package is re-entered at # -# _isp_cas_finish(). This routine re-compares the operands in order to # -# set the condition codes. Finally, these routines will call # -# _real_unlock_page() in order to unlock the pages that were previously # -# locked. # -# # -# _isp_cas_restart(): # -# This routine can be entered from an access error handler where # -# the emulation sequence should be re-started from the beginning. # -# # -# _isp_cas_terminate(): # -# This routine can be entered from an access error handler where # -# an emulation operand access failed and the operating system would # -# like an access error stack frame created instead of the current # -# unimplemented integer instruction frame. # -# Also, the package enters here if a call to _real_lock_page() # -# fails. # -# # -# _isp_cas_inrange(): # -# Checks to see whether the instruction address passed to it in # -# a0 is within the software package cas/cas2 emulation routines. This # -# can be helpful for an operating system to determine whether an access # -# error during emulation was due to a cas/cas2 emulation access. # -# # -######################################################################### - -set DC, EXC_TEMP+0x8 -set ADDR, EXC_TEMP+0x4 - - global _compandset -_compandset: - btst &0x1,EXC_OPWORD(%a6) # word or long operation? - bne.b compandsetl # long - -compandsetw: - movq.l &0x2,%d0 # size = 2 bytes - bsr.l _calc_ea # a0 = calculated <ea> - mov.l %a0,ADDR(%a6) # save <ea> for possible restart - sf %d7 # clear d7 for word size - bra.b compandsetfetch - -compandsetl: - movq.l &0x4,%d0 # size = 4 bytes - bsr.l _calc_ea # a0 = calculated <ea> - mov.l %a0,ADDR(%a6) # save <ea> for possible restart - st %d7 # set d7 for longword size - -compandsetfetch: - mov.w EXC_EXTWORD(%a6),%d0 # fetch cas extension word - mov.l %d0,%d1 # make a copy - - lsr.w &0x6,%d0 - andi.w &0x7,%d0 # extract Du - mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand - - andi.w &0x7,%d1 # extract Dc - mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand - mov.w %d1,DC(%a6) # save Dc - - btst &0x5,EXC_ISR(%a6) # which mode for exception? - sne %d6 # set on supervisor mode - - mov.l %a0,%a2 # save temporarily - mov.l %d7,%d1 # pass size - mov.l %d6,%d0 # pass mode - bsr.l _real_lock_page # lock page - tst.l %d0 # did error occur? - bne.w _cas_terminate2 # yes, clean up the mess - mov.l %a2,%a0 # pass addr in a0 - - bra.l _real_cas - -######## - global _isp_cas_finish -_isp_cas_finish: - btst &0x1,EXC_OPWORD(%a6) - bne.b cas_finish_l - -# just do the compare again since it's faster than saving the ccodes -# from the locked routine... -cas_finish_w: - mov.w EXC_CC(%a6),%cc # restore cc - cmp.w %d0,%d4 # do word compare - mov.w %cc,EXC_CC(%a6) # save cc - - tst.b %d1 # update compare reg? - bne.b cas_finish_w_done # no - - mov.w DC(%a6),%d3 - mov.w %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination - -cas_finish_w_done: - mov.l ADDR(%a6),%a0 # pass addr - sf %d1 # pass size - btst &0x5,EXC_ISR(%a6) - sne %d0 # pass mode - bsr.l _real_unlock_page # unlock page - rts - -# just do the compare again since it's faster than saving the ccodes -# from the locked routine... -cas_finish_l: - mov.w EXC_CC(%a6),%cc # restore cc - cmp.l %d0,%d4 # do longword compare - mov.w %cc,EXC_CC(%a6) # save cc - - tst.b %d1 # update compare reg? - bne.b cas_finish_l_done # no - - mov.w DC(%a6),%d3 - mov.l %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination - -cas_finish_l_done: - mov.l ADDR(%a6),%a0 # pass addr - st %d1 # pass size - btst &0x5,EXC_ISR(%a6) - sne %d0 # pass mode - bsr.l _real_unlock_page # unlock page - rts - -######## - - global _isp_cas_restart -_isp_cas_restart: - mov.l %d6,%sfc # restore previous sfc - mov.l %d6,%dfc # restore previous dfc - - cmpi.b EXC_OPWORD+1(%a6),&0xfc # cas or cas2? - beq.l cr_cas2 # cas2 -cr_cas: - mov.l ADDR(%a6),%a0 # load <ea> - btst &0x1,EXC_OPWORD(%a6) # word or long operation? - sne %d7 # set d7 accordingly - bra.w compandsetfetch - -######## - -# At this stage, it would be nice if d0 held the FSLW. - global _isp_cas_terminate -_isp_cas_terminate: - mov.l %d6,%sfc # restore previous sfc - mov.l %d6,%dfc # restore previous dfc - - global _cas_terminate2 -_cas_terminate2: - mov.l %a0,%a2 # copy failing addr to a2 - - mov.l %d0,-(%sp) - bsr.l isp_restore # restore An (if ()+ or -()) - mov.l (%sp)+,%d0 - - addq.l &0x4,%sp # remove sub return addr - subq.l &0x8,%sp # make room for bigger stack - subq.l &0x8,%a6 # shift frame ptr down, too - mov.l &26,%d1 # want to move 51 longwords - lea 0x8(%sp),%a0 # get address of old stack - lea 0x0(%sp),%a1 # get address of new stack -cas_term_cont: - mov.l (%a0)+,(%a1)+ # move a longword - dbra.w %d1,cas_term_cont # keep going - - mov.w &0x4008,EXC_IVOFF(%a6) # put new stk fmt, voff - mov.l %a2,EXC_IVOFF+0x2(%a6) # put faulting addr on stack - mov.l %d0,EXC_IVOFF+0x6(%a6) # put FSLW on stack - movm.l EXC_DREGS(%a6),&0x3fff # restore user regs - unlk %a6 # unlink stack frame - bra.l _real_access - -######## - - global _isp_cas_inrange -_isp_cas_inrange: - clr.l %d0 # clear return result - lea _CASHI(%pc),%a1 # load end of CAS core code - cmp.l %a1,%a0 # is PC in range? - blt.b cin_no # no - lea _CASLO(%pc),%a1 # load begin of CAS core code - cmp.l %a0,%a1 # is PC in range? - blt.b cin_no # no - rts # yes; return d0 = 0 -cin_no: - mov.l &-0x1,%d0 # out of range; return d0 = -1 - rts - -################################################################# -################################################################# -################################################################# -# This is the start of the cas and cas2 "core" emulation code. # -# This is the section that may need to be replaced by the host # -# OS if it is too operating system-specific. # -# Please refer to the package documentation to see how to # -# "replace" this section, if necessary. # -################################################################# -################################################################# -################################################################# - -# ###### ## ###### #### -# # # # # # # -# # ###### ###### # -# # # # # # -# ###### # # ###### ###### - -######################################################################### -# XDEF **************************************************************** # -# _isp_cas2(): "core" emulation code for the cas2 instruction # -# # -# XREF **************************************************************** # -# _isp_cas2_finish() - only exit point for this emulation code; # -# do clean-up; calculate ccodes; store # -# Compare Ops if appropriate. # -# # -# INPUT *************************************************************** # -# *see chart below* # -# # -# OUTPUT ************************************************************** # -# *see chart below* # -# # -# ALGORITHM *********************************************************** # -# (1) Make several copies of the effective address. # -# (2) Save current SR; Then mask off all maskable interrupts. # -# (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set # -# according to whether exception occurred in user or # -# supervisor mode. # -# (4) Use "plpaw" instruction to pre-load ATC with effective # -# address pages(s). THIS SHOULD NOT FAULT!!! The relevant # -# page(s) should have already been made resident prior to # -# entering this routine. # -# (5) Push the operand lines from the cache w/ "cpushl". # -# In the 68040, this was done within the locked region. In # -# the 68060, it is done outside of the locked region. # -# (6) Use "plpar" instruction to do a re-load of ATC entries for # -# ADDR1 since ADDR2 entries may have pushed ADDR1 out of the # -# ATC. # -# (7) Pre-fetch the core emulation instructions by executing # -# one branch within each physical line (16 bytes) of the code # -# before actually executing the code. # -# (8) Load the BUSCR w/ the bus lock value. # -# (9) Fetch the source operands using "moves". # -# (10)Do the compares. If both equal, go to step (13). # -# (11)Unequal. No update occurs. But, we do write the DST1 op # -# back to itself (as w/ the '040) so we can gracefully unlock # -# the bus (and assert LOCKE*) using BUSCR and the final move. # -# (12)Exit. # -# (13)Write update operand to the DST locations. Use BUSCR to # -# assert LOCKE* for the final write operation. # -# (14)Exit. # -# # -# The algorithm is actually implemented slightly differently # -# depending on the size of the operation and the misalignment of the # -# operands. A misaligned operand must be written in aligned chunks or # -# else the BUSCR register control gets confused. # -# # -######################################################################### - -################################################################# -# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # -# ENTERING _isp_cas2(). # -# # -# D0 = xxxxxxxx # -# D1 = xxxxxxxx # -# D2 = cmp operand 1 # -# D3 = cmp operand 2 # -# D4 = update oper 1 # -# D5 = update oper 2 # -# D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode # -# D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word # -# A0 = ADDR1 # -# A1 = ADDR2 # -# A2 = xxxxxxxx # -# A3 = xxxxxxxx # -# A4 = xxxxxxxx # -# A5 = xxxxxxxx # -# A6 = frame pointer # -# A7 = stack pointer # -################################################################# - -# align 0x1000 -# beginning label used by _isp_cas_inrange() - global _CASLO -_CASLO: - - global _isp_cas2 -_isp_cas2: - tst.b %d6 # user or supervisor mode? - bne.b cas2_supervisor # supervisor -cas2_user: - movq.l &0x1,%d0 # load user data fc - bra.b cas2_cont -cas2_supervisor: - movq.l &0x5,%d0 # load supervisor data fc -cas2_cont: - tst.b %d7 # word or longword? - beq.w cas2w # word - -#### -cas2l: - mov.l %a0,%a2 # copy ADDR1 - mov.l %a1,%a3 # copy ADDR2 - mov.l %a0,%a4 # copy ADDR1 - mov.l %a1,%a5 # copy ADDR2 - - addq.l &0x3,%a4 # ADDR1+3 - addq.l &0x3,%a5 # ADDR2+3 - mov.l %a2,%d1 # ADDR1 - -# mask interrupts levels 0-6. save old mask value. - mov.w %sr,%d7 # save current SR - ori.w &0x0700,%sr # inhibit interrupts - -# load the SFC and DFC with the appropriate mode. - movc %sfc,%d6 # save old SFC/DFC - movc %d0,%sfc # store new SFC - movc %d0,%dfc # store new DFC - -# pre-load the operand ATC. no page faults should occur here because -# _real_lock_page() should have taken care of this. - plpaw (%a2) # load atc for ADDR1 - plpaw (%a4) # load atc for ADDR1+3 - plpaw (%a3) # load atc for ADDR2 - plpaw (%a5) # load atc for ADDR2+3 - -# push the operand lines from the cache if they exist. - cpushl %dc,(%a2) # push line for ADDR1 - cpushl %dc,(%a4) # push line for ADDR1+3 - cpushl %dc,(%a3) # push line for ADDR2 - cpushl %dc,(%a5) # push line for ADDR2+2 - - mov.l %d1,%a2 # ADDR1 - addq.l &0x3,%d1 - mov.l %d1,%a4 # ADDR1+3 -# if ADDR1 was ATC resident before the above "plpaw" and was executed -# and it was the next entry scheduled for replacement and ADDR2 -# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 -# entries from the ATC. so, we do a second set of "plpa"s. - plpar (%a2) # load atc for ADDR1 - plpar (%a4) # load atc for ADDR1+3 - -# load the BUSCR values. - mov.l &0x80000000,%a2 # assert LOCK* buscr value - mov.l &0xa0000000,%a3 # assert LOCKE* buscr value - mov.l &0x00000000,%a4 # buscr unlock value - -# there are three possible mis-aligned cases for longword cas. they -# are separated because the final write which asserts LOCKE* must -# be aligned. - mov.l %a0,%d0 # is ADDR1 misaligned? - andi.b &0x3,%d0 - beq.b CAS2L_ENTER # no - cmpi.b %d0,&0x2 - beq.w CAS2L2_ENTER # yes; word misaligned - bra.w CAS2L3_ENTER # yes; byte misaligned - -# -# D0 = dst operand 1 <- -# D1 = dst operand 2 <- -# D2 = cmp operand 1 -# D3 = cmp operand 2 -# D4 = update oper 1 -# D5 = update oper 2 -# D6 = old SFC/DFC -# D7 = old SR -# A0 = ADDR1 -# A1 = ADDR2 -# A2 = bus LOCK* value -# A3 = bus LOCKE* value -# A4 = bus unlock value -# A5 = xxxxxxxx -# - align 0x10 -CAS2L_START: - movc %a2,%buscr # assert LOCK* - movs.l (%a1),%d1 # fetch Dest2[31:0] - movs.l (%a0),%d0 # fetch Dest1[31:0] - bra.b CAS2L_CONT -CAS2L_ENTER: - bra.b ~+16 - -CAS2L_CONT: - cmp.l %d0,%d2 # Dest1 - Compare1 - bne.b CAS2L_NOUPDATE - cmp.l %d1,%d3 # Dest2 - Compare2 - bne.b CAS2L_NOUPDATE - movs.l %d5,(%a1) # Update2[31:0] -> DEST2 - bra.b CAS2L_UPDATE - bra.b ~+16 - -CAS2L_UPDATE: - movc %a3,%buscr # assert LOCKE* - movs.l %d4,(%a0) # Update1[31:0] -> DEST1 - movc %a4,%buscr # unlock the bus - bra.b cas2l_update_done - bra.b ~+16 - -CAS2L_NOUPDATE: - movc %a3,%buscr # assert LOCKE* - movs.l %d0,(%a0) # Dest1[31:0] -> DEST1 - movc %a4,%buscr # unlock the bus - bra.b cas2l_noupdate_done - bra.b ~+16 - -CAS2L_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CAS2L_START - -#### - -################################################################# -# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # -# ENTERING _isp_cas2(). # -# # -# D0 = destination[31:0] operand 1 # -# D1 = destination[31:0] operand 2 # -# D2 = cmp[31:0] operand 1 # -# D3 = cmp[31:0] operand 2 # -# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # -# D5 = xxxxxxxx # -# D6 = xxxxxxxx # -# D7 = xxxxxxxx # -# A0 = xxxxxxxx # -# A1 = xxxxxxxx # -# A2 = xxxxxxxx # -# A3 = xxxxxxxx # -# A4 = xxxxxxxx # -# A5 = xxxxxxxx # -# A6 = frame pointer # -# A7 = stack pointer # -################################################################# - -cas2l_noupdate_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - sf %d4 # indicate no update was done - bra.l _isp_cas2_finish - -cas2l_update_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - st %d4 # indicate update was done - bra.l _isp_cas2_finish -#### - - align 0x10 -CAS2L2_START: - movc %a2,%buscr # assert LOCK* - movs.l (%a1),%d1 # fetch Dest2[31:0] - movs.l (%a0),%d0 # fetch Dest1[31:0] - bra.b CAS2L2_CONT -CAS2L2_ENTER: - bra.b ~+16 - -CAS2L2_CONT: - cmp.l %d0,%d2 # Dest1 - Compare1 - bne.b CAS2L2_NOUPDATE - cmp.l %d1,%d3 # Dest2 - Compare2 - bne.b CAS2L2_NOUPDATE - movs.l %d5,(%a1) # Update2[31:0] -> Dest2 - bra.b CAS2L2_UPDATE - bra.b ~+16 - -CAS2L2_UPDATE: - swap %d4 # get Update1[31:16] - movs.w %d4,(%a0)+ # Update1[31:16] -> DEST1 - movc %a3,%buscr # assert LOCKE* - swap %d4 # get Update1[15:0] - bra.b CAS2L2_UPDATE2 - bra.b ~+16 - -CAS2L2_UPDATE2: - movs.w %d4,(%a0) # Update1[15:0] -> DEST1+0x2 - movc %a4,%buscr # unlock the bus - bra.w cas2l_update_done - nop - bra.b ~+16 - -CAS2L2_NOUPDATE: - swap %d0 # get Dest1[31:16] - movs.w %d0,(%a0)+ # Dest1[31:16] -> DEST1 - movc %a3,%buscr # assert LOCKE* - swap %d0 # get Dest1[15:0] - bra.b CAS2L2_NOUPDATE2 - bra.b ~+16 - -CAS2L2_NOUPDATE2: - movs.w %d0,(%a0) # Dest1[15:0] -> DEST1+0x2 - movc %a4,%buscr # unlock the bus - bra.w cas2l_noupdate_done - nop - bra.b ~+16 - -CAS2L2_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CAS2L2_START - -################################# - - align 0x10 -CAS2L3_START: - movc %a2,%buscr # assert LOCK* - movs.l (%a1),%d1 # fetch Dest2[31:0] - movs.l (%a0),%d0 # fetch Dest1[31:0] - bra.b CAS2L3_CONT -CAS2L3_ENTER: - bra.b ~+16 - -CAS2L3_CONT: - cmp.l %d0,%d2 # Dest1 - Compare1 - bne.b CAS2L3_NOUPDATE - cmp.l %d1,%d3 # Dest2 - Compare2 - bne.b CAS2L3_NOUPDATE - movs.l %d5,(%a1) # Update2[31:0] -> DEST2 - bra.b CAS2L3_UPDATE - bra.b ~+16 - -CAS2L3_UPDATE: - rol.l &0x8,%d4 # get Update1[31:24] - movs.b %d4,(%a0)+ # Update1[31:24] -> DEST1 - swap %d4 # get Update1[23:8] - movs.w %d4,(%a0)+ # Update1[23:8] -> DEST1+0x1 - bra.b CAS2L3_UPDATE2 - bra.b ~+16 - -CAS2L3_UPDATE2: - rol.l &0x8,%d4 # get Update1[7:0] - movc %a3,%buscr # assert LOCKE* - movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x3 - bra.b CAS2L3_UPDATE3 - nop - bra.b ~+16 - -CAS2L3_UPDATE3: - movc %a4,%buscr # unlock the bus - bra.w cas2l_update_done - nop - nop - nop - bra.b ~+16 - -CAS2L3_NOUPDATE: - rol.l &0x8,%d0 # get Dest1[31:24] - movs.b %d0,(%a0)+ # Dest1[31:24] -> DEST1 - swap %d0 # get Dest1[23:8] - movs.w %d0,(%a0)+ # Dest1[23:8] -> DEST1+0x1 - bra.b CAS2L3_NOUPDATE2 - bra.b ~+16 - -CAS2L3_NOUPDATE2: - rol.l &0x8,%d0 # get Dest1[7:0] - movc %a3,%buscr # assert LOCKE* - movs.b %d0,(%a0) # Update1[7:0] -> DEST1+0x3 - bra.b CAS2L3_NOUPDATE3 - nop - bra.b ~+16 - -CAS2L3_NOUPDATE3: - movc %a4,%buscr # unlock the bus - bra.w cas2l_noupdate_done - nop - nop - nop - bra.b ~+14 - -CAS2L3_FILLER: - nop - nop - nop - nop - nop - nop - bra.w CAS2L3_START - -############################################################# -############################################################# - -cas2w: - mov.l %a0,%a2 # copy ADDR1 - mov.l %a1,%a3 # copy ADDR2 - mov.l %a0,%a4 # copy ADDR1 - mov.l %a1,%a5 # copy ADDR2 - - addq.l &0x1,%a4 # ADDR1+1 - addq.l &0x1,%a5 # ADDR2+1 - mov.l %a2,%d1 # ADDR1 - -# mask interrupt levels 0-6. save old mask value. - mov.w %sr,%d7 # save current SR - ori.w &0x0700,%sr # inhibit interrupts - -# load the SFC and DFC with the appropriate mode. - movc %sfc,%d6 # save old SFC/DFC - movc %d0,%sfc # store new SFC - movc %d0,%dfc # store new DFC - -# pre-load the operand ATC. no page faults should occur because -# _real_lock_page() should have taken care of this. - plpaw (%a2) # load atc for ADDR1 - plpaw (%a4) # load atc for ADDR1+1 - plpaw (%a3) # load atc for ADDR2 - plpaw (%a5) # load atc for ADDR2+1 - -# push the operand cache lines from the cache if they exist. - cpushl %dc,(%a2) # push line for ADDR1 - cpushl %dc,(%a4) # push line for ADDR1+1 - cpushl %dc,(%a3) # push line for ADDR2 - cpushl %dc,(%a5) # push line for ADDR2+1 - - mov.l %d1,%a2 # ADDR1 - addq.l &0x3,%d1 - mov.l %d1,%a4 # ADDR1+3 -# if ADDR1 was ATC resident before the above "plpaw" and was executed -# and it was the next entry scheduled for replacement and ADDR2 -# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 -# entries from the ATC. so, we do a second set of "plpa"s. - plpar (%a2) # load atc for ADDR1 - plpar (%a4) # load atc for ADDR1+3 - -# load the BUSCR values. - mov.l &0x80000000,%a2 # assert LOCK* buscr value - mov.l &0xa0000000,%a3 # assert LOCKE* buscr value - mov.l &0x00000000,%a4 # buscr unlock value - -# there are two possible mis-aligned cases for word cas. they -# are separated because the final write which asserts LOCKE* must -# be aligned. - mov.l %a0,%d0 # is ADDR1 misaligned? - btst &0x0,%d0 - bne.w CAS2W2_ENTER # yes - bra.b CAS2W_ENTER # no - -# -# D0 = dst operand 1 <- -# D1 = dst operand 2 <- -# D2 = cmp operand 1 -# D3 = cmp operand 2 -# D4 = update oper 1 -# D5 = update oper 2 -# D6 = old SFC/DFC -# D7 = old SR -# A0 = ADDR1 -# A1 = ADDR2 -# A2 = bus LOCK* value -# A3 = bus LOCKE* value -# A4 = bus unlock value -# A5 = xxxxxxxx -# - align 0x10 -CAS2W_START: - movc %a2,%buscr # assert LOCK* - movs.w (%a1),%d1 # fetch Dest2[15:0] - movs.w (%a0),%d0 # fetch Dest1[15:0] - bra.b CAS2W_CONT2 -CAS2W_ENTER: - bra.b ~+16 - -CAS2W_CONT2: - cmp.w %d0,%d2 # Dest1 - Compare1 - bne.b CAS2W_NOUPDATE - cmp.w %d1,%d3 # Dest2 - Compare2 - bne.b CAS2W_NOUPDATE - movs.w %d5,(%a1) # Update2[15:0] -> DEST2 - bra.b CAS2W_UPDATE - bra.b ~+16 - -CAS2W_UPDATE: - movc %a3,%buscr # assert LOCKE* - movs.w %d4,(%a0) # Update1[15:0] -> DEST1 - movc %a4,%buscr # unlock the bus - bra.b cas2w_update_done - bra.b ~+16 - -CAS2W_NOUPDATE: - movc %a3,%buscr # assert LOCKE* - movs.w %d0,(%a0) # Dest1[15:0] -> DEST1 - movc %a4,%buscr # unlock the bus - bra.b cas2w_noupdate_done - bra.b ~+16 - -CAS2W_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CAS2W_START - -#### - -################################################################# -# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # -# ENTERING _isp_cas2(). # -# # -# D0 = destination[15:0] operand 1 # -# D1 = destination[15:0] operand 2 # -# D2 = cmp[15:0] operand 1 # -# D3 = cmp[15:0] operand 2 # -# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # -# D5 = xxxxxxxx # -# D6 = xxxxxxxx # -# D7 = xxxxxxxx # -# A0 = xxxxxxxx # -# A1 = xxxxxxxx # -# A2 = xxxxxxxx # -# A3 = xxxxxxxx # -# A4 = xxxxxxxx # -# A5 = xxxxxxxx # -# A6 = frame pointer # -# A7 = stack pointer # -################################################################# - -cas2w_noupdate_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - sf %d4 # indicate no update was done - bra.l _isp_cas2_finish - -cas2w_update_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - st %d4 # indicate update was done - bra.l _isp_cas2_finish -#### - - align 0x10 -CAS2W2_START: - movc %a2,%buscr # assert LOCK* - movs.w (%a1),%d1 # fetch Dest2[15:0] - movs.w (%a0),%d0 # fetch Dest1[15:0] - bra.b CAS2W2_CONT2 -CAS2W2_ENTER: - bra.b ~+16 - -CAS2W2_CONT2: - cmp.w %d0,%d2 # Dest1 - Compare1 - bne.b CAS2W2_NOUPDATE - cmp.w %d1,%d3 # Dest2 - Compare2 - bne.b CAS2W2_NOUPDATE - movs.w %d5,(%a1) # Update2[15:0] -> DEST2 - bra.b CAS2W2_UPDATE - bra.b ~+16 - -CAS2W2_UPDATE: - ror.l &0x8,%d4 # get Update1[15:8] - movs.b %d4,(%a0)+ # Update1[15:8] -> DEST1 - movc %a3,%buscr # assert LOCKE* - rol.l &0x8,%d4 # get Update1[7:0] - bra.b CAS2W2_UPDATE2 - bra.b ~+16 - -CAS2W2_UPDATE2: - movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x1 - movc %a4,%buscr # unlock the bus - bra.w cas2w_update_done - nop - bra.b ~+16 - -CAS2W2_NOUPDATE: - ror.l &0x8,%d0 # get Dest1[15:8] - movs.b %d0,(%a0)+ # Dest1[15:8] -> DEST1 - movc %a3,%buscr # assert LOCKE* - rol.l &0x8,%d0 # get Dest1[7:0] - bra.b CAS2W2_NOUPDATE2 - bra.b ~+16 - -CAS2W2_NOUPDATE2: - movs.b %d0,(%a0) # Dest1[7:0] -> DEST1+0x1 - movc %a4,%buscr # unlock the bus - bra.w cas2w_noupdate_done - nop - bra.b ~+16 - -CAS2W2_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CAS2W2_START - -# ###### ## ###### -# # # # # -# # ###### ###### -# # # # # -# ###### # # ###### - -######################################################################### -# XDEF **************************************************************** # -# _isp_cas(): "core" emulation code for the cas instruction # -# # -# XREF **************************************************************** # -# _isp_cas_finish() - only exit point for this emulation code; # -# do clean-up # -# # -# INPUT *************************************************************** # -# *see entry chart below* # -# # -# OUTPUT ************************************************************** # -# *see exit chart below* # -# # -# ALGORITHM *********************************************************** # -# (1) Make several copies of the effective address. # -# (2) Save current SR; Then mask off all maskable interrupts. # -# (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set # -# SFC/DFC according to whether exception occurred in user or # -# supervisor mode. # -# (4) Use "plpaw" instruction to pre-load ATC with efective # -# address page(s). THIS SHOULD NOT FAULT!!! The relevant # -# page(s) should have been made resident prior to entering # -# this routine. # -# (5) Push the operand lines from the cache w/ "cpushl". # -# In the 68040, this was done within the locked region. In # -# the 68060, it is done outside of the locked region. # -# (6) Pre-fetch the core emulation instructions by executing one # -# branch within each physical line (16 bytes) of the code # -# before actually executing the code. # -# (7) Load the BUSCR with the bus lock value. # -# (8) Fetch the source operand. # -# (9) Do the compare. If equal, go to step (12). # -# (10)Unequal. No update occurs. But, we do write the DST op back # -# to itself (as w/ the '040) so we can gracefully unlock # -# the bus (and assert LOCKE*) using BUSCR and the final move. # -# (11)Exit. # -# (12)Write update operand to the DST location. Use BUSCR to # -# assert LOCKE* for the final write operation. # -# (13)Exit. # -# # -# The algorithm is actually implemented slightly differently # -# depending on the size of the operation and the misalignment of the # -# operand. A misaligned operand must be written in aligned chunks or # -# else the BUSCR register control gets confused. # -# # -######################################################################### - -######################################################### -# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # -# ENTERING _isp_cas(). # -# # -# D0 = xxxxxxxx # -# D1 = xxxxxxxx # -# D2 = update operand # -# D3 = xxxxxxxx # -# D4 = compare operand # -# D5 = xxxxxxxx # -# D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00) # -# D7 = longword ('xxxxxxff) or word size ('xxxxxx00) # -# A0 = ADDR # -# A1 = xxxxxxxx # -# A2 = xxxxxxxx # -# A3 = xxxxxxxx # -# A4 = xxxxxxxx # -# A5 = xxxxxxxx # -# A6 = frame pointer # -# A7 = stack pointer # -######################################################### - - global _isp_cas -_isp_cas: - tst.b %d6 # user or supervisor mode? - bne.b cas_super # supervisor -cas_user: - movq.l &0x1,%d0 # load user data fc - bra.b cas_cont -cas_super: - movq.l &0x5,%d0 # load supervisor data fc - -cas_cont: - tst.b %d7 # word or longword? - bne.w casl # longword - -#### -casw: - mov.l %a0,%a1 # make copy for plpaw1 - mov.l %a0,%a2 # make copy for plpaw2 - addq.l &0x1,%a2 # plpaw2 points to end of word - - mov.l %d2,%d3 # d3 = update[7:0] - lsr.w &0x8,%d2 # d2 = update[15:8] - -# mask interrupt levels 0-6. save old mask value. - mov.w %sr,%d7 # save current SR - ori.w &0x0700,%sr # inhibit interrupts - -# load the SFC and DFC with the appropriate mode. - movc %sfc,%d6 # save old SFC/DFC - movc %d0,%sfc # load new sfc - movc %d0,%dfc # load new dfc - -# pre-load the operand ATC. no page faults should occur here because -# _real_lock_page() should have taken care of this. - plpaw (%a1) # load atc for ADDR - plpaw (%a2) # load atc for ADDR+1 - -# push the operand lines from the cache if they exist. - cpushl %dc,(%a1) # push dirty data - cpushl %dc,(%a2) # push dirty data - -# load the BUSCR values. - mov.l &0x80000000,%a1 # assert LOCK* buscr value - mov.l &0xa0000000,%a2 # assert LOCKE* buscr value - mov.l &0x00000000,%a3 # buscr unlock value - -# pre-load the instruction cache for the following algorithm. -# this will minimize the number of cycles that LOCK* will be asserted. - bra.b CASW_ENTER # start pre-loading icache - -# -# D0 = dst operand <- -# D1 = update[15:8] operand -# D2 = update[7:0] operand -# D3 = xxxxxxxx -# D4 = compare[15:0] operand -# D5 = xxxxxxxx -# D6 = old SFC/DFC -# D7 = old SR -# A0 = ADDR -# A1 = bus LOCK* value -# A2 = bus LOCKE* value -# A3 = bus unlock value -# A4 = xxxxxxxx -# A5 = xxxxxxxx -# - align 0x10 -CASW_START: - movc %a1,%buscr # assert LOCK* - movs.w (%a0),%d0 # fetch Dest[15:0] - cmp.w %d0,%d4 # Dest - Compare - bne.b CASW_NOUPDATE - bra.b CASW_UPDATE -CASW_ENTER: - bra.b ~+16 - -CASW_UPDATE: - movs.b %d2,(%a0)+ # Update[15:8] -> DEST - movc %a2,%buscr # assert LOCKE* - movs.b %d3,(%a0) # Update[7:0] -> DEST+0x1 - bra.b CASW_UPDATE2 - bra.b ~+16 - -CASW_UPDATE2: - movc %a3,%buscr # unlock the bus - bra.b casw_update_done - nop - nop - nop - nop - bra.b ~+16 - -CASW_NOUPDATE: - ror.l &0x8,%d0 # get Dest[15:8] - movs.b %d0,(%a0)+ # Dest[15:8] -> DEST - movc %a2,%buscr # assert LOCKE* - rol.l &0x8,%d0 # get Dest[7:0] - bra.b CASW_NOUPDATE2 - bra.b ~+16 - -CASW_NOUPDATE2: - movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x1 - movc %a3,%buscr # unlock the bus - bra.b casw_noupdate_done - nop - nop - bra.b ~+16 - -CASW_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CASW_START - -################################################################# -# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # -# CALLING _isp_cas_finish(). # -# # -# D0 = destination[15:0] operand # -# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # -# D2 = xxxxxxxx # -# D3 = xxxxxxxx # -# D4 = compare[15:0] operand # -# D5 = xxxxxxxx # -# D6 = xxxxxxxx # -# D7 = xxxxxxxx # -# A0 = xxxxxxxx # -# A1 = xxxxxxxx # -# A2 = xxxxxxxx # -# A3 = xxxxxxxx # -# A4 = xxxxxxxx # -# A5 = xxxxxxxx # -# A6 = frame pointer # -# A7 = stack pointer # -################################################################# - -casw_noupdate_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - sf %d1 # indicate no update was done - bra.l _isp_cas_finish - -casw_update_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - st %d1 # indicate update was done - bra.l _isp_cas_finish - -################ - -# there are two possible mis-aligned cases for longword cas. they -# are separated because the final write which asserts LOCKE* must -# be an aligned write. -casl: - mov.l %a0,%a1 # make copy for plpaw1 - mov.l %a0,%a2 # make copy for plpaw2 - addq.l &0x3,%a2 # plpaw2 points to end of longword - - mov.l %a0,%d1 # byte or word misaligned? - btst &0x0,%d1 - bne.w casl2 # byte misaligned - - mov.l %d2,%d3 # d3 = update[15:0] - swap %d2 # d2 = update[31:16] - -# mask interrupts levels 0-6. save old mask value. - mov.w %sr,%d7 # save current SR - ori.w &0x0700,%sr # inhibit interrupts - -# load the SFC and DFC with the appropriate mode. - movc %sfc,%d6 # save old SFC/DFC - movc %d0,%sfc # load new sfc - movc %d0,%dfc # load new dfc - -# pre-load the operand ATC. no page faults should occur here because -# _real_lock_page() should have taken care of this. - plpaw (%a1) # load atc for ADDR - plpaw (%a2) # load atc for ADDR+3 - -# push the operand lines from the cache if they exist. - cpushl %dc,(%a1) # push dirty data - cpushl %dc,(%a2) # push dirty data - -# load the BUSCR values. - mov.l &0x80000000,%a1 # assert LOCK* buscr value - mov.l &0xa0000000,%a2 # assert LOCKE* buscr value - mov.l &0x00000000,%a3 # buscr unlock value - - bra.b CASL_ENTER # start pre-loading icache - -# -# D0 = dst operand <- -# D1 = xxxxxxxx -# D2 = update[31:16] operand -# D3 = update[15:0] operand -# D4 = compare[31:0] operand -# D5 = xxxxxxxx -# D6 = old SFC/DFC -# D7 = old SR -# A0 = ADDR -# A1 = bus LOCK* value -# A2 = bus LOCKE* value -# A3 = bus unlock value -# A4 = xxxxxxxx -# A5 = xxxxxxxx -# - align 0x10 -CASL_START: - movc %a1,%buscr # assert LOCK* - movs.l (%a0),%d0 # fetch Dest[31:0] - cmp.l %d0,%d4 # Dest - Compare - bne.b CASL_NOUPDATE - bra.b CASL_UPDATE -CASL_ENTER: - bra.b ~+16 - -CASL_UPDATE: - movs.w %d2,(%a0)+ # Update[31:16] -> DEST - movc %a2,%buscr # assert LOCKE* - movs.w %d3,(%a0) # Update[15:0] -> DEST+0x2 - bra.b CASL_UPDATE2 - bra.b ~+16 - -CASL_UPDATE2: - movc %a3,%buscr # unlock the bus - bra.b casl_update_done - nop - nop - nop - nop - bra.b ~+16 - -CASL_NOUPDATE: - swap %d0 # get Dest[31:16] - movs.w %d0,(%a0)+ # Dest[31:16] -> DEST - swap %d0 # get Dest[15:0] - movc %a2,%buscr # assert LOCKE* - bra.b CASL_NOUPDATE2 - bra.b ~+16 - -CASL_NOUPDATE2: - movs.w %d0,(%a0) # Dest[15:0] -> DEST+0x2 - movc %a3,%buscr # unlock the bus - bra.b casl_noupdate_done - nop - nop - bra.b ~+16 - -CASL_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CASL_START - -################################################################# -# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # -# CALLING _isp_cas_finish(). # -# # -# D0 = destination[31:0] operand # -# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # -# D2 = xxxxxxxx # -# D3 = xxxxxxxx # -# D4 = compare[31:0] operand # -# D5 = xxxxxxxx # -# D6 = xxxxxxxx # -# D7 = xxxxxxxx # -# A0 = xxxxxxxx # -# A1 = xxxxxxxx # -# A2 = xxxxxxxx # -# A3 = xxxxxxxx # -# A4 = xxxxxxxx # -# A5 = xxxxxxxx # -# A6 = frame pointer # -# A7 = stack pointer # -################################################################# - -casl_noupdate_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupt mask level. - mov.w %d7,%sr # restore old SR - - sf %d1 # indicate no update was done - bra.l _isp_cas_finish - -casl_update_done: - -# restore previous SFC/DFC value. - movc %d6,%sfc # restore old SFC - movc %d6,%dfc # restore old DFC - -# restore previous interrupts mask level. - mov.w %d7,%sr # restore old SR - - st %d1 # indicate update was done - bra.l _isp_cas_finish - -####################################### -casl2: - mov.l %d2,%d5 # d5 = Update[7:0] - lsr.l &0x8,%d2 - mov.l %d2,%d3 # d3 = Update[23:8] - swap %d2 # d2 = Update[31:24] - -# mask interrupts levels 0-6. save old mask value. - mov.w %sr,%d7 # save current SR - ori.w &0x0700,%sr # inhibit interrupts - -# load the SFC and DFC with the appropriate mode. - movc %sfc,%d6 # save old SFC/DFC - movc %d0,%sfc # load new sfc - movc %d0,%dfc # load new dfc - -# pre-load the operand ATC. no page faults should occur here because -# _real_lock_page() should have taken care of this already. - plpaw (%a1) # load atc for ADDR - plpaw (%a2) # load atc for ADDR+3 - -# puch the operand lines from the cache if they exist. - cpushl %dc,(%a1) # push dirty data - cpushl %dc,(%a2) # push dirty data - -# load the BUSCR values. - mov.l &0x80000000,%a1 # assert LOCK* buscr value - mov.l &0xa0000000,%a2 # assert LOCKE* buscr value - mov.l &0x00000000,%a3 # buscr unlock value - -# pre-load the instruction cache for the following algorithm. -# this will minimize the number of cycles that LOCK* will be asserted. - bra.b CASL2_ENTER # start pre-loading icache - -# -# D0 = dst operand <- -# D1 = xxxxxxxx -# D2 = update[31:24] operand -# D3 = update[23:8] operand -# D4 = compare[31:0] operand -# D5 = update[7:0] operand -# D6 = old SFC/DFC -# D7 = old SR -# A0 = ADDR -# A1 = bus LOCK* value -# A2 = bus LOCKE* value -# A3 = bus unlock value -# A4 = xxxxxxxx -# A5 = xxxxxxxx -# - align 0x10 -CASL2_START: - movc %a1,%buscr # assert LOCK* - movs.l (%a0),%d0 # fetch Dest[31:0] - cmp.l %d0,%d4 # Dest - Compare - bne.b CASL2_NOUPDATE - bra.b CASL2_UPDATE -CASL2_ENTER: - bra.b ~+16 - -CASL2_UPDATE: - movs.b %d2,(%a0)+ # Update[31:24] -> DEST - movs.w %d3,(%a0)+ # Update[23:8] -> DEST+0x1 - movc %a2,%buscr # assert LOCKE* - bra.b CASL2_UPDATE2 - bra.b ~+16 - -CASL2_UPDATE2: - movs.b %d5,(%a0) # Update[7:0] -> DEST+0x3 - movc %a3,%buscr # unlock the bus - bra.w casl_update_done - nop - bra.b ~+16 - -CASL2_NOUPDATE: - rol.l &0x8,%d0 # get Dest[31:24] - movs.b %d0,(%a0)+ # Dest[31:24] -> DEST - swap %d0 # get Dest[23:8] - movs.w %d0,(%a0)+ # Dest[23:8] -> DEST+0x1 - bra.b CASL2_NOUPDATE2 - bra.b ~+16 - -CASL2_NOUPDATE2: - rol.l &0x8,%d0 # get Dest[7:0] - movc %a2,%buscr # assert LOCKE* - movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x3 - bra.b CASL2_NOUPDATE3 - nop - bra.b ~+16 - -CASL2_NOUPDATE3: - movc %a3,%buscr # unlock the bus - bra.w casl_noupdate_done - nop - nop - nop - bra.b ~+16 - -CASL2_FILLER: - nop - nop - nop - nop - nop - nop - nop - bra.b CASL2_START - -#### -#### -# end label used by _isp_cas_inrange() - global _CASHI -_CASHI: diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S deleted file mode 100644 index beca47e7..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S +++ /dev/null @@ -1,6386 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -############################################# -set SREGS, -64 -set IREGS, -128 -set SCCR, -130 -set ICCR, -132 -set TESTCTR, -136 -set EAMEM, -140 -set EASTORE, -144 -set DATA, -160 - -############################################# -TESTTOP: - bra.l _060TESTS_ - -start_str: - string "Testing 68060 ISP started:\n" - -pass_str: - string "passed\n" -fail_str: - string " failed\n" - - align 0x4 -chk_test: - tst.l %d0 - bne.b test_fail -test_pass: - pea pass_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - rts -test_fail: - mov.l %d1,-(%sp) - bsr.l _print_num - addq.l &0x4,%sp - - pea fail_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - rts - -############################################# -_060TESTS_: - link %a6,&-160 - - movm.l &0x3f3c,-(%sp) - - pea start_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - -### mul - clr.l TESTCTR(%a6) - pea mulul_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l mulul_0 - - bsr.l chk_test - -### div - clr.l TESTCTR(%a6) - pea divul_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l divul_0 - - bsr.l chk_test - -### cmp2 - clr.l TESTCTR(%a6) - pea cmp2_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l cmp2_1 - - bsr.l chk_test - -### movp - clr.l TESTCTR(%a6) - pea movp_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l movp_0 - - bsr.l chk_test - -### ea - clr.l TESTCTR(%a6) - pea ea_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - mov.l &0x2,EAMEM(%a6) - bsr.l ea_0 - - bsr.l chk_test - -### cas - clr.l TESTCTR(%a6) - pea cas_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l cas0 - - bsr.l chk_test - -### cas2 - clr.l TESTCTR(%a6) - pea cas2_str(%pc) - bsr.l _print_str - addq.l &0x4,%sp - - bsr.l cas20 - - bsr.l chk_test - -### - movm.l (%sp)+,&0x3cfc - - unlk %a6 - rts - -############################################# -############################################# - -mulul_str: - string "\t64-bit multiply..." - - align 0x4 -mulul_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d1 - mov.l &0x99999999,%d2 - mov.l &0x88888888,%d3 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - clr.l IREGS+0x8(%a6) - clr.l IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x77777777,%d1 - mov.l &0x99999999,%d2 - mov.l &0x00000000,%d3 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - clr.l IREGS+0x8(%a6) - clr.l IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x00000010,%d1 - mov.l &0x66666666,%d2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l %d1,%d2:%d2 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000006,IREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x55555555,%d1 - mov.l &0x00000000,%d2 - mov.l &0x00000003,%d3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000000,IREGS+0x8(%a6) - mov.l &0xffffffff,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x40000000,%d1 - mov.l &0x00000000,%d2 - mov.l &0x00000004,%d3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000001,IREGS+0x8(%a6) - mov.l &0x00000000,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_5: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xffffffff,%d1 - mov.l &0x00000000,%d2 - mov.l &0xffffffff,%d3 - - mov.w &0x0008,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xfffffffe,IREGS+0x8(%a6) - mov.l &0x00000001,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_6: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x80000000,%d1 - mov.l &0x00000000,%d2 - mov.l &0xffffffff,%d3 - - mov.w &0x00000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - muls.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000000,IREGS+0x8(%a6) - mov.l &0x80000000,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_7: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x80000000,%d1 - mov.l &0x00000000,%d2 - mov.l &0x00000001,%d3 - - mov.w &0x0008,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - muls.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xffffffff,IREGS+0x8(%a6) - mov.l &0x80000000,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -mulul_8: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x00000001,%d1 - mov.l &0x00000000,%d2 - mov.l &0x80000000,%d3 - - mov.w &0x0008,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - muls.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xffffffff,IREGS+0x8(%a6) - mov.l &0x80000000,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -############################################# - -movp_str: - string "\tmovep..." - - align 0x4 -############################### -# movep.w %d0,(0x0,%a0) # -############################### -movp_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.w &0xaaaa,%d0 - clr.b 0x0(%a0) - clr.b 0x2(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d0,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x2(%a0),%d1 - lsl.w &0x8,%d1 - mov.b 0x0(%a0),%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w %d0,(0x0,%a0) # -############################### -movp_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x4(%a6),%a0 - mov.w &0xaaaa,%d0 - clr.l -0x4(%a0) - clr.l (%a0) - clr.l 0x4(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d0,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - tst.l -0x4(%a0) - bne.l error - tst.l 0x4(%a0) - bne.l error - cmpi.l (%a0),&0xaa00aa00 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -##################################################### -# movep.w %d0,(0x0,%a0) # -# - this test has %cc initially equal to zero # -##################################################### -movp_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.w &0xaaaa,%d0 - clr.b 0x0(%a0) - clr.b 0x2(%a0) - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d0,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x2(%a0),%d1 - lsl.w &0x8,%d1 - mov.b 0x0(%a0),%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w (0x0,%a0),%d0 # -############################### -movp_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.b &0xaa,0x0(%a0) - mov.b &0xaa,0x2(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w (0x0,%a0),%d0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.w &0xaaaa,IREGS+0x2(%a6) - - mov.w &0xaaaa,%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.l %d0,(0x0,%a0) # -############################### -movp_4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.l &0xaaaaaaaa,%d0 - clr.b 0x0(%a0) - clr.b 0x2(%a0) - clr.b 0x4(%a0) - clr.b 0x6(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l %d0,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x6(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x4(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x2(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x0(%a0),%d1 - - cmp.l %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.l %d0,(0x0,%a0) # -############################### -movp_5: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x4(%a6),%a0 - mov.l &0xaaaaaaaa,%d0 - clr.l -0x4(%a0) - clr.l (%a0) - clr.l 0x4(%a0) - clr.l 0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l %d0,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - tst.l -0x4(%a0) - bne.l error - tst.l 0x8(%a0) - bne.l error - cmpi.l (%a0),&0xaa00aa00 - bne.l error - cmpi.l 0x4(%a0),&0xaa00aa00 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.l (0x0,%a0),%d0 # -############################### -movp_6: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.b &0xaa,0x0(%a0) - mov.b &0xaa,0x2(%a0) - mov.b &0xaa,0x4(%a0) - mov.b &0xaa,0x6(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l (0x0,%a0),%d0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xaaaaaaaa,IREGS(%a6) - - mov.l &0xaaaaaaaa,%d1 - - cmp.l %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w %d7,(0x0,%a0) # -############################### -movp_7: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.w &0xaaaa,%d7 - clr.b 0x0(%a0) - clr.b 0x2(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d7,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x2(%a0),%d1 - lsl.w &0x8,%d1 - mov.b 0x0(%a0),%d1 - - cmp.w %d7,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w (0x0,%a0),%d7 # -############################### -movp_8: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.b &0xaa,0x0(%a0) - mov.b &0xaa,0x2(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w (0x0,%a0),%d7 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.w &0xaaaa,IREGS+30(%a6) - - mov.w &0xaaaa,%d1 - - cmp.w %d7,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w %d0,(0x0,%a0) # -############################### -movp_9: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.w &0xaaaa,%d0 - clr.b 0x0(%a0) - clr.b 0x2(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d0,(0x0,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x2(%a0),%d1 - lsl.w &0x8,%d1 - mov.b 0x0(%a0),%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w %d0,(0x8,%a0) # -############################### -movp_10: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.w &0xaaaa,%d0 - clr.b 0x0+0x8(%a0) - clr.b 0x2+0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d0,(0x8,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x2+0x8(%a0),%d1 - lsl.w &0x8,%d1 - mov.b 0x0+0x8(%a0),%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.w (0x8,%a0),%d0 # -############################### -movp_11: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.b &0xaa,0x0+0x8(%a0) - mov.b &0xaa,0x2+0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w (0x8,%a0),%d0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.w &0xaaaa,IREGS+0x2(%a6) - - mov.w &0xaaaa,%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.l %d0,(0x8,%a0) # -############################### -movp_12: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.l &0xaaaaaaaa,%d0 - clr.b 0x0+0x8(%a0) - clr.b 0x2+0x8(%a0) - clr.b 0x4+0x8(%a0) - clr.b 0x6+0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l %d0,(0x8,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x6+0x8(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x4+0x8(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x2+0x8(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x0+0x8(%a0),%d1 - - cmp.l %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -############################### -# movep.l (0x8,%a0),%d0 # -############################### -movp_13: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA(%a6),%a0 - mov.b &0xaa,0x0+0x8(%a0) - mov.b &0xaa,0x2+0x8(%a0) - mov.b &0xaa,0x4+0x8(%a0) - mov.b &0xaa,0x6+0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l (0x8,%a0),%d0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xaaaaaaaa,IREGS(%a6) - - mov.l &0xaaaaaaaa,%d1 - - cmp.l %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -################################ -# movep.w %d0,(-0x8,%a0) # -################################ -movp_14: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x8(%a6),%a0 - mov.w &0xaaaa,%d0 - clr.b 0x0-0x8(%a0) - clr.b 0x2-0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w %d0,(-0x8,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x2-0x8(%a0),%d1 - lsl.w &0x8,%d1 - mov.b 0x0-0x8(%a0),%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -################################ -# movep.w (-0x8,%a0),%d0 # -################################ -movp_15: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x8(%a6),%a0 - mov.b &0xaa,0x0-0x8(%a0) - mov.b &0xaa,0x2-0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.w (-0x8,%a0),%d0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.w &0xaaaa,IREGS+0x2(%a6) - - mov.w &0xaaaa,%d1 - - cmp.w %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -################################ -# movep.l %d0,(-0x8,%a0) # -################################ -movp_16: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x8(%a6),%a0 - mov.l &0xaaaaaaaa,%d0 - clr.b 0x0-0x8(%a0) - clr.b 0x2-0x8(%a0) - clr.b 0x4-0x8(%a0) - clr.b 0x8-0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l %d0,(-0x8,%a0) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - mov.b 0x6-0x8(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x4-0x8(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x2-0x8(%a0),%d1 - lsl.l &0x8,%d1 - mov.b 0x0-0x8(%a0),%d1 - - cmp.l %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - -################################ -# movep.l (-0x8,%a0),%d0 # -################################ -movp_17: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x8(%a6),%a0 - mov.b &0xaa,0x0-0x8(%a0) - mov.b &0xaa,0x2-0x8(%a0) - mov.b &0xaa,0x4-0x8(%a0) - mov.b &0xaa,0x8-0x8(%a0) - - mov.w &0x001f,ICCR(%a6) - mov.w &0x1f,%cc - movm.l &0x7fff,IREGS(%a6) - - movp.l (-0x8,%a0),%d0 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xaaaaaaaa,IREGS(%a6) - - mov.l &0xaaaaaaaa,%d1 - - cmp.l %d0,%d1 - bne.l error - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -########################################################### - -divul_str: - string "\t64-bit divide..." - - align 0x4 -divul_0: - addq.l &0x1,TESTCTR(%a6) - -# movm.l DEF_REGS(%pc),&0x3fff - -# clr.l %d1 -# mov.l &0x99999999,%d2 -# mov.l &0x88888888,%d3 - -# mov.w &0x001e,ICCR(%a6) -# mov.w &0x001f,%cc -# movm.l &0x7fff,IREGS(%a6) - -# divu.l %d1,%d2:%d3 - -# mov.w %cc,SCCR(%a6) -# movm.l &0x7fff,SREGS(%a6) - -# bsr.l chkregs -# tst.b %d0 -# bne.l error - -divul_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x00000001,%d1 - mov.l &0x00000000,%d2 - mov.l &0x00000000,%d3 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x44444444,%d1 - mov.l &0x00000000,%d2 - mov.l &0x55555555,%d3 - - mov.w &0x0010,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x11111111,IREGS+0x8(%a6) - mov.l &0x00000001,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x55555555,%d1 - mov.l &0x00000000,%d2 - mov.l &0x44444444,%d3 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x44444444,IREGS+0x8(%a6) - mov.l &0x00000000,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x11111111,%d1 - mov.l &0x44444444,%d2 - mov.l &0x44444444,%d3 - - mov.w &0x001e,ICCR(%a6) - mov.w &0x001d,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_5: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xfffffffe,%d1 - mov.l &0x00000001,%d2 - mov.l &0x00000002,%d3 - - mov.w &0x001e,ICCR(%a6) - mov.w &0x001d,%cc - movm.l &0x7fff,IREGS(%a6) - - divs.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_6: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xfffffffe,%d1 - mov.l &0x00000001,%d2 - mov.l &0x00000000,%d3 - - mov.w &0x0018,ICCR(%a6) - mov.w &0x001d,%cc - movm.l &0x7fff,IREGS(%a6) - - divs.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000000,IREGS+0x8(%a6) - mov.l &0x80000000,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_7: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x00000002,%d1 - mov.l &0x00000001,%d2 - mov.l &0x00000000,%d3 - - mov.w &0x001e,ICCR(%a6) - mov.w &0x001d,%cc - movm.l &0x7fff,IREGS(%a6) - - divs.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_8: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xffffffff,%d1 - mov.l &0xfffffffe,%d2 - mov.l &0xffffffff,%d3 - - mov.w &0x0008,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_9: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xffffffff,%d1 - mov.l &0xfffffffe,%d2 - mov.l &0xffffffff,%d3 - - mov.w &0x0008,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l &0xffffffff,%d2:%d2 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0xffffffff,IREGS+0x8(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -divul_10: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x0000ffff,%d1 - mov.l &0x00000001,%d2 - mov.l &0x55555555,%d3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - divu.l %d1,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x0000aaab,IREGS+0x8(%a6) - mov.l &0x00015556,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -########################################################### - -cas_str: - string "\tcas..." - - align 0x4 -cas0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - - mov.w &0xaaaa,(%a0) - - mov.w &0xaaaa,%d1 - mov.w &0xbbbb,%d2 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas.w %d1,%d2,(%a0) # Dc,Du,<ea> - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d3 - mov.w &0xbbbb,IREGS+0xc+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - - mov.w &0xeeee,(%a0) - - mov.w &0x0000aaaa,%d1 - mov.w &0x0000bbbb,%d2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas.w %d1,%d2,(%a0) # Dc,Du,<ea> - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d3 - mov.w &0xeeee,IREGS+0x4+0x2(%a6) - mov.w &0xeeee,IREGS+0xc+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x2(%a6),%a0 - - mov.l &0xaaaaaaaa,(%a0) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas.l %d1,%d2,(%a0) # Dc,Du,<ea> - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d3 - mov.l &0xbbbbbbbb,IREGS+0xc(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x2(%a6),%a0 - - mov.l &0xeeeeeeee,(%a0) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas.l %d1,%d2,(%a0) # Dc,Du,<ea> - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d3 - mov.l &0xeeeeeeee,IREGS+0x4(%a6) - mov.l &0xeeeeeeee,IREGS+0xc(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - - mov.l &0xaaaaaaaa,(%a0) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas.l %d1,%d2,(%a0) # Dc,Du,<ea> - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d3 - mov.l &0xbbbbbbbb,IREGS+0xc(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas5: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - - mov.l &0x7fffffff,(%a0) - - mov.l &0x80000000,%d1 - mov.l &0xbbbbbbbb,%d2 - - mov.w &0x001b,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas.l %d1,%d2,(%a0) # Dc,Du,<ea> - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d3 - mov.l &0x7fffffff,IREGS+0x4(%a6) - mov.l &0x7fffffff,IREGS+0xc(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -########################################################### - -cas2_str: - string "\tcas2..." - - align 0x4 -cas20: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x0(%a6),%a0 - lea DATA+0x4(%a6),%a1 - - mov.l &0xaaaaaaaa,(%a0) - mov.l &0xbbbbbbbb,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xcccccccc,IREGS+0x14(%a6) - mov.l &0xdddddddd,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas21: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - lea DATA+0x5(%a6),%a1 - - mov.l &0xaaaaaaaa,(%a0) - mov.l &0xbbbbbbbb,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xcccccccc,IREGS+0x14(%a6) - mov.l &0xdddddddd,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas22: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x2(%a6),%a0 - lea DATA+0x6(%a6),%a1 - - mov.l &0xaaaaaaaa,(%a0) - mov.l &0xbbbbbbbb,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xcccccccc,IREGS+0x14(%a6) - mov.l &0xdddddddd,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas23: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x0(%a6),%a0 - lea DATA+0x4(%a6),%a1 - - mov.l &0xeeeeeeee,(%a0) - mov.l &0xbbbbbbbb,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xeeeeeeee,IREGS+0x4(%a6) - mov.l &0xbbbbbbbb,IREGS+0x8(%a6) - mov.l &0xeeeeeeee,IREGS+0x14(%a6) - mov.l &0xbbbbbbbb,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas24: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - lea DATA+0x5(%a6),%a1 - - mov.l &0xeeeeeeee,(%a0) - mov.l &0xbbbbbbbb,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xeeeeeeee,IREGS+0x4(%a6) - mov.l &0xbbbbbbbb,IREGS+0x8(%a6) - mov.l &0xeeeeeeee,IREGS+0x14(%a6) - mov.l &0xbbbbbbbb,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas25: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x2(%a6),%a0 - lea DATA+0x6(%a6),%a1 - - mov.l &0xeeeeeeee,(%a0) - mov.l &0xbbbbbbbb,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xeeeeeeee,IREGS+0x4(%a6) - mov.l &0xbbbbbbbb,IREGS+0x8(%a6) - mov.l &0xeeeeeeee,IREGS+0x14(%a6) - mov.l &0xbbbbbbbb,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas26: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x0(%a6),%a0 - lea DATA+0x4(%a6),%a1 - - mov.l &0xaaaaaaaa,(%a0) - mov.l &0xeeeeeeee,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xaaaaaaaa,IREGS+0x4(%a6) - mov.l &0xeeeeeeee,IREGS+0x8(%a6) - mov.l &0xaaaaaaaa,IREGS+0x14(%a6) - mov.l &0xeeeeeeee,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas27: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - lea DATA+0x5(%a6),%a1 - - mov.l &0xaaaaaaaa,(%a0) - mov.l &0xeeeeeeee,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0xbbbbbbbb,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xaaaaaaaa,IREGS+0x4(%a6) - mov.l &0xeeeeeeee,IREGS+0x8(%a6) - mov.l &0xaaaaaaaa,IREGS+0x14(%a6) - mov.l &0xeeeeeeee,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas28: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x2(%a6),%a0 - lea DATA+0x6(%a6),%a1 - - mov.l &0xaaaaaaaa,(%a0) - mov.l &0x7fffffff,(%a1) - - mov.l &0xaaaaaaaa,%d1 - mov.l &0x80000000,%d2 - mov.l &0xcccccccc,%d3 - mov.l &0xdddddddd,%d4 - - mov.w &0x000b,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.l (%a0),%d5 - mov.l (%a1),%d6 - mov.l &0xaaaaaaaa,IREGS+0x4(%a6) - mov.l &0x7fffffff,IREGS+0x8(%a6) - mov.l &0xaaaaaaaa,IREGS+0x14(%a6) - mov.l &0x7fffffff,IREGS+0x18(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -################################## -cas29: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x0(%a6),%a0 - lea DATA+0x4(%a6),%a1 - - mov.w &0xaaaa,(%a0) - mov.w &0xbbbb,(%a1) - - mov.w &0xaaaa,%d1 - mov.w &0xbbbb,%d2 - mov.w &0xcccc,%d3 - mov.w &0xdddd,%d4 - - mov.w &0x0014,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d5 - mov.w (%a1),%d6 - mov.w &0xcccc,IREGS+0x14+0x2(%a6) - mov.w &0xdddd,IREGS+0x18+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas210: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - lea DATA+0x5(%a6),%a1 - - mov.w &0xaaaa,(%a0) - mov.w &0xbbbb,(%a1) - - mov.w &0xaaaa,%d1 - mov.w &0xbbbb,%d2 - mov.w &0xcccc,%d3 - mov.w &0xdddd,%d4 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d5 - mov.w (%a1),%d6 - mov.w &0xcccc,IREGS+0x14+0x2(%a6) - mov.w &0xdddd,IREGS+0x18+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas211: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x0(%a6),%a0 - lea DATA+0x4(%a6),%a1 - - mov.w &0xeeee,(%a0) - mov.w &0xbbbb,(%a1) - - mov.w &0xaaaa,%d1 - mov.w &0xbbbb,%d2 - mov.w &0xcccc,%d3 - mov.w &0xdddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d5 - mov.w (%a1),%d6 - mov.w &0xeeee,IREGS+0x4+0x2(%a6) - mov.w &0xbbbb,IREGS+0x8+0x2(%a6) - mov.w &0xeeee,IREGS+0x14+0x2(%a6) - mov.w &0xbbbb,IREGS+0x18+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas212: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - lea DATA+0x5(%a6),%a1 - - mov.w &0xeeee,(%a0) - mov.w &0xbbbb,(%a1) - - mov.w &0xaaaa,%d1 - mov.w &0xbbbb,%d2 - mov.w &0xcccc,%d3 - mov.w &0xdddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d5 - mov.w (%a1),%d6 - mov.w &0xeeee,IREGS+0x4+0x2(%a6) - mov.w &0xbbbb,IREGS+0x8+0x2(%a6) - mov.w &0xeeee,IREGS+0x14+0x2(%a6) - mov.w &0xbbbb,IREGS+0x18+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas213: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x0(%a6),%a0 - lea DATA+0x4(%a6),%a1 - - mov.w &0xaaaa,(%a0) - mov.w &0xeeee,(%a1) - - mov.w &0xaaaa,%d1 - mov.w &0xbbbb,%d2 - mov.w &0xcccc,%d3 - mov.w &0xdddd,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d5 - mov.w (%a1),%d6 - mov.w &0xaaaa,IREGS+0x4+0x2(%a6) - mov.w &0xeeee,IREGS+0x8+0x2(%a6) - mov.w &0xaaaa,IREGS+0x14+0x2(%a6) - mov.w &0xeeee,IREGS+0x18+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cas214: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - lea DATA+0x1(%a6),%a0 - lea DATA+0x5(%a6),%a1 - - mov.w &0xaaaa,(%a0) - mov.w &0x7fff,(%a1) - - mov.w &0xaaaa,%d1 - mov.w &0x8000,%d2 - mov.w &0xcccc,%d3 - mov.w &0xdddd,%d4 - - mov.w &0x001b,ICCR(%a6) - mov.w &0x0010,%cc - movm.l &0x7fff,IREGS(%a6) - - cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) - - mov.w %cc,SCCR(%a6) - mov.w (%a0),%d5 - mov.w (%a1),%d6 - mov.w &0xaaaa,IREGS+0x4+0x2(%a6) - mov.w &0x7fff,IREGS+0x8+0x2(%a6) - mov.w &0xaaaa,IREGS+0x14+0x2(%a6) - mov.w &0x7fff,IREGS+0x18+0x2(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -########################################################### - -cmp2_str: - string "\tcmp2,chk2..." - - align 0x4 -# unsigned - small,small -cmp2_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0x2040,DATA(%a6) - mov.l &0x11111120,%d1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0x2040,DATA(%a6) - mov.l &0x00000040,%a1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0x2040,DATA(%a6) - mov.l &0x11111130,%d1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - chk2.b DATA(%a6),%d1 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0x2040,DATA(%a6) - mov.l &0x00000010,%a1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_5: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0x2040,DATA(%a6) - mov.l &0x11111150,%d1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_6: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0x2040,DATA(%a6) - mov.l &0x00000090,%a1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -# unsigned - small,large -cmp2_7: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x2000a000,DATA(%a6) - mov.l &0x11112000,%d1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.w %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_8: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x2000a000,DATA(%a6) - mov.l &0xffffa000,%a1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.w %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_9: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x2000a000,DATA(%a6) - mov.l &0x11113000,%d1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - chk2.w DATA(%a6),%d1 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_10: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x2000a000,DATA(%a6) - mov.l &0xffff9000,%a1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.w %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_11: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x2000a000,DATA(%a6) - mov.l &0x11111000,%d1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.w %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_12: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0x2000a000,DATA(%a6) - mov.l &0xffffb000,%a1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.w %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -# unsigned - large,large -cmp2_13: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xa0000000,DATA(%a6) - mov.l &0xc0000000,DATA+0x4(%a6) - mov.l &0xa0000000,%d1 - - mov.w &0x000c,ICCR(%a6) - mov.w &0x0008,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.l %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_14: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xa0000000,DATA(%a6) - mov.l &0xc0000000,DATA+0x4(%a6) - mov.l &0xc0000000,%a1 - - mov.w &0x000c,ICCR(%a6) - mov.w &0x0008,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.l %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_15: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xa0000000,DATA(%a6) - mov.l &0xc0000000,DATA+0x4(%a6) - mov.l &0xb0000000,%d1 - - mov.w &0x0008,ICCR(%a6) - mov.w &0x0008,%cc - movm.l &0x7fff,IREGS(%a6) - - chk2.l DATA(%a6),%d1 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_16: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xa0000000,DATA(%a6) - mov.l &0xc0000000,DATA+0x4(%a6) - mov.l &0x10000000,%a1 - - mov.w &0x0009,ICCR(%a6) - mov.w &0x0008,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.l %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_17: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xa0000000,DATA(%a6) - mov.l &0xc0000000,DATA+0x4(%a6) - mov.l &0x90000000,%d1 - - mov.w &0x0009,ICCR(%a6) - mov.w &0x0008,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.l %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_18: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l &0xa0000000,DATA(%a6) - mov.l &0xc0000000,DATA+0x4(%a6) - mov.l &0xd0000000,%a1 - - mov.w &0x0009,ICCR(%a6) - mov.w &0x0008,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.l %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -# signed - negative,positive -cmp2_19: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa040,DATA(%a6) - mov.l &0x111111a0,%d1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_20: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa040,DATA(%a6) - mov.l &0x00000040,%a1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - chk2.b DATA(%a6),%a1 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_21: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa040,DATA(%a6) - mov.l &0x111111b0,%d1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_22: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa040,DATA(%a6) - mov.l &0x00000010,%a1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_23: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa040,DATA(%a6) - mov.l &0x11111190,%d1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_24: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa040,DATA(%a6) - mov.l &0x00000050,%a1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -# signed - negative,negative -cmp2_25: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa0c0,DATA(%a6) - mov.l &0x111111a0,%d1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_26: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa0c0,DATA(%a6) - mov.l &0xffffffc0,%a1 - - mov.w &0x0004,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_27: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa0c0,DATA(%a6) - mov.l &0x111111b0,%d1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - chk2.b DATA(%a6),%d1 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_28: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa0c0,DATA(%a6) - mov.l &0x11111190,%a1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_29: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa0c0,DATA(%a6) - mov.l &0x111111d0,%d1 - - mov.w &0x0001,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %d1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -cmp2_30: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.w &0xa0c0,DATA(%a6) - mov.l &0x00000050,%a1 - - mov.w &0x001b,ICCR(%a6) - mov.w &0x001f,%cc - movm.l &0x7fff,IREGS(%a6) - - cmp2.b %a1,DATA(%a6) - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -########################################################### - -ea_str: - string "\tEffective addresses..." - - align 0x4 -ea_0: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a0),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_1: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a0)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a0 - mov.l %a0,IREGS+0x20(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_2: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a6),%a0 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a0),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a0 - mov.l %a0,IREGS+0x20(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_3: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x1000(%a6),%a0 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (-0x1000,%a0),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_4: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a0 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a0),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_5: - addq.l &0x1,TESTCTR(%a6) - -# movm.l DEF_REGS(%pc),&0x3fff - -# clr.l %d2 -# mov.l &0x00000002,%d3 - -# mov.w &0x0000,ICCR(%a6) -# mov.w &0x0000,%cc -# movm.l &0xffff,IREGS(%a6) - -# mulu.l EAMEM.w,%d2:%d3 - -# mov.w %cc,SCCR(%a6) -# movm.l &0xffff,SREGS(%a6) -# mov.l &0x00000004,IREGS+0xc(%a6) - -# bsr.l chkregs -# tst.b %d0 -# bne.l error - -ea_6: - addq.l &0x1,TESTCTR(%a6) - -# movm.l DEF_REGS(%pc),&0x3fff - -# clr.l %d2 -# mov.l &0x00000002,%d3 - -# mov.w &0x0000,ICCR(%a6) -# mov.w &0x0000,%cc -# movm.l &0xffff,IREGS(%a6) - -# mulu.l EAMEM.l,%d2:%d3 - -# mov.w %cc,SCCR(%a6) -# movm.l &0xffff,SREGS(%a6) -# mov.l &0x00000004,IREGS+0xc(%a6) - -# bsr.l chkregs -# tst.b %d0 -# bne.l error - -ea_7: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l &0x00000002,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_8: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_8_next -ea_8_mem: - long 0x00000002 -ea_8_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_8_mem.w,%pc),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_9: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a6),%a1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a0 - mov.l %a0,IREGS+0x24(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_10: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a6),%a2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a0 - mov.l %a0,IREGS+0x28(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_11: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a6),%a3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a3),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a0 - mov.l %a0,IREGS+0x2c(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_12: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a6),%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a0 - mov.l %a0,IREGS+0x30(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_13: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a6),%a5 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a5),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a0 - mov.l %a0,IREGS+0x34(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_14: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x4(%a1),%a6 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l -(%a6),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - lea EAMEM(%a1),%a0 - mov.l %a0,IREGS+0x38(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_15: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - clr.l %d2 - mov.l &0x00000002,%d3 - mov.l %a7,%a0 - lea EAMEM+0x4(%a6),%a7 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l -(%a7),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM(%a6),%a1 - mov.l %a1,IREGS+0x3c(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_16: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_17: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.w*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_18: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.w*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_19: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.w*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_20: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.l*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_21: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.l*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_22: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.l*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_23: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%d4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_24: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a0,%a4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_25: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (-0x10.b,%a0,%a4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_26: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a1 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a1,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_27: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a2 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a2,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_28: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a3,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_29: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a4 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a4,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_30: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a5 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a5,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_31: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a1),%a6 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l (0x10.b,%a6,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_32: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - mov.l %a7,%a0 - lea EAMEM(%a6),%a7 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.b,%a7,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_33: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_34: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_35: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a3),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_36: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_37: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a5 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a5),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_38: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a1),%a6 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l (%a6),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_39: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - mov.l %a7,%a0 - lea EAMEM(%a6),%a7 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a7),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_40: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a1)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a0 - mov.l %a0,IREGS+0x24(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_41: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a2)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a0 - mov.l %a0,IREGS+0x28(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_42: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a3)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a0 - mov.l %a0,IREGS+0x2c(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_43: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a4)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a0 - mov.l %a0,IREGS+0x30(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_44: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a5 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a5)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a0 - mov.l %a0,IREGS+0x34(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_45: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a1),%a6 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l (%a6)+,%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - lea EAMEM+0x4(%a1),%a0 - mov.l %a0,IREGS+0x38(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_46: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - mov.l %a7,%a0 - lea EAMEM(%a6),%a7 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (%a7)+,%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - lea EAMEM+0x4(%a6),%a1 - mov.l %a1,IREGS+0x3c(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_47: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a1 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_48: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a2 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_49: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a3),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_50: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_51: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a5 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a5),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_52: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a1),%a6 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l (0x1000,%a6),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_53: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - mov.l %a7,%a0 - lea EAMEM-0x1000(%a6),%a7 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x1000,%a7),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_54: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x1000(%a6),%a0 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (-0x1000,%a0),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_55: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_55_next - -ea_55_data: - long 0x00000002 -ea_55_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_55_data.w,%pc),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_56: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_57: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.w*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_58: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.w*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_59: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.w*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_60: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.l*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_61: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.l*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_62: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.l*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_63: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x10.w,%a3,%d4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_64: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (-0x10.w,%a3,%a4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_65: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (0x00.w,%a3,%za4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_66: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l %a3,%a4 - add.l &0x10,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (-0x10.w,%za3,%a4.l*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_67: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (-0x10.l,%a3,%a4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_68: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_68_next -ea_68_mem: - long 0x00000002 -ea_68_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_68_mem+0x10.w,%pc,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_69: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_69_next -ea_69_mem: - long 0x00000002 -ea_69_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_69_mem+0x10.w,%pc,%d4.w*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_70: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_70_next -ea_70_mem: - long 0x00000002 -ea_70_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_70_mem+0x10.w,%pc,%d4.w*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_71: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_71_next -ea_71_mem: - long 0x00000002 -ea_71_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_71_mem+0x10.w,%pc,%d4.w*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_72: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_72_next -ea_72_mem: - long 0x00000002 -ea_72_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_72_mem+0x10.w,%pc,%d4.l*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_73: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_73_next -ea_73_mem: - long 0x00000002 -ea_73_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_73_mem+0x10.w,%pc,%d4.l*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_74: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_74_next -ea_74_mem: - long 0x00000002 -ea_74_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_74_mem+0x10.w,%pc,%d4.l*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_75: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_75_next -ea_75_mem: - long 0x00000002 -ea_75_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0x7fff,IREGS(%a6) - - mulu.l (ea_75_mem+0x10.w,%pc,%d4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0x7fff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_76: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_76_next -ea_76_mem: - long 0x00000002 -ea_76_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &-0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_76_mem+0x10.w,%pc,%a4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_77: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_77_next -ea_77_mem: - long 0x00000002 -ea_77_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a3 - mov.l &0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_77_mem+0x00.w,%pc,%za4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_78: - addq.l &0x1,TESTCTR(%a6) - -# movm.l DEF_REGS(%pc),&0x3fff - -# clr.l %d2 -# mov.l &0x00000002,%d3 -# lea EAMEM,%a3 -# mov.l %a3,%a4 -# add.l &0x10,%a4 - -# mov.w &0x0000,ICCR(%a6) -# mov.w &0x0000,%cc -# movm.l &0xffff,IREGS(%a6) - -# mulu.l (EAMEM-0x10.w,%zpc,%a4.l*1),%d2:%d3 - -# mov.w %cc,SCCR(%a6) -# movm.l &0xffff,SREGS(%a6) -# mov.l &0x00000004,IREGS+0xc(%a6) - -# bsr.l chkregs -# tst.b %d0 -# bne.l error - -ea_79: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM,%a3 - mov.l &0x2,%a4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_79_mem-0x10.l,%pc,%a4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bra.b ea_79_next -ea_79_mem: - long 0x00000002 -ea_79_next: - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_80: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_80_next -ea_80_mem: - long 0x00000002 -ea_80_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a1 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_80_mem+0x10.b,%pc,%d4.w*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_81: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_81_next -ea_81_mem: - long 0x00000002 -ea_81_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_81_mem+0x10.b,%pc,%d4.w*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_82: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_82_next -ea_82_mem: - long 0x00000002 -ea_82_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_82_mem+0x10.b,%pc,%d4.w*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_83: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_83_next -ea_83_mem: - long 0x00000002 -ea_83_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_83_mem+0x10.b,%pc,%d4.w*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_84: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_84_next -ea_84_mem: - long 0x00000002 -ea_84_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_84_mem+0x10.b,%pc,%d4.l*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_85: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_85_next -ea_85_mem: - long 0x00000002 -ea_85_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_85_mem+0x10.b,%pc,%d4.l*2),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_86: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_86_next -ea_86_mem: - long 0x00000002 -ea_86_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_86_mem+0x10.b,%pc,%d4.l*4),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_87: - addq.l &0x1,TESTCTR(%a6) - - bra.b ea_87_next -ea_87_mem: - long 0x00000002 -ea_87_next: - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_87_mem+0x10.b,%pc,%d4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_88: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a6),%a0 - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l (ea_88_mem+0x10.b,%pc,%d4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bra.b ea_88_next -ea_88_mem: - long 0x00000002 -ea_88_next: - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_89: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.w*1],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_90: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.w*2],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_91: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.w*4],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_92: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.w*8],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_93: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.l*1],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_94: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.l*2],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_95: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.l*4],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_96: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4,%d4.l*8],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_97: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.l,%a4,%d4.l*8],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_98: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x00.l,%a4,%zd4.l*8],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_99: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([%a4,%zd4.l*8],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_100: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - add.l %a4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.l,%za4,%d4.l*1],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_101: - addq.l &0x1,TESTCTR(%a6) - -# movm.l DEF_REGS(%pc),&0x3fff - -# clr.l %d2 -# mov.l &0x00000002,%d3 -# lea EAMEM(%a6),%a3 -# lea EASTORE(%a6),%a4 -# mov.l %a3,(%a4) -# mov.l &-0x10,%d4 - -# mov.w &0x0000,ICCR(%a6) -# mov.w &0x0000,%cc -# movm.l &0xffff,IREGS(%a6) - -# mulu.l ([EASTORE.l,%za4,%zd4.l*1]),%d2:%d3 - -# mov.w %cc,SCCR(%a6) -# movm.l &0xffff,SREGS(%a6) -# mov.l &0x00000004,IREGS+0xc(%a6) - -# bsr.l chkregs -# tst.b %d0 -# bne.l error - -ea_102: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x1000(%a1),%a3 - lea EASTORE(%a1),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%a6 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l ([0x10.w,%a4,%a6.l*8],-0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_103: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x1000(%a1),%a3 - lea EASTORE(%a1),%a4 - mov.l %a3,(%a4) - mov.l &0x2,%a6 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l ([-0x10.w,%a4,%a6.l*8],-0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_104: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.w*1,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_105: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.w*2,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_106: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.w*4,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_107: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.w*8,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_108: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.l*1,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_109: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.w*2,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_110: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.l*4,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_111: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.w,%a4],%d4.l*8,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_112: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.l,%a4],%d4.l*8,0x10.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_113: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a4 - mov.l %a3,(%a4) - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x00.l,%a4],%zd4.l*8,0x20.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_114: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a7,%a0 - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%a6),%a3 - lea EASTORE(%a6),%a7 - mov.l %a3,(%a7) - mov.l &0x20,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([%a7],%d4.l*1),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_115: - addq.l &0x1,TESTCTR(%a6) - -# movm.l DEF_REGS(%pc),&0x3fff - -# clr.l %d2 -# mov.l &0x00000002,%d3 -# lea EAMEM-0x20(%pc),%a3 -# lea EASTORE(%pc),%a4 -# mov.l %a3,(%a4) -# mov.l &0x2,%d4 - -# mov.w &0x0000,ICCR(%a6) -# mov.w &0x0000,%cc -# movm.l &0xffff,IREGS(%a6) - -# mulu.l ([EASTORE.l,%za4],%zd4.l*8,0x20.l),%d2:%d3 - -# mov.w %cc,SCCR(%a6) -# movm.l &0xffff,SREGS(%a6) -# mov.l &0x00000004,IREGS+0xc(%a6) - -# bsr.l chkregs -# tst.b %d0 -# bne.l error - -ea_116: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a6,%a1 - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%a1),%a3 - lea EASTORE(%a1),%a6 - mov.l %a3,(%a6) - add.l &0x10,%a6 - mov.l &-0x2,%a5 - - mov.w &0x0000,ICCR(%a1) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a1) - - mulu.l ([-0x10.w,%a6],%a5.l*8,0x10.l),%d2:%d3 - - mov.w %cc,SCCR(%a1) - movm.l &0xffff,SREGS(%a1) - mov.l &0x00000004,IREGS+0xc(%a1) - - mov.l %a1,%a6 - - bsr.l chkregs - tst.b %d0 - bne.l error - - mov.l TESTCTR(%a6),%d1 - clr.l %d0 - rts - -ea_117: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.w*1],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_118: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.w*2],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_119: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.w*4],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_120: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.w*8],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_121: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.l*1],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_122: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.l*2],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_123: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.l*4],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_124: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x10.w,%pc,%d4.l*8],0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_125: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - mulu.l ([EASTORE+0x10.l,%pc,%d4.l*8],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_126: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE+0x00.l,%pc,%zd4.l*8],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_127: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l %a4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([%zpc,%d4.l*1],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_128: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - add.l %a4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([0x10.l,%zpc,%d4.l*1],0x1000.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_129: - addq.l &0x1,TESTCTR(%a6) - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &-0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.l,%zpc,%zd4.l*1]),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_130: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &0x2,%a6 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE-0x10.w,%pc,%a6.l*8],-0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_131: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a7,%a0 - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM+0x1000(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &0x2,%a7 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE-0x10.w,%pc,%a7.l*8],-0x1000.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_132: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.w*1,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_133: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.w*2,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_134: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.w*4,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_135: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.w*8,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_136: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x10,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.l*1,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_137: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x8,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.w*2,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_138: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.l*4,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_139: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%d4.l*8,0x10.w),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_140: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - sub.l &0x10,%a4 - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.l,%pc],%d4.l*8,0x10.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_141: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &0x2,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.l,%pc],%zd4.l*8,0x20.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_142: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM-0x20(%pc),%a3 - lea EASTORE(%pc),%a4 - mov.l %a3,(%a4) - mov.l &0x4,%d4 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.l,%zpc],%d4.l*8),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - bsr.l chkregs - tst.b %d0 - bne.l error - -ea_143: - addq.l &0x1,TESTCTR(%a6) - - movm.l DEF_REGS(%pc),&0x3fff - - mov.l %a7,%a0 - clr.l %d2 - mov.l &0x00000002,%d3 - lea EAMEM(%pc),%a3 - lea EASTORE(%pc),%a6 - mov.l %a3,(%a6) - add.l &0x10,%a6 - mov.l &-0x2,%a7 - - mov.w &0x0000,ICCR(%a6) - mov.w &0x0000,%cc - movm.l &0xffff,IREGS(%a6) - - mulu.l ([EASTORE.w,%pc],%a7.l*8,0x10.l),%d2:%d3 - - mov.w %cc,SCCR(%a6) - movm.l &0xffff,SREGS(%a6) - mov.l &0x00000004,IREGS+0xc(%a6) - - mov.l %a0,%a7 - bsr.l chkregs - tst.b %d0 - bne.l error - - clr.l %d0 - rts - -########################################################### -########################################################### -chkregs: - lea IREGS(%a6),%a0 - lea SREGS(%a6),%a1 - mov.l &14,%d0 -chkregs_loop: - cmp.l (%a0)+,(%a1)+ - bne.l chkregs_error - dbra.w %d0,chkregs_loop - - mov.w ICCR(%a6),%d0 - mov.w SCCR(%a6),%d1 - cmp.w %d0,%d1 - bne.l chkregs_error - - clr.l %d0 - rts - -chkregs_error: - movq.l &0x1,%d0 - rts - -error: - mov.l TESTCTR(%a6),%d1 - movq.l &0x1,%d0 - rts - -DEF_REGS: - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac - -############################################################ - -_print_str: - mov.l %d0,-(%sp) - mov.l (TESTTOP-0x80+0x0,%pc),%d0 - pea (TESTTOP-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -_print_num: - mov.l %d0,-(%sp) - mov.l (TESTTOP-0x80+0x4,%pc),%d0 - pea (TESTTOP-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -############################################################ diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S deleted file mode 100644 index 4aedef97..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S +++ /dev/null @@ -1,14745 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# freal.s: -# This file is appended to the top of the 060FPSP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located -# after _060FPSP_TABLE. -# Also, subroutine stubs exist in this file (_fpsp_done for -# example) that are referenced by the FPSP package itself in order -# to call a given routine. The stub routine actually performs the -# callout. The FPSP code does a "bsr" to the stub routine. This -# extra layer of hierarchy adds a slight performance penalty but -# it makes the FPSP code easier to read and more mainatinable. -# - -set _off_bsun, 0x00 -set _off_snan, 0x04 -set _off_operr, 0x08 -set _off_ovfl, 0x0c -set _off_unfl, 0x10 -set _off_dz, 0x14 -set _off_inex, 0x18 -set _off_fline, 0x1c -set _off_fpu_dis, 0x20 -set _off_trap, 0x24 -set _off_trace, 0x28 -set _off_access, 0x2c -set _off_done, 0x30 - -set _off_imr, 0x40 -set _off_dmr, 0x44 -set _off_dmw, 0x48 -set _off_irw, 0x4c -set _off_irl, 0x50 -set _off_drb, 0x54 -set _off_drw, 0x58 -set _off_drl, 0x5c -set _off_dwb, 0x60 -set _off_dww, 0x64 -set _off_dwl, 0x68 - -_060FPSP_TABLE: - -############################################################### - -# Here's the table of ENTRY POINTS for those linking the package. - bra.l _fpsp_snan - short 0x0000 - bra.l _fpsp_operr - short 0x0000 - bra.l _fpsp_ovfl - short 0x0000 - bra.l _fpsp_unfl - short 0x0000 - bra.l _fpsp_dz - short 0x0000 - bra.l _fpsp_inex - short 0x0000 - bra.l _fpsp_fline - short 0x0000 - bra.l _fpsp_unsupp - short 0x0000 - bra.l _fpsp_effadd - short 0x0000 - - space 56 - -############################################################### - global _fpsp_done -_fpsp_done: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_ovfl -_real_ovfl: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_unfl -_real_unfl: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_inex -_real_inex: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_bsun -_real_bsun: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_operr -_real_operr: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_snan -_real_snan: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_dz -_real_dz: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_fline -_real_fline: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_fpu_disabled -_real_fpu_disabled: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trap -_real_trap: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trace -_real_trace: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_access -_real_access: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -####################################### - - global _imem_read -_imem_read: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read -_dmem_read: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write -_dmem_write: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_word -_imem_read_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_long -_imem_read_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_byte -_dmem_read_byte: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_word -_dmem_read_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_long -_dmem_read_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_byte -_dmem_write_byte: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_word -_dmem_write_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_long -_dmem_write_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -# -# This file contains a set of define statements for constants -# in order to promote readability within the corecode itself. -# - -set LOCAL_SIZE, 192 # stack frame size(bytes) -set LV, -LOCAL_SIZE # stack offset - -set EXC_SR, 0x4 # stack status register -set EXC_PC, 0x6 # stack pc -set EXC_VOFF, 0xa # stacked vector offset -set EXC_EA, 0xc # stacked <ea> - -set EXC_FP, 0x0 # frame pointer - -set EXC_AREGS, -68 # offset of all address regs -set EXC_DREGS, -100 # offset of all data regs -set EXC_FPREGS, -36 # offset of all fp regs - -set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 -set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 -set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 -set EXC_A5, EXC_AREGS+(5*4) -set EXC_A4, EXC_AREGS+(4*4) -set EXC_A3, EXC_AREGS+(3*4) -set EXC_A2, EXC_AREGS+(2*4) -set EXC_A1, EXC_AREGS+(1*4) -set EXC_A0, EXC_AREGS+(0*4) -set EXC_D7, EXC_DREGS+(7*4) -set EXC_D6, EXC_DREGS+(6*4) -set EXC_D5, EXC_DREGS+(5*4) -set EXC_D4, EXC_DREGS+(4*4) -set EXC_D3, EXC_DREGS+(3*4) -set EXC_D2, EXC_DREGS+(2*4) -set EXC_D1, EXC_DREGS+(1*4) -set EXC_D0, EXC_DREGS+(0*4) - -set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 -set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 -set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) - -set FP_SCR1, LV+80 # fp scratch 1 -set FP_SCR1_EX, FP_SCR1+0 -set FP_SCR1_SGN, FP_SCR1+2 -set FP_SCR1_HI, FP_SCR1+4 -set FP_SCR1_LO, FP_SCR1+8 - -set FP_SCR0, LV+68 # fp scratch 0 -set FP_SCR0_EX, FP_SCR0+0 -set FP_SCR0_SGN, FP_SCR0+2 -set FP_SCR0_HI, FP_SCR0+4 -set FP_SCR0_LO, FP_SCR0+8 - -set FP_DST, LV+56 # fp destination operand -set FP_DST_EX, FP_DST+0 -set FP_DST_SGN, FP_DST+2 -set FP_DST_HI, FP_DST+4 -set FP_DST_LO, FP_DST+8 - -set FP_SRC, LV+44 # fp source operand -set FP_SRC_EX, FP_SRC+0 -set FP_SRC_SGN, FP_SRC+2 -set FP_SRC_HI, FP_SRC+4 -set FP_SRC_LO, FP_SRC+8 - -set USER_FPIAR, LV+40 # FP instr address register - -set USER_FPSR, LV+36 # FP status register -set FPSR_CC, USER_FPSR+0 # FPSR condition codes -set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte -set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte -set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte - -set USER_FPCR, LV+32 # FP control register -set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable -set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control - -set L_SCR3, LV+28 # integer scratch 3 -set L_SCR2, LV+24 # integer scratch 2 -set L_SCR1, LV+20 # integer scratch 1 - -set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) - -set EXC_TEMP2, LV+24 # temporary space -set EXC_TEMP, LV+16 # temporary space - -set DTAG, LV+15 # destination operand type -set STAG, LV+14 # source operand type - -set SPCOND_FLG, LV+10 # flag: special case (see below) - -set EXC_CC, LV+8 # saved condition codes -set EXC_EXTWPTR, LV+4 # saved current PC (active) -set EXC_EXTWORD, LV+2 # saved extension word -set EXC_CMDREG, LV+2 # saved extension word -set EXC_OPWORD, LV+0 # saved operation word - -################################ - -# Helpful macros - -set FTEMP, 0 # offsets within an -set FTEMP_EX, 0 # extended precision -set FTEMP_SGN, 2 # value saved in memory. -set FTEMP_HI, 4 -set FTEMP_LO, 8 -set FTEMP_GRS, 12 - -set LOCAL, 0 # offsets within an -set LOCAL_EX, 0 # extended precision -set LOCAL_SGN, 2 # value saved in memory. -set LOCAL_HI, 4 -set LOCAL_LO, 8 -set LOCAL_GRS, 12 - -set DST, 0 # offsets within an -set DST_EX, 0 # extended precision -set DST_HI, 4 # value saved in memory. -set DST_LO, 8 - -set SRC, 0 # offsets within an -set SRC_EX, 0 # extended precision -set SRC_HI, 4 # value saved in memory. -set SRC_LO, 8 - -set SGL_LO, 0x3f81 # min sgl prec exponent -set SGL_HI, 0x407e # max sgl prec exponent -set DBL_LO, 0x3c01 # min dbl prec exponent -set DBL_HI, 0x43fe # max dbl prec exponent -set EXT_LO, 0x0 # min ext prec exponent -set EXT_HI, 0x7ffe # max ext prec exponent - -set EXT_BIAS, 0x3fff # extended precision bias -set SGL_BIAS, 0x007f # single precision bias -set DBL_BIAS, 0x03ff # double precision bias - -set NORM, 0x00 # operand type for STAG/DTAG -set ZERO, 0x01 # operand type for STAG/DTAG -set INF, 0x02 # operand type for STAG/DTAG -set QNAN, 0x03 # operand type for STAG/DTAG -set DENORM, 0x04 # operand type for STAG/DTAG -set SNAN, 0x05 # operand type for STAG/DTAG -set UNNORM, 0x06 # operand type for STAG/DTAG - -################## -# FPSR/FPCR bits # -################## -set neg_bit, 0x3 # negative result -set z_bit, 0x2 # zero result -set inf_bit, 0x1 # infinite result -set nan_bit, 0x0 # NAN result - -set q_sn_bit, 0x7 # sign bit of quotient byte - -set bsun_bit, 7 # branch on unordered -set snan_bit, 6 # signalling NAN -set operr_bit, 5 # operand error -set ovfl_bit, 4 # overflow -set unfl_bit, 3 # underflow -set dz_bit, 2 # divide by zero -set inex2_bit, 1 # inexact result 2 -set inex1_bit, 0 # inexact result 1 - -set aiop_bit, 7 # accrued inexact operation bit -set aovfl_bit, 6 # accrued overflow bit -set aunfl_bit, 5 # accrued underflow bit -set adz_bit, 4 # accrued dz bit -set ainex_bit, 3 # accrued inexact bit - -############################# -# FPSR individual bit masks # -############################# -set neg_mask, 0x08000000 # negative bit mask (lw) -set inf_mask, 0x02000000 # infinity bit mask (lw) -set z_mask, 0x04000000 # zero bit mask (lw) -set nan_mask, 0x01000000 # nan bit mask (lw) - -set neg_bmask, 0x08 # negative bit mask (byte) -set inf_bmask, 0x02 # infinity bit mask (byte) -set z_bmask, 0x04 # zero bit mask (byte) -set nan_bmask, 0x01 # nan bit mask (byte) - -set bsun_mask, 0x00008000 # bsun exception mask -set snan_mask, 0x00004000 # snan exception mask -set operr_mask, 0x00002000 # operr exception mask -set ovfl_mask, 0x00001000 # overflow exception mask -set unfl_mask, 0x00000800 # underflow exception mask -set dz_mask, 0x00000400 # dz exception mask -set inex2_mask, 0x00000200 # inex2 exception mask -set inex1_mask, 0x00000100 # inex1 exception mask - -set aiop_mask, 0x00000080 # accrued illegal operation -set aovfl_mask, 0x00000040 # accrued overflow -set aunfl_mask, 0x00000020 # accrued underflow -set adz_mask, 0x00000010 # accrued divide by zero -set ainex_mask, 0x00000008 # accrued inexact - -###################################### -# FPSR combinations used in the FPSP # -###################################### -set dzinf_mask, inf_mask+dz_mask+adz_mask -set opnan_mask, nan_mask+operr_mask+aiop_mask -set nzi_mask, 0x01ffffff #clears N, Z, and I -set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask -set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask -set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask -set inx1a_mask, inex1_mask+ainex_mask -set inx2a_mask, inex2_mask+ainex_mask -set snaniop_mask, nan_mask+snan_mask+aiop_mask -set snaniop2_mask, snan_mask+aiop_mask -set naniop_mask, nan_mask+aiop_mask -set neginf_mask, neg_mask+inf_mask -set infaiop_mask, inf_mask+aiop_mask -set negz_mask, neg_mask+z_mask -set opaop_mask, operr_mask+aiop_mask -set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask -set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask - -######### -# misc. # -######### -set rnd_stky_bit, 29 # stky bit pos in longword - -set sign_bit, 0x7 # sign bit -set signan_bit, 0x6 # signalling nan bit - -set sgl_thresh, 0x3f81 # minimum sgl exponent -set dbl_thresh, 0x3c01 # minimum dbl exponent - -set x_mode, 0x0 # extended precision -set s_mode, 0x4 # single precision -set d_mode, 0x8 # double precision - -set rn_mode, 0x0 # round-to-nearest -set rz_mode, 0x1 # round-to-zero -set rm_mode, 0x2 # round-tp-minus-infinity -set rp_mode, 0x3 # round-to-plus-infinity - -set mantissalen, 64 # length of mantissa in bits - -set BYTE, 1 # len(byte) == 1 byte -set WORD, 2 # len(word) == 2 bytes -set LONG, 4 # len(longword) == 2 bytes - -set BSUN_VEC, 0xc0 # bsun vector offset -set INEX_VEC, 0xc4 # inexact vector offset -set DZ_VEC, 0xc8 # dz vector offset -set UNFL_VEC, 0xcc # unfl vector offset -set OPERR_VEC, 0xd0 # operr vector offset -set OVFL_VEC, 0xd4 # ovfl vector offset -set SNAN_VEC, 0xd8 # snan vector offset - -########################### -# SPecial CONDition FLaGs # -########################### -set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception -set fbsun_flg, 0x02 # flag bit: bsun exception -set mia7_flg, 0x04 # flag bit: (a7)+ <ea> -set mda7_flg, 0x08 # flag bit: -(a7) <ea> -set fmovm_flg, 0x40 # flag bit: fmovm instruction -set immed_flg, 0x80 # flag bit: &<data> <ea> - -set ftrapcc_bit, 0x0 -set fbsun_bit, 0x1 -set mia7_bit, 0x2 -set mda7_bit, 0x3 -set immed_bit, 0x7 - -################################## -# TRANSCENDENTAL "LAST-OP" FLAGS # -################################## -set FMUL_OP, 0x0 # fmul instr performed last -set FDIV_OP, 0x1 # fdiv performed last -set FADD_OP, 0x2 # fadd performed last -set FMOV_OP, 0x3 # fmov performed last - -############# -# CONSTANTS # -############# -T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD -T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL - -PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 -PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -TWOBYPI: - long 0x3FE45F30,0x6DC9C883 - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Overflow exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # -# _real_ovfl() - "callout" for Overflow exception enabled code # -# _real_inex() - "callout" for Inexact exception enabled code # -# _real_trace() - "callout" for Trace exception code # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Ovfl exception stack frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# Overflow Exception enabled: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# Overflow Exception disabled: # -# - The system stack is unchanged # -# - The "exception present" flag in the fsave frame is cleared # -# # -# ALGORITHM *********************************************************** # -# On the 060, if an FP overflow is present as the result of any # -# instruction, the 060 will take an overflow exception whether the # -# exception is enabled or disabled in the FPCR. For the disabled case, # -# This handler emulates the instruction to determine what the correct # -# default result should be for the operation. This default result is # -# then stored in either the FP regfile, data regfile, or memory. # -# Finally, the handler exits through the "callout" _fpsp_done() # -# denoting that no exceptional conditions exist within the machine. # -# If the exception is enabled, then this handler must create the # -# exceptional operand and plave it in the fsave state frame, and store # -# the default result (only if the instruction is opclass 3). For # -# exceptions enabled, this handler must exit through the "callout" # -# _real_ovfl() so that the operating system enabled overflow handler # -# can handle this case. # -# Two other conditions exist. First, if overflow was disabled # -# but the inexact exception was enabled, this handler must exit # -# through the "callout" _real_inex() regardless of whether the result # -# was inexact. # -# Also, in the case of an opclass three instruction where # -# overflow was disabled and the trace exception was enabled, this # -# handler must exit through the "callout" _real_trace(). # -# # -######################################################################### - - global _fpsp_ovfl -_fpsp_ovfl: - -#$# sub.l &24,%sp # make room for src/dst - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? - bne.w fovfl_out - - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -# since, I believe, only NORMs and DENORMs can come through here, -# maybe we can avoid the subroutine call. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bit five of the fp extension word separates the monadic and dyadic operations -# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos -# will never take this exception. - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fovfl_extract # monadic - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fovfl_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fovfl_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fovfl_extract: - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) -#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) -#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) -#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - -# maybe we can make these entry points ONLY the OVFL entry points of each routine. - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# the operation has been emulated. the result is in fp0. -# the EXOP, if an exception occurred, is in fp1. -# we must save the default result regardless of whether -# traps are enabled or disabled. - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -# the exceptional possibilities we have left ourselves with are ONLY overflow -# and inexact. and, the inexact is such that overflow occurred and was disabled -# but inexact was enabled. - btst &ovfl_bit,FPCR_ENABLE(%a6) - bne.b fovfl_ovfl_on - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.b fovfl_inex_on - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - bra.l _fpsp_done - -# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP -# in fp1. now, simply jump to _real_ovfl()! -fovfl_ovfl_on: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.w &0xe005,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_ovfl - -# overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, -# we must jump to real_inex(). -fovfl_inex_on: - - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_inex - -######################################################################## -fovfl_out: - - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) - -# the src operand is definitely a NORM(!), so tag it as such - mov.b &NORM,STAG(%a6) # set src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout - - btst &ovfl_bit,FPCR_ENABLE(%a6) - bne.w fovfl_ovfl_on - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.w fovfl_inex_on - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - bra.l _real_trace - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Underflow exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # -# _real_ovfl() - "callout" for Overflow exception enabled code # -# _real_inex() - "callout" for Inexact exception enabled code # -# _real_trace() - "callout" for Trace exception code # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Unfl exception stack frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# Underflow Exception enabled: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# Underflow Exception disabled: # -# - The system stack is unchanged # -# - The "exception present" flag in the fsave frame is cleared # -# # -# ALGORITHM *********************************************************** # -# On the 060, if an FP underflow is present as the result of any # -# instruction, the 060 will take an underflow exception whether the # -# exception is enabled or disabled in the FPCR. For the disabled case, # -# This handler emulates the instruction to determine what the correct # -# default result should be for the operation. This default result is # -# then stored in either the FP regfile, data regfile, or memory. # -# Finally, the handler exits through the "callout" _fpsp_done() # -# denoting that no exceptional conditions exist within the machine. # -# If the exception is enabled, then this handler must create the # -# exceptional operand and plave it in the fsave state frame, and store # -# the default result (only if the instruction is opclass 3). For # -# exceptions enabled, this handler must exit through the "callout" # -# _real_unfl() so that the operating system enabled overflow handler # -# can handle this case. # -# Two other conditions exist. First, if underflow was disabled # -# but the inexact exception was enabled and the result was inexact, # -# this handler must exit through the "callout" _real_inex(). # -# was inexact. # -# Also, in the case of an opclass three instruction where # -# underflow was disabled and the trace exception was enabled, this # -# handler must exit through the "callout" _real_trace(). # -# # -######################################################################### - - global _fpsp_unfl -_fpsp_unfl: - -#$# sub.l &24,%sp # make room for src/dst - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? - bne.w funfl_out - - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bit five of the fp ext word separates the monadic and dyadic operations -# that can pass through fpsp_unfl(). remember that fcmp, and ftst -# will never take this exception. - btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? - beq.b funfl_extract # monadic - -# now, what's left that's not dyadic is fsincos. we can distinguish it -# from all dyadics by the '0110xxx pattern - btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? - bne.b funfl_extract # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b funfl_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -funfl_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -funfl_extract: - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) -#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) -#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) -#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - andi.l &0x00ff01ff,USER_FPSR(%a6) - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - -# maybe we can make these entry points ONLY the OVFL entry points of each routine. - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. Since this is incorrect, we need to check -# if our emulation, after re-doing the operation, decided that -# no underflow was called for. We do these checks only in -# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this -# special case will simply exit gracefully with the correct result. - -# the exceptional possibilities we have left ourselves with are ONLY overflow -# and inexact. and, the inexact is such that overflow occurred and was disabled -# but inexact was enabled. - btst &unfl_bit,FPCR_ENABLE(%a6) - bne.b funfl_unfl_on - -funfl_chkinex: - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.b funfl_inex_on - -funfl_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - bra.l _fpsp_done - -# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP -# in fp1 (don't forget to save fp0). what to do now? -# well, we simply have to get to go to _real_unfl()! -funfl_unfl_on: - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. Since this is incorrect, we check here to see -# if our emulation, after re-doing the operation, decided that -# no underflow was called for. - btst &unfl_bit,FPSR_EXCEPT(%a6) - beq.w funfl_chkinex - -funfl_unfl_on2: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.w &0xe003,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_unfl - -# underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, -# we must jump to real_inex(). -funfl_inex_on: - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. -# But, whether bogus or not, if inexact is enabled AND it occurred, -# then we have to branch to real_inex. - - btst &inex2_bit,FPSR_EXCEPT(%a6) - beq.w funfl_exit - -funfl_inex_on2: - - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack - - mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_inex - -####################################################################### -funfl_out: - - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) - -# the src operand is definitely a NORM(!), so tag it as such - mov.b &NORM,STAG(%a6) # set src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout - - btst &unfl_bit,FPCR_ENABLE(%a6) - bne.w funfl_unfl_on2 - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.w funfl_inex_on2 - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - bra.l _real_trace - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # -# Data Type" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Data Type exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_{word,long}() - read instruction word/longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# load_fpn1() - load src operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _real_inex() - "callout" to operating system inexact handler # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# funimp_skew() - adjust fsave src ops to "incorrect" value # -# _real_snan() - "callout" for SNAN exception # -# _real_operr() - "callout" for OPERR exception # -# _real_ovfl() - "callout" for OVFL exception # -# _real_unfl() - "callout" for UNFL exception # -# get_packed() - fetch packed operand from memory # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimp Data Type" stk frame # -# - The fsave frame contains the ssrc op (for UNNORM/DENORM) # -# # -# OUTPUT ************************************************************** # -# If Inexact exception (opclass 3): # -# - The system stack is changed to an Inexact exception stk frame # -# If SNAN exception (opclass 3): # -# - The system stack is changed to an SNAN exception stk frame # -# If OPERR exception (opclass 3): # -# - The system stack is changed to an OPERR exception stk frame # -# If OVFL exception (opclass 3): # -# - The system stack is changed to an OVFL exception stk frame # -# If UNFL exception (opclass 3): # -# - The system stack is changed to an UNFL exception stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - Correct result has been stored as appropriate # -# # -# ALGORITHM *********************************************************** # -# Two main instruction types can enter here: (1) DENORM or UNNORM # -# unimplemented data types. These can be either opclass 0,2 or 3 # -# instructions, and (2) PACKED unimplemented data format instructions # -# also of opclasses 0,2, or 3. # -# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # -# operand from the fsave state frame and the dst operand (if dyadic) # -# from the FP register file. The instruction is then emulated by # -# choosing an emulation routine from a table of routines indexed by # -# instruction type. Once the instruction has been emulated and result # -# saved, then we check to see if any enabled exceptions resulted from # -# instruction emulation. If none, then we exit through the "callout" # -# _fpsp_done(). If there is an enabled FP exception, then we insert # -# this exception into the FPU in the fsave state frame and then exit # -# through _fpsp_done(). # -# PACKED opclass 0 and 2 is similar in how the instruction is # -# emulated and exceptions handled. The differences occur in how the # -# handler loads the packed op (by calling get_packed() routine) and # -# by the fact that a Trace exception could be pending for PACKED ops. # -# If a Trace exception is pending, then the current exception stack # -# frame is changed to a Trace exception stack frame and an exit is # -# made through _real_trace(). # -# For UNNORM/DENORM opclass 3, the actual move out to memory is # -# performed by calling the routine fout(). If no exception should occur # -# as the result of emulation, then an exit either occurs through # -# _fpsp_done() or through _real_trace() if a Trace exception is pending # -# (a Trace stack frame must be created here, too). If an FP exception # -# should occur, then we must create an exception stack frame of that # -# type and jump to either _real_snan(), _real_operr(), _real_inex(), # -# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # -# emulation is performed in a similar manner. # -# # -######################################################################### - -# -# (1) DENORM and UNNORM (unimplemented) data types: -# -# post-instruction -# ***************** -# * EA * -# pre-instruction * * -# ***************** ***************** -# * 0x0 * 0x0dc * * 0x3 * 0x0dc * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# -# (2) PACKED format (unsupported) opclasses two and three: -# ***************** -# * EA * -# * * -# ***************** -# * 0x2 * 0x0dc * -# ***************** -# * Next * -# * PC * -# ***************** -# * SR * -# ***************** -# - global _fpsp_unsupp -_fpsp_unsupp: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # save fp state - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - - btst &0x5,EXC_SR(%a6) # user or supervisor mode? - bne.b fu_s -fu_u: - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # save on stack - bra.b fu_cont -# if the exception is an opclass zero or two unimplemented data type -# exception, then the a7' calculated here is wrong since it doesn't -# stack an ea. however, we don't need an a7' for this case anyways. -fu_s: - lea 0x4+EXC_EA(%a6),%a0 # load old a7' - mov.l %a0,EXC_A7(%a6) # save on stack - -fu_cont: - -# the FPIAR holds the "current PC" of the faulting instruction -# the FPIAR should be set correctly for ALL exceptions passing through -# this point. - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - -############################ - - clr.b SPCOND_FLG(%a6) # clear special condition flag - -# Separate opclass three (fpn-to-mem) ops since they have a different -# stack frame and protocol. - btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? - bne.w fu_out # yes - -# Separate packed opclass two instructions. - bfextu EXC_CMDREG(%a6){&0:&6},%d0 - cmpi.b %d0,&0x13 - beq.w fu_in_pack - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field - andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - -# Opclass two w/ memory-to-fpn operation will have an incorrect extended -# precision format if the src format was single or double and the -# source data type was an INF, NAN, DENORM, or UNNORM - lea FP_SRC(%a6),%a0 # pass ptr to input - bsr.l fix_skewed_ops - -# we don't know whether the src operand or the dst operand (or both) is the -# UNNORM or DENORM. call the function that tags the operand type. if the -# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2 # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO - -fu_op2: - mov.b %d0,STAG(%a6) # save src optype tag - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - -# bit five of the fp extension word separates the monadic and dyadic operations -# at this point - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fu_extract # monadic - cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? - beq.b fu_extract # yes, so it's monadic, too - - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fu_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fu_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all dyadic ops -# OPERR : fsqrt(-NORM) -# OVFL : all except ftst,fcmp -# UNFL : all except ftst,fcmp -# DZ : fdiv -# INEX2 : all except ftst,fcmp -# INEX1 : none (packed doesn't go through here) -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set - bne.b fu_in_ena # some are enabled - -fu_in_cont: -# fcmp and ftst do not store any result. - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension - andi.b &0x38,%d0 # extract bits 3-5 - cmpi.b %d0,&0x38 # is instr fcmp or ftst? - beq.b fu_in_exit # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l store_fpreg # store the result - -fu_in_exit: - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - bra.l _fpsp_done - -fu_in_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_in_exc # there is at least one set - -# -# No exceptions occurred that were also enabled. Now: -# -# if (OVFL && ovfl_disabled && inexact_enabled) { -# branch to _real_inex() (even if the result was exact!); -# } else { -# save the result in the proper fp reg (unless the op is fcmp or ftst); -# return; -# } -# - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.b fu_in_cont # no - -fu_in_ovflchk: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.b fu_in_cont # no - bra.w fu_in_exc_ovfl # go insert overflow frame - -# -# An exception occurred and that exception was enabled: -# -# shift enabled exception field into lo byte of d0; -# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || -# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { -# /* -# * this is the case where we must call _real_inex() now or else -# * there will be no other way to pass it the exceptional operand -# */ -# call _real_inex(); -# } else { -# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; -# } -# -fu_in_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? (6) - bne.b fu_in_exc_exit # no - -# the enabled exception was inexact - btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? - bne.w fu_in_exc_unfl # yes - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? - bne.w fu_in_exc_ovfl # yes - -# here, we insert the correct fsave status value into the fsave frame for the -# corresponding exception. the operand in the fsave frame should be the original -# src operand. -fu_in_exc_exit: - mov.l %d0,-(%sp) # save d0 - bsr.l funimp_skew # skew sgl or dbl inputs - mov.l (%sp)+,%d0 # restore d0 - - mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 - - bra.l _fpsp_done - -tbl_except: - short 0xe000,0xe006,0xe004,0xe005 - short 0xe003,0xe002,0xe001,0xe001 - -fu_in_exc_unfl: - mov.w &0x4,%d0 - bra.b fu_in_exc_exit -fu_in_exc_ovfl: - mov.w &0x03,%d0 - bra.b fu_in_exc_exit - -# If the input operand to this operation was opclass two and a single -# or double precision denorm, inf, or nan, the operand needs to be -# "corrected" in order to have the proper equivalent extended precision -# number. - global fix_skewed_ops -fix_skewed_ops: - bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt - cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? - beq.b fso_sgl # yes - cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? - beq.b fso_dbl # yes - rts # no - -fso_sgl: - mov.w LOCAL_EX(%a0),%d0 # fetch src exponent - andi.w &0x7fff,%d0 # strip sign - cmpi.w %d0,&0x3f80 # is |exp| == $3f80? - beq.b fso_sgl_dnrm_zero # yes - cmpi.w %d0,&0x407f # no; is |exp| == $407f? - beq.b fso_infnan # yes - rts # no - -fso_sgl_dnrm_zero: - andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit - beq.b fso_zero # it's a skewed zero -fso_sgl_dnrm: -# here, we count on norm not to alter a0... - bsr.l norm # normalize mantissa - neg.w %d0 # -shft amt - addi.w &0x3f81,%d0 # adjust new exponent - andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent - or.w %d0,LOCAL_EX(%a0) # insert new exponent - rts - -fso_zero: - andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent - rts - -fso_infnan: - andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit - ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff - rts - -fso_dbl: - mov.w LOCAL_EX(%a0),%d0 # fetch src exponent - andi.w &0x7fff,%d0 # strip sign - cmpi.w %d0,&0x3c00 # is |exp| == $3c00? - beq.b fso_dbl_dnrm_zero # yes - cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? - beq.b fso_infnan # yes - rts # no - -fso_dbl_dnrm_zero: - andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit - bne.b fso_dbl_dnrm # it's a skewed denorm - tst.l LOCAL_LO(%a0) # is it a zero? - beq.b fso_zero # yes -fso_dbl_dnrm: -# here, we count on norm not to alter a0... - bsr.l norm # normalize mantissa - neg.w %d0 # -shft amt - addi.w &0x3c01,%d0 # adjust new exponent - andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent - or.w %d0,LOCAL_EX(%a0) # insert new exponent - rts - -################################################################# - -# fmove out took an unimplemented data type exception. -# the src operand is in FP_SRC. Call _fout() to write out the result and -# to determine which exceptions, if any, to take. -fu_out: - -# Separate packed move outs from the UNNORM and DENORM move outs. - bfextu EXC_CMDREG(%a6){&3:&3},%d0 - cmpi.b %d0,&0x3 - beq.w fu_out_pack - cmpi.b %d0,&0x7 - beq.w fu_out_pack - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field. -# fmove out doesn't affect ccodes. - and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - -# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine -# call here. just figure out what it is... - mov.w FP_SRC_EX(%a6),%d0 # get exponent - andi.w &0x7fff,%d0 # strip sign - beq.b fu_out_denorm # it's a DENORM - - lea FP_SRC(%a6),%a0 - bsr.l unnorm_fix # yes; fix it - - mov.b %d0,STAG(%a6) - - bra.b fu_out_cont -fu_out_denorm: - mov.b &DENORM,STAG(%a6) -fu_out_cont: - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - mov.l (%a6),EXC_A6(%a6) # in case a6 changes - bsr.l fout # call fmove out routine - -# Exceptions in order of precedence: -# BSUN : none -# SNAN : none -# OPERR : fmove.{b,w,l} out of large UNNORM -# OVFL : fmove.{s,d} -# UNFL : fmove.{s,d,x} -# DZ : none -# INEX2 : all -# INEX1 : none (packed doesn't travel through here) - -# determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_out_ena # some are enabled - -fu_out_done: - - mov.l EXC_A6(%a6),(%a6) # in case a6 changed - -# on extended precision opclass three instructions using pre-decrement or -# post-increment addressing mode, the address register is not updated. is the -# address register was the stack pointer used from user mode, then let's update -# it here. if it was used from supervisor mode, then we have to handle this -# as a special case. - btst &0x5,EXC_SR(%a6) - bne.b fu_out_done_s - - mov.l EXC_A7(%a6),%a0 # restore a7 - mov.l %a0,%usp - -fu_out_done_cont: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - btst &0x7,(%sp) # is trace on? - bne.b fu_out_trace # yes - - bra.l _fpsp_done - -# is the ea mode pre-decrement of the stack pointer from supervisor mode? -# ("fmov.x fpm,-(a7)") if so, -fu_out_done_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.b fu_out_done_cont - -# the extended precision result is still in fp0. but, we need to save it -# somewhere on the stack until we can copy it to its final resting place. -# here, we're counting on the top of the stack to be the old place-holders -# for fp0/fp1 which have already been restored. that way, we can write -# over those destinations with the shifted stack frame. - fmovm.x &0x80,FP_SRC(%a6) # put answer on stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - btst &0x7,(%sp) - bne.b fu_out_trace - - bra.l _fpsp_done - -fu_out_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_out_exc # there is at least one set - -# no exceptions were set. -# if a disabled overflow occurred and inexact was enabled but the result -# was exact, then a branch to _real_inex() is made. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.w fu_out_done # no - -fu_out_ovflchk: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.w fu_out_done # no - bra.w fu_inex # yes - -# -# The fp move out that took the "Unimplemented Data Type" exception was -# being traced. Since the stack frames are similar, get the "current" PC -# from FPIAR and put it in the trace stack frame then jump to _real_trace(). -# -# UNSUPP FRAME TRACE FRAME -# ***************** ***************** -# * EA * * Current * -# * * * PC * -# ***************** ***************** -# * 0x3 * 0x0dc * * 0x2 * 0x024 * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# -fu_out_trace: - mov.w &0x2024,0x6(%sp) - fmov.l %fpiar,0x8(%sp) - bra.l _real_trace - -# an exception occurred and that exception was enabled. -fu_out_exc: - subi.l &24,%d0 # fix offset to be 0-8 - -# we don't mess with the existing fsave frame. just re-insert it and -# jump to the "_real_{}()" handler... - mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 - jmp (tbl_fu_out.b,%pc,%d0.w*1) - - swbeg &0x8 -tbl_fu_out: - short tbl_fu_out - tbl_fu_out # BSUN can't happen - short tbl_fu_out - tbl_fu_out # SNAN can't happen - short fu_operr - tbl_fu_out # OPERR - short fu_ovfl - tbl_fu_out # OVFL - short fu_unfl - tbl_fu_out # UNFL - short tbl_fu_out - tbl_fu_out # DZ can't happen - short fu_inex - tbl_fu_out # INEX2 - short tbl_fu_out - tbl_fu_out # INEX1 won't make it here - -# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just -# frestore it. -fu_snan: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 - mov.w &0xe006,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) - - unlk %a6 - - - bra.l _real_snan - -fu_operr: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe004,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) - - unlk %a6 - - - bra.l _real_operr - -fu_ovfl: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 - mov.w &0xe005,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - bra.l _real_ovfl - -# underflow can happen for extended precision. extended precision opclass -# three instruction exceptions don't update the stack pointer. so, if the -# exception occurred from user mode, then simply update a7 and exit normally. -# if the exception occurred from supervisor mode, check if -fu_unfl: - mov.l EXC_A6(%a6),(%a6) # restore a6 - - btst &0x5,EXC_SR(%a6) - bne.w fu_unfl_s - - mov.l EXC_A7(%a6),%a0 # restore a7 whether we need - mov.l %a0,%usp # to or not... - -fu_unfl_cont: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc - mov.w &0xe003,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - bra.l _real_unfl - -fu_unfl_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? - bne.b fu_unfl_cont - -# the extended precision result is still in fp0. but, we need to save it -# somewhere on the stack until we can copy it to its final resting place -# (where the exc frame is currently). make sure it's not at the top of the -# frame or it will get overwritten when the exc stack frame is shifted "down". - fmovm.x &0x80,FP_SRC(%a6) # put answer on stack - fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc - mov.w &0xe003,2+FP_DST(%a6) - - frestore FP_DST(%a6) # restore EXOP - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - bra.l _real_unfl - -# fmove in and out enter here. -fu_inex: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - - bra.l _real_inex - -######################################################################### -######################################################################### -fu_in_pack: - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field - andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bsr.l get_packed # fetch packed src operand - - lea FP_SRC(%a6),%a0 # pass ptr to src - bsr.l set_tag_x # set src optype tag - - mov.b %d0,STAG(%a6) # save src optype tag - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - -# bit five of the fp extension word separates the monadic and dyadic operations -# at this point - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fu_extract_p # monadic - cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? - beq.b fu_extract_p # yes, so it's monadic, too - - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_done_p # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fu_op2_done_p: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fu_extract_p: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all dyadic ops -# OPERR : fsqrt(-NORM) -# OVFL : all except ftst,fcmp -# UNFL : all except ftst,fcmp -# DZ : fdiv -# INEX2 : all except ftst,fcmp -# INEX1 : all -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_in_ena_p # some are enabled - -fu_in_cont_p: -# fcmp and ftst do not store any result. - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension - andi.b &0x38,%d0 # extract bits 3-5 - cmpi.b %d0,&0x38 # is instr fcmp or ftst? - beq.b fu_in_exit_p # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l store_fpreg # store the result - -fu_in_exit_p: - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.w fu_in_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_in_exit_cont_p: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# the exception occurred in supervisor mode. check to see if the -# addressing mode was (a7)+. if so, we'll need to shift the -# stack frame "up". -fu_in_exit_s_p: - btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ - beq.b fu_in_exit_cont_p # no - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - -# shift the stack frame "up". we don't really care about the <ea> field. - mov.l 0x4(%sp),0x10(%sp) - mov.l 0x0(%sp),0xc(%sp) - add.l &0xc,%sp - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -fu_in_ena_p: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_in_exc_p # at least one was set - -# -# No exceptions occurred that were also enabled. Now: -# -# if (OVFL && ovfl_disabled && inexact_enabled) { -# branch to _real_inex() (even if the result was exact!); -# } else { -# save the result in the proper fp reg (unless the op is fcmp or ftst); -# return; -# } -# - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.w fu_in_cont_p # no - -fu_in_ovflchk_p: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.w fu_in_cont_p # no - bra.w fu_in_exc_ovfl_p # do _real_inex() now - -# -# An exception occurred and that exception was enabled: -# -# shift enabled exception field into lo byte of d0; -# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || -# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { -# /* -# * this is the case where we must call _real_inex() now or else -# * there will be no other way to pass it the exceptional operand -# */ -# call _real_inex(); -# } else { -# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; -# } -# -fu_in_exc_p: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) - blt.b fu_in_exc_exit_p # no - -# the enabled exception was inexact - btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? - bne.w fu_in_exc_unfl_p # yes - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? - bne.w fu_in_exc_ovfl_p # yes - -# here, we insert the correct fsave status value into the fsave frame for the -# corresponding exception. the operand in the fsave frame should be the original -# src operand. -# as a reminder for future predicted pain and agony, we are passing in fsave the -# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. -# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! -fu_in_exc_exit_p: - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.w fu_in_exc_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_in_exc_exit_cont_p: - mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 - - btst &0x7,(%sp) # is trace enabled? - bne.w fu_trace_p # yes - - bra.l _fpsp_done - -tbl_except_p: - short 0xe000,0xe006,0xe004,0xe005 - short 0xe003,0xe002,0xe001,0xe001 - -fu_in_exc_ovfl_p: - mov.w &0x3,%d0 - bra.w fu_in_exc_exit_p - -fu_in_exc_unfl_p: - mov.w &0x4,%d0 - bra.w fu_in_exc_exit_p - -fu_in_exc_exit_s_p: - btst &mia7_bit,SPCOND_FLG(%a6) - beq.b fu_in_exc_exit_cont_p - - mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 # unravel stack frame - -# shift stack frame "up". who cares about <ea> field. - mov.l 0x4(%sp),0x10(%sp) - mov.l 0x0(%sp),0xc(%sp) - add.l &0xc,%sp - - btst &0x7,(%sp) # is trace on? - bne.b fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# -# The opclass two PACKED instruction that took an "Unimplemented Data Type" -# exception was being traced. Make the "current" PC the FPIAR and put it in the -# trace stack frame then jump to _real_trace(). -# -# UNSUPP FRAME TRACE FRAME -# ***************** ***************** -# * EA * * Current * -# * * * PC * -# ***************** ***************** -# * 0x2 * 0x0dc * * 0x2 * 0x024 * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -fu_trace_p: - mov.w &0x2024,0x6(%sp) - fmov.l %fpiar,0x8(%sp) - - bra.l _real_trace - -######################################################### -######################################################### -fu_out_pack: - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field. -# fmove out doesn't affect ccodes. - and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l load_fpn1 - -# unlike other opclass 3, unimplemented data type exceptions, packed must be -# able to detect all operand types. - lea FP_SRC(%a6),%a0 - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_p # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO - -fu_op2_p: - mov.b %d0,STAG(%a6) # save src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - mov.l (%a6),EXC_A6(%a6) # in case a6 changes - bsr.l fout # call fmove out routine - -# Exceptions in order of precedence: -# BSUN : no -# SNAN : yes -# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) -# OVFL : no -# UNFL : no -# DZ : no -# INEX2 : yes -# INEX1 : no - -# determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_out_ena_p # some are enabled - -fu_out_exit_p: - mov.l EXC_A6(%a6),(%a6) # restore a6 - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.b fu_out_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_out_exit_cont_p: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# the exception occurred in supervisor mode. check to see if the -# addressing mode was -(a7). if so, we'll need to shift the -# stack frame "down". -fu_out_exit_s_p: - btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) - beq.b fu_out_exit_cont_p # no - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - btst &0x7,(%sp) - bne.w fu_trace_p - - bra.l _fpsp_done - -fu_out_ena_p: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - beq.w fu_out_exit_p - - mov.l EXC_A6(%a6),(%a6) # restore a6 - -# an exception occurred and that exception was enabled. -# the only exception possible on packed move out are INEX, OPERR, and SNAN. -fu_out_exc_p: - cmpi.b %d0,&0x1a - bgt.w fu_inex_p2 - beq.w fu_operr_p - -fu_snan_p: - btst &0x5,EXC_SR(%a6) - bne.b fu_snan_s_p - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_snan - -fu_snan_s_p: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_snan - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe006,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_snan - -fu_operr_p: - btst &0x5,EXC_SR(%a6) - bne.w fu_operr_p_s - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_operr - -fu_operr_p_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_operr - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe004,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_operr - -fu_inex_p2: - btst &0x5,EXC_SR(%a6) - bne.w fu_inex_s_p2 - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_inex - -fu_inex_s_p2: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_inex - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_inex - -######################################################################### - -# -# if we're stuffing a source operand back into an fsave frame then we -# have to make sure that for single or double source operands that the -# format stuffed is as weird as the hardware usually makes it. -# - global funimp_skew -funimp_skew: - bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier - cmpi.b %d0,&0x1 # was src sgl? - beq.b funimp_skew_sgl # yes - cmpi.b %d0,&0x5 # was src dbl? - beq.b funimp_skew_dbl # yes - rts - -funimp_skew_sgl: - mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent - andi.w &0x7fff,%d0 # strip sign - beq.b funimp_skew_sgl_not - cmpi.w %d0,&0x3f80 - bgt.b funimp_skew_sgl_not - neg.w %d0 # make exponent negative - addi.w &0x3f81,%d0 # find amt to shift - mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) - lsr.l %d0,%d1 # shift it - bset &31,%d1 # set j-bit - mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) - andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent - ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent -funimp_skew_sgl_not: - rts - -funimp_skew_dbl: - mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent - andi.w &0x7fff,%d0 # strip sign - beq.b funimp_skew_dbl_not - cmpi.w %d0,&0x3c00 - bgt.b funimp_skew_dbl_not - - tst.b FP_SRC_EX(%a6) # make "internal format" - smi.b 0x2+FP_SRC(%a6) - mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign - clr.l %d0 # clear g,r,s - lea FP_SRC(%a6),%a0 # pass ptr to src op - mov.w &0x3c01,%d1 # pass denorm threshold - bsr.l dnrm_lp # denorm it - mov.w &0x3c00,%d0 # new exponent - tst.b 0x2+FP_SRC(%a6) # is sign set? - beq.b fss_dbl_denorm_done # no - bset &15,%d0 # set sign -fss_dbl_denorm_done: - bset &0x7,FP_SRC_HI(%a6) # set j-bit - mov.w %d0,FP_SRC_EX(%a6) # insert new exponent -funimp_skew_dbl_not: - rts - -######################################################################### - global _mem_write2 -_mem_write2: - btst &0x5,EXC_SR(%a6) - beq.l _dmem_write - mov.l 0x0(%a0),FP_DST_EX(%a6) - mov.l 0x4(%a0),FP_DST_HI(%a6) - mov.l 0x8(%a0),FP_DST_LO(%a6) - clr.l %d1 - rts - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # -# effective address" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Effective Address exception in an operating # -# system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# decbin() - convert packed data to FP binary data # -# _real_fpu_disabled() - "callout" for "FPU disabled" exception # -# _real_access() - "callout" for access error exception # -# _mem_read() - read extended immediate operand from memory # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# fmovm_dynamic() - emulate dynamic fmovm instruction # -# fmovm_ctrl() - emulate fmovm control instruction # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimplemented <ea>" stk frame # -# # -# OUTPUT ************************************************************** # -# If access error: # -# - The system stack is changed to an access error stack frame # -# If FPU disabled: # -# - The system stack is changed to an FPU disabled stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - None (correct result has been stored as appropriate) # -# # -# ALGORITHM *********************************************************** # -# This exception handles 3 types of operations: # -# (1) FP Instructions using extended precision or packed immediate # -# addressing mode. # -# (2) The "fmovm.x" instruction w/ dynamic register specification. # -# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # -# # -# For immediate data operations, the data is read in w/ a # -# _mem_read() "callout", converted to FP binary (if packed), and used # -# as the source operand to the instruction specified by the instruction # -# word. If no FP exception should be reported ads a result of the # -# emulation, then the result is stored to the destination register and # -# the handler exits through _fpsp_done(). If an enabled exc has been # -# signalled as a result of emulation, then an fsave state frame # -# corresponding to the FP exception type must be entered into the 060 # -# FPU before exiting. In either the enabled or disabled cases, we # -# must also check if a Trace exception is pending, in which case, we # -# must create a Trace exception stack frame from the current exception # -# stack frame. If no Trace is pending, we simply exit through # -# _fpsp_done(). # -# For "fmovm.x", call the routine fmovm_dynamic() which will # -# decode and emulate the instruction. No FP exceptions can be pending # -# as a result of this operation emulation. A Trace exception can be # -# pending, though, which means the current stack frame must be changed # -# to a Trace stack frame and an exit made through _real_trace(). # -# For the case of "fmovm.x Dn,-(a7)", where the offending instruction # -# was executed from supervisor mode, this handler must store the FP # -# register file values to the system stack by itself since # -# fmovm_dynamic() can't handle this. A normal exit is made through # -# fpsp_done(). # -# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # -# Again, a Trace exception may be pending and an exit made through # -# _real_trace(). Else, a normal exit is made through _fpsp_done(). # -# # -# Before any of the above is attempted, it must be checked to # -# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # -# before the "FPU disabled" exception, but the "FPU disabled" exception # -# has higher priority, we check the disabled bit in the PCR. If set, # -# then we must create an 8 word "FPU disabled" exception stack frame # -# from the current 4 word exception stack frame. This includes # -# reproducing the effective address of the instruction to put on the # -# new stack frame. # -# # -# In the process of all emulation work, if a _mem_read() # -# "callout" returns a failing result indicating an access error, then # -# we must create an access error stack frame from the current stack # -# frame. This information includes a faulting address and a fault- # -# status-longword. These are created within this handler. # -# # -######################################################################### - - global _fpsp_effadd -_fpsp_effadd: - -# This exception type takes priority over the "Line F Emulator" -# exception. Therefore, the FPU could be disabled when entering here. -# So, we must check to see if it's disabled and handle that case separately. - mov.l %d0,-(%sp) # save d0 - movc %pcr,%d0 # load proc cr - btst &0x1,%d0 # is FPU disabled? - bne.w iea_disabled # yes - mov.l (%sp)+,%d0 # restore d0 - - link %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# PC of instruction that took the exception is the PC in the frame - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - -######################################################################### - - tst.w %d0 # is operation fmovem? - bmi.w iea_fmovm # yes - -# -# here, we will have: -# fabs fdabs fsabs facos fmod -# fadd fdadd fsadd fasin frem -# fcmp fatan fscale -# fdiv fddiv fsdiv fatanh fsin -# fint fcos fsincos -# fintrz fcosh fsinh -# fmove fdmove fsmove fetox ftan -# fmul fdmul fsmul fetoxm1 ftanh -# fneg fdneg fsneg fgetexp ftentox -# fsgldiv fgetman ftwotox -# fsglmul flog10 -# fsqrt flog2 -# fsub fdsub fssub flogn -# ftst flognp1 -# which can all use f<op>.{x,p} -# so, now it's immediate data extended precision AND PACKED FORMAT! -# -iea_op: - andi.l &0x00ff00ff,USER_FPSR(%a6) - - btst &0xa,%d0 # is src fmt x or p? - bne.b iea_op_pack # packed - - - mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> - lea FP_SRC(%a6),%a1 # pass: ptr to super addr - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _imem_read # read extended immediate - - tst.l %d1 # did ifetch fail? - bne.w iea_iacc # yes - - bra.b iea_op_setsrc - -iea_op_pack: - - mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> - lea FP_SRC(%a6),%a1 # pass: ptr to super dst - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _imem_read # read packed operand - - tst.l %d1 # did ifetch fail? - bne.w iea_iacc # yes - -# The packed operand is an INF or a NAN if the exponent field is all ones. - bfextu FP_SRC(%a6){&1:&15},%d0 # get exp - cmpi.w %d0,&0x7fff # INF or NAN? - beq.b iea_op_setsrc # operand is an INF or NAN - -# The packed operand is a zero if the mantissa is all zero, else it's -# a normal packed op. - mov.b 3+FP_SRC(%a6),%d0 # get byte 4 - andi.b &0x0f,%d0 # clear all but last nybble - bne.b iea_op_gp_not_spec # not a zero - tst.l FP_SRC_HI(%a6) # is lw 2 zero? - bne.b iea_op_gp_not_spec # not a zero - tst.l FP_SRC_LO(%a6) # is lw 3 zero? - beq.b iea_op_setsrc # operand is a ZERO -iea_op_gp_not_spec: - lea FP_SRC(%a6),%a0 # pass: ptr to packed op - bsr.l decbin # convert to extended - fmovm.x &0x80,FP_SRC(%a6) # make this the srcop - -iea_op_setsrc: - addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer - -# FP_SRC now holds the src operand. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # could be ANYTHING!!! - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b iea_op_getdst # no - bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO - mov.b %d0,STAG(%a6) # set new optype tag -iea_op_getdst: - clr.b STORE_FLG(%a6) # clear "store result" boolean - - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b iea_op_extract # monadic - btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? - bne.b iea_op_spec # yes - -iea_op_loaddst: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno - bsr.l load_fpn2 # load dst operand - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - mov.b %d0,DTAG(%a6) # could be ANYTHING!!! - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b iea_op_extract # no - bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO - mov.b %d0,DTAG(%a6) # set new optype tag - bra.b iea_op_extract - -# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic -iea_op_spec: - btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? - beq.b iea_op_extract # yes -# now, we're left with ftst and fcmp. so, first let's tag them so that they don't -# store a result. then, only fcmp will branch back and pick up a dst operand. - st STORE_FLG(%a6) # don't store a final result - btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? - beq.b iea_op_loaddst # yes - -iea_op_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - fmov.l &0x0,%fpcr - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all operations -# OPERR : all reg-reg or mem-reg operations that can normally operr -# OVFL : same as OPERR -# UNFL : same as OPERR -# DZ : same as OPERR -# INEX2 : same as OPERR -# INEX1 : all packed immediate operations -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.b iea_op_ena # some are enabled - -# now, we save the result, unless, of course, the operation was ftst or fcmp. -# these don't save results. -iea_op_save: - tst.b STORE_FLG(%a6) # does this op store a result? - bne.b iea_op_exit1 # exit with no frestore - -iea_op_store: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno - bsr.l store_fpreg # store the result - -iea_op_exit1: - mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel the frame - - btst &0x7,(%sp) # is trace on? - bne.w iea_op_trace # yes - - bra.l _fpsp_done # exit to os - -iea_op_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b iea_op_exc # at least one was set - -# no exception occurred. now, did a disabled, exact overflow occur with inexact -# enabled? if so, then we have to stuff an overflow frame into the FPU. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - beq.b iea_op_save - -iea_op_ovfl: - btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? - beq.b iea_op_store # no - bra.b iea_op_exc_ovfl # yes - -# an enabled exception occurred. we have to insert the exception type back into -# the machine. -iea_op_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? - bne.b iea_op_exc_force # no - -# the enabled exception was inexact. so, if it occurs with an overflow -# or underflow that was disabled, then we have to force an overflow or -# underflow frame. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - bne.b iea_op_exc_ovfl # yes - btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? - bne.b iea_op_exc_unfl # yes - -iea_op_exc_force: - mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) - bra.b iea_op_exit2 # exit with frestore - -tbl_iea_except: - short 0xe002, 0xe006, 0xe004, 0xe005 - short 0xe003, 0xe002, 0xe001, 0xe001 - -iea_op_exc_ovfl: - mov.w &0xe005,2+FP_SRC(%a6) - bra.b iea_op_exit2 - -iea_op_exc_unfl: - mov.w &0xe003,2+FP_SRC(%a6) - -iea_op_exit2: - mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore exceptional state - - unlk %a6 # unravel the frame - - btst &0x7,(%sp) # is trace on? - bne.b iea_op_trace # yes - - bra.l _fpsp_done # exit to os - -# -# The opclass two instruction that took an "Unimplemented Effective Address" -# exception was being traced. Make the "current" PC the FPIAR and put it in -# the trace stack frame then jump to _real_trace(). -# -# UNIMP EA FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f0 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ***************** -# * SR * -# ***************** -iea_op_trace: - mov.l (%sp),-(%sp) # shift stack frame "down" - mov.w 0x8(%sp),0x4(%sp) - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - - bra.l _real_trace - -######################################################################### -iea_fmovm: - btst &14,%d0 # ctrl or data reg - beq.w iea_fmovm_ctrl - -iea_fmovm_data: - - btst &0x5,EXC_SR(%a6) # user or supervisor mode - bne.b iea_fmovm_data_s - -iea_fmovm_data_u: - mov.l %usp,%a0 - mov.l %a0,EXC_A7(%a6) # store current a7 - bsr.l fmovm_dynamic # do dynamic fmovm - mov.l EXC_A7(%a6),%a0 # load possibly new a7 - mov.l %a0,%usp # update usp - bra.w iea_fmovm_exit - -iea_fmovm_data_s: - clr.b SPCOND_FLG(%a6) - lea 0x2+EXC_VOFF(%a6),%a0 - mov.l %a0,EXC_A7(%a6) - bsr.l fmovm_dynamic # do dynamic fmovm - - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.w iea_fmovm_data_predec - cmpi.b SPCOND_FLG(%a6),&mia7_flg - bne.w iea_fmovm_exit - -# right now, d0 = the size. -# the data has been fetched from the supervisor stack, but we have not -# incremented the stack pointer by the appropriate number of bytes. -# do it here. -iea_fmovm_data_postinc: - btst &0x7,EXC_SR(%a6) - bne.b iea_fmovm_data_pi_trace - - mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) - mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) - mov.w &0x00f0,(EXC_VOFF,%a6,%d0) - - lea (EXC_SR,%a6,%d0),%a0 - mov.l %a0,EXC_SR(%a6) - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - mov.l (%sp)+,%sp - bra.l _fpsp_done - -iea_fmovm_data_pi_trace: - mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) - mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) - mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) - mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) - - lea (EXC_SR-0x4,%a6,%d0),%a0 - mov.l %a0,EXC_SR(%a6) - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - mov.l (%sp)+,%sp - bra.l _real_trace - -# right now, d1 = size and d0 = the strg. -iea_fmovm_data_predec: - mov.b %d1,EXC_VOFF(%a6) # store strg - mov.b %d0,0x1+EXC_VOFF(%a6) # store size - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),-(%sp) # make a copy of a6 - mov.l %d0,-(%sp) # save d0 - mov.l %d1,-(%sp) # save d1 - mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC - - clr.l %d0 - mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size - neg.l %d0 # get negative of size - - btst &0x7,EXC_SR(%a6) # is trace enabled? - beq.b iea_fmovm_data_p2 - - mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) - mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) - mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) - mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) - - pea (%a6,%d0) # create final sp - bra.b iea_fmovm_data_p3 - -iea_fmovm_data_p2: - mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) - mov.l (%sp)+,(EXC_PC,%a6,%d0) - mov.w &0x00f0,(EXC_VOFF,%a6,%d0) - - pea (0x4,%a6,%d0) # create final sp - -iea_fmovm_data_p3: - clr.l %d1 - mov.b EXC_VOFF(%a6),%d1 # fetch strg - - tst.b %d1 - bpl.b fm_1 - fmovm.x &0x80,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_1: - lsl.b &0x1,%d1 - bpl.b fm_2 - fmovm.x &0x40,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_2: - lsl.b &0x1,%d1 - bpl.b fm_3 - fmovm.x &0x20,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_3: - lsl.b &0x1,%d1 - bpl.b fm_4 - fmovm.x &0x10,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_4: - lsl.b &0x1,%d1 - bpl.b fm_5 - fmovm.x &0x08,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_5: - lsl.b &0x1,%d1 - bpl.b fm_6 - fmovm.x &0x04,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_6: - lsl.b &0x1,%d1 - bpl.b fm_7 - fmovm.x &0x02,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_7: - lsl.b &0x1,%d1 - bpl.b fm_end - fmovm.x &0x01,(0x4+0x8,%a6,%d0) -fm_end: - mov.l 0x4(%sp),%d1 - mov.l 0x8(%sp),%d0 - mov.l 0xc(%sp),%a6 - mov.l (%sp)+,%sp - - btst &0x7,(%sp) # is trace enabled? - beq.l _fpsp_done - bra.l _real_trace - -######################################################################### -iea_fmovm_ctrl: - - bsr.l fmovm_ctrl # load ctrl regs - -iea_fmovm_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - btst &0x7,EXC_SR(%a6) # is trace on? - bne.b iea_fmovm_trace # yes - - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC - - unlk %a6 # unravel the frame - - bra.l _fpsp_done # exit to os - -# -# The control reg instruction that took an "Unimplemented Effective Address" -# exception was being traced. The "Current PC" for the trace frame is the -# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. -# After fixing the stack frame, jump to _real_trace(). -# -# UNIMP EA FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f0 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ***************** -# * SR * -# ***************** -# this ain't a pretty solution, but it works: -# -restore a6 (not with unlk) -# -shift stack frame down over where old a6 used to be -# -add LOCAL_SIZE to stack pointer -iea_fmovm_trace: - mov.l (%a6),%a6 # restore frame pointer - mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) - mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) - mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) - mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 - add.l &LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_trace - -######################################################################### -# The FPU is disabled and so we should really have taken the "Line -# F Emulator" exception. So, here we create an 8-word stack frame -# from our 4-word stack frame. This means we must calculate the length -# the faulting instruction to get the "next PC". This is trivial for -# immediate operands but requires some extra work for fmovm dynamic -# which can use most addressing modes. -iea_disabled: - mov.l (%sp)+,%d0 # restore d0 - - link %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - -# PC of instruction that took the exception is the PC in the frame - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - - tst.w %d0 # is instr fmovm? - bmi.b iea_dis_fmovm # yes -# instruction is using an extended precision immediate operand. Therefore, -# the total instruction length is 16 bytes. -iea_dis_immed: - mov.l &0x10,%d0 # 16 bytes of instruction - bra.b iea_dis_cont -iea_dis_fmovm: - btst &0xe,%d0 # is instr fmovm ctrl - bne.b iea_dis_fmovm_data # no -# the instruction is a fmovm.l with 2 or 3 registers. - bfextu %d0{&19:&3},%d1 - mov.l &0xc,%d0 - cmpi.b %d1,&0x7 # move all regs? - bne.b iea_dis_cont - addq.l &0x4,%d0 - bra.b iea_dis_cont -# the instruction is an fmovm.x dynamic which can use many addressing -# modes and thus can have several different total instruction lengths. -# call fmovm_calc_ea which will go through the ea calc process and, -# as a by-product, will tell us how long the instruction is. -iea_dis_fmovm_data: - clr.l %d0 - bsr.l fmovm_calc_ea - mov.l EXC_EXTWPTR(%a6),%d0 - sub.l EXC_PC(%a6),%d0 -iea_dis_cont: - mov.w %d0,EXC_VOFF(%a6) # store stack shift value - - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - -# here, we actually create the 8-word frame from the 4-word frame, -# with the "next PC" as additional info. -# the <ea> field is let as undefined. - subq.l &0x8,%sp # make room for new stack - mov.l %d0,-(%sp) # save d0 - mov.w 0xc(%sp),0x4(%sp) # move SR - mov.l 0xe(%sp),0x6(%sp) # move Current PC - clr.l %d0 - mov.w 0x12(%sp),%d0 - mov.l 0x6(%sp),0x10(%sp) # move Current PC - add.l %d0,0x6(%sp) # make Next PC - mov.w &0x402c,0xa(%sp) # insert offset,frame format - mov.l (%sp)+,%d0 # restore d0 - - bra.l _real_fpu_disabled - -########## - -iea_iacc: - movc %pcr,%d0 - btst &0x1,%d0 - bne.b iea_iacc_cont - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack -iea_iacc_cont: - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - subq.w &0x8,%sp # make stack frame bigger - mov.l 0x8(%sp),(%sp) # store SR,hi(PC) - mov.w 0xc(%sp),0x4(%sp) # store lo(PC) - mov.w &0x4008,0x6(%sp) # store voff - mov.l 0x2(%sp),0x8(%sp) # store ea - mov.l &0x09428001,0xc(%sp) # store fslw - -iea_acc_done: - btst &0x5,(%sp) # user or supervisor mode? - beq.b iea_acc_done2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -iea_acc_done2: - bra.l _real_access - -iea_dacc: - lea -LOCAL_SIZE(%a6),%sp - - movc %pcr,%d1 - btst &0x1,%d1 - bne.b iea_dacc_cont - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack - fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs -iea_dacc_cont: - mov.l (%a6),%a6 - - mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) - mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) - mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) - mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) - mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) - mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) - - movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 - add.w &LOCAL_SIZE-0x4,%sp - - bra.b iea_acc_done - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_operr(): 060FPSP entry point for FP Operr exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Operand Error exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# _real_operr() - "callout" to operating system operr handler # -# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # -# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # -# facc_out_{b,w,l}() - store to memory took access error (opcl 3) # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Operr exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# No access error: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP Operr exception is enabled, the goal # -# is to get to the handler specified at _real_operr(). But, on the 060, # -# for opclass zero and two instruction taking this exception, the # -# input operand in the fsave frame may be incorrect for some cases # -# and needs to be corrected. This handler calls fix_skewed_ops() to # -# do just this and then exits through _real_operr(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# operr result out to memory or data register file as it should. # -# This code must emulate the move out before finally exiting through # -# _real_inex(). The move out, if to memory, is performed using # -# _mem_write() "callout" routines that may return a failing result. # -# In this special case, the handler must exit through facc_out() # -# which creates an access error stack frame from the current operr # -# stack frame. # -# # -######################################################################### - - global _fpsp_operr -_fpsp_operr: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.b foperr_out # fmove out - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source infinity or -# denorm operand in the sgl or dbl format. NANs also become skewed, but can't -# cause an operr so we don't need to check for them here. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -foperr_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_operr - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# operand error exceptions. we do this here before passing control to -# the user operand error handler. -# -# byte, word, and long destination format operations can pass -# through here. we simply need to test the sign of the src -# operand and save the appropriate minimum or maximum integer value -# to the effective address as pointed to by the stacked effective address. -# -# although packed opclass three operations can take operand error -# exceptions, they won't pass through here since they are caught -# first by the unsupported data format exception handler. that handler -# sends them directly to _real_operr() if necessary. -# -foperr_out: - - mov.w FP_SRC_EX(%a6),%d1 # fetch exponent - andi.w &0x7fff,%d1 - cmpi.w %d1,&0x7fff - bne.b foperr_out_not_qnan -# the operand is either an infinity or a QNAN. - tst.l FP_SRC_LO(%a6) - bne.b foperr_out_qnan - mov.l FP_SRC_HI(%a6),%d1 - andi.l &0x7fffffff,%d1 - beq.b foperr_out_not_qnan -foperr_out_qnan: - mov.l FP_SRC_HI(%a6),L_SCR1(%a6) - bra.b foperr_out_jmp - -foperr_out_not_qnan: - mov.l &0x7fffffff,%d1 - tst.b FP_SRC_EX(%a6) - bpl.b foperr_out_not_qnan2 - addq.l &0x1,%d1 -foperr_out_not_qnan2: - mov.l %d1,L_SCR1(%a6) - -foperr_out_jmp: - bfextu %d0{&19:&3},%d0 # extract dst format field - mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg - mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 - jmp (tbl_operr.b,%pc,%a0) - -tbl_operr: - short foperr_out_l - tbl_operr # long word integer - short tbl_operr - tbl_operr # sgl prec shouldn't happen - short tbl_operr - tbl_operr # ext prec shouldn't happen - short foperr_exit - tbl_operr # packed won't enter here - short foperr_out_w - tbl_operr # word integer - short tbl_operr - tbl_operr # dbl prec shouldn't happen - short foperr_out_b - tbl_operr # byte integer - short tbl_operr - tbl_operr # packed won't enter here - -foperr_out_b: - mov.b L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_b_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_byte # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - bra.w foperr_exit -foperr_out_b_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_b # store result to regfile - bra.w foperr_exit - -foperr_out_w: - mov.w L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_w_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_word # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - bra.w foperr_exit -foperr_out_w_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_w # store result to regfile - bra.w foperr_exit - -foperr_out_l: - mov.l L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_l_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w foperr_exit -foperr_out_l_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w foperr_exit - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Signalling NAN exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# _real_snan() - "callout" to operating system SNAN handler # -# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # -# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # -# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # -# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP SNAN exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# No access error: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP SNAN exception is enabled, the goal # -# is to get to the handler specified at _real_snan(). But, on the 060, # -# for opclass zero and two instructions taking this exception, the # -# input operand in the fsave frame may be incorrect for some cases # -# and needs to be corrected. This handler calls fix_skewed_ops() to # -# do just this and then exits through _real_snan(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# SNAN result out to memory or data register file as it should. # -# This code must emulate the move out before finally exiting through # -# _real_snan(). The move out, if to memory, is performed using # -# _mem_write() "callout" routines that may return a failing result. # -# In this special case, the handler must exit through facc_out() # -# which creates an access error stack frame from the current SNAN # -# stack frame. # -# For the case of an extended precision opclass 3 instruction, # -# if the effective addressing mode was -() or ()+, then the address # -# register must get updated by calling _calc_ea_fout(). If the <ea> # -# was -(a7) from supervisor mode, then the exception frame currently # -# on the system stack must be carefully moved "down" to make room # -# for the operand being moved. # -# # -######################################################################### - - global _fpsp_snan -_fpsp_snan: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.w fsnan_out # fmove out - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source infinity or -# denorm operand in the sgl or dbl format. NANs also become skewed and must be -# fixed here. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -fsnan_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_snan - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# snan exceptions. we do this here before passing control to -# the user snan handler. -# -# byte, word, long, and packed destination format operations can pass -# through here. since packed format operations already were handled by -# fpsp_unsupp(), then we need to do nothing else for them here. -# for byte, word, and long, we simply need to test the sign of the src -# operand and save the appropriate minimum or maximum integer value -# to the effective address as pointed to by the stacked effective address. -# -fsnan_out: - - bfextu %d0{&19:&3},%d0 # extract dst format field - mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg - mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 - jmp (tbl_snan.b,%pc,%a0) - -tbl_snan: - short fsnan_out_l - tbl_snan # long word integer - short fsnan_out_s - tbl_snan # sgl prec shouldn't happen - short fsnan_out_x - tbl_snan # ext prec shouldn't happen - short tbl_snan - tbl_snan # packed needs no help - short fsnan_out_w - tbl_snan # word integer - short fsnan_out_d - tbl_snan # dbl prec shouldn't happen - short fsnan_out_b - tbl_snan # byte integer - short tbl_snan - tbl_snan # packed needs no help - -fsnan_out_b: - mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN - bset &6,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_b_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_byte # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - bra.w fsnan_exit -fsnan_out_b_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_b # store result to regfile - bra.w fsnan_exit - -fsnan_out_w: - mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN - bset &14,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_w_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_word # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - bra.w fsnan_exit -fsnan_out_w_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_w # store result to regfile - bra.w fsnan_exit - -fsnan_out_l: - mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN - bset &30,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_l_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w fsnan_exit -fsnan_out_l_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w fsnan_exit - -fsnan_out_s: - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_d_dn # yes - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit - mov.l FP_SRC_HI(%a6),%d1 # load mantissa - lsr.l &0x8,%d1 # shift mantissa for sgl - or.l %d1,%d0 # create sgl SNAN - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w fsnan_exit -fsnan_out_d_dn: - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit - mov.l %d1,-(%sp) - mov.l FP_SRC_HI(%a6),%d1 # load mantissa - lsr.l &0x8,%d1 # shift mantissa for sgl - or.l %d1,%d0 # create sgl SNAN - mov.l (%sp)+,%d1 - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w fsnan_exit - -fsnan_out_d: - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit - mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa - mov.l %d0,FP_SCR0_EX(%a6) # store to temp space - mov.l &11,%d0 # load shift amt - lsr.l %d0,%d1 - or.l %d1,FP_SCR0_EX(%a6) # create dbl hi - mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa - andi.l &0x000007ff,%d1 - ror.l %d0,%d1 - mov.l %d1,FP_SCR0_HI(%a6) # store to temp space - mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa - lsr.l %d0,%d1 - or.l %d1,FP_SCR0_HI(%a6) # create dbl lo - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l EXC_EA(%a6),%a1 # pass: dst addr - movq.l &0x8,%d0 # pass: size of 8 bytes - bsr.l _dmem_write # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - bra.w fsnan_exit - -# for extended precision, if the addressing mode is pre-decrement or -# post-increment, then the address register did not get updated. -# in addition, for pre-decrement, the stacked <ea> is incorrect. -fsnan_out_x: - clr.b SPCOND_FLG(%a6) # clear special case flag - - mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) - clr.w 2+FP_SCR0(%a6) - mov.l FP_SRC_HI(%a6),%d0 - bset &30,%d0 - mov.l %d0,FP_SCR0_HI(%a6) - mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) - - btst &0x5,EXC_SR(%a6) # supervisor mode exception? - bne.b fsnan_out_x_s # yes - - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() - mov.l (%a6),EXC_A6(%a6) - - bsr.l _calc_ea_fout # find the correct ea,update An - mov.l %a0,%a1 - mov.l %a0,EXC_EA(%a6) # stack correct <ea> - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp # restore user stack pointer - mov.l EXC_A6(%a6),(%a6) - -fsnan_out_x_save: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - movq.l &0xc,%d0 # pass: size of extended - bsr.l _dmem_write # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_x # yes - - bra.w fsnan_exit - -fsnan_out_x_s: - mov.l (%a6),EXC_A6(%a6) - - bsr.l _calc_ea_fout # find the correct ea,update An - mov.l %a0,%a1 - mov.l %a0,EXC_EA(%a6) # stack correct <ea> - - mov.l EXC_A6(%a6),(%a6) - - cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? - bne.b fsnan_out_x_save # no - -# the operation was "fmove.x SNAN,-(a7)" from supervisor mode. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - mov.l EXC_A6(%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - - mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) - mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) - mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - bra.l _real_snan - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Inexact exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# smovcr() - emulate an "fmovcr" instruction # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _real_inex() - "callout" to operating system inexact handler # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Inexact exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP Inexact exception is enabled, the goal # -# is to get to the handler specified at _real_inex(). But, on the 060, # -# for opclass zero and two instruction taking this exception, the # -# hardware doesn't store the correct result to the destination FP # -# register as did the '040 and '881/2. This handler must emulate the # -# instruction in order to get this value and then store it to the # -# correct register before calling _real_inex(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# inexact result out to memory or data register file as it should. # -# This code must emulate the move out by calling fout() before finally # -# exiting through _real_inex(). # -# # -######################################################################### - - global _fpsp_inex -_fpsp_inex: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.w finex_out # fmove out - - -# the hardware, for "fabs" and "fneg" w/ a long source format, puts the -# longword integer directly into the upper longword of the mantissa along -# w/ an exponent value of 0x401e. we convert this to extended precision here. - bfextu %d0{&19:&3},%d0 # fetch instr size - bne.b finex_cont # instr size is not long - cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? - bne.b finex_cont # no - fmov.l &0x0,%fpcr - fmov.l FP_SRC_HI(%a6),%fp0 # load integer src - fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision - mov.w &0xe001,0x2+FP_SRC(%a6) - -finex_cont: - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -# Here, we zero the ccode and exception byte field since we're going to -# emulate the whole instruction. Notice, though, that we don't kill the -# INEX1 bit. This is because a packed op has long since been converted -# to extended before arriving here. Therefore, we need to retain the -# INEX1 bit from when the operand was first converted. - andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg - cmpi.b %d1,&0x17 # is op an fmovecr? - beq.w finex_fmovcr # yes - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bits four and five of the fp extension word separate the monadic and dyadic -# operations that can pass through fpsp_inex(). remember that fcmp and ftst -# will never take this exception, but fsincos will. - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b finex_extract # monadic - - btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? - bne.b finex_extract # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b finex_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -finex_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -finex_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# the operation has been emulated. the result is in fp0. -finex_save: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -finex_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_inex - -finex_fmovcr: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.l &0x0000007f,%d1 # pass rom offset - bsr.l smovcr - bra.b finex_save - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# inexact exceptions. we do this here before passing control to -# the user inexact handler. -# -# byte, word, and long destination format operations can pass -# through here. so can double and single precision. -# although packed opclass three operations can take inexact -# exceptions, they won't pass through here since they are caught -# first by the unsupported data format exception handler. that handler -# sends them directly to _real_inex() if necessary. -# -finex_out: - - mov.b &NORM,STAG(%a6) # src is a NORM - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode - - andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout # store the default result - - bra.b finex_exit - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_dz(): 060FPSP entry point for FP DZ exception. # -# # -# This handler should be the first code executed upon taking # -# the FP DZ exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword from memory # -# fix_skewed_ops() - adjust fsave operand # -# _real_dz() - "callout" exit point from FP DZ handler # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP DZ exception stack. # -# - The fsave frame contains the source operand. # -# # -# OUTPUT ************************************************************** # -# - The system stack contains the FP DZ exception stack. # -# - The fsave frame contains the adjusted source operand. # -# # -# ALGORITHM *********************************************************** # -# In a system where the DZ exception is enabled, the goal is to # -# get to the handler specified at _real_dz(). But, on the 060, when the # -# exception is taken, the input operand in the fsave state frame may # -# be incorrect for some cases and need to be adjusted. So, this package # -# adjusts the operand using fix_skewed_ops() and then branches to # -# _real_dz(). # -# # -######################################################################### - - global _fpsp_dz -_fpsp_dz: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source zero -# in the sgl or dbl format. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -fdz_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_dz - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_fline(): 060FPSP entry point for "Line F emulator" # -# exception when the "reduced" version of the # -# FPSP is implemented that does not emulate # -# FP unimplemented instructions. # -# # -# This handler should be the first code executed upon taking a # -# "Line F Emulator" exception in an operating system integrating # -# the reduced version of 060FPSP. # -# # -# XREF **************************************************************** # -# _real_fpu_disabled() - Handle "FPU disabled" exceptions # -# _real_fline() - Handle all other cases (treated equally) # -# # -# INPUT *************************************************************** # -# - The system stack contains a "Line F Emulator" exception # -# stack frame. # -# # -# OUTPUT ************************************************************** # -# - The system stack is unchanged. # -# # -# ALGORITHM *********************************************************** # -# When a "Line F Emulator" exception occurs in a system where # -# "FPU Unimplemented" instructions will not be emulated, the exception # -# can occur because then FPU is disabled or the instruction is to be # -# classifed as "Line F". This module determines which case exists and # -# calls the appropriate "callout". # -# # -######################################################################### - - global _fpsp_fline -_fpsp_fline: - -# check to see if the FPU is disabled. if so, jump to the OS entry -# point for that condition. - cmpi.w 0x6(%sp),&0x402c - beq.l _real_fpu_disabled - - bra.l _real_fline - -######################################################################### -# XDEF **************************************************************** # -# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # -# # -# XREF **************************************************************** # -# inc_areg() - increment an address register # -# dec_areg() - decrement an address register # -# # -# INPUT *************************************************************** # -# d0 = number of bytes to adjust <ea> by # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# "Dummy" CALCulate Effective Address: # -# The stacked <ea> for FP unimplemented instructions and opclass # -# two packed instructions is correct with the exception of... # -# # -# 1) -(An) : The register is not updated regardless of size. # -# Also, for extended precision and packed, the # -# stacked <ea> value is 8 bytes too big # -# 2) (An)+ : The register is not updated. # -# 3) #<data> : The upper longword of the immediate operand is # -# stacked b,w,l and s sizes are completely stacked. # -# d,x, and p are not. # -# # -######################################################################### - - global _dcalc_ea -_dcalc_ea: - mov.l %d0, %a0 # move # bytes to %a0 - - mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word - mov.l %d0, %d1 # make a copy - - andi.w &0x38, %d0 # extract mode field - andi.l &0x7, %d1 # extract reg field - - cmpi.b %d0,&0x18 # is mode (An)+ ? - beq.b dcea_pi # yes - - cmpi.b %d0,&0x20 # is mode -(An) ? - beq.b dcea_pd # yes - - or.w %d1,%d0 # concat mode,reg - cmpi.b %d0,&0x3c # is mode #<data>? - - beq.b dcea_imm # yes - - mov.l EXC_EA(%a6),%a0 # return <ea> - rts - -# need to set immediate data flag here since we'll need to do -# an imem_read to fetch this later. -dcea_imm: - mov.b &immed_flg,SPCOND_FLG(%a6) - lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> - rts - -# here, the <ea> is stacked correctly. however, we must update the -# address register... -dcea_pi: - mov.l %a0,%d0 # pass amt to inc by - bsr.l inc_areg # inc addr register - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - rts - -# the <ea> is stacked correctly for all but extended and packed which -# the <ea>s are 8 bytes too large. -# it would make no sense to have a pre-decrement to a7 in supervisor -# mode so we don't even worry about this tricky case here : ) -dcea_pd: - mov.l %a0,%d0 # pass amt to dec by - bsr.l dec_areg # dec addr register - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - - cmpi.b %d0,&0xc # is opsize ext or packed? - beq.b dcea_pd2 # yes - rts -dcea_pd2: - sub.l &0x8,%a0 # correct <ea> - mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack - rts - -######################################################################### -# XDEF **************************************************************** # -# _calc_ea_fout(): calculate correct stacked <ea> for extended # -# and packed data opclass 3 operations. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# a0 = return correct effective address # -# # -# ALGORITHM *********************************************************** # -# For opclass 3 extended and packed data operations, the <ea> # -# stacked for the exception is incorrect for -(an) and (an)+ addressing # -# modes. Also, while we're at it, the index register itself must get # -# updated. # -# So, for -(an), we must subtract 8 off of the stacked <ea> value # -# and return that value as the correct <ea> and store that value in An. # -# For (an)+, the stacked <ea> is correct but we must adjust An by +12. # -# # -######################################################################### - -# This calc_ea is currently used to retrieve the correct <ea> -# for fmove outs of type extended and packed. - global _calc_ea_fout -_calc_ea_fout: - mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.l %d0,%d1 # make a copy - - andi.w &0x38,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - - cmpi.b %d0,&0x18 # is mode (An)+ ? - beq.b ceaf_pi # yes - - cmpi.b %d0,&0x20 # is mode -(An) ? - beq.w ceaf_pd # yes - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - rts - -# (An)+ : extended and packed fmove out -# : stacked <ea> is correct -# : "An" not updated -ceaf_pi: - mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 - mov.l EXC_EA(%a6),%a0 - jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) - - swbeg &0x8 -tbl_ceaf_pi: - short ceaf_pi0 - tbl_ceaf_pi - short ceaf_pi1 - tbl_ceaf_pi - short ceaf_pi2 - tbl_ceaf_pi - short ceaf_pi3 - tbl_ceaf_pi - short ceaf_pi4 - tbl_ceaf_pi - short ceaf_pi5 - tbl_ceaf_pi - short ceaf_pi6 - tbl_ceaf_pi - short ceaf_pi7 - tbl_ceaf_pi - -ceaf_pi0: - addi.l &0xc,EXC_DREGS+0x8(%a6) - rts -ceaf_pi1: - addi.l &0xc,EXC_DREGS+0xc(%a6) - rts -ceaf_pi2: - add.l &0xc,%a2 - rts -ceaf_pi3: - add.l &0xc,%a3 - rts -ceaf_pi4: - add.l &0xc,%a4 - rts -ceaf_pi5: - add.l &0xc,%a5 - rts -ceaf_pi6: - addi.l &0xc,EXC_A6(%a6) - rts -ceaf_pi7: - mov.b &mia7_flg,SPCOND_FLG(%a6) - addi.l &0xc,EXC_A7(%a6) - rts - -# -(An) : extended and packed fmove out -# : stacked <ea> = actual <ea> + 8 -# : "An" not updated -ceaf_pd: - mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 - mov.l EXC_EA(%a6),%a0 - sub.l &0x8,%a0 - sub.l &0x8,EXC_EA(%a6) - jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) - - swbeg &0x8 -tbl_ceaf_pd: - short ceaf_pd0 - tbl_ceaf_pd - short ceaf_pd1 - tbl_ceaf_pd - short ceaf_pd2 - tbl_ceaf_pd - short ceaf_pd3 - tbl_ceaf_pd - short ceaf_pd4 - tbl_ceaf_pd - short ceaf_pd5 - tbl_ceaf_pd - short ceaf_pd6 - tbl_ceaf_pd - short ceaf_pd7 - tbl_ceaf_pd - -ceaf_pd0: - mov.l %a0,EXC_DREGS+0x8(%a6) - rts -ceaf_pd1: - mov.l %a0,EXC_DREGS+0xc(%a6) - rts -ceaf_pd2: - mov.l %a0,%a2 - rts -ceaf_pd3: - mov.l %a0,%a3 - rts -ceaf_pd4: - mov.l %a0,%a4 - rts -ceaf_pd5: - mov.l %a0,%a5 - rts -ceaf_pd6: - mov.l %a0,EXC_A6(%a6) - rts -ceaf_pd7: - mov.l %a0,EXC_A7(%a6) - mov.b &mda7_flg,SPCOND_FLG(%a6) - rts - -# -# This table holds the offsets of the emulation routines for each individual -# math operation relative to the address of this table. Included are -# routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because -# this table is for the version if the 060FPSP without transcendentals. -# The location within the table is determined by the extension bits of the -# operation longword. -# - - swbeg &109 -tbl_unsupp: - long fin - tbl_unsupp # 00: fmove - long fint - tbl_unsupp # 01: fint - long tbl_unsupp - tbl_unsupp # 02: fsinh - long fintrz - tbl_unsupp # 03: fintrz - long fsqrt - tbl_unsupp # 04: fsqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 06: flognp1 - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 08: fetoxm1 - long tbl_unsupp - tbl_unsupp # 09: ftanh - long tbl_unsupp - tbl_unsupp # 0a: fatan - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 0c: fasin - long tbl_unsupp - tbl_unsupp # 0d: fatanh - long tbl_unsupp - tbl_unsupp # 0e: fsin - long tbl_unsupp - tbl_unsupp # 0f: ftan - long tbl_unsupp - tbl_unsupp # 10: fetox - long tbl_unsupp - tbl_unsupp # 11: ftwotox - long tbl_unsupp - tbl_unsupp # 12: ftentox - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 14: flogn - long tbl_unsupp - tbl_unsupp # 15: flog10 - long tbl_unsupp - tbl_unsupp # 16: flog2 - long tbl_unsupp - tbl_unsupp - long fabs - tbl_unsupp # 18: fabs - long tbl_unsupp - tbl_unsupp # 19: fcosh - long fneg - tbl_unsupp # 1a: fneg - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 1c: facos - long tbl_unsupp - tbl_unsupp # 1d: fcos - long tbl_unsupp - tbl_unsupp # 1e: fgetexp - long tbl_unsupp - tbl_unsupp # 1f: fgetman - long fdiv - tbl_unsupp # 20: fdiv - long tbl_unsupp - tbl_unsupp # 21: fmod - long fadd - tbl_unsupp # 22: fadd - long fmul - tbl_unsupp # 23: fmul - long fsgldiv - tbl_unsupp # 24: fsgldiv - long tbl_unsupp - tbl_unsupp # 25: frem - long tbl_unsupp - tbl_unsupp # 26: fscale - long fsglmul - tbl_unsupp # 27: fsglmul - long fsub - tbl_unsupp # 28: fsub - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 30: fsincos - long tbl_unsupp - tbl_unsupp # 31: fsincos - long tbl_unsupp - tbl_unsupp # 32: fsincos - long tbl_unsupp - tbl_unsupp # 33: fsincos - long tbl_unsupp - tbl_unsupp # 34: fsincos - long tbl_unsupp - tbl_unsupp # 35: fsincos - long tbl_unsupp - tbl_unsupp # 36: fsincos - long tbl_unsupp - tbl_unsupp # 37: fsincos - long fcmp - tbl_unsupp # 38: fcmp - long tbl_unsupp - tbl_unsupp - long ftst - tbl_unsupp # 3a: ftst - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsin - tbl_unsupp # 40: fsmove - long fssqrt - tbl_unsupp # 41: fssqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fdin - tbl_unsupp # 44: fdmove - long fdsqrt - tbl_unsupp # 45: fdsqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsabs - tbl_unsupp # 58: fsabs - long tbl_unsupp - tbl_unsupp - long fsneg - tbl_unsupp # 5a: fsneg - long tbl_unsupp - tbl_unsupp - long fdabs - tbl_unsupp # 5c: fdabs - long tbl_unsupp - tbl_unsupp - long fdneg - tbl_unsupp # 5e: fdneg - long tbl_unsupp - tbl_unsupp - long fsdiv - tbl_unsupp # 60: fsdiv - long tbl_unsupp - tbl_unsupp - long fsadd - tbl_unsupp # 62: fsadd - long fsmul - tbl_unsupp # 63: fsmul - long fddiv - tbl_unsupp # 64: fddiv - long tbl_unsupp - tbl_unsupp - long fdadd - tbl_unsupp # 66: fdadd - long fdmul - tbl_unsupp # 67: fdmul - long fssub - tbl_unsupp # 68: fssub - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fdsub - tbl_unsupp # 6c: fdsub - -################################################# -# Add this here so non-fp modules can compile. -# (smovcr is called from fpsp_inex.) - global smovcr -smovcr: - bra.b smovcr - -######################################################################### -# XDEF **************************************************************** # -# fmovm_dynamic(): emulate "fmovm" dynamic instruction # -# # -# XREF **************************************************************** # -# fetch_dreg() - fetch data register # -# {i,d,}mem_read() - fetch data from memory # -# _mem_write() - write data to memory # -# iea_iacc() - instruction memory access error occurred # -# iea_dacc() - data memory access error occurred # -# restore() - restore An index regs if access error occurred # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If instr is "fmovm Dn,-(A7)" from supervisor mode, # -# d0 = size of dump # -# d1 = Dn # -# Else if instruction access error, # -# d0 = FSLW # -# Else if data access error, # -# d0 = FSLW # -# a0 = address of fault # -# Else # -# none. # -# # -# ALGORITHM *********************************************************** # -# The effective address must be calculated since this is entered # -# from an "Unimplemented Effective Address" exception handler. So, we # -# have our own fcalc_ea() routine here. If an access error is flagged # -# by a _{i,d,}mem_read() call, we must exit through the special # -# handler. # -# The data register is determined and its value loaded to get the # -# string of FP registers affected. This value is used as an index into # -# a lookup table such that we can determine the number of bytes # -# involved. # -# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # -# to read in all FP values. Again, _mem_read() may fail and require a # -# special exit. # -# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # -# to write all FP values. _mem_write() may also fail. # -# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # -# then we return the size of the dump and the string to the caller # -# so that the move can occur outside of this routine. This special # -# case is required so that moves to the system stack are handled # -# correctly. # -# # -# DYNAMIC: # -# fmovm.x dn, <ea> # -# fmovm.x <ea>, dn # -# # -# <WORD 1> <WORD2> # -# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # -# # -# & = (0): predecrement addressing mode # -# (1): postincrement or control addressing mode # -# @ = (0): move listed regs from memory to the FPU # -# (1): move listed regs from the FPU to memory # -# $$$ : index of data register holding reg select mask # -# # -# NOTES: # -# If the data register holds a zero, then the # -# instruction is a nop. # -# # -######################################################################### - - global fmovm_dynamic -fmovm_dynamic: - -# extract the data register in which the bit string resides... - mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword - andi.w &0x70,%d1 # extract reg bits - lsr.b &0x4,%d1 # shift into lo bits - -# fetch the bit string into d0... - bsr.l fetch_dreg # fetch reg string - - andi.l &0x000000ff,%d0 # keep only lo byte - - mov.l %d0,-(%sp) # save strg - mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 - mov.l %d0,-(%sp) # save size - bsr.l fmovm_calc_ea # calculate <ea> - mov.l (%sp)+,%d0 # restore size - mov.l (%sp)+,%d1 # restore strg - -# if the bit string is a zero, then the operation is a no-op -# but, make sure that we've calculated ea and advanced the opword pointer - beq.w fmovm_data_done - -# separate move ins from move outs... - btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? - beq.w fmovm_data_in # it's a move out - -############# -# MOVE OUT: # -############# -fmovm_data_out: - btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? - bne.w fmovm_out_ctrl # control - -############################ -fmovm_out_predec: -# for predecrement mode, the bit string is the opposite of both control -# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) -# here, we convert it to be just like the others... - mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 - - btst &0x5,EXC_SR(%a6) # user or supervisor mode? - beq.b fmovm_out_ctrl # user - -fmovm_out_predec_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? - bne.b fmovm_out_ctrl - -# the operation was unfortunately an: fmovm.x dn,-(sp) -# called from supervisor mode. -# we're also passing "size" and "strg" back to the calling routine - rts - -############################ -fmovm_out_ctrl: - mov.l %a0,%a1 # move <ea> to a1 - - sub.l %d0,%sp # subtract size of dump - lea (%sp),%a0 - - tst.b %d1 # should FP0 be moved? - bpl.b fmovm_out_ctrl_fp1 # no - - mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes - mov.l 0x4+EXC_FP0(%a6),(%a0)+ - mov.l 0x8+EXC_FP0(%a6),(%a0)+ - -fmovm_out_ctrl_fp1: - lsl.b &0x1,%d1 # should FP1 be moved? - bpl.b fmovm_out_ctrl_fp2 # no - - mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes - mov.l 0x4+EXC_FP1(%a6),(%a0)+ - mov.l 0x8+EXC_FP1(%a6),(%a0)+ - -fmovm_out_ctrl_fp2: - lsl.b &0x1,%d1 # should FP2 be moved? - bpl.b fmovm_out_ctrl_fp3 # no - - fmovm.x &0x20,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp3: - lsl.b &0x1,%d1 # should FP3 be moved? - bpl.b fmovm_out_ctrl_fp4 # no - - fmovm.x &0x10,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp4: - lsl.b &0x1,%d1 # should FP4 be moved? - bpl.b fmovm_out_ctrl_fp5 # no - - fmovm.x &0x08,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp5: - lsl.b &0x1,%d1 # should FP5 be moved? - bpl.b fmovm_out_ctrl_fp6 # no - - fmovm.x &0x04,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp6: - lsl.b &0x1,%d1 # should FP6 be moved? - bpl.b fmovm_out_ctrl_fp7 # no - - fmovm.x &0x02,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp7: - lsl.b &0x1,%d1 # should FP7 be moved? - bpl.b fmovm_out_ctrl_done # no - - fmovm.x &0x01,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_done: - mov.l %a1,L_SCR1(%a6) - - lea (%sp),%a0 # pass: supervisor src - mov.l %d0,-(%sp) # save size - bsr.l _dmem_write # copy data to user mem - - mov.l (%sp)+,%d0 - add.l %d0,%sp # clear fpreg data from stack - - tst.l %d1 # did dstore err? - bne.w fmovm_out_err # yes - - rts - -############ -# MOVE IN: # -############ -fmovm_data_in: - mov.l %a0,L_SCR1(%a6) - - sub.l %d0,%sp # make room for fpregs - lea (%sp),%a1 - - mov.l %d1,-(%sp) # save bit string for later - mov.l %d0,-(%sp) # save # of bytes - - bsr.l _dmem_read # copy data from user mem - - mov.l (%sp)+,%d0 # retrieve # of bytes - - tst.l %d1 # did dfetch fail? - bne.w fmovm_in_err # yes - - mov.l (%sp)+,%d1 # load bit string - - lea (%sp),%a0 # addr of stack - - tst.b %d1 # should FP0 be moved? - bpl.b fmovm_data_in_fp1 # no - - mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes - mov.l (%a0)+,0x4+EXC_FP0(%a6) - mov.l (%a0)+,0x8+EXC_FP0(%a6) - -fmovm_data_in_fp1: - lsl.b &0x1,%d1 # should FP1 be moved? - bpl.b fmovm_data_in_fp2 # no - - mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes - mov.l (%a0)+,0x4+EXC_FP1(%a6) - mov.l (%a0)+,0x8+EXC_FP1(%a6) - -fmovm_data_in_fp2: - lsl.b &0x1,%d1 # should FP2 be moved? - bpl.b fmovm_data_in_fp3 # no - - fmovm.x (%a0)+,&0x20 # yes - -fmovm_data_in_fp3: - lsl.b &0x1,%d1 # should FP3 be moved? - bpl.b fmovm_data_in_fp4 # no - - fmovm.x (%a0)+,&0x10 # yes - -fmovm_data_in_fp4: - lsl.b &0x1,%d1 # should FP4 be moved? - bpl.b fmovm_data_in_fp5 # no - - fmovm.x (%a0)+,&0x08 # yes - -fmovm_data_in_fp5: - lsl.b &0x1,%d1 # should FP5 be moved? - bpl.b fmovm_data_in_fp6 # no - - fmovm.x (%a0)+,&0x04 # yes - -fmovm_data_in_fp6: - lsl.b &0x1,%d1 # should FP6 be moved? - bpl.b fmovm_data_in_fp7 # no - - fmovm.x (%a0)+,&0x02 # yes - -fmovm_data_in_fp7: - lsl.b &0x1,%d1 # should FP7 be moved? - bpl.b fmovm_data_in_done # no - - fmovm.x (%a0)+,&0x01 # yes - -fmovm_data_in_done: - add.l %d0,%sp # remove fpregs from stack - rts - -##################################### - -fmovm_data_done: - rts - -############################################################################## - -# -# table indexed by the operation's bit string that gives the number -# of bytes that will be moved. -# -# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) -# -tbl_fmovm_size: - byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 - -# -# table to convert a pre-decrement bit string into a post-increment -# or control bit string. -# ex: 0x00 ==> 0x00 -# 0x01 ==> 0x80 -# 0x02 ==> 0x40 -# . -# . -# 0xfd ==> 0xbf -# 0xfe ==> 0x7f -# 0xff ==> 0xff -# -tbl_fmovm_convert: - byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 - byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 - byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 - byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 - byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 - byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 - byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec - byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc - byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 - byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 - byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea - byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa - byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 - byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 - byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee - byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe - byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 - byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 - byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 - byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 - byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 - byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 - byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed - byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd - byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 - byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 - byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb - byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb - byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 - byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 - byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef - byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff - - global fmovm_calc_ea -############################################### -# _fmovm_calc_ea: calculate effective address # -############################################### -fmovm_calc_ea: - mov.l %d0,%a0 # move # bytes to a0 - -# currently, MODE and REG are taken from the EXC_OPWORD. this could be -# easily changed if they were inputs passed in registers. - mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.w %d0,%d1 # make a copy - - andi.w &0x3f,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - -# jump to the corresponding function for each {MODE,REG} pair. - mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance - jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode - - swbeg &64 -tbl_fea_mode: - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - - short faddr_ind_a0 - tbl_fea_mode - short faddr_ind_a1 - tbl_fea_mode - short faddr_ind_a2 - tbl_fea_mode - short faddr_ind_a3 - tbl_fea_mode - short faddr_ind_a4 - tbl_fea_mode - short faddr_ind_a5 - tbl_fea_mode - short faddr_ind_a6 - tbl_fea_mode - short faddr_ind_a7 - tbl_fea_mode - - short faddr_ind_p_a0 - tbl_fea_mode - short faddr_ind_p_a1 - tbl_fea_mode - short faddr_ind_p_a2 - tbl_fea_mode - short faddr_ind_p_a3 - tbl_fea_mode - short faddr_ind_p_a4 - tbl_fea_mode - short faddr_ind_p_a5 - tbl_fea_mode - short faddr_ind_p_a6 - tbl_fea_mode - short faddr_ind_p_a7 - tbl_fea_mode - - short faddr_ind_m_a0 - tbl_fea_mode - short faddr_ind_m_a1 - tbl_fea_mode - short faddr_ind_m_a2 - tbl_fea_mode - short faddr_ind_m_a3 - tbl_fea_mode - short faddr_ind_m_a4 - tbl_fea_mode - short faddr_ind_m_a5 - tbl_fea_mode - short faddr_ind_m_a6 - tbl_fea_mode - short faddr_ind_m_a7 - tbl_fea_mode - - short faddr_ind_disp_a0 - tbl_fea_mode - short faddr_ind_disp_a1 - tbl_fea_mode - short faddr_ind_disp_a2 - tbl_fea_mode - short faddr_ind_disp_a3 - tbl_fea_mode - short faddr_ind_disp_a4 - tbl_fea_mode - short faddr_ind_disp_a5 - tbl_fea_mode - short faddr_ind_disp_a6 - tbl_fea_mode - short faddr_ind_disp_a7 - tbl_fea_mode - - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - - short fabs_short - tbl_fea_mode - short fabs_long - tbl_fea_mode - short fpc_ind - tbl_fea_mode - short fpc_ind_ext - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - -################################### -# Address register indirect: (An) # -################################### -faddr_ind_a0: - mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 - rts - -faddr_ind_a1: - mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 - rts - -faddr_ind_a2: - mov.l %a2,%a0 # Get current a2 - rts - -faddr_ind_a3: - mov.l %a3,%a0 # Get current a3 - rts - -faddr_ind_a4: - mov.l %a4,%a0 # Get current a4 - rts - -faddr_ind_a5: - mov.l %a5,%a0 # Get current a5 - rts - -faddr_ind_a6: - mov.l (%a6),%a0 # Get current a6 - rts - -faddr_ind_a7: - mov.l EXC_A7(%a6),%a0 # Get current a7 - rts - -##################################################### -# Address register indirect w/ postincrement: (An)+ # -##################################################### -faddr_ind_p_a0: - mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a1: - mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a2: - mov.l %a2,%d0 # Get current a2 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a2 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a3: - mov.l %a3,%d0 # Get current a3 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a3 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a4: - mov.l %a4,%d0 # Get current a4 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a4 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a5: - mov.l %a5,%d0 # Get current a5 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a5 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a6: - mov.l (%a6),%d0 # Get current a6 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a7: - mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_A7(%a6) # Save incr value - mov.l %d0,%a0 - rts - -#################################################### -# Address register indirect w/ predecrement: -(An) # -#################################################### -faddr_ind_m_a0: - mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a1: - mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a2: - mov.l %a2,%d0 # Get current a2 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a2 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a3: - mov.l %a3,%d0 # Get current a3 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a3 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a4: - mov.l %a4,%d0 # Get current a4 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a4 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a5: - mov.l %a5,%d0 # Get current a5 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a5 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a6: - mov.l (%a6),%d0 # Get current a6 - sub.l %a0,%d0 # Decrement - mov.l %d0,(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a7: - mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A7(%a6) # Save decr value - mov.l %d0,%a0 - rts - -######################################################## -# Address register indirect w/ displacement: (d16, An) # -######################################################## -faddr_ind_disp_a0: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 - rts - -faddr_ind_disp_a1: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 - rts - -faddr_ind_disp_a2: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a2,%a0 # a2 + d16 - rts - -faddr_ind_disp_a3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a3,%a0 # a3 + d16 - rts - -faddr_ind_disp_a4: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a4,%a0 # a4 + d16 - rts - -faddr_ind_disp_a5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a5,%a0 # a5 + d16 - rts - -faddr_ind_disp_a6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l (%a6),%a0 # a6 + d16 - rts - -faddr_ind_disp_a7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_A7(%a6),%a0 # a7 + d16 - rts - -######################################################################## -# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # -# " " " w/ " (base displacement): (bd, An, Xn) # -# Memory indirect postindexed: ([bd, An], Xn, od) # -# Memory indirect preindexed: ([bd, An, Xn], od) # -######################################################################## -faddr_ind_ext: - addq.l &0x8,%d1 - bsr.l fetch_dreg # fetch base areg - mov.l %d0,-(%sp) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch extword in d0 - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l (%sp)+,%a0 - - btst &0x8,%d0 - bne.w fcalc_mem_ind - - mov.l %d0,L_SCR1(%a6) # hold opword - - mov.l %d0,%d1 - rol.w &0x4,%d1 - andi.w &0xf,%d1 # extract index regno - -# count on fetch_dreg() not to alter a0... - bsr.l fetch_dreg # fetch index - - mov.l %d2,-(%sp) # save d2 - mov.l L_SCR1(%a6),%d2 # fetch opword - - btst &0xb,%d2 # is it word or long? - bne.b faii8_long - ext.l %d0 # sign extend word index -faii8_long: - mov.l %d2,%d1 - rol.w &0x7,%d1 - andi.l &0x3,%d1 # extract scale value - - lsl.l %d1,%d0 # shift index by scale - - extb.l %d2 # sign extend displacement - add.l %d2,%d0 # index + disp - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore old d2 - rts - -########################### -# Absolute short: (XXX).W # -########################### -fabs_short: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch short address - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # return <ea> in a0 - rts - -########################## -# Absolute long: (XXX).L # -########################## -fabs_long: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch long address - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,%a0 # return <ea> in a0 - rts - -####################################################### -# Program counter indirect w/ displacement: (d16, PC) # -####################################################### -fpc_ind: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch word displacement - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 - -# _imem_read_word() increased the extwptr by 2. need to adjust here. - subq.l &0x2,%a0 # adjust <ea> - rts - -########################################################## -# PC indirect w/ index(8-bit displacement): (d8, PC, An) # -# " " w/ " (base displacement): (bd, PC, An) # -# PC memory indirect postindexed: ([bd, PC], Xn, od) # -# PC memory indirect preindexed: ([bd, PC, Xn], od) # -########################################################## -fpc_ind_ext: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch ext word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 - subq.l &0x2,%a0 # adjust base - - btst &0x8,%d0 # is disp only 8 bits? - bne.w fcalc_mem_ind # calc memory indirect - - mov.l %d0,L_SCR1(%a6) # store opword - - mov.l %d0,%d1 # make extword copy - rol.w &0x4,%d1 # rotate reg num into place - andi.w &0xf,%d1 # extract register number - -# count on fetch_dreg() not to alter a0... - bsr.l fetch_dreg # fetch index - - mov.l %d2,-(%sp) # save d2 - mov.l L_SCR1(%a6),%d2 # fetch opword - - btst &0xb,%d2 # is index word or long? - bne.b fpii8_long # long - ext.l %d0 # sign extend word index -fpii8_long: - mov.l %d2,%d1 - rol.w &0x7,%d1 # rotate scale value into place - andi.l &0x3,%d1 # extract scale value - - lsl.l %d1,%d0 # shift index by scale - - extb.l %d2 # sign extend displacement - add.l %d2,%d0 # disp + index - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore temp register - rts - -# d2 = index -# d3 = base -# d4 = od -# d5 = extword -fcalc_mem_ind: - btst &0x6,%d0 # is the index suppressed? - beq.b fcalc_index - - movm.l &0x3c00,-(%sp) # save d2-d5 - - mov.l %d0,%d5 # put extword in d5 - mov.l %a0,%d3 # put base in d3 - - clr.l %d2 # yes, so index = 0 - bra.b fbase_supp_ck - -# index: -fcalc_index: - mov.l %d0,L_SCR1(%a6) # save d0 (opword) - bfextu %d0{&16:&4},%d1 # fetch dreg index - bsr.l fetch_dreg - - movm.l &0x3c00,-(%sp) # save d2-d5 - mov.l %d0,%d2 # put index in d2 - mov.l L_SCR1(%a6),%d5 - mov.l %a0,%d3 - - btst &0xb,%d5 # is index word or long? - bne.b fno_ext - ext.l %d2 - -fno_ext: - bfextu %d5{&21:&2},%d0 - lsl.l %d0,%d2 - -# base address (passed as parameter in d3): -# we clear the value here if it should actually be suppressed. -fbase_supp_ck: - btst &0x7,%d5 # is the bd suppressed? - beq.b fno_base_sup - clr.l %d3 - -# base displacement: -fno_base_sup: - bfextu %d5{&26:&2},%d0 # get bd size -# beq.l fmovm_error # if (size == 0) it's reserved - - cmpi.b %d0,&0x2 - blt.b fno_bd - beq.b fget_word_bd - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - bra.b fchk_ind - -fget_word_bd: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - ext.l %d0 # sign extend bd - -fchk_ind: - add.l %d0,%d3 # base += bd - -# outer displacement: -fno_bd: - bfextu %d5{&30:&2},%d0 # is od suppressed? - beq.w faii_bd - - cmpi.b %d0,&0x2 - blt.b fnull_od - beq.b fword_od - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - bra.b fadd_them - -fword_od: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - ext.l %d0 # sign extend od - bra.b fadd_them - -fnull_od: - clr.l %d0 - -fadd_them: - mov.l %d0,%d4 - - btst &0x2,%d5 # pre or post indexing? - beq.b fpre_indexed - - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # did dfetch fail? - bne.w fcea_err # yes - - add.l %d2,%d0 # <ea> += index - add.l %d4,%d0 # <ea> += od - bra.b fdone_ea - -fpre_indexed: - add.l %d2,%d3 # preindexing - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # did dfetch fail? - bne.w fcea_err # yes - - add.l %d4,%d0 # ea += od - bra.b fdone_ea - -faii_bd: - add.l %d2,%d3 # ea = (base + bd) + index - mov.l %d3,%d0 -fdone_ea: - mov.l %d0,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - rts - -######################################################### -fcea_err: - mov.l %d3,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - mov.w &0x0101,%d0 - bra.l iea_dacc - -fcea_iacc: - movm.l (%sp)+,&0x003c # restore d2-d5 - bra.l iea_iacc - -fmovm_out_err: - bsr.l restore - mov.w &0x00e1,%d0 - bra.b fmovm_err - -fmovm_in_err: - bsr.l restore - mov.w &0x0161,%d0 - -fmovm_err: - mov.l L_SCR1(%a6),%a0 - bra.l iea_dacc - -######################################################################### -# XDEF **************************************************************** # -# fmovm_ctrl(): emulate fmovm.l of control registers instr # -# # -# XREF **************************************************************** # -# _imem_read_long() - read longword from memory # -# iea_iacc() - _imem_read_long() failed; error recovery # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If _imem_read_long() doesn't fail: # -# USER_FPCR(a6) = new FPCR value # -# USER_FPSR(a6) = new FPSR value # -# USER_FPIAR(a6) = new FPIAR value # -# # -# ALGORITHM *********************************************************** # -# Decode the instruction type by looking at the extension word # -# in order to see how many control registers to fetch from memory. # -# Fetch them using _imem_read_long(). If this fetch fails, exit through # -# the special access error exit handler iea_iacc(). # -# # -# Instruction word decoding: # -# # -# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # -# # -# WORD1 WORD2 # -# 1111 0010 00 111100 100$ $$00 0000 0000 # -# # -# $$$ (100): FPCR # -# (010): FPSR # -# (001): FPIAR # -# (000): FPIAR # -# # -######################################################################### - - global fmovm_ctrl -fmovm_ctrl: - mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits - cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? - beq.w fctrl_in_7 # yes - cmpi.b %d0,&0x98 # fpcr & fpsr ? - beq.w fctrl_in_6 # yes - cmpi.b %d0,&0x94 # fpcr & fpiar ? - beq.b fctrl_in_5 # yes - -# fmovem.l #<data>, fpsr/fpiar -fctrl_in_3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack - rts - -# fmovem.l #<data>, fpcr/fpiar -fctrl_in_5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack - rts - -# fmovem.l #<data>, fpcr/fpsr -fctrl_in_6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem - rts - -# fmovem.l #<data>, fpcr/fpsr/fpiar -fctrl_in_7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem - rts - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# addsub_scaler2(): scale inputs to fadd/fsub such that no # -# OVFL/UNFL exceptions will result # -# # -# XREF **************************************************************** # -# norm() - normalize mantissa after adjusting exponent # -# # -# INPUT *************************************************************** # -# FP_SRC(a6) = fp op1(src) # -# FP_DST(a6) = fp op2(dst) # -# # -# OUTPUT ************************************************************** # -# FP_SRC(a6) = fp op1 scaled(src) # -# FP_DST(a6) = fp op2 scaled(dst) # -# d0 = scale amount # -# # -# ALGORITHM *********************************************************** # -# If the DST exponent is > the SRC exponent, set the DST exponent # -# equal to 0x3fff and scale the SRC exponent by the value that the # -# DST exponent was scaled by. If the SRC exponent is greater or equal, # -# do the opposite. Return this scale factor in d0. # -# If the two exponents differ by > the number of mantissa bits # -# plus two, then set the smallest exponent to a very small value as a # -# quick shortcut. # -# # -######################################################################### - - global addsub_scaler2 -addsub_scaler2: - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - mov.w SRC_EX(%a0),%d0 - mov.w DST_EX(%a1),%d1 - mov.w %d0,FP_SCR0_EX(%a6) - mov.w %d1,FP_SCR1_EX(%a6) - - andi.w &0x7fff,%d0 - andi.w &0x7fff,%d1 - mov.w %d0,L_SCR1(%a6) # store src exponent - mov.w %d1,2+L_SCR1(%a6) # store dst exponent - - cmp.w %d0, %d1 # is src exp >= dst exp? - bge.l src_exp_ge2 - -# dst exp is > src exp; scale dst to exp = 0x3fff -dst_exp_gt2: - bsr.l scale_to_zero_dst - mov.l %d0,-(%sp) # save scale factor - - cmpi.b STAG(%a6),&DENORM # is dst denormalized? - bne.b cmpexp12 - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the denorm; result is new exp - neg.w %d0 # new exp = -(shft val) - mov.w %d0,L_SCR1(%a6) # inset new exp - -cmpexp12: - mov.w 2+L_SCR1(%a6),%d0 - subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp - - cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? - bge.b quick_scale12 - - mov.w L_SCR1(%a6),%d0 - add.w 0x2(%sp),%d0 # scale src exponent by scale factor - mov.w FP_SCR0_EX(%a6),%d1 - and.w &0x8000,%d1 - or.w %d1,%d0 # concat {sgn,new exp} - mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -quick_scale12: - andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent - bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -# src exp is >= dst exp; scale src to exp = 0x3fff -src_exp_ge2: - bsr.l scale_to_zero_src - mov.l %d0,-(%sp) # save scale factor - - cmpi.b DTAG(%a6),&DENORM # is dst denormalized? - bne.b cmpexp22 - lea FP_SCR1(%a6),%a0 - bsr.l norm # normalize the denorm; result is new exp - neg.w %d0 # new exp = -(shft val) - mov.w %d0,2+L_SCR1(%a6) # inset new exp - -cmpexp22: - mov.w L_SCR1(%a6),%d0 - subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp - - cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? - bge.b quick_scale22 - - mov.w 2+L_SCR1(%a6),%d0 - add.w 0x2(%sp),%d0 # scale dst exponent by scale factor - mov.w FP_SCR1_EX(%a6),%d1 - andi.w &0x8000,%d1 - or.w %d1,%d0 # concat {sgn,new exp} - mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -quick_scale22: - andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent - bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# scale_to_zero_src(): scale the exponent of extended precision # -# value at FP_SCR0(a6). # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR0(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# Set the exponent of the input operand to 0x3fff. Save the value # -# of the difference between the original and new exponent. Then, # -# normalize the operand if it was a DENORM. Add this normalization # -# value to the previous value. Return the result. # -# # -######################################################################### - - global scale_to_zero_src -scale_to_zero_src: - mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} - mov.w %d1,%d0 # make a copy - - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,%d0 # extract operand's sgn - or.w &0x3fff,%d0 # insert new operand's exponent(=0) - - mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent - - cmpi.b STAG(%a6),&DENORM # is operand normalized? - beq.b stzs_denorm # normalize the DENORM - -stzs_norm: - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - - rts - -stzs_denorm: - lea FP_SCR0(%a6),%a0 # pass ptr to src op - bsr.l norm # normalize denorm - neg.l %d0 # new exponent = -(shft val) - mov.l %d0,%d1 # prepare for op_norm call - bra.b stzs_norm # finish scaling - -### - -######################################################################### -# XDEF **************************************************************** # -# scale_sqrt(): scale the input operand exponent so a subsequent # -# fsqrt operation won't take an exception. # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR0(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# If the input operand is a DENORM, normalize it. # -# If the exponent of the input operand is even, set the exponent # -# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # -# exponent of the input operand is off, set the exponent to ox3fff and # -# return a scale factor of "(exp-0x3fff)/2". # -# # -######################################################################### - - global scale_sqrt -scale_sqrt: - cmpi.b STAG(%a6),&DENORM # is operand normalized? - beq.b ss_denorm # normalize the DENORM - - mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn - - btst &0x0,%d1 # is exp even or odd? - beq.b ss_norm_even - - ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_norm_even: - ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - mov.l &0x3ffe,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_denorm: - lea FP_SCR0(%a6),%a0 # pass ptr to src op - bsr.l norm # normalize denorm - - btst &0x0,%d0 # is exp even or odd? - beq.b ss_denorm_even - - ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - add.l &0x3fff,%d0 - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_denorm_even: - ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - add.l &0x3ffe,%d0 - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -### - -######################################################################### -# XDEF **************************************************************** # -# scale_to_zero_dst(): scale the exponent of extended precision # -# value at FP_SCR1(a6). # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR1(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR1(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# Set the exponent of the input operand to 0x3fff. Save the value # -# of the difference between the original and new exponent. Then, # -# normalize the operand if it was a DENORM. Add this normalization # -# value to the previous value. Return the result. # -# # -######################################################################### - - global scale_to_zero_dst -scale_to_zero_dst: - mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} - mov.w %d1,%d0 # make a copy - - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,%d0 # extract operand's sgn - or.w &0x3fff,%d0 # insert new operand's exponent(=0) - - mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent - - cmpi.b DTAG(%a6),&DENORM # is operand normalized? - beq.b stzd_denorm # normalize the DENORM - -stzd_norm: - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - rts - -stzd_denorm: - lea FP_SCR1(%a6),%a0 # pass ptr to dst op - bsr.l norm # normalize denorm - neg.l %d0 # new exponent = -(shft val) - mov.l %d0,%d1 # prepare for op_norm call - bra.b stzd_norm # finish scaling - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# res_qnan(): return default result w/ QNAN operand for dyadic # -# res_snan(): return default result w/ SNAN operand for dyadic # -# res_qnan_1op(): return dflt result w/ QNAN operand for monadic # -# res_snan_1op(): return dflt result w/ SNAN operand for monadic # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# FP_SRC(a6) = pointer to extended precision src operand # -# FP_DST(a6) = pointer to extended precision dst operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# If either operand (but not both operands) of an operation is a # -# nonsignalling NAN, then that NAN is returned as the result. If both # -# operands are nonsignalling NANs, then the destination operand # -# nonsignalling NAN is returned as the result. # -# If either operand to an operation is a signalling NAN (SNAN), # -# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # -# enable bit is set in the FPCR, then the trap is taken and the # -# destination is not modified. If the SNAN trap enable bit is not set, # -# then the SNAN is converted to a nonsignalling NAN (by setting the # -# SNAN bit in the operand to one), and the operation continues as # -# described in the preceding paragraph, for nonsignalling NANs. # -# Make sure the appropriate FPSR bits are set before exiting. # -# # -######################################################################### - - global res_qnan - global res_snan -res_qnan: -res_snan: - cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? - beq.b dst_snan2 - cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? - beq.b dst_qnan2 -src_nan: - cmp.b STAG(%a6), &QNAN - beq.b src_qnan2 - global res_snan_1op -res_snan_1op: -src_snan2: - bset &0x6, FP_SRC_HI(%a6) # set SNAN bit - or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) - lea FP_SRC(%a6), %a0 - bra.b nan_comp - global res_qnan_1op -res_qnan_1op: -src_qnan2: - or.l &nan_mask, USER_FPSR(%a6) - lea FP_SRC(%a6), %a0 - bra.b nan_comp -dst_snan2: - or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) - bset &0x6, FP_DST_HI(%a6) # set SNAN bit - lea FP_DST(%a6), %a0 - bra.b nan_comp -dst_qnan2: - lea FP_DST(%a6), %a0 - cmp.b STAG(%a6), &SNAN - bne nan_done - or.l &aiop_mask+snan_mask, USER_FPSR(%a6) -nan_done: - or.l &nan_mask, USER_FPSR(%a6) -nan_comp: - btst &0x7, FTEMP_EX(%a0) # is NAN neg? - beq.b nan_not_neg - or.l &neg_mask, USER_FPSR(%a6) -nan_not_neg: - fmovm.x (%a0), &0x80 - rts - -######################################################################### -# XDEF **************************************************************** # -# res_operr(): return default result during operand error # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# fp0 = default operand error result # -# # -# ALGORITHM *********************************************************** # -# An nonsignalling NAN is returned as the default result when # -# an operand error occurs for the following cases: # -# # -# Multiply: (Infinity x Zero) # -# Divide : (Zero / Zero) || (Infinity / Infinity) # -# # -######################################################################### - - global res_operr -res_operr: - or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) - fmovm.x nan_return(%pc), &0x80 - rts - -nan_return: - long 0x7fff0000, 0xffffffff, 0xffffffff - -######################################################################### -# XDEF **************************************************************** # -# _denorm(): denormalize an intermediate result # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = points to the operand to be denormalized # -# (in the internal extended format) # -# # -# d0 = rounding precision # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to the denormalized result # -# (in the internal extended format) # -# # -# d0 = guard,round,sticky # -# # -# ALGORITHM *********************************************************** # -# According to the exponent underflow threshold for the given # -# precision, shift the mantissa bits to the right in order raise the # -# exponent of the operand to the threshold value. While shifting the # -# mantissa bits right, maintain the value of the guard, round, and # -# sticky bits. # -# other notes: # -# (1) _denorm() is called by the underflow routines # -# (2) _denorm() does NOT affect the status register # -# # -######################################################################### - -# -# table of exponent threshold values for each precision -# -tbl_thresh: - short 0x0 - short sgl_thresh - short dbl_thresh - - global _denorm -_denorm: -# -# Load the exponent threshold for the precision selected and check -# to see if (threshold - exponent) is > 65 in which case we can -# simply calculate the sticky bit and zero the mantissa. otherwise -# we have to call the denormalization routine. -# - lsr.b &0x2, %d0 # shift prec to lo bits - mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold - mov.w %d1, %d0 # copy d1 into d0 - sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp - cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) - bpl.b denorm_set_stky # yes; just calc sticky - - clr.l %d0 # clear g,r,s - btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? - beq.b denorm_call # no; don't change anything - bset &29, %d0 # yes; set sticky bit - -denorm_call: - bsr.l dnrm_lp # denormalize the number - rts - -# -# all bit would have been shifted off during the denorm so simply -# calculate if the sticky should be set and clear the entire mantissa. -# -denorm_set_stky: - mov.l &0x20000000, %d0 # set sticky bit in return value - mov.w %d1, FTEMP_EX(%a0) # load exp with threshold - clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) - clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) - rts - -# # -# dnrm_lp(): normalize exponent/mantissa to specified threshold # -# # -# INPUT: # -# %a0 : points to the operand to be denormalized # -# %d0{31:29} : initial guard,round,sticky # -# %d1{15:0} : denormalization threshold # -# OUTPUT: # -# %a0 : points to the denormalized operand # -# %d0{31:29} : final guard,round,sticky # -# # - -# *** Local Equates *** # -set GRS, L_SCR2 # g,r,s temp storage -set FTEMP_LO2, L_SCR1 # FTEMP_LO copy - - global dnrm_lp -dnrm_lp: - -# -# make a copy of FTEMP_LO and place the g,r,s bits directly after it -# in memory so as to make the bitfield extraction for denormalization easier. -# - mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy - mov.l %d0, GRS(%a6) # place g,r,s after it - -# -# check to see how much less than the underflow threshold the operand -# exponent is. -# - mov.l %d1, %d0 # copy the denorm threshold - sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent - ble.b dnrm_no_lp # d1 <= 0 - cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? - blt.b case_1 # yes - cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? - blt.b case_2 # yes - bra.w case_3 # (d1 >= 64) - -# -# No normalization necessary -# -dnrm_no_lp: - mov.l GRS(%a6), %d0 # restore original g,r,s - rts - -# -# case (0<d1<32) -# -# %d0 = denorm threshold -# %d1 = "n" = amt to shift -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> -# --------------------------------------------------------- -# |0.....0| NEW_HI | NEW_FTEMP_LO |grs | -# --------------------------------------------------------- -# -case_1: - mov.l %d2, -(%sp) # create temp storage - - mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold - mov.l &32, %d0 - sub.w %d1, %d0 # %d0 = 32 - %d1 - - cmpi.w %d1, &29 # is shft amt >= 29 - blt.b case1_extract # no; no fix needed - mov.b GRS(%a6), %d2 - or.b %d2, 3+FTEMP_LO2(%a6) - -case1_extract: - bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI - bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO - bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S - - mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI - mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO - - bftst %d0{&2:&30} # were bits shifted off? - beq.b case1_sticky_clear # no; go finish - bset &rnd_stky_bit, %d0 # yes; set sticky bit - -case1_sticky_clear: - and.l &0xe0000000, %d0 # clear all but G,R,S - mov.l (%sp)+, %d2 # restore temp register - rts - -# -# case (32<=d1<64) -# -# %d0 = denorm threshold -# %d1 = "n" = amt to shift -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> -# \ \ \ -# \ \ \ -# \ \ ------------------- -# \ -------------------- \ -# ------------------- \ \ -# \ \ \ -# \ \ \ -# \ \ \ -# <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> -# --------------------------------------------------------- -# |0...............0|0....0| NEW_LO |grs | -# --------------------------------------------------------- -# -case_2: - mov.l %d2, -(%sp) # create temp storage - - mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold - subi.w &0x20, %d1 # %d1 now between 0 and 32 - mov.l &0x20, %d0 - sub.w %d1, %d0 # %d0 = 32 - %d1 - -# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize -# the number of bits to check for the sticky detect. -# it only plays a role in shift amounts of 61-63. - mov.b GRS(%a6), %d2 - or.b %d2, 3+FTEMP_LO2(%a6) - - bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO - bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S - - bftst %d1{&2:&30} # were any bits shifted off? - bne.b case2_set_sticky # yes; set sticky bit - bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? - bne.b case2_set_sticky # yes; set sticky bit - - mov.l %d1, %d0 # move new G,R,S to %d0 - bra.b case2_end - -case2_set_sticky: - mov.l %d1, %d0 # move new G,R,S to %d0 - bset &rnd_stky_bit, %d0 # set sticky bit - -case2_end: - clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 - mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO - and.l &0xe0000000, %d0 # clear all but G,R,S - - mov.l (%sp)+,%d2 # restore temp register - rts - -# -# case (d1>=64) -# -# %d0 = denorm threshold -# %d1 = amt to shift -# -case_3: - mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold - - cmpi.w %d1, &65 # is shift amt > 65? - blt.b case3_64 # no; it's == 64 - beq.b case3_65 # no; it's == 65 - -# -# case (d1>65) -# -# Shift value is > 65 and out of range. All bits are shifted off. -# Return a zero mantissa with the sticky bit set -# - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - mov.l &0x20000000, %d0 # set sticky bit - rts - -# -# case (d1 == 64) -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-------(32)------> -# \ \ -# \ \ -# \ \ -# \ ------------------------------ -# ------------------------------- \ -# \ \ -# \ \ -# \ \ -# <-------(32)------> -# --------------------------------------------------------- -# |0...............0|0................0|grs | -# --------------------------------------------------------- -# -case3_64: - mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) - mov.l %d0, %d1 # make a copy - and.l &0xc0000000, %d0 # extract G,R - and.l &0x3fffffff, %d1 # extract other bits - - bra.b case3_complete - -# -# case (d1 == 65) -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-------(32)------> -# \ \ -# \ \ -# \ \ -# \ ------------------------------ -# -------------------------------- \ -# \ \ -# \ \ -# \ \ -# <-------(31)-----> -# --------------------------------------------------------- -# |0...............0|0................0|0rs | -# --------------------------------------------------------- -# -case3_65: - mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) - and.l &0x80000000, %d0 # extract R bit - lsr.l &0x1, %d0 # shift high bit into R bit - and.l &0x7fffffff, %d1 # extract other bits - -case3_complete: -# last operation done was an "and" of the bits shifted off so the condition -# codes are already set so branch accordingly. - bne.b case3_set_sticky # yes; go set new sticky - tst.l FTEMP_LO(%a0) # were any bits shifted off? - bne.b case3_set_sticky # yes; go set new sticky - tst.b GRS(%a6) # were any bits shifted off? - bne.b case3_set_sticky # yes; go set new sticky - -# -# no bits were shifted off so don't set the sticky bit. -# the guard and -# the entire mantissa is zero. -# - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - rts - -# -# some bits were shifted off so set the sticky bit. -# the entire mantissa is zero. -# -case3_set_sticky: - bset &rnd_stky_bit,%d0 # set new sticky bit - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - rts - -######################################################################### -# XDEF **************************************************************** # -# _round(): round result according to precision/mode # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = ptr to input operand in internal extended format # -# d1(hi) = contains rounding precision: # -# ext = $0000xxxx # -# sgl = $0004xxxx # -# dbl = $0008xxxx # -# d1(lo) = contains rounding mode: # -# RN = $xxxx0000 # -# RZ = $xxxx0001 # -# RM = $xxxx0002 # -# RP = $xxxx0003 # -# d0{31:29} = contains the g,r,s bits (extended) # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to rounded result # -# # -# ALGORITHM *********************************************************** # -# On return the value pointed to by a0 is correctly rounded, # -# a0 is preserved and the g-r-s bits in d0 are cleared. # -# The result is not typed - the tag field is invalid. The # -# result is still in the internal extended format. # -# # -# The INEX bit of USER_FPSR will be set if the rounded result was # -# inexact (i.e. if any of the g-r-s bits were set). # -# # -######################################################################### - - global _round -_round: -# -# ext_grs() looks at the rounding precision and sets the appropriate -# G,R,S bits. -# If (G,R,S == 0) then result is exact and round is done, else set -# the inex flag in status reg and continue. -# - bsr.l ext_grs # extract G,R,S - - tst.l %d0 # are G,R,S zero? - beq.w truncate # yes; round is complete - - or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex - -# -# Use rounding mode as an index into a jump table for these modes. -# All of the following assumes grs != 0. -# - mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset - jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler - -tbl_mode: - short rnd_near - tbl_mode - short truncate - tbl_mode # RZ always truncates - short rnd_mnus - tbl_mode - short rnd_plus - tbl_mode - -################################################################# -# ROUND PLUS INFINITY # -# # -# If sign of fp number = 0 (positive), then add 1 to l. # -################################################################# -rnd_plus: - tst.b FTEMP_SGN(%a0) # check for sign - bmi.w truncate # if positive then truncate - - mov.l &0xffffffff, %d0 # force g,r,s to be all f's - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -################################################################# -# ROUND MINUS INFINITY # -# # -# If sign of fp number = 1 (negative), then add 1 to l. # -################################################################# -rnd_mnus: - tst.b FTEMP_SGN(%a0) # check for sign - bpl.w truncate # if negative then truncate - - mov.l &0xffffffff, %d0 # force g,r,s to be all f's - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -################################################################# -# ROUND NEAREST # -# # -# If (g=1), then add 1 to l and if (r=s=0), then clear l # -# Note that this will round to even in case of a tie. # -################################################################# -rnd_near: - asl.l &0x1, %d0 # shift g-bit to c-bit - bcc.w truncate # if (g=1) then - - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -# *** LOCAL EQUATES *** -set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec -set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec - -######################### -# ADD SINGLE # -######################### -add_sgl: - add.l &ad_1_sgl, FTEMP_HI(%a0) - bcc.b scc_clr # no mantissa overflow - roxr.w FTEMP_HI(%a0) # shift v-bit back in - roxr.w FTEMP_HI+2(%a0) # shift v-bit back in - add.w &0x1, FTEMP_EX(%a0) # and incr exponent -scc_clr: - tst.l %d0 # test for rs = 0 - bne.b sgl_done - and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit -sgl_done: - and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit - clr.l FTEMP_LO(%a0) # clear d2 - rts - -######################### -# ADD EXTENDED # -######################### -add_ext: - addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit - bcc.b xcc_clr # test for carry out - addq.l &1,FTEMP_HI(%a0) # propagate carry - bcc.b xcc_clr - roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_LO(%a0) - roxr.w FTEMP_LO+2(%a0) - add.w &0x1,FTEMP_EX(%a0) # and inc exp -xcc_clr: - tst.l %d0 # test rs = 0 - bne.b add_ext_done - and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit -add_ext_done: - rts - -######################### -# ADD DOUBLE # -######################### -add_dbl: - add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb - bcc.b dcc_clr # no carry - addq.l &0x1, FTEMP_HI(%a0) # propagate carry - bcc.b dcc_clr # no carry - - roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_LO(%a0) - roxr.w FTEMP_LO+2(%a0) - addq.w &0x1, FTEMP_EX(%a0) # incr exponent -dcc_clr: - tst.l %d0 # test for rs = 0 - bne.b dbl_done - and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit - -dbl_done: - and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit - rts - -########################### -# Truncate all other bits # -########################### -truncate: - swap %d1 # select rnd prec - - cmpi.b %d1, &s_mode # is prec sgl? - beq.w sgl_done # yes - bgt.b dbl_done # no; it's dbl - rts # no; it's ext - - -# -# ext_grs(): extract guard, round and sticky bits according to -# rounding precision. -# -# INPUT -# d0 = extended precision g,r,s (in d0{31:29}) -# d1 = {PREC,ROUND} -# OUTPUT -# d0{31:29} = guard, round, sticky -# -# The ext_grs extract the guard/round/sticky bits according to the -# selected rounding precision. It is called by the round subroutine -# only. All registers except d0 are kept intact. d0 becomes an -# updated guard,round,sticky in d0{31:29} -# -# Notes: the ext_grs uses the round PREC, and therefore has to swap d1 -# prior to usage, and needs to restore d1 to original. this -# routine is tightly tied to the round routine and not meant to -# uphold standard subroutine calling practices. -# - -ext_grs: - swap %d1 # have d1.w point to round precision - tst.b %d1 # is rnd prec = extended? - bne.b ext_grs_not_ext # no; go handle sgl or dbl - -# -# %d0 actually already hold g,r,s since _round() had it before calling -# this function. so, as long as we don't disturb it, we are "returning" it. -# -ext_grs_ext: - swap %d1 # yes; return to correct positions - rts - -ext_grs_not_ext: - movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} - - cmpi.b %d1, &s_mode # is rnd prec = sgl? - bne.b ext_grs_dbl # no; go handle dbl - -# -# sgl: -# 96 64 40 32 0 -# ----------------------------------------------------- -# | EXP |XXXXXXX| |xx | |grs| -# ----------------------------------------------------- -# <--(24)--->nn\ / -# ee --------------------- -# ww | -# v -# gr new sticky -# -ext_grs_sgl: - bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right - mov.l &30, %d2 # of the sgl prec. limits - lsl.l %d2, %d3 # shift g-r bits to MSB of d3 - mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test - and.l &0x0000003f, %d2 # s bit is the or of all other - bne.b ext_grs_st_stky # bits to the right of g-r - tst.l FTEMP_LO(%a0) # test lower mantissa - bne.b ext_grs_st_stky # if any are set, set sticky - tst.l %d0 # test original g,r,s - bne.b ext_grs_st_stky # if any are set, set sticky - bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit - -# -# dbl: -# 96 64 32 11 0 -# ----------------------------------------------------- -# | EXP |XXXXXXX| | |xx |grs| -# ----------------------------------------------------- -# nn\ / -# ee ------- -# ww | -# v -# gr new sticky -# -ext_grs_dbl: - bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right - mov.l &30, %d2 # of the dbl prec. limits - lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 - mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test - and.l &0x000001ff, %d2 # s bit is the or-ing of all - bne.b ext_grs_st_stky # other bits to the right of g-r - tst.l %d0 # test word original g,r,s - bne.b ext_grs_st_stky # if any are set, set sticky - bra.b ext_grs_end_sd # if clear, exit - -ext_grs_st_stky: - bset &rnd_stky_bit, %d3 # set sticky bit -ext_grs_end_sd: - mov.l %d3, %d0 # return grs to d0 - - movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} - - swap %d1 # restore d1 to original - rts - -######################################################################### -# norm(): normalize the mantissa of an extended precision input. the # -# input operand should not be normalized already. # -# # -# XDEF **************************************************************** # -# norm() # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# a0 = pointer fp extended precision operand to normalize # -# # -# OUTPUT ************************************************************** # -# d0 = number of bit positions the mantissa was shifted # -# a0 = the input operand's mantissa is normalized; the exponent # -# is unchanged. # -# # -######################################################################### - global norm -norm: - mov.l %d2, -(%sp) # create some temp regs - mov.l %d3, -(%sp) - - mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) - mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) - - bfffo %d0{&0:&32}, %d2 # how many places to shift? - beq.b norm_lo # hi(man) is all zeroes! - -norm_hi: - lsl.l %d2, %d0 # left shift hi(man) - bfextu %d1{&0:%d2}, %d3 # extract lo bits - - or.l %d3, %d0 # create hi(man) - lsl.l %d2, %d1 # create lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - mov.l %d1, FTEMP_LO(%a0) # store new lo(man) - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -norm_lo: - bfffo %d1{&0:&32}, %d2 # how many places to shift? - lsl.l %d2, %d1 # shift lo(man) - add.l &32, %d2 # add 32 to shft amount - - mov.l %d1, FTEMP_HI(%a0) # store hi(man) - clr.l FTEMP_LO(%a0) # lo(man) is now zero - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -######################################################################### -# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # -# - returns corresponding optype tag # -# # -# XDEF **************************************************************** # -# unnorm_fix() # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa # -# # -# INPUT *************************************************************** # -# a0 = pointer to unnormalized extended precision number # -# # -# OUTPUT ************************************************************** # -# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # -# a0 = input operand has been converted to a norm, denorm, or # -# zero; both the exponent and mantissa are changed. # -# # -######################################################################### - - global unnorm_fix -unnorm_fix: - bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? - bne.b unnorm_shift # hi(man) is not all zeroes - -# -# hi(man) is all zeroes so see if any bits in lo(man) are set -# -unnorm_chk_lo: - bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? - beq.w unnorm_zero # yes - - add.w &32, %d0 # no; fix shift distance - -# -# d0 = # shifts needed for complete normalization -# -unnorm_shift: - clr.l %d1 # clear top word - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 # strip off sgn - - cmp.w %d0, %d1 # will denorm push exp < 0? - bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 - -# -# exponent would not go < 0. Therefore, number stays normalized -# - sub.w %d0, %d1 # shift exponent value - mov.w FTEMP_EX(%a0), %d0 # load old exponent - and.w &0x8000, %d0 # save old sign - or.w %d0, %d1 # {sgn,new exp} - mov.w %d1, FTEMP_EX(%a0) # insert new exponent - - bsr.l norm # normalize UNNORM - - mov.b &NORM, %d0 # return new optype tag - rts - -# -# exponent would go < 0, so only denormalize until exp = 0 -# -unnorm_nrm_zero: - cmp.b %d1, &32 # is exp <= 32? - bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent - - bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) - mov.l %d0, FTEMP_HI(%a0) # save new hi(man) - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # extract new lo(man) - mov.l %d0, FTEMP_LO(%a0) # save new lo(man) - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# only mantissa bits set are in lo(man) -# -unnorm_nrm_zero_lrg: - sub.w &32, %d1 # adjust shft amt by 32 - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # left shift lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - clr.l FTEMP_LO(%a0) # lo(man) = 0 - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# whole mantissa is zero so this UNNORM is actually a zero -# -unnorm_zero: - and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero - - mov.b &ZERO, %d0 # fix optype tag - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_x(): return the optype of the input ext fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# If it's an unnormalized zero, alter the operand and force it # -# to be a normal zero. # -# # -######################################################################### - - global set_tag_x -set_tag_x: - mov.w FTEMP_EX(%a0), %d0 # extract exponent - andi.w &0x7fff, %d0 # strip off sign - cmpi.w %d0, &0x7fff # is (EXP == MAX)? - beq.b inf_or_nan_x -not_inf_or_nan_x: - btst &0x7,FTEMP_HI(%a0) - beq.b not_norm_x -is_norm_x: - mov.b &NORM, %d0 - rts -not_norm_x: - tst.w %d0 # is exponent = 0? - bne.b is_unnorm_x -not_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_denorm_x - tst.l FTEMP_LO(%a0) - bne.b is_denorm_x -is_zero_x: - mov.b &ZERO, %d0 - rts -is_denorm_x: - mov.b &DENORM, %d0 - rts -# must distinguish now "Unnormalized zeroes" which we -# must convert to zero. -is_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_unnorm_reg_x - tst.l FTEMP_LO(%a0) - bne.b is_unnorm_reg_x -# it's an "unnormalized zero". let's convert it to an actual zero... - andi.w &0x8000,FTEMP_EX(%a0) # clear exponent - mov.b &ZERO, %d0 - rts -is_unnorm_reg_x: - mov.b &UNNORM, %d0 - rts -inf_or_nan_x: - tst.l FTEMP_LO(%a0) - bne.b is_nan_x - mov.l FTEMP_HI(%a0), %d0 - and.l &0x7fffffff, %d0 # msb is a don't care! - bne.b is_nan_x -is_inf_x: - mov.b &INF, %d0 - rts -is_nan_x: - btst &0x6, FTEMP_HI(%a0) - beq.b is_snan_x - mov.b &QNAN, %d0 - rts -is_snan_x: - mov.b &SNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_d(): return the optype of the input dbl fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = points to double precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# # -######################################################################### - - global set_tag_d -set_tag_d: - mov.l FTEMP(%a0), %d0 - mov.l %d0, %d1 - - andi.l &0x7ff00000, %d0 - beq.b zero_or_denorm_d - - cmpi.l %d0, &0x7ff00000 - beq.b inf_or_nan_d - -is_norm_d: - mov.b &NORM, %d0 - rts -zero_or_denorm_d: - and.l &0x000fffff, %d1 - bne is_denorm_d - tst.l 4+FTEMP(%a0) - bne is_denorm_d -is_zero_d: - mov.b &ZERO, %d0 - rts -is_denorm_d: - mov.b &DENORM, %d0 - rts -inf_or_nan_d: - and.l &0x000fffff, %d1 - bne is_nan_d - tst.l 4+FTEMP(%a0) - bne is_nan_d -is_inf_d: - mov.b &INF, %d0 - rts -is_nan_d: - btst &19, %d1 - bne is_qnan_d -is_snan_d: - mov.b &SNAN, %d0 - rts -is_qnan_d: - mov.b &QNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_s(): return the optype of the input sgl fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to single precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# # -######################################################################### - - global set_tag_s -set_tag_s: - mov.l FTEMP(%a0), %d0 - mov.l %d0, %d1 - - andi.l &0x7f800000, %d0 - beq.b zero_or_denorm_s - - cmpi.l %d0, &0x7f800000 - beq.b inf_or_nan_s - -is_norm_s: - mov.b &NORM, %d0 - rts -zero_or_denorm_s: - and.l &0x007fffff, %d1 - bne is_denorm_s -is_zero_s: - mov.b &ZERO, %d0 - rts -is_denorm_s: - mov.b &DENORM, %d0 - rts -inf_or_nan_s: - and.l &0x007fffff, %d1 - bne is_nan_s -is_inf_s: - mov.b &INF, %d0 - rts -is_nan_s: - btst &22, %d1 - bne is_qnan_s -is_snan_s: - mov.b &SNAN, %d0 - rts -is_qnan_s: - mov.b &QNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# unf_res(): routine to produce default underflow result of a # -# scaled extended precision number; this is used by # -# fadd/fdiv/fmul/etc. emulation routines. # -# unf_res4(): same as above but for fsglmul/fsgldiv which use # -# single round prec and extended prec mode. # -# # -# XREF **************************************************************** # -# _denorm() - denormalize according to scale factor # -# _round() - round denormalized number according to rnd prec # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precison operand # -# d0 = scale factor # -# d1 = rounding precision/mode # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to default underflow result in extended precision # -# d0.b = result FPSR_cc which caller may or may not want to save # -# # -# ALGORITHM *********************************************************** # -# Convert the input operand to "internal format" which means the # -# exponent is extended to 16 bits and the sign is stored in the unused # -# portion of the extended precison operand. Denormalize the number # -# according to the scale factor passed in d0. Then, round the # -# denormalized result. # -# Set the FPSR_exc bits as appropriate but return the cc bits in # -# d0 in case the caller doesn't want to save them (as is the case for # -# fmove out). # -# unf_res4() for fsglmul/fsgldiv forces the denorm to extended # -# precision and the rounding mode to single. # -# # -######################################################################### - global unf_res -unf_res: - mov.l %d1, -(%sp) # save rnd prec,mode on stack - - btst &0x7, FTEMP_EX(%a0) # make "internal" format - sne FTEMP_SGN(%a0) - - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 - sub.w %d0, %d1 - mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent - - mov.l %a0, -(%sp) # save operand ptr during calls - - mov.l 0x4(%sp),%d0 # pass rnd prec. - andi.w &0x00c0,%d0 - lsr.w &0x4,%d0 - bsr.l _denorm # denorm result - - mov.l (%sp),%a0 - mov.w 0x6(%sp),%d1 # load prec:mode into %d1 - andi.w &0xc0,%d1 # extract rnd prec - lsr.w &0x4,%d1 - swap %d1 - mov.w 0x6(%sp),%d1 - andi.w &0x30,%d1 - lsr.w &0x4,%d1 - bsr.l _round # round the denorm - - mov.l (%sp)+, %a0 - -# result is now rounded properly. convert back to normal format - bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue - tst.b FTEMP_SGN(%a0) # is "internal result" sign set? - beq.b unf_res_chkifzero # no; result is positive - bset &0x7, FTEMP_EX(%a0) # set result sgn - clr.b FTEMP_SGN(%a0) # clear temp sign - -# the number may have become zero after rounding. set ccodes accordingly. -unf_res_chkifzero: - clr.l %d0 - tst.l FTEMP_HI(%a0) # is value now a zero? - bne.b unf_res_cont # no - tst.l FTEMP_LO(%a0) - bne.b unf_res_cont # no -# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit - bset &z_bit, %d0 # yes; set zero ccode bit - -unf_res_cont: - -# -# can inex1 also be set along with unfl and inex2??? -# -# we know that underflow has occurred. aunfl should be set if INEX2 is also set. -# - btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? - beq.b unf_res_end # no - bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl - -unf_res_end: - add.l &0x4, %sp # clear stack - rts - -# unf_res() for fsglmul() and fsgldiv(). - global unf_res4 -unf_res4: - mov.l %d1,-(%sp) # save rnd prec,mode on stack - - btst &0x7,FTEMP_EX(%a0) # make "internal" format - sne FTEMP_SGN(%a0) - - mov.w FTEMP_EX(%a0),%d1 # extract exponent - and.w &0x7fff,%d1 - sub.w %d0,%d1 - mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent - - mov.l %a0,-(%sp) # save operand ptr during calls - - clr.l %d0 # force rnd prec = ext - bsr.l _denorm # denorm result - - mov.l (%sp),%a0 - mov.w &s_mode,%d1 # force rnd prec = sgl - swap %d1 - mov.w 0x6(%sp),%d1 # load rnd mode - andi.w &0x30,%d1 # extract rnd prec - lsr.w &0x4,%d1 - bsr.l _round # round the denorm - - mov.l (%sp)+,%a0 - -# result is now rounded properly. convert back to normal format - bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue - tst.b FTEMP_SGN(%a0) # is "internal result" sign set? - beq.b unf_res4_chkifzero # no; result is positive - bset &0x7,FTEMP_EX(%a0) # set result sgn - clr.b FTEMP_SGN(%a0) # clear temp sign - -# the number may have become zero after rounding. set ccodes accordingly. -unf_res4_chkifzero: - clr.l %d0 - tst.l FTEMP_HI(%a0) # is value now a zero? - bne.b unf_res4_cont # no - tst.l FTEMP_LO(%a0) - bne.b unf_res4_cont # no -# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit - bset &z_bit,%d0 # yes; set zero ccode bit - -unf_res4_cont: - -# -# can inex1 also be set along with unfl and inex2??? -# -# we know that underflow has occurred. aunfl should be set if INEX2 is also set. -# - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.b unf_res4_end # no - bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl - -unf_res4_end: - add.l &0x4,%sp # clear stack - rts - -######################################################################### -# XDEF **************************************************************** # -# ovf_res(): routine to produce the default overflow result of # -# an overflowing number. # -# ovf_res2(): same as above but the rnd mode/prec are passed # -# differently. # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# d1.b = '-1' => (-); '0' => (+) # -# ovf_res(): # -# d0 = rnd mode/prec # -# ovf_res2(): # -# hi(d0) = rnd prec # -# lo(d0) = rnd mode # -# # -# OUTPUT ************************************************************** # -# a0 = points to extended precision result # -# d0.b = condition code bits # -# # -# ALGORITHM *********************************************************** # -# The default overflow result can be determined by the sign of # -# the result and the rounding mode/prec in effect. These bits are # -# concatenated together to create an index into the default result # -# table. A pointer to the correct result is returned in a0. The # -# resulting condition codes are returned in d0 in case the caller # -# doesn't want FPSR_cc altered (as is the case for fmove out). # -# # -######################################################################### - - global ovf_res -ovf_res: - andi.w &0x10,%d1 # keep result sign - lsr.b &0x4,%d0 # shift prec/mode - or.b %d0,%d1 # concat the two - mov.w %d1,%d0 # make a copy - lsl.b &0x1,%d1 # multiply d1 by 2 - bra.b ovf_res_load - - global ovf_res2 -ovf_res2: - and.w &0x10, %d1 # keep result sign - or.b %d0, %d1 # insert rnd mode - swap %d0 - or.b %d0, %d1 # insert rnd prec - mov.w %d1, %d0 # make a copy - lsl.b &0x1, %d1 # shift left by 1 - -# -# use the rounding mode, precision, and result sign as in index into the -# two tables below to fetch the default result and the result ccodes. -# -ovf_res_load: - mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes - lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr - - rts - -tbl_ovfl_cc: - byte 0x2, 0x0, 0x0, 0x2 - byte 0x2, 0x0, 0x0, 0x2 - byte 0x2, 0x0, 0x0, 0x2 - byte 0x0, 0x0, 0x0, 0x0 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - -tbl_ovfl_result: - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ - long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ - long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ - long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP - -######################################################################### -# XDEF **************************************************************** # -# fout(): move from fp register to memory or data register # -# # -# XREF **************************************************************** # -# _round() - needed to create EXOP for sgl/dbl precision # -# norm() - needed to create EXOP for extended precision # -# ovf_res() - create default overflow result for sgl/dbl precision# -# unf_res() - create default underflow result for sgl/dbl prec. # -# dst_dbl() - create rounded dbl precision result. # -# dst_sgl() - create rounded sgl precision result. # -# fetch_dreg() - fetch dynamic k-factor reg for packed. # -# bindec() - convert FP binary number to packed number. # -# _mem_write() - write data to memory. # -# _mem_write2() - write data to memory unless supv mode -(a7) exc.# -# _dmem_write_{byte,word,long}() - write data to memory. # -# store_dreg_{b,w,l}() - store data to data register file. # -# facc_out_{b,w,l,d,x}() - data access error occurred. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 : intermediate underflow or overflow result if # -# OVFL/UNFL occurred for a sgl or dbl operand # -# # -# ALGORITHM *********************************************************** # -# This routine is accessed by many handlers that need to do an # -# opclass three move of an operand out to memory. # -# Decode an fmove out (opclass 3) instruction to determine if # -# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # -# register or memory. The algorithm uses a standard "fmove" to create # -# the rounded result. Also, since exceptions are disabled, this also # -# create the correct OPERR default result if appropriate. # -# For sgl or dbl precision, overflow or underflow can occur. If # -# either occurs and is enabled, the EXOP. # -# For extended precision, the stacked <ea> must be fixed along # -# w/ the address index register as appropriate w/ _calc_ea_fout(). If # -# the source is a denorm and if underflow is enabled, an EXOP must be # -# created. # -# For packed, the k-factor must be fetched from the instruction # -# word or a data register. The <ea> must be fixed as w/ extended # -# precision. Then, bindec() is called to create the appropriate # -# packed result. # -# If at any time an access error is flagged by one of the move- # -# to-memory routines, then a special exit must be made so that the # -# access error can be handled properly. # -# # -######################################################################### - - global fout -fout: - bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt - mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index - jmp (tbl_fout.b,%pc,%a1) # jump to routine - - swbeg &0x8 -tbl_fout: - short fout_long - tbl_fout - short fout_sgl - tbl_fout - short fout_ext - tbl_fout - short fout_pack - tbl_fout - short fout_word - tbl_fout - short fout_dbl - tbl_fout - short fout_byte - tbl_fout - short fout_pack - tbl_fout - -################################################################# -# fmove.b out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_byte: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_byte_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_byte_norm: - fmov.l %d0,%fpcr # insert rnd prec,mode - - fmov.b %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_byte_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_byte # write byte - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - rts - -fout_byte_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_b - rts - -fout_byte_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_byte_norm - -################################################################# -# fmove.w out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_word: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_word_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_word_norm: - fmov.l %d0,%fpcr # insert rnd prec:mode - - fmov.w %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_word_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_word # write word - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - rts - -fout_word_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_w - rts - -fout_word_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_word_norm - -################################################################# -# fmove.l out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_long: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_long_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_long_norm: - fmov.l %d0,%fpcr # insert rnd prec:mode - - fmov.l %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - -fout_long_write: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_long_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - rts - -fout_long_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - rts - -fout_long_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_long_norm - -################################################################# -# fmove.x out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -# The DENORM causes an Underflow exception. -fout_ext: - -# we copy the extended precision result to FP_SCR0 so that the reserved -# 16-bit field gets zeroed. we do this since we promise not to disturb -# what's at SRC(a0). - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - clr.w 2+FP_SCR0_EX(%a6) # clear reserved field - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - fmovm.x SRC(%a0),&0x80 # return result - - bsr.l _calc_ea_fout # fix stacked <ea> - - mov.l %a0,%a1 # pass: dst addr - lea FP_SCR0(%a6),%a0 # pass: src addr - mov.l &0xc,%d0 # pass: opsize is 12 bytes - -# we must not yet write the extended precision data to the stack -# in the pre-decrement case from supervisor mode or else we'll corrupt -# the stack frame. so, leave it in FP_SRC for now and deal with it later... - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.b fout_ext_a7 - - bsr.l _dmem_write # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - tst.b STAG(%a6) # is operand normalized? - bne.b fout_ext_denorm # no - rts - -# the number is a DENORM. must set the underflow exception bit -fout_ext_denorm: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit - - mov.b FPCR_ENABLE(%a6),%d0 - andi.b &0x0a,%d0 # is UNFL or INEX enabled? - bne.b fout_ext_exc # yes - rts - -# we don't want to do the write if the exception occurred in supervisor mode -# so _mem_write2() handles this for us. -fout_ext_a7: - bsr.l _mem_write2 # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - tst.b STAG(%a6) # is operand normalized? - bne.b fout_ext_denorm # no - rts - -fout_ext_exc: - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the mantissa - neg.w %d0 # new exp = -(shft amt) - andi.w &0x7fff,%d0 - andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign - or.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -fout_ext_err: - mov.l EXC_A6(%a6),(%a6) # fix stacked a6 - bra.l facc_out_x - -######################################################################### -# fmove.s out ########################################################### -######################################################################### -fout_sgl: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack - -# -# operand is a normalized number. first, we check to see if the move out -# would cause either an underflow or overflow. these cases are handled -# separately. otherwise, set the FPCR to the proper rounding mode and -# execute the move. -# - mov.w SRC_EX(%a0),%d0 # extract exponent - andi.w &0x7fff,%d0 # strip sign - - cmpi.w %d0,&SGL_HI # will operand overflow? - bgt.w fout_sgl_ovfl # yes; go handle OVFL - beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL - cmpi.w %d0,&SGL_LO # will operand underflow? - blt.w fout_sgl_unfl # yes; go handle underflow - -# -# NORMs(in range) can be stored out by a simple "fmov.s" -# Unnormalized inputs can come through this point. -# -fout_sgl_exg: - fmovm.x SRC(%a0),&0x80 # fetch fop from stack - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmov.s %fp0,%d0 # store does convert and round - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex - -fout_sgl_exg_write: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_exg_write_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - rts - -fout_sgl_exg_write_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - rts - -# -# here, we know that the operand would UNFL if moved out to single prec, -# so, denorm and round and then use generic store single routine to -# write the value to memory. -# -fout_sgl_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l %a0,-(%sp) - - clr.l %d0 # pass: S.F. = 0 - - cmpi.b STAG(%a6),&DENORM # fetch src optype tag - bne.b fout_sgl_unfl_cont # let DENORMs fall through - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the DENORM - -fout_sgl_unfl_cont: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calc default underflow result - - lea FP_SCR0(%a6),%a0 # pass: ptr to fop - bsr.l dst_sgl # convert to single prec - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_unfl_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.b fout_sgl_unfl_chkexc - -fout_sgl_unfl_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - -fout_sgl_unfl_chkexc: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_unfl # yes - addq.l &0x4,%sp - rts - -# -# it's definitely an overflow so call ovf_res to get the correct answer -# -fout_sgl_ovfl: - tst.b 3+SRC_HI(%a0) # is result inexact? - bne.b fout_sgl_ovfl_inex2 - tst.l SRC_LO(%a0) # is result inexact? - bne.b fout_sgl_ovfl_inex2 - ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - bra.b fout_sgl_ovfl_cont -fout_sgl_ovfl_inex2: - ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 - -fout_sgl_ovfl_cont: - mov.l %a0,-(%sp) - -# call ovf_res() w/ sgl prec and the correct rnd mode to create the default -# overflow result. DON'T save the returned ccodes from ovf_res() since -# fmove out doesn't alter them. - tst.b SRC_EX(%a0) # is operand negative? - smi %d1 # set if so - mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode - bsr.l ovf_res # calc OVFL result - fmovm.x (%a0),&0x80 # load default overflow result - fmov.s %fp0,%d0 # store to single - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_ovfl_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.b fout_sgl_ovfl_chkexc - -fout_sgl_ovfl_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - -fout_sgl_ovfl_chkexc: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_ovfl # yes - addq.l &0x4,%sp - rts - -# -# move out MAY overflow: -# (1) force the exp to 0x3fff -# (2) do a move w/ appropriate rnd mode -# (3) if exp still equals zero, then insert original exponent -# for the correct result. -# if exp now equals one, then it overflowed so call ovf_res. -# -fout_sgl_may_ovfl: - mov.w SRC_EX(%a0),%d1 # fetch current sign - andi.w &0x8000,%d1 # keep it,clear exp - ori.w &0x3fff,%d1 # insert exp = 0 - mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # need absolute value - fcmp.b %fp0,&0x2 # did exponent increase? - fblt.w fout_sgl_exg # no; go finish NORM - bra.w fout_sgl_ovfl # yes; go handle overflow - -################ - -fout_sd_exc_unfl: - mov.l (%sp)+,%a0 - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - cmpi.b STAG(%a6),&DENORM # was src a DENORM? - bne.b fout_sd_exc_cont # no - - lea FP_SCR0(%a6),%a0 - bsr.l norm - neg.l %d0 - andi.w &0x7fff,%d0 - bfins %d0,FP_SCR0_EX(%a6){&1:&15} - bra.b fout_sd_exc_cont - -fout_sd_exc: -fout_sd_exc_ovfl: - mov.l (%sp)+,%a0 # restore a0 - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - -fout_sd_exc_cont: - bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit - sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit - lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM - - mov.b 3+L_SCR3(%a6),%d1 - lsr.b &0x4,%d1 - andi.w &0x0c,%d1 - swap %d1 - mov.b 3+L_SCR3(%a6),%d1 - lsr.b &0x4,%d1 - andi.w &0x03,%d1 - clr.l %d0 # pass: zero g,r,s - bsr.l _round # round the DENORM - - tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? - beq.b fout_sd_exc_done # no - bset &0x7,FP_SCR0_EX(%a6) # yes - -fout_sd_exc_done: - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -################################################################# -# fmove.d out ################################################### -################################################################# -fout_dbl: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack - -# -# operand is a normalized number. first, we check to see if the move out -# would cause either an underflow or overflow. these cases are handled -# separately. otherwise, set the FPCR to the proper rounding mode and -# execute the move. -# - mov.w SRC_EX(%a0),%d0 # extract exponent - andi.w &0x7fff,%d0 # strip sign - - cmpi.w %d0,&DBL_HI # will operand overflow? - bgt.w fout_dbl_ovfl # yes; go handle OVFL - beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL - cmpi.w %d0,&DBL_LO # will operand underflow? - blt.w fout_dbl_unfl # yes; go handle underflow - -# -# NORMs(in range) can be stored out by a simple "fmov.d" -# Unnormalized inputs can come through this point. -# -fout_dbl_exg: - fmovm.x SRC(%a0),&0x80 # fetch fop from stack - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmov.d %fp0,L_SCR1(%a6) # store does convert and round - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d0 # save FPSR - - or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - rts # no; so we're finished - -# -# here, we know that the operand would UNFL if moved out to double prec, -# so, denorm and round and then use generic store double routine to -# write the value to memory. -# -fout_dbl_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l %a0,-(%sp) - - clr.l %d0 # pass: S.F. = 0 - - cmpi.b STAG(%a6),&DENORM # fetch src optype tag - bne.b fout_dbl_unfl_cont # let DENORMs fall through - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the DENORM - -fout_dbl_unfl_cont: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calc default underflow result - - lea FP_SCR0(%a6),%a0 # pass: ptr to fop - bsr.l dst_dbl # convert to single prec - mov.l %d0,L_SCR1(%a6) - mov.l %d1,L_SCR2(%a6) - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_unfl # yes - addq.l &0x4,%sp - rts - -# -# it's definitely an overflow so call ovf_res to get the correct answer -# -fout_dbl_ovfl: - mov.w 2+SRC_LO(%a0),%d0 - andi.w &0x7ff,%d0 - bne.b fout_dbl_ovfl_inex2 - - ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - bra.b fout_dbl_ovfl_cont -fout_dbl_ovfl_inex2: - ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 - -fout_dbl_ovfl_cont: - mov.l %a0,-(%sp) - -# call ovf_res() w/ dbl prec and the correct rnd mode to create the default -# overflow result. DON'T save the returned ccodes from ovf_res() since -# fmove out doesn't alter them. - tst.b SRC_EX(%a0) # is operand negative? - smi %d1 # set if so - mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode - bsr.l ovf_res # calc OVFL result - fmovm.x (%a0),&0x80 # load default overflow result - fmov.d %fp0,L_SCR1(%a6) # store to double - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_ovfl # yes - addq.l &0x4,%sp - rts - -# -# move out MAY overflow: -# (1) force the exp to 0x3fff -# (2) do a move w/ appropriate rnd mode -# (3) if exp still equals zero, then insert original exponent -# for the correct result. -# if exp now equals one, then it overflowed so call ovf_res. -# -fout_dbl_may_ovfl: - mov.w SRC_EX(%a0),%d1 # fetch current sign - andi.w &0x8000,%d1 # keep it,clear exp - ori.w &0x3fff,%d1 # insert exp = 0 - mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # need absolute value - fcmp.b %fp0,&0x2 # did exponent increase? - fblt.w fout_dbl_exg # no; go finish NORM - bra.w fout_dbl_ovfl # yes; go handle overflow - -######################################################################### -# XDEF **************************************************************** # -# dst_dbl(): create double precision value from extended prec. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand in extended precision # -# # -# OUTPUT ************************************************************** # -# d0 = hi(double precision result) # -# d1 = lo(double precision result) # -# # -# ALGORITHM *********************************************************** # -# # -# Changes extended precision to double precision. # -# Note: no attempt is made to round the extended value to double. # -# dbl_sign = ext_sign # -# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # -# get rid of ext integer bit # -# dbl_mant = ext_mant{62:12} # -# # -# --------------- --------------- --------------- # -# extended -> |s| exp | |1| ms mant | | ls mant | # -# --------------- --------------- --------------- # -# 95 64 63 62 32 31 11 0 # -# | | # -# | | # -# | | # -# v v # -# --------------- --------------- # -# double -> |s|exp| mant | | mant | # -# --------------- --------------- # -# 63 51 32 31 0 # -# # -######################################################################### - -dst_dbl: - clr.l %d0 # clear d0 - mov.w FTEMP_EX(%a0),%d0 # get exponent - subi.w &EXT_BIAS,%d0 # subtract extended precision bias - addi.w &DBL_BIAS,%d0 # add double precision bias - tst.b FTEMP_HI(%a0) # is number a denorm? - bmi.b dst_get_dupper # no - subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 -dst_get_dupper: - swap %d0 # d0 now in upper word - lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp - tst.b FTEMP_EX(%a0) # test sign - bpl.b dst_get_dman # if positive, go process mantissa - bset &0x1f,%d0 # if negative, set sign -dst_get_dman: - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms - or.l %d1,%d0 # put these bits in ms word of double - mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - mov.l &21,%d0 # load shift count - lsl.l %d0,%d1 # put lower 11 bits in upper bits - mov.l %d1,L_SCR2(%a6) # build lower lword in memory - mov.l FTEMP_LO(%a0),%d1 # get ls mantissa - bfextu %d1{&0:&21},%d0 # get ls 21 bits of double - mov.l L_SCR2(%a6),%d1 - or.l %d0,%d1 # put them in double result - mov.l L_SCR1(%a6),%d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# dst_sgl(): create single precision value from extended prec # -# # -# XREF **************************************************************** # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand in extended precision # -# # -# OUTPUT ************************************************************** # -# d0 = single precision result # -# # -# ALGORITHM *********************************************************** # -# # -# Changes extended precision to single precision. # -# sgl_sign = ext_sign # -# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # -# get rid of ext integer bit # -# sgl_mant = ext_mant{62:12} # -# # -# --------------- --------------- --------------- # -# extended -> |s| exp | |1| ms mant | | ls mant | # -# --------------- --------------- --------------- # -# 95 64 63 62 40 32 31 12 0 # -# | | # -# | | # -# | | # -# v v # -# --------------- # -# single -> |s|exp| mant | # -# --------------- # -# 31 22 0 # -# # -######################################################################### - -dst_sgl: - clr.l %d0 - mov.w FTEMP_EX(%a0),%d0 # get exponent - subi.w &EXT_BIAS,%d0 # subtract extended precision bias - addi.w &SGL_BIAS,%d0 # add single precision bias - tst.b FTEMP_HI(%a0) # is number a denorm? - bmi.b dst_get_supper # no - subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 -dst_get_supper: - swap %d0 # put exp in upper word of d0 - lsl.l &0x7,%d0 # shift it into single exp bits - tst.b FTEMP_EX(%a0) # test sign - bpl.b dst_get_sman # if positive, continue - bset &0x1f,%d0 # if negative, put in sign first -dst_get_sman: - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - andi.l &0x7fffff00,%d1 # get upper 23 bits of ms - lsr.l &0x8,%d1 # and put them flush right - or.l %d1,%d0 # put these bits in ms word of single - rts - -############################################################################## -fout_pack: - bsr.l _calc_ea_fout # fetch the <ea> - mov.l %a0,-(%sp) - - mov.b STAG(%a6),%d0 # fetch input type - bne.w fout_pack_not_norm # input is not NORM - -fout_pack_norm: - btst &0x4,EXC_CMDREG(%a6) # static or dynamic? - beq.b fout_pack_s # static - -fout_pack_d: - mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg - lsr.b &0x4,%d1 - andi.w &0x7,%d1 - - bsr.l fetch_dreg # fetch Dn w/ k-factor - - bra.b fout_pack_type -fout_pack_s: - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field - -fout_pack_type: - bfexts %d0{&25:&7},%d0 # extract k-factor - mov.l %d0,-(%sp) - - lea FP_SRC(%a6),%a0 # pass: ptr to input - -# bindec is currently scrambling FP_SRC for denorm inputs. -# we'll have to change this, but for now, tough luck!!! - bsr.l bindec # convert xprec to packed - -# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields - andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields - - mov.l (%sp)+,%d0 - - tst.b 3+FP_SCR0_EX(%a6) - bne.b fout_pack_set - tst.l FP_SCR0_HI(%a6) - bne.b fout_pack_set - tst.l FP_SCR0_LO(%a6) - bne.b fout_pack_set - -# add the extra condition that only if the k-factor was zero, too, should -# we zero the exponent - tst.l %d0 - bne.b fout_pack_set -# "mantissa" is all zero which means that the answer is zero. but, the '040 -# algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore, -# if the mantissa is zero, I will zero the exponent, too. -# the question now is whether the exponents sign bit is allowed to be non-zero -# for a zero, also... - andi.w &0xf000,FP_SCR0(%a6) - -fout_pack_set: - - lea FP_SCR0(%a6),%a0 # pass: src addr - -fout_pack_write: - mov.l (%sp)+,%a1 # pass: dst addr - mov.l &0xc,%d0 # pass: opsize is 12 bytes - - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.b fout_pack_a7 - - bsr.l _dmem_write # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - rts - -# we don't want to do the write if the exception occurred in supervisor mode -# so _mem_write2() handles this for us. -fout_pack_a7: - bsr.l _mem_write2 # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - rts - -fout_pack_not_norm: - cmpi.b %d0,&DENORM # is it a DENORM? - beq.w fout_pack_norm # yes - lea FP_SRC(%a6),%a0 - clr.w 2+FP_SRC_EX(%a6) - cmpi.b %d0,&SNAN # is it an SNAN? - beq.b fout_pack_snan # yes - bra.b fout_pack_write # no - -fout_pack_snan: - ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP - bset &0x6,FP_SRC_HI(%a6) # set snan bit - bra.b fout_pack_write - -######################################################################### -# XDEF **************************************************************** # -# fmul(): emulates the fmul instruction # -# fsmul(): emulates the fsmul instruction # -# fdmul(): emulates the fdmul instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a multiply # -# instruction won't cause an exception. Use the regular fmul to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - align 0x10 -tbl_fmul_ovfl: - long 0x3fff - 0x7ffe # ext_max - long 0x3fff - 0x407e # sgl_max - long 0x3fff - 0x43fe # dbl_max -tbl_fmul_unfl: - long 0x3fff + 0x0001 # ext_unfl - long 0x3fff - 0x3f80 # sgl_unfl - long 0x3fff - 0x3c00 # dbl_unfl - - global fsmul -fsmul: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fmul - - global fdmul -fdmul: - andi.b &0x30,%d0 - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fmul -fmul: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - bne.w fmul_not_norm # optimize on non-norm input - -fmul_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale src exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision - lsr.b &0x6,%d1 # shift to lo bits - mov.l (%sp)+,%d0 # load S.F. - cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? - beq.w fmul_may_ovfl # result may rnd to overflow - blt.w fmul_ovfl # result will overflow - - cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? - beq.w fmul_may_unfl # result may rnd to no unfl - bgt.w fmul_unfl # result will underflow - -# -# NORMAL: -# - the result of the multiply operation will neither overflow nor underflow. -# - do the multiply to the proper precision and rounding mode. -# - scale the result exponent using the scale factor. if both operands were -# normalized then we really don't need to go through this scaling. but for now, -# this will do. -# -fmul_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fmul_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# OVERFLOW: -# - the result of the multiply operation is an overflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# - if overflow or inexact is enabled, we need a multiply result rounded to -# extended precision. if the original operation was extended, then we have this -# result. if the original operation was single or double, we have to do another -# multiply using extended precision and the correct rounding mode. the result -# of this operation then has its exponent scaled by -0x6000 to create the -# exceptional operand. -# -fmul_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -# save setting this until now because this is where fmul_may_ovfl may jump in -fmul_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fmul_ovfl_ena # yes - -# calculate the default result -fmul_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled; Create EXOP: -# - if precision is extended, then we have the EXOP. simply bias the exponent -# with an extra -0x6000. if the precision is single or double, we need to -# calculate a result rounded to extended precision. -# -fmul_ovfl_ena: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # test the rnd prec - bne.b fmul_ovfl_ena_sd # it's sgl or dbl - -fmul_ovfl_ena_cont: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 # clear sign bit - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fmul_ovfl_dis - -fmul_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode only - fmov.l %d1,%fpcr # set FPCR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - bra.b fmul_ovfl_ena_cont - -# -# may OVERFLOW: -# - the result of the multiply operation MAY overflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# -fmul_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fmul_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fmul_normal_exit - -# -# UNDERFLOW: -# - the result of the multiply operation is an underflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# - if overflow or inexact is enabled, we need a multiply result rounded to -# extended precision. if the original operation was extended, then we have this -# result. if the original operation was single or double, we have to do another -# multiply using extended precision and the correct rounding mode. the result -# of this operation then has its exponent scaled by -0x6000 to create the -# exceptional operand. -# -fmul_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - -# for fun, let's use only extended precision, round to zero. then, let -# the unf_res() routine figure out all the rest. -# will we get the correct answer. - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fmul_unfl_ena # yes - -fmul_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fmul_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fmul_unfl_ena_sd # no, sgl or dbl - -# if the rnd mode is anything but RZ, then we have to re-do the above -# multiplication because we used RZ for all. - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fmul_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fmul_unfl_dis - -fmul_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fmul_unfl_ena_cont - -# MAY UNDERFLOW: -# -use the correct rounding mode and precision. this code favors operations -# that do not underflow. -fmul_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| > 2.b? - fbgt.w fmul_normal_exit # no; no underflow occurred - fblt.w fmul_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 2. but, -# we don't know if the result was an underflow that rounded up to a 2 or -# a normalized number that rounded down to a 2. so, redo the entire operation -# using RZ as the rounding mode to see what the pre-rounded result is. -# this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x2 # is |result| < 2.b? - fbge.w fmul_normal_exit # no; no underflow occurred - bra.w fmul_unfl # yes, underflow occurred - -################################################################################ - -# -# Multiply: inputs are not both normalized; what are they? -# -fmul_not_norm: - mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fmul_op.b,%pc,%d1.w) - - swbeg &48 -tbl_fmul_op: - short fmul_norm - tbl_fmul_op # NORM x NORM - short fmul_zero - tbl_fmul_op # NORM x ZERO - short fmul_inf_src - tbl_fmul_op # NORM x INF - short fmul_res_qnan - tbl_fmul_op # NORM x QNAN - short fmul_norm - tbl_fmul_op # NORM x DENORM - short fmul_res_snan - tbl_fmul_op # NORM x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_zero - tbl_fmul_op # ZERO x NORM - short fmul_zero - tbl_fmul_op # ZERO x ZERO - short fmul_res_operr - tbl_fmul_op # ZERO x INF - short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN - short fmul_zero - tbl_fmul_op # ZERO x DENORM - short fmul_res_snan - tbl_fmul_op # ZERO x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_inf_dst - tbl_fmul_op # INF x NORM - short fmul_res_operr - tbl_fmul_op # INF x ZERO - short fmul_inf_dst - tbl_fmul_op # INF x INF - short fmul_res_qnan - tbl_fmul_op # INF x QNAN - short fmul_inf_dst - tbl_fmul_op # INF x DENORM - short fmul_res_snan - tbl_fmul_op # INF x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_res_qnan - tbl_fmul_op # QNAN x NORM - short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO - short fmul_res_qnan - tbl_fmul_op # QNAN x INF - short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN - short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM - short fmul_res_snan - tbl_fmul_op # QNAN x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_norm - tbl_fmul_op # NORM x NORM - short fmul_zero - tbl_fmul_op # NORM x ZERO - short fmul_inf_src - tbl_fmul_op # NORM x INF - short fmul_res_qnan - tbl_fmul_op # NORM x QNAN - short fmul_norm - tbl_fmul_op # NORM x DENORM - short fmul_res_snan - tbl_fmul_op # NORM x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_res_snan - tbl_fmul_op # SNAN x NORM - short fmul_res_snan - tbl_fmul_op # SNAN x ZERO - short fmul_res_snan - tbl_fmul_op # SNAN x INF - short fmul_res_snan - tbl_fmul_op # SNAN x QNAN - short fmul_res_snan - tbl_fmul_op # SNAN x DENORM - short fmul_res_snan - tbl_fmul_op # SNAN x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - -fmul_res_operr: - bra.l res_operr -fmul_res_snan: - bra.l res_snan -fmul_res_qnan: - bra.l res_qnan - -# -# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) -# - global fmul_zero # global for fsglmul -fmul_zero: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_zero_p # result ZERO is pos. -fmul_zero_n: - fmov.s &0x80000000,%fp0 # load -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N - rts -fmul_zero_p: - fmov.s &0x00000000,%fp0 # load +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# Multiply: (inf x inf) || (inf x norm) || (inf x denorm) -# -# Note: The j-bit for an infinity is a don't-care. However, to be -# strictly compatible w/ the 68881/882, we make sure to return an -# INF w/ the j-bit set if the input INF j-bit was set. Destination -# INFs take priority. -# - global fmul_inf_dst # global for fsglmul -fmul_inf_dst: - fmovm.x DST(%a1),&0x80 # return INF result in fp0 - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_inf_dst_p # result INF is pos. -fmul_inf_dst_n: - fabs.x %fp0 # clear result sign - fneg.x %fp0 # set result sign - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N - rts -fmul_inf_dst_p: - fabs.x %fp0 # clear result sign - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - - global fmul_inf_src # global for fsglmul -fmul_inf_src: - fmovm.x SRC(%a0),&0x80 # return INF result in fp0 - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_inf_dst_p # result INF is pos. - bra.b fmul_inf_dst_n - -######################################################################### -# XDEF **************************************************************** # -# fin(): emulates the fmove instruction # -# fsin(): emulates the fsmove instruction # -# fdin(): emulates the fdmove instruction # -# # -# XREF **************************************************************** # -# norm() - normalize mantissa for EXOP on denorm # -# scale_to_zero_src() - scale src exponent to zero # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round prec/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Norms can be emulated w/ a regular fmove instruction. For # -# sgl/dbl, must scale exponent and perform an "fmove". Check to see # -# if the result would have overflowed/underflowed. If so, use unf_res() # -# or ovf_res() to return the default result. Also return EXOP if # -# exception is enabled. If no exception, return the default result. # -# Unnorms don't pass through here. # -# # -######################################################################### - - global fsin -fsin: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fin - - global fdin -fdin: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fin -fin: - mov.l %d0,L_SCR3(%a6) # store rnd info - - mov.b STAG(%a6),%d1 # fetch src optype tag - bne.w fin_not_norm # optimize on non-norm input - -# -# FP MOVE IN: NORMs and DENORMs ONLY! -# -fin_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fin_not_ext # no, so go handle dbl or sgl - -# -# precision selected is extended. so...we cannot get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - tst.b SRC_EX(%a0) # is the operand negative? - bpl.b fin_norm_done # no - bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit -fin_norm_done: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fin_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fin_not_ext # no, so go handle dbl or sgl - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - tst.b SRC_EX(%a0) # is the operand negative? - bpl.b fin_denorm_done # no - bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit -fin_denorm_done: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fin_denorm_unfl_ena # yes - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fin_denorm_unfl_ena: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat new exo,old sign - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is to be rounded to single or double precision -# -fin_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fin_dbl - -# -# operand is to be rounded to single precision -# -fin_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fin_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fin_sd_may_ovfl # maybe; go check - blt.w fin_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved into the fp reg file -# -fin_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform move - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fin_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exponent - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fin_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.w fin_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fin_sd_may_ovfl # maybe; go check - blt.w fin_sd_ovfl # yes; go handle overflow - bra.w fin_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fin_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - tst.b FP_SCR0_EX(%a6) # is operand negative? - bpl.b fin_sd_unfl_tst - bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit - -# if underflow or inexact is enabled, then go calculate the EXOP first. -fin_sd_unfl_tst: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fin_sd_unfl_ena # yes - -fin_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow or inexact is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fin_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # subtract scale factor - andi.w &0x8000,%d2 # extract old sign - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fin_sd_unfl_dis - -# -# operand WILL overflow. -# -fin_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform move - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fin_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fin_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fin_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fin_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - sub.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fin_sd_ovfl_dis - -# -# the move in MAY overflow. so... -# -fin_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform the move - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fin_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fin_sd_normal_exit - -########################################################################## - -# -# operand is not a NORM: check its optype and branch accordingly -# -fin_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fin_denorm - cmpi.b %d1,&SNAN # weed out SNANs - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNANs - beq.l res_qnan_1op - -# -# do the fmove in; at this point, only possible ops are ZERO and INF. -# use fmov to determine ccodes. -# prec:mode should be zero at this point but it won't affect answer anyways. -# - fmov.x SRC(%a0),%fp0 # do fmove in - fmov.l %fpsr,%d0 # no exceptions possible - rol.l &0x8,%d0 # put ccodes in lo byte - mov.b %d0,FPSR_CC(%a6) # insert correct ccodes - rts - -######################################################################### -# XDEF **************************************************************** # -# fdiv(): emulates the fdiv instruction # -# fsdiv(): emulates the fsdiv instruction # -# fddiv(): emulates the fddiv instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a divide # -# instruction won't cause an exception. Use the regular fdiv to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - align 0x10 -tbl_fdiv_unfl: - long 0x3fff - 0x0000 # ext_unfl - long 0x3fff - 0x3f81 # sgl_unfl - long 0x3fff - 0x3c01 # dbl_unfl - -tbl_fdiv_ovfl: - long 0x3fff - 0x7ffe # ext overflow exponent - long 0x3fff - 0x407e # sgl overflow exponent - long 0x3fff - 0x43fe # dbl overflow exponent - - global fsdiv -fsdiv: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fdiv - - global fddiv -fddiv: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fdiv -fdiv: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fdiv_not_norm # optimize on non-norm input - -# -# DIVIDE: NORMs and DENORMs ONLY! -# -fdiv_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale src exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - neg.l (%sp) # SCALE FACTOR = scale1 - scale2 - add.l %d0,(%sp) - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision - lsr.b &0x6,%d1 # shift to lo bits - mov.l (%sp)+,%d0 # load S.F. - cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? - ble.w fdiv_may_ovfl # result will overflow - - cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? - beq.w fdiv_may_unfl # maybe - bgt.w fdiv_unfl # yes; go handle underflow - -fdiv_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # save FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # perform divide - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fdiv_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store result on stack - mov.l %d2,-(%sp) # store d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -tbl_fdiv_ovfl2: - long 0x7fff - long 0x407f - long 0x43ff - -fdiv_no_ovfl: - mov.l (%sp)+,%d0 # restore scale factor - bra.b fdiv_normal_exit - -fdiv_may_ovfl: - mov.l %d0,-(%sp) # save scale factor - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # set FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d0 - fmov.l &0x0,%fpcr - - or.l %d0,USER_FPSR(%a6) # save INEX,N - - fmovm.x &0x01,-(%sp) # save result to stack - mov.w (%sp),%d0 # fetch new exponent - add.l &0xc,%sp # clear result from stack - andi.l &0x7fff,%d0 # strip sign - sub.l (%sp),%d0 # add scale factor - cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) - blt.b fdiv_no_ovfl - mov.l (%sp)+,%d0 - -fdiv_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fdiv_ovfl_ena # yes - -fdiv_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fdiv_ovfl_ena: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl - -fdiv_ovfl_ena_cont: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 # clear sign bit - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fdiv_ovfl_dis - -fdiv_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode - fmov.l %d1,%fpcr # set FPCR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - bra.b fdiv_ovfl_ena_cont - -fdiv_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fdiv_unfl_ena # yes - -fdiv_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fdiv_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fdiv_unfl_ena_sd # no, sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fdiv_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp1 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factoer - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exp - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fdiv_unfl_dis - -fdiv_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fdiv_unfl_ena_cont - -# -# the divide operation MAY underflow: -# -fdiv_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| > 1.b? - fbgt.w fdiv_normal_exit # no; no underflow occurred - fblt.w fdiv_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 1. but, -# we don't know if the result was an underflow that rounded up to a 1 -# or a normalized number that rounded down to a 1. so, redo the entire -# operation using RZ as the rounding mode to see what the pre-rounded -# result is. this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp1 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x1 # is |result| < 1.b? - fbge.w fdiv_normal_exit # no; no underflow occurred - bra.w fdiv_unfl # yes; underflow occurred - -############################################################################ - -# -# Divide: inputs are not both normalized; what are they? -# -fdiv_not_norm: - mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fdiv_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fdiv_op: - short fdiv_norm - tbl_fdiv_op # NORM / NORM - short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO - short fdiv_zero_load - tbl_fdiv_op # NORM / INF - short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN - short fdiv_norm - tbl_fdiv_op # NORM / DENORM - short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM - short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO - short fdiv_zero_load - tbl_fdiv_op # ZERO / INF - short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN - short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM - short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_inf_dst - tbl_fdiv_op # INF / NORM - short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO - short fdiv_res_operr - tbl_fdiv_op # INF / INF - short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN - short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM - short fdiv_res_snan - tbl_fdiv_op # INF / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM - short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO - short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF - short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN - short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM - short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_norm - tbl_fdiv_op # DENORM / NORM - short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO - short fdiv_zero_load - tbl_fdiv_op # DENORM / INF - short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN - short fdiv_norm - tbl_fdiv_op # DENORM / DENORM - short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM - short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO - short fdiv_res_snan - tbl_fdiv_op # SNAN / INF - short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN - short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM - short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - -fdiv_res_qnan: - bra.l res_qnan -fdiv_res_snan: - bra.l res_snan -fdiv_res_operr: - bra.l res_operr - - global fdiv_zero_load # global for fsgldiv -fdiv_zero_load: - mov.b SRC_EX(%a0),%d0 # result sign is exclusive - mov.b DST_EX(%a1),%d1 # or of input signs. - eor.b %d0,%d1 - bpl.b fdiv_zero_load_p # result is positive - fmov.s &0x80000000,%fp0 # load a -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N - rts -fdiv_zero_load_p: - fmov.s &0x00000000,%fp0 # load a +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# The destination was In Range and the source was a ZERO. The result, -# Therefore, is an INF w/ the proper sign. -# So, determine the sign and return a new INF (w/ the j-bit cleared). -# - global fdiv_inf_load # global for fsgldiv -fdiv_inf_load: - ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ - mov.b SRC_EX(%a0),%d0 # load both signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fdiv_inf_load_p # result is positive - fmov.s &0xff800000,%fp0 # make result -INF - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N - rts -fdiv_inf_load_p: - fmov.s &0x7f800000,%fp0 # make result +INF - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -# -# The destination was an INF w/ an In Range or ZERO source, the result is -# an INF w/ the proper sign. -# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the -# dst INF is set, then then j-bit of the result INF is also set). -# - global fdiv_inf_dst # global for fsgldiv -fdiv_inf_dst: - mov.b DST_EX(%a1),%d0 # load both signs - mov.b SRC_EX(%a0),%d1 - eor.b %d0,%d1 - bpl.b fdiv_inf_dst_p # result is positive - - fmovm.x DST(%a1),&0x80 # return result in fp0 - fabs.x %fp0 # clear sign bit - fneg.x %fp0 # set sign bit - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fdiv_inf_dst_p: - fmovm.x DST(%a1),&0x80 # return result in fp0 - fabs.x %fp0 # return positive INF - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fneg(): emulates the fneg instruction # -# fsneg(): emulates the fsneg instruction # -# fdneg(): emulates the fdneg instruction # -# # -# XREF **************************************************************** # -# norm() - normalize a denorm to provide EXOP # -# scale_to_zero_src() - scale sgl/dbl source exponent # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, zeroes, and infinities as special cases. Separate # -# norms/denorms into ext/sgl/dbl precisions. Extended precision can be # -# emulated by simply setting sign bit. Sgl/dbl operands must be scaled # -# and an actual fneg performed to see if overflow/underflow would have # -# occurred. If so, return default underflow/overflow result. Else, # -# scale the result exponent and return result. FPSR gets set based on # -# the result value. # -# # -######################################################################### - - global fsneg -fsneg: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fneg - - global fdneg -fdneg: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fneg -fneg: - mov.l %d0,L_SCR3(%a6) # store rnd info - mov.b STAG(%a6),%d1 - bne.w fneg_not_norm # optimize on non-norm input - -# -# NEGATE SIGN : norms and denorms ONLY! -# -fneg_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fneg_not_ext # no; go handle sgl or dbl - -# -# precision selected is extended. so...we can not get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - eori.w &0x8000,%d0 # negate sign - bpl.b fneg_norm_load # sign is positive - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit -fneg_norm_load: - mov.w %d0,FP_SCR0_EX(%a6) - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fneg_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fneg_not_ext # no; go handle sgl or dbl - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - eori.w &0x8000,%d0 # negate sign - bpl.b fneg_denorm_done # no - mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit -fneg_denorm_done: - mov.w %d0,FP_SCR0_EX(%a6) - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fneg_ext_unfl_ena # yes - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fneg_ext_unfl_ena: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat old sign, new exponent - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is either single or double -# -fneg_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fneg_dbl - -# -# operand is to be rounded to single precision -# -fneg_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fneg_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fneg_sd_may_ovfl # maybe; go check - blt.w fneg_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fneg_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fneg_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fneg_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.b fneg_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fneg_sd_may_ovfl # maybe; go check - blt.w fneg_sd_ovfl # yes; go handle overflow - bra.w fneg_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fneg_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - eori.b &0x80,FP_SCR0_EX(%a6) # negate sign - bpl.b fneg_sd_unfl_tst - bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit - -# if underflow or inexact is enabled, go calculate EXOP first. -fneg_sd_unfl_tst: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fneg_sd_unfl_ena # yes - -fneg_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fneg_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fneg_sd_unfl_dis - -# -# operand WILL overflow. -# -fneg_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fneg_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fneg_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fneg_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fneg_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fneg_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fneg_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fneg_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fneg_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fneg_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - -# -# do the fneg; at this point, only possible ops are ZERO and INF. -# use fneg to determine ccodes. -# prec:mode should be zero at this point but it won't affect answer anyways. -# - fneg.x SRC_EX(%a0),%fp0 # do fneg - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 # put ccodes in lo byte - mov.b %d0,FPSR_CC(%a6) # insert correct ccodes - rts - -######################################################################### -# XDEF **************************************************************** # -# ftst(): emulates the ftest instruction # -# # -# XREF **************************************************************** # -# res{s,q}nan_1op() - set NAN result for monadic instruction # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# none # -# # -# ALGORITHM *********************************************************** # -# Check the source operand tag (STAG) and set the FPCR according # -# to the operand type and sign. # -# # -######################################################################### - - global ftst -ftst: - mov.b STAG(%a6),%d1 - bne.b ftst_not_norm # optimize on non-norm input - -# -# Norm: -# -ftst_norm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_norm_m # yes - rts -ftst_norm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# input is not normalized; what is it? -# -ftst_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b ftst_zero - cmpi.b %d1,&INF # weed out INF - beq.b ftst_inf - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - -# -# Denorm: -# -ftst_denorm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_denorm_m # yes - rts -ftst_denorm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# Infinity: -# -ftst_inf: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_inf_m # yes -ftst_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -ftst_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits - rts - -# -# Zero: -# -ftst_zero: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_zero_m # yes -ftst_zero_p: - mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts -ftst_zero_m: - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fint(): emulates the fint instruction # -# # -# XREF **************************************************************** # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# # -# ALGORITHM *********************************************************** # -# Separate according to operand type. Unnorms don't pass through # -# here. For norms, load the rounding mode/prec, execute a "fint", then # -# store the resulting FPSR bits. # -# For denorms, force the j-bit to a one and do the same as for # -# norms. Denorms are so low that the answer will either be a zero or a # -# one. # -# For zeroes/infs/NANs, return the same while setting the FPSR # -# as appropriate. # -# # -######################################################################### - - global fint -fint: - mov.b STAG(%a6),%d1 - bne.b fint_not_norm # optimize on non-norm input - -# -# Norm: -# -fint_norm: - andi.b &0x30,%d0 # set prec = ext - - fmov.l %d0,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fint.x SRC(%a0),%fp0 # execute fint - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d0 # save FPSR - or.l %d0,USER_FPSR(%a6) # set exception bits - - rts - -# -# input is not normalized; what is it? -# -fint_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fint_zero - cmpi.b %d1,&INF # weed out INF - beq.b fint_inf - cmpi.b %d1,&DENORM # weed out DENORM - beq.b fint_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op # weed out QNAN - -# -# Denorm: -# -# for DENORMs, the result will be either (+/-)ZERO or (+/-)1. -# also, the INEX2 and AINEX exception bits will be set. -# so, we could either set these manually or force the DENORM -# to a very small NORM and ship it to the NORM routine. -# I do the latter. -# -fint_denorm: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp - mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM - lea FP_SCR0(%a6),%a0 - bra.b fint_norm - -# -# Zero: -# -fint_zero: - tst.b SRC_EX(%a0) # is ZERO negative? - bmi.b fint_zero_m # yes -fint_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO in fp0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fint_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -# -# Infinity: -# -fint_inf: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - tst.b SRC_EX(%a0) # is INF negative? - bmi.b fint_inf_m # yes -fint_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -fint_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fintrz(): emulates the fintrz instruction # -# # -# XREF **************************************************************** # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# # -# ALGORITHM *********************************************************** # -# Separate according to operand type. Unnorms don't pass through # -# here. For norms, load the rounding mode/prec, execute a "fintrz", # -# then store the resulting FPSR bits. # -# For denorms, force the j-bit to a one and do the same as for # -# norms. Denorms are so low that the answer will either be a zero or a # -# one. # -# For zeroes/infs/NANs, return the same while setting the FPSR # -# as appropriate. # -# # -######################################################################### - - global fintrz -fintrz: - mov.b STAG(%a6),%d1 - bne.b fintrz_not_norm # optimize on non-norm input - -# -# Norm: -# -fintrz_norm: - fmov.l &0x0,%fpsr # clear FPSR - - fintrz.x SRC(%a0),%fp0 # execute fintrz - - fmov.l %fpsr,%d0 # save FPSR - or.l %d0,USER_FPSR(%a6) # set exception bits - - rts - -# -# input is not normalized; what is it? -# -fintrz_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fintrz_zero - cmpi.b %d1,&INF # weed out INF - beq.b fintrz_inf - cmpi.b %d1,&DENORM # weed out DENORM - beq.b fintrz_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op # weed out QNAN - -# -# Denorm: -# -# for DENORMs, the result will be (+/-)ZERO. -# also, the INEX2 and AINEX exception bits will be set. -# so, we could either set these manually or force the DENORM -# to a very small NORM and ship it to the NORM routine. -# I do the latter. -# -fintrz_denorm: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp - mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM - lea FP_SCR0(%a6),%a0 - bra.b fintrz_norm - -# -# Zero: -# -fintrz_zero: - tst.b SRC_EX(%a0) # is ZERO negative? - bmi.b fintrz_zero_m # yes -fintrz_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO in fp0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fintrz_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -# -# Infinity: -# -fintrz_inf: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - tst.b SRC_EX(%a0) # is INF negative? - bmi.b fintrz_inf_m # yes -fintrz_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -fintrz_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fabs(): emulates the fabs instruction # -# fsabs(): emulates the fsabs instruction # -# fdabs(): emulates the fdabs instruction # -# # -# XREF **************************************************************** # -# norm() - normalize denorm mantissa to provide EXOP # -# scale_to_zero_src() - make exponent. = 0; get scale factor # -# unf_res() - calculate underflow result # -# ovf_res() - calculate overflow result # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = rnd precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Simply clear sign for extended precision norm. Ext prec denorm # -# gets an EXOP created for it since it's an underflow. # -# Double and single precision can overflow and underflow. First, # -# scale the operand such that the exponent is zero. Perform an "fabs" # -# using the correct rnd mode/prec. Check to see if the original # -# exponent would take an exception. If so, use unf_res() or ovf_res() # -# to calculate the default result. Also, create the EXOP for the # -# exceptional case. If no exception should occur, insert the correct # -# result exponent and return. # -# Unnorms don't pass through here. # -# # -######################################################################### - - global fsabs -fsabs: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fabs - - global fdabs -fdabs: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fabs -fabs: - mov.l %d0,L_SCR3(%a6) # store rnd info - mov.b STAG(%a6),%d1 - bne.w fabs_not_norm # optimize on non-norm input - -# -# ABSOLUTE VALUE: norms and denorms ONLY! -# -fabs_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fabs_not_ext # no; go handle sgl or dbl - -# -# precision selected is extended. so...we can not get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d1 - bclr &15,%d1 # force absolute value - mov.w %d1,FP_SCR0_EX(%a6) # insert exponent - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fabs_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fabs_not_ext # no - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - bclr &15,%d0 # clear sign - mov.w %d0,FP_SCR0_EX(%a6) # insert exponent - - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fabs_ext_unfl_ena - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fabs_ext_unfl_ena: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat old sign, new exponent - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is either single or double -# -fabs_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fabs_dbl - -# -# operand is to be rounded to single precision -# -fabs_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fabs_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fabs_sd_may_ovfl # maybe; go check - blt.w fabs_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fabs_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fabs_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fabs_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.b fabs_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fabs_sd_may_ovfl # maybe; go check - blt.w fabs_sd_ovfl # yes; go handle overflow - bra.w fabs_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fabs_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - bclr &0x7,FP_SCR0_EX(%a6) # force absolute value - -# if underflow or inexact is enabled, go calculate EXOP first. - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fabs_sd_unfl_ena # yes - -fabs_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fabs_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fabs_sd_unfl_dis - -# -# operand WILL overflow. -# -fabs_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fabs_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fabs_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fabs_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fabs_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fabs_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fabs_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fabs_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fabs_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fabs_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - - fabs.x SRC(%a0),%fp0 # force absolute value - - cmpi.b %d1,&INF # weed out INF - beq.b fabs_inf -fabs_zero: - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fabs_inf: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fcmp(): fp compare op routine # -# # -# XREF **************************************************************** # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 = round prec/mode # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Handle NANs and denorms as special cases. For everything else, # -# just use the actual fcmp instruction to produce the correct condition # -# codes. # -# # -######################################################################### - - global fcmp -fcmp: - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 - bne.b fcmp_not_norm # optimize on non-norm input - -# -# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs -# -fcmp_norm: - fmovm.x DST(%a1),&0x80 # load dst op - - fcmp.x %fp0,SRC(%a0) # do compare - - fmov.l %fpsr,%d0 # save FPSR - rol.l &0x8,%d0 # extract ccode bits - mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) - - rts - -# -# fcmp: inputs are not both normalized; what are they? -# -fcmp_not_norm: - mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fcmp_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fcmp_op: - short fcmp_norm - tbl_fcmp_op # NORM - NORM - short fcmp_norm - tbl_fcmp_op # NORM - ZERO - short fcmp_norm - tbl_fcmp_op # NORM - INF - short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN - short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM - short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_norm - tbl_fcmp_op # ZERO - NORM - short fcmp_norm - tbl_fcmp_op # ZERO - ZERO - short fcmp_norm - tbl_fcmp_op # ZERO - INF - short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN - short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM - short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_norm - tbl_fcmp_op # INF - NORM - short fcmp_norm - tbl_fcmp_op # INF - ZERO - short fcmp_norm - tbl_fcmp_op # INF - INF - short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN - short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM - short fcmp_res_snan - tbl_fcmp_op # INF - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM - short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO - short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF - short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN - short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM - short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM - short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO - short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF - short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN - short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM - short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM - short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO - short fcmp_res_snan - tbl_fcmp_op # SNAN - INF - short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN - short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM - short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - -# unlike all other functions for QNAN and SNAN, fcmp does NOT set the -# 'N' bit for a negative QNAN or SNAN input so we must squelch it here. -fcmp_res_qnan: - bsr.l res_qnan - andi.b &0xf7,FPSR_CC(%a6) - rts -fcmp_res_snan: - bsr.l res_snan - andi.b &0xf7,FPSR_CC(%a6) - rts - -# -# DENORMs are a little more difficult. -# If you have a 2 DENORMs, then you can just force the j-bit to a one -# and use the fcmp_norm routine. -# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one -# and use the fcmp_norm routine. -# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. -# But with a DENORM and a NORM of the same sign, the neg bit is set if the -# (1) signs are (+) and the DENORM is the dst or -# (2) signs are (-) and the DENORM is the src -# - -fcmp_dnrm_s: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),%d0 - bset &31,%d0 # DENORM src; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 - bra.w fcmp_norm - -fcmp_dnrm_d: - mov.l DST_EX(%a1),FP_SCR0_EX(%a6) - mov.l DST_HI(%a1),%d0 - bset &31,%d0 # DENORM src; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a1 - bra.w fcmp_norm - -fcmp_dnrm_sd: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l DST_HI(%a1),%d0 - bset &31,%d0 # DENORM dst; make into small norm - mov.l %d0,FP_SCR1_HI(%a6) - mov.l SRC_HI(%a0),%d0 - bset &31,%d0 # DENORM dst; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR1(%a6),%a1 - lea FP_SCR0(%a6),%a0 - bra.w fcmp_norm - -fcmp_nrm_dnrm: - mov.b SRC_EX(%a0),%d0 # determine if like signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fcmp_dnrm_s - -# signs are the same, so must determine the answer ourselves. - tst.b %d0 # is src op negative? - bmi.b fcmp_nrm_dnrm_m # yes - rts -fcmp_nrm_dnrm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -fcmp_dnrm_nrm: - mov.b SRC_EX(%a0),%d0 # determine if like signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fcmp_dnrm_d - -# signs are the same, so must determine the answer ourselves. - tst.b %d0 # is src op negative? - bpl.b fcmp_dnrm_nrm_m # no - rts -fcmp_dnrm_nrm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fsglmul(): emulates the fsglmul instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res4() - return default underflow result for sglop # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a multiply # -# instruction won't cause an exception. Use the regular fsglmul to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fsglmul -fsglmul: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 - - bne.w fsglmul_not_norm # optimize on non-norm input - -fsglmul_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 - - cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? - beq.w fsglmul_may_ovfl # result may rnd to overflow - blt.w fsglmul_ovfl # result will overflow - - cmpi.l %d0,&0x3fff+0x0001 # would result unfl? - beq.w fsglmul_may_unfl # result may rnd to no unfl - bgt.w fsglmul_unfl # result will underflow - -fsglmul_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsglmul_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -fsglmul_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsglmul_ovfl_tst: - -# save setting this until now because this is where fsglmul_may_ovfl may jump in - or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsglmul_ovfl_ena # yes - -fsglmul_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - andi.b &0x30,%d0 # force prec = ext - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fsglmul_ovfl_ena: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsglmul_ovfl_dis - -fsglmul_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fsglmul_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fsglmul_normal_exit - -fsglmul_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsglmul_unfl_ena # yes - -fsglmul_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res4 # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fsglmul_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fsglmul_unfl_dis - -fsglmul_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| > 2.b? - fbgt.w fsglmul_normal_exit # no; no underflow occurred - fblt.w fsglmul_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 2. but, -# we don't know if the result was an underflow that rounded up to a 2 or -# a normalized number that rounded down to a 2. so, redo the entire operation -# using RZ as the rounding mode to see what the pre-rounded result is. -# this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x2 # is |result| < 2.b? - fbge.w fsglmul_normal_exit # no; no underflow occurred - bra.w fsglmul_unfl # yes, underflow occurred - -############################################################################## - -# -# Single Precision Multiply: inputs are not both normalized; what are they? -# -fsglmul_not_norm: - mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsglmul_op: - short fsglmul_norm - tbl_fsglmul_op # NORM x NORM - short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO - short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF - short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN - short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM - short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO - short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF - short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN - short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM - short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO - short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF - short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN - short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_norm - tbl_fsglmul_op # NORM x NORM - short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO - short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF - short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN - short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - -fsglmul_res_operr: - bra.l res_operr -fsglmul_res_snan: - bra.l res_snan -fsglmul_res_qnan: - bra.l res_qnan -fsglmul_zero: - bra.l fmul_zero -fsglmul_inf_src: - bra.l fmul_inf_src -fsglmul_inf_dst: - bra.l fmul_inf_dst - -######################################################################### -# XDEF **************************************************************** # -# fsgldiv(): emulates the fsgldiv instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res4() - return default underflow result for sglop # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a divide # -# instruction won't cause an exception. Use the regular fsgldiv to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fsgldiv -fsgldiv: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fsgldiv_not_norm # optimize on non-norm input - -# -# DIVIDE: NORMs and DENORMs ONLY! -# -fsgldiv_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # calculate scale factor 1 - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # calculate scale factor 2 - - neg.l (%sp) # S.F. = scale1 - scale2 - add.l %d0,(%sp) - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode - lsr.b &0x6,%d1 - mov.l (%sp)+,%d0 - cmpi.l %d0,&0x3fff-0x7ffe - ble.w fsgldiv_may_ovfl - - cmpi.l %d0,&0x3fff-0x0000 # will result underflow? - beq.w fsgldiv_may_unfl # maybe - bgt.w fsgldiv_unfl # yes; go handle underflow - -fsgldiv_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # save FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsgldiv_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store result on stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -fsgldiv_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # set FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 - fmov.l &0x0,%fpcr - - or.l %d1,USER_FPSR(%a6) # save INEX,N - - fmovm.x &0x01,-(%sp) # save result to stack - mov.w (%sp),%d1 # fetch new exponent - add.l &0xc,%sp # clear result - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - cmp.l %d1,&0x7fff # did divide overflow? - blt.b fsgldiv_normal_exit - -fsgldiv_ovfl_tst: - or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsgldiv_ovfl_ena # yes - -fsgldiv_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - andi.b &0x30,%d0 # kill precision - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fsgldiv_ovfl_ena: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract new bias - andi.w &0x7fff,%d1 # clear ms bit - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsgldiv_ovfl_dis - -fsgldiv_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsgldiv_unfl_ena # yes - -fsgldiv_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res4 # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fsgldiv_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat old sign, new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsgldiv_unfl_dis - -# -# the divide operation MAY underflow: -# -fsgldiv_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| > 1.b? - fbgt.w fsgldiv_normal_exit # no; no underflow occurred - fblt.w fsgldiv_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 1. but, -# we don't know if the result was an underflow that rounded up to a 1 -# or a normalized number that rounded down to a 1. so, redo the entire -# operation using RZ as the rounding mode to see what the pre-rounded -# result is. this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 - - clr.l %d1 # clear scratch register - ori.b &rz_mode*0x10,%d1 # force RZ rnd mode - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x1 # is |result| < 1.b? - fbge.w fsgldiv_normal_exit # no; no underflow occurred - bra.w fsgldiv_unfl # yes; underflow occurred - -############################################################################ - -# -# Divide: inputs are not both normalized; what are they? -# -fsgldiv_not_norm: - mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsgldiv_op: - short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM - short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN - short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM - short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO - short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM - short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN - short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - -fsgldiv_res_qnan: - bra.l res_qnan -fsgldiv_res_snan: - bra.l res_snan -fsgldiv_res_operr: - bra.l res_operr -fsgldiv_inf_load: - bra.l fdiv_inf_load -fsgldiv_zero_load: - bra.l fdiv_zero_load -fsgldiv_inf_dst: - bra.l fdiv_inf_dst - -######################################################################### -# XDEF **************************************************************** # -# fadd(): emulates the fadd instruction # -# fsadd(): emulates the fadd instruction # -# fdadd(): emulates the fdadd instruction # -# # -# XREF **************************************************************** # -# addsub_scaler2() - scale the operands so they won't take exc # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan() - set QNAN result # -# res_snan() - set SNAN result # -# res_operr() - set OPERR result # -# scale_to_zero_src() - set src operand exponent equal to zero # -# scale_to_zero_dst() - set dst operand exponent equal to zero # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Do addition after scaling exponents such that exception won't # -# occur. Then, check result exponent to see if exception would have # -# occurred. If so, return default result and maybe EXOP. Else, insert # -# the correct result exponent and return. Set FPSR bits as appropriate. # -# # -######################################################################### - - global fsadd -fsadd: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fadd - - global fdadd -fdadd: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fadd -fadd: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fadd_not_norm # optimize on non-norm input - -# -# ADD: norms and denorms -# -fadd_norm: - bsr.l addsub_scaler2 # scale exponents - -fadd_zero_entry: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch INEX2,N,Z - - or.l %d1,USER_FPSR(%a6) # save exc and ccode bits - - fbeq.w fadd_zero_exit # if result is zero, end now - - mov.l %d2,-(%sp) # save d2 - - fmovm.x &0x01,-(%sp) # save result to stack - - mov.w 2+L_SCR3(%a6),%d1 - lsr.b &0x6,%d1 - - mov.w (%sp),%d2 # fetch new sign, exp - andi.l &0x7fff,%d2 # strip sign - sub.l %d0,%d2 # add scale factor - - cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? - bge.b fadd_ovfl # yes - - cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? - blt.w fadd_unfl # yes - beq.w fadd_may_unfl # maybe; go find out - -fadd_normal: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x80 # return result in fp0 - - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_zero_exit: -# fmov.s &0x00000000,%fp0 # return zero in fp0 - rts - -tbl_fadd_ovfl: - long 0x7fff # ext ovfl - long 0x407f # sgl ovfl - long 0x43ff # dbl ovfl - -tbl_fadd_unfl: - long 0x0000 # ext unfl - long 0x3f81 # sgl unfl - long 0x3c01 # dbl unfl - -fadd_ovfl: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fadd_ovfl_ena # yes - - add.l &0xc,%sp -fadd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_ovfl_ena: - mov.b L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl - -fadd_ovfl_ena_cont: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - subi.l &0x6000,%d2 # add extra bias - andi.w &0x7fff,%d2 - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x40 # return EXOP in fp1 - bra.b fadd_ovfl_dis - -fadd_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode - fmov.l %d1,%fpcr # set FPCR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - - add.l &0xc,%sp - fmovm.x &0x01,-(%sp) - bra.b fadd_ovfl_ena_cont - -fadd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - add.l &0xc,%sp - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save status - - or.l %d1,USER_FPSR(%a6) # save INEX,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fadd_unfl_ena # yes - -fadd_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fadd_unfl_ena_sd # no; sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fadd_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fadd_unfl_dis - -fadd_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fadd_unfl_ena_cont - -# -# result is equal to the smallest normalized number in the selected precision -# if the precision is extended, this result could not have come from an -# underflow that rounded up. -# -fadd_may_unfl: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 - beq.w fadd_normal # yes; no underflow occurred - - mov.l 0x4(%sp),%d1 # extract hi(man) - cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? - bne.w fadd_normal # no; no underflow occurred - - tst.l 0x8(%sp) # is lo(man) = 0x0? - bne.w fadd_normal # no; no underflow occurred - - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.w fadd_normal # no; no underflow occurred - -# -# ok, so now the result has a exponent equal to the smallest normalized -# exponent for the selected precision. also, the mantissa is equal to -# 0x8000000000000000 and this mantissa is the result of rounding non-zero -# g,r,s. -# now, we must determine whether the pre-rounded result was an underflow -# rounded "up" or a normalized number rounded "down". -# so, we do this be re-executing the add using RZ as the rounding mode and -# seeing if the new result is smaller or equal to the current result. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert rnd mode - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp1 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # compare absolute values - fabs.x %fp1 - fcmp.x %fp0,%fp1 # is first result > second? - - fbgt.w fadd_unfl # yes; it's an underflow - bra.w fadd_normal # no; it's not an underflow - -########################################################################## - -# -# Add: inputs are not both normalized; what are they? -# -fadd_not_norm: - mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fadd_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fadd_op: - short fadd_norm - tbl_fadd_op # NORM + NORM - short fadd_zero_src - tbl_fadd_op # NORM + ZERO - short fadd_inf_src - tbl_fadd_op # NORM + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_norm - tbl_fadd_op # NORM + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_zero_dst - tbl_fadd_op # ZERO + NORM - short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO - short fadd_inf_src - tbl_fadd_op # ZERO + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_inf_dst - tbl_fadd_op # INF + NORM - short fadd_inf_dst - tbl_fadd_op # INF + ZERO - short fadd_inf_2 - tbl_fadd_op # INF + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_inf_dst - tbl_fadd_op # INF + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_res_qnan - tbl_fadd_op # QNAN + NORM - short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO - short fadd_res_qnan - tbl_fadd_op # QNAN + INF - short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN - short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM - short fadd_res_snan - tbl_fadd_op # QNAN + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_norm - tbl_fadd_op # DENORM + NORM - short fadd_zero_src - tbl_fadd_op # DENORM + ZERO - short fadd_inf_src - tbl_fadd_op # DENORM + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_norm - tbl_fadd_op # DENORM + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_res_snan - tbl_fadd_op # SNAN + NORM - short fadd_res_snan - tbl_fadd_op # SNAN + ZERO - short fadd_res_snan - tbl_fadd_op # SNAN + INF - short fadd_res_snan - tbl_fadd_op # SNAN + QNAN - short fadd_res_snan - tbl_fadd_op # SNAN + DENORM - short fadd_res_snan - tbl_fadd_op # SNAN + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - -fadd_res_qnan: - bra.l res_qnan -fadd_res_snan: - bra.l res_snan - -# -# both operands are ZEROes -# -fadd_zero_2: - mov.b SRC_EX(%a0),%d0 # are the signs opposite - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) - -# the signs are the same. so determine whether they are positive or negative -# and return the appropriately signed zero. - tst.b %d0 # are ZEROes positive or negative? - bmi.b fadd_zero_rm # negative - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# the ZEROes have opposite signs: -# - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. -# - -ZERO is returned in the case of RM. -# -fadd_zero_2_chk_rm: - mov.b 3+L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # extract rnd mode - cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? - beq.b fadd_zero_rm # yes - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -fadd_zero_rm: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z - rts - -# -# one operand is a ZERO and the other is a DENORM or NORM. scale -# the DENORM or NORM and jump to the regular fadd routine. -# -fadd_zero_dst: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # scale the operand - clr.w FP_SCR1_EX(%a6) - clr.l FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - bra.w fadd_zero_entry # go execute fadd - -fadd_zero_src: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - bsr.l scale_to_zero_dst # scale the operand - clr.w FP_SCR0_EX(%a6) - clr.l FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - bra.w fadd_zero_entry # go execute fadd - -# -# both operands are INFs. an OPERR will result if the INFs have -# different signs. else, an INF of the same sign is returned -# -fadd_inf_2: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bmi.l res_operr # weed out (-INF)+(+INF) - -# ok, so it's not an OPERR. but, we do have to remember to return the -# src INF since that's where the 881/882 gets the j-bit from... - -# -# operands are INF and one of {ZERO, INF, DENORM, NORM} -# -fadd_inf_src: - fmovm.x SRC(%a0),&0x80 # return src INF - tst.b SRC_EX(%a0) # is INF positive? - bpl.b fadd_inf_done # yes; we're done - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -# -# operands are INF and one of {ZERO, INF, DENORM, NORM} -# -fadd_inf_dst: - fmovm.x DST(%a1),&0x80 # return dst INF - tst.b DST_EX(%a1) # is INF positive? - bpl.b fadd_inf_done # yes; we're done - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fadd_inf_done: - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fsub(): emulates the fsub instruction # -# fssub(): emulates the fssub instruction # -# fdsub(): emulates the fdsub instruction # -# # -# XREF **************************************************************** # -# addsub_scaler2() - scale the operands so they won't take exc # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan() - set QNAN result # -# res_snan() - set SNAN result # -# res_operr() - set OPERR result # -# scale_to_zero_src() - set src operand exponent equal to zero # -# scale_to_zero_dst() - set dst operand exponent equal to zero # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Do subtraction after scaling exponents such that exception won't# -# occur. Then, check result exponent to see if exception would have # -# occurred. If so, return default result and maybe EXOP. Else, insert # -# the correct result exponent and return. Set FPSR bits as appropriate. # -# # -######################################################################### - - global fssub -fssub: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fsub - - global fdsub -fdsub: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fsub -fsub: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fsub_not_norm # optimize on non-norm input - -# -# SUB: norms and denorms -# -fsub_norm: - bsr.l addsub_scaler2 # scale exponents - -fsub_zero_entry: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch INEX2, N, Z - - or.l %d1,USER_FPSR(%a6) # save exc and ccode bits - - fbeq.w fsub_zero_exit # if result zero, end now - - mov.l %d2,-(%sp) # save d2 - - fmovm.x &0x01,-(%sp) # save result to stack - - mov.w 2+L_SCR3(%a6),%d1 - lsr.b &0x6,%d1 - - mov.w (%sp),%d2 # fetch new exponent - andi.l &0x7fff,%d2 # strip sign - sub.l %d0,%d2 # add scale factor - - cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? - bge.b fsub_ovfl # yes - - cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? - blt.w fsub_unfl # yes - beq.w fsub_may_unfl # maybe; go find out - -fsub_normal: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - or.w %d2,%d1 # insert new exponent - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x80 # return result in fp0 - - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_zero_exit: -# fmov.s &0x00000000,%fp0 # return zero in fp0 - rts - -tbl_fsub_ovfl: - long 0x7fff # ext ovfl - long 0x407f # sgl ovfl - long 0x43ff # dbl ovfl - -tbl_fsub_unfl: - long 0x0000 # ext unfl - long 0x3f81 # sgl unfl - long 0x3c01 # dbl unfl - -fsub_ovfl: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsub_ovfl_ena # yes - - add.l &0xc,%sp -fsub_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_ovfl_ena: - mov.b L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fsub_ovfl_ena_sd # no - -fsub_ovfl_ena_cont: - mov.w (%sp),%d1 # fetch {sgn,exp} - andi.w &0x8000,%d1 # keep sign - subi.l &0x6000,%d2 # subtract new bias - andi.w &0x7fff,%d2 # clear top bit - or.w %d2,%d1 # concat sign,exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x40 # return EXOP in fp1 - bra.b fsub_ovfl_dis - -fsub_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # clear rnd prec - fmov.l %d1,%fpcr # set FPCR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - add.l &0xc,%sp - fmovm.x &0x01,-(%sp) - bra.b fsub_ovfl_ena_cont - -fsub_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - add.l &0xc,%sp - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save status - - or.l %d1,USER_FPSR(%a6) - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsub_unfl_ena # yes - -fsub_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fsub_unfl_ena_sd # no - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fsub_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp1 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # store result to stack - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # subtract new bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat sgn,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fsub_unfl_dis - -fsub_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # clear rnd prec - fmov.l %d1,%fpcr # set FPCR - - bra.b fsub_unfl_ena_cont - -# -# result is equal to the smallest normalized number in the selected precision -# if the precision is extended, this result could not have come from an -# underflow that rounded up. -# -fsub_may_unfl: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # fetch rnd prec - beq.w fsub_normal # yes; no underflow occurred - - mov.l 0x4(%sp),%d1 - cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? - bne.w fsub_normal # no; no underflow occurred - - tst.l 0x8(%sp) # is lo(man) = 0x0? - bne.w fsub_normal # no; no underflow occurred - - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.w fsub_normal # no; no underflow occurred - -# -# ok, so now the result has a exponent equal to the smallest normalized -# exponent for the selected precision. also, the mantissa is equal to -# 0x8000000000000000 and this mantissa is the result of rounding non-zero -# g,r,s. -# now, we must determine whether the pre-rounded result was an underflow -# rounded "up" or a normalized number rounded "down". -# so, we do this be re-executing the add using RZ as the rounding mode and -# seeing if the new result is smaller or equal to the current result. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert rnd mode - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp1 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # compare absolute values - fabs.x %fp1 - fcmp.x %fp0,%fp1 # is first result > second? - - fbgt.w fsub_unfl # yes; it's an underflow - bra.w fsub_normal # no; it's not an underflow - -########################################################################## - -# -# Sub: inputs are not both normalized; what are they? -# -fsub_not_norm: - mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsub_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsub_op: - short fsub_norm - tbl_fsub_op # NORM - NORM - short fsub_zero_src - tbl_fsub_op # NORM - ZERO - short fsub_inf_src - tbl_fsub_op # NORM - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_norm - tbl_fsub_op # NORM - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_zero_dst - tbl_fsub_op # ZERO - NORM - short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO - short fsub_inf_src - tbl_fsub_op # ZERO - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_inf_dst - tbl_fsub_op # INF - NORM - short fsub_inf_dst - tbl_fsub_op # INF - ZERO - short fsub_inf_2 - tbl_fsub_op # INF - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_inf_dst - tbl_fsub_op # INF - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_res_qnan - tbl_fsub_op # QNAN - NORM - short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO - short fsub_res_qnan - tbl_fsub_op # QNAN - INF - short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN - short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM - short fsub_res_snan - tbl_fsub_op # QNAN - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_norm - tbl_fsub_op # DENORM - NORM - short fsub_zero_src - tbl_fsub_op # DENORM - ZERO - short fsub_inf_src - tbl_fsub_op # DENORM - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_norm - tbl_fsub_op # DENORM - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_res_snan - tbl_fsub_op # SNAN - NORM - short fsub_res_snan - tbl_fsub_op # SNAN - ZERO - short fsub_res_snan - tbl_fsub_op # SNAN - INF - short fsub_res_snan - tbl_fsub_op # SNAN - QNAN - short fsub_res_snan - tbl_fsub_op # SNAN - DENORM - short fsub_res_snan - tbl_fsub_op # SNAN - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - -fsub_res_qnan: - bra.l res_qnan -fsub_res_snan: - bra.l res_snan - -# -# both operands are ZEROes -# -fsub_zero_2: - mov.b SRC_EX(%a0),%d0 - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bpl.b fsub_zero_2_chk_rm - -# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO - tst.b %d0 # is dst negative? - bmi.b fsub_zero_2_rm # yes - fmov.s &0x00000000,%fp0 # no; return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# the ZEROes have the same signs: -# - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP -# - -ZERO is returned in the case of RM. -# -fsub_zero_2_chk_rm: - mov.b 3+L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # extract rnd mode - cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? - beq.b fsub_zero_2_rm # yes - fmov.s &0x00000000,%fp0 # no; return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -fsub_zero_2_rm: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG - rts - -# -# one operand is a ZERO and the other is a DENORM or a NORM. -# scale the DENORM or NORM and jump to the regular fsub routine. -# -fsub_zero_dst: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # scale the operand - clr.w FP_SCR1_EX(%a6) - clr.l FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - bra.w fsub_zero_entry # go execute fsub - -fsub_zero_src: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - bsr.l scale_to_zero_dst # scale the operand - clr.w FP_SCR0_EX(%a6) - clr.l FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - bra.w fsub_zero_entry # go execute fsub - -# -# both operands are INFs. an OPERR will result if the INFs have the -# same signs. else, -# -fsub_inf_2: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bpl.l res_operr # weed out (-INF)+(+INF) - -# ok, so it's not an OPERR. but we do have to remember to return -# the src INF since that's where the 881/882 gets the j-bit. - -fsub_inf_src: - fmovm.x SRC(%a0),&0x80 # return src INF - fneg.x %fp0 # invert sign - fbge.w fsub_inf_done # sign is now positive - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fsub_inf_dst: - fmovm.x DST(%a1),&0x80 # return dst INF - tst.b DST_EX(%a1) # is INF negative? - bpl.b fsub_inf_done # no - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fsub_inf_done: - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fsqrt(): emulates the fsqrt instruction # -# fssqrt(): emulates the fssqrt instruction # -# fdsqrt(): emulates the fdsqrt instruction # -# # -# XREF **************************************************************** # -# scale_sqrt() - scale the source operand # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a sqrt # -# instruction won't cause an exception. Use the regular fsqrt to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fssqrt -fssqrt: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fsqrt - - global fdsqrt -fdsqrt: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fsqrt -fsqrt: - mov.l %d0,L_SCR3(%a6) # store rnd info - clr.w %d1 - mov.b STAG(%a6),%d1 - bne.w fsqrt_not_norm # optimize on non-norm input - -# -# SQUARE ROOT: norms and denorms ONLY! -# -fsqrt_norm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.l res_operr # yes - - andi.b &0xc0,%d0 # is precision extended? - bne.b fsqrt_not_ext # no; go handle sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsqrt.x (%a0),%fp0 # execute square root - - fmov.l %fpsr,%d1 - or.l %d1,USER_FPSR(%a6) # set N,INEX - - rts - -fsqrt_denorm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.l res_operr # yes - - andi.b &0xc0,%d0 # is precision extended? - bne.b fsqrt_not_ext # no; go handle sgl or dbl - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - bra.w fsqrt_sd_normal - -# -# operand is either single or double -# -fsqrt_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.w fsqrt_dbl - -# -# operand is to be rounded to single precision -# -fsqrt_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? - beq.w fsqrt_sd_may_unfl - bgt.w fsqrt_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407f # will move in overflow? - beq.w fsqrt_sd_may_ovfl # maybe; go check - blt.w fsqrt_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fsqrt_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsqrt_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fsqrt_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? - beq.w fsqrt_sd_may_unfl - bgt.b fsqrt_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? - beq.w fsqrt_sd_may_ovfl # maybe; go check - blt.w fsqrt_sd_ovfl # yes; go handle overflow - bra.w fsqrt_sd_normal # no; ho handle normalized op - -# we're on the line here and the distinguising characteristic is whether -# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number -# elsewise fall through to underflow. -fsqrt_sd_may_unfl: - btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? - bne.w fsqrt_sd_normal # yes, so no underflow - -# -# operand WILL underflow when moved in to the fp register file -# -fsqrt_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsqrt.x FP_SCR0(%a6),%fp0 # execute square root - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -# if underflow or inexact is enabled, go calculate EXOP first. - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsqrt_sd_unfl_ena # yes - -fsqrt_sd_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fsqrt_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fsqrt_sd_unfl_dis - -# -# operand WILL overflow. -# -fsqrt_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform square root - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsqrt_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsqrt_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fsqrt_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fsqrt_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fsqrt_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fsqrt_sd_may_ovfl: - btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? - bne.w fsqrt_sd_ovfl # yes, so overflow - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fmov.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| >= 1.b? - fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fsqrt_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fsqrt_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fsqrt_denorm - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fsqrt_zero - cmpi.b %d1,&INF # weed out INF - beq.b fsqrt_inf - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op - -# -# fsqrt(+0) = +0 -# fsqrt(-0) = -0 -# fsqrt(+INF) = +INF -# fsqrt(-INF) = OPERR -# -fsqrt_zero: - tst.b SRC_EX(%a0) # is ZERO positive or negative? - bmi.b fsqrt_zero_m # negative -fsqrt_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fsqrt_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -fsqrt_inf: - tst.b SRC_EX(%a0) # is INF positive or negative? - bmi.l res_operr # negative -fsqrt_inf_p: - fmovm.x SRC(%a0),&0x80 # return +INF in fp0 - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fetch_dreg(): fetch register according to index in d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# d0 = value of register fetched # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1 which can range from zero # -# to fifteen, load the corresponding register file value (where # -# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # -# stack. The rest should still be in their original places. # -# # -######################################################################### - -# this routine leaves d1 intact for subsequent store_dreg calls. - global fetch_dreg -fetch_dreg: - mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 - jmp (tbl_fdreg.b,%pc,%d0.w*1) - -tbl_fdreg: - short fdreg0 - tbl_fdreg - short fdreg1 - tbl_fdreg - short fdreg2 - tbl_fdreg - short fdreg3 - tbl_fdreg - short fdreg4 - tbl_fdreg - short fdreg5 - tbl_fdreg - short fdreg6 - tbl_fdreg - short fdreg7 - tbl_fdreg - short fdreg8 - tbl_fdreg - short fdreg9 - tbl_fdreg - short fdrega - tbl_fdreg - short fdregb - tbl_fdreg - short fdregc - tbl_fdreg - short fdregd - tbl_fdreg - short fdrege - tbl_fdreg - short fdregf - tbl_fdreg - -fdreg0: - mov.l EXC_DREGS+0x0(%a6),%d0 - rts -fdreg1: - mov.l EXC_DREGS+0x4(%a6),%d0 - rts -fdreg2: - mov.l %d2,%d0 - rts -fdreg3: - mov.l %d3,%d0 - rts -fdreg4: - mov.l %d4,%d0 - rts -fdreg5: - mov.l %d5,%d0 - rts -fdreg6: - mov.l %d6,%d0 - rts -fdreg7: - mov.l %d7,%d0 - rts -fdreg8: - mov.l EXC_DREGS+0x8(%a6),%d0 - rts -fdreg9: - mov.l EXC_DREGS+0xc(%a6),%d0 - rts -fdrega: - mov.l %a2,%d0 - rts -fdregb: - mov.l %a3,%d0 - rts -fdregc: - mov.l %a4,%d0 - rts -fdregd: - mov.l %a5,%d0 - rts -fdrege: - mov.l (%a6),%d0 - rts -fdregf: - mov.l EXC_A7(%a6),%d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_l(): store longword to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = longowrd value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the longword value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_l -store_dreg_l: - mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregl.b,%pc,%d1.w*1) - -tbl_sdregl: - short sdregl0 - tbl_sdregl - short sdregl1 - tbl_sdregl - short sdregl2 - tbl_sdregl - short sdregl3 - tbl_sdregl - short sdregl4 - tbl_sdregl - short sdregl5 - tbl_sdregl - short sdregl6 - tbl_sdregl - short sdregl7 - tbl_sdregl - -sdregl0: - mov.l %d0,EXC_DREGS+0x0(%a6) - rts -sdregl1: - mov.l %d0,EXC_DREGS+0x4(%a6) - rts -sdregl2: - mov.l %d0,%d2 - rts -sdregl3: - mov.l %d0,%d3 - rts -sdregl4: - mov.l %d0,%d4 - rts -sdregl5: - mov.l %d0,%d5 - rts -sdregl6: - mov.l %d0,%d6 - rts -sdregl7: - mov.l %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_w(): store word to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = word value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the word value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_w -store_dreg_w: - mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregw.b,%pc,%d1.w*1) - -tbl_sdregw: - short sdregw0 - tbl_sdregw - short sdregw1 - tbl_sdregw - short sdregw2 - tbl_sdregw - short sdregw3 - tbl_sdregw - short sdregw4 - tbl_sdregw - short sdregw5 - tbl_sdregw - short sdregw6 - tbl_sdregw - short sdregw7 - tbl_sdregw - -sdregw0: - mov.w %d0,2+EXC_DREGS+0x0(%a6) - rts -sdregw1: - mov.w %d0,2+EXC_DREGS+0x4(%a6) - rts -sdregw2: - mov.w %d0,%d2 - rts -sdregw3: - mov.w %d0,%d3 - rts -sdregw4: - mov.w %d0,%d4 - rts -sdregw5: - mov.w %d0,%d5 - rts -sdregw6: - mov.w %d0,%d6 - rts -sdregw7: - mov.w %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_b(): store byte to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = byte value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the byte value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_b -store_dreg_b: - mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregb.b,%pc,%d1.w*1) - -tbl_sdregb: - short sdregb0 - tbl_sdregb - short sdregb1 - tbl_sdregb - short sdregb2 - tbl_sdregb - short sdregb3 - tbl_sdregb - short sdregb4 - tbl_sdregb - short sdregb5 - tbl_sdregb - short sdregb6 - tbl_sdregb - short sdregb7 - tbl_sdregb - -sdregb0: - mov.b %d0,3+EXC_DREGS+0x0(%a6) - rts -sdregb1: - mov.b %d0,3+EXC_DREGS+0x4(%a6) - rts -sdregb2: - mov.b %d0,%d2 - rts -sdregb3: - mov.b %d0,%d3 - rts -sdregb4: - mov.b %d0,%d4 - rts -sdregb5: - mov.b %d0,%d5 - rts -sdregb6: - mov.b %d0,%d6 - rts -sdregb7: - mov.b %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# inc_areg(): increment an address register by the value in d0 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = amount to increment by # -# d1 = index of address register to increment # -# # -# OUTPUT ************************************************************** # -# (address register is updated) # -# # -# ALGORITHM *********************************************************** # -# Typically used for an instruction w/ a post-increment <ea>, # -# this routine adds the increment value in d0 to the address register # -# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # -# in their original places. # -# For a7, if the increment amount is one, then we have to # -# increment by two. For any a7 update, set the mia7_flag so that if # -# an access error exception occurs later in emulation, this address # -# register update can be undone. # -# # -######################################################################### - - global inc_areg -inc_areg: - mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 - jmp (tbl_iareg.b,%pc,%d1.w*1) - -tbl_iareg: - short iareg0 - tbl_iareg - short iareg1 - tbl_iareg - short iareg2 - tbl_iareg - short iareg3 - tbl_iareg - short iareg4 - tbl_iareg - short iareg5 - tbl_iareg - short iareg6 - tbl_iareg - short iareg7 - tbl_iareg - -iareg0: add.l %d0,EXC_DREGS+0x8(%a6) - rts -iareg1: add.l %d0,EXC_DREGS+0xc(%a6) - rts -iareg2: add.l %d0,%a2 - rts -iareg3: add.l %d0,%a3 - rts -iareg4: add.l %d0,%a4 - rts -iareg5: add.l %d0,%a5 - rts -iareg6: add.l %d0,(%a6) - rts -iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) - cmpi.b %d0,&0x1 - beq.b iareg7b - add.l %d0,EXC_A7(%a6) - rts -iareg7b: - addq.l &0x2,EXC_A7(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# dec_areg(): decrement an address register by the value in d0 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = amount to decrement by # -# d1 = index of address register to decrement # -# # -# OUTPUT ************************************************************** # -# (address register is updated) # -# # -# ALGORITHM *********************************************************** # -# Typically used for an instruction w/ a pre-decrement <ea>, # -# this routine adds the decrement value in d0 to the address register # -# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # -# in their original places. # -# For a7, if the decrement amount is one, then we have to # -# decrement by two. For any a7 update, set the mda7_flag so that if # -# an access error exception occurs later in emulation, this address # -# register update can be undone. # -# # -######################################################################### - - global dec_areg -dec_areg: - mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 - jmp (tbl_dareg.b,%pc,%d1.w*1) - -tbl_dareg: - short dareg0 - tbl_dareg - short dareg1 - tbl_dareg - short dareg2 - tbl_dareg - short dareg3 - tbl_dareg - short dareg4 - tbl_dareg - short dareg5 - tbl_dareg - short dareg6 - tbl_dareg - short dareg7 - tbl_dareg - -dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) - rts -dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) - rts -dareg2: sub.l %d0,%a2 - rts -dareg3: sub.l %d0,%a3 - rts -dareg4: sub.l %d0,%a4 - rts -dareg5: sub.l %d0,%a5 - rts -dareg6: sub.l %d0,(%a6) - rts -dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) - cmpi.b %d0,&0x1 - beq.b dareg7b - sub.l %d0,EXC_A7(%a6) - rts -dareg7b: - subq.l &0x2,EXC_A7(%a6) - rts - -############################################################################## - -######################################################################### -# XDEF **************************************************************** # -# load_fpn1(): load FP register value into FP_SRC(a6). # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = index of FP register to load # -# # -# OUTPUT ************************************************************** # -# FP_SRC(a6) = value loaded from FP register file # -# # -# ALGORITHM *********************************************************** # -# Using the index in d0, load FP_SRC(a6) with a number from the # -# FP register file. # -# # -######################################################################### - - global load_fpn1 -load_fpn1: - mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 - jmp (tbl_load_fpn1.b,%pc,%d0.w*1) - -tbl_load_fpn1: - short load_fpn1_0 - tbl_load_fpn1 - short load_fpn1_1 - tbl_load_fpn1 - short load_fpn1_2 - tbl_load_fpn1 - short load_fpn1_3 - tbl_load_fpn1 - short load_fpn1_4 - tbl_load_fpn1 - short load_fpn1_5 - tbl_load_fpn1 - short load_fpn1_6 - tbl_load_fpn1 - short load_fpn1_7 - tbl_load_fpn1 - -load_fpn1_0: - mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) - mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) - mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_1: - mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) - mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) - mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_2: - fmovm.x &0x20, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_3: - fmovm.x &0x10, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_4: - fmovm.x &0x08, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_5: - fmovm.x &0x04, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_6: - fmovm.x &0x02, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_7: - fmovm.x &0x01, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts - -############################################################################# - -######################################################################### -# XDEF **************************************************************** # -# load_fpn2(): load FP register value into FP_DST(a6). # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = index of FP register to load # -# # -# OUTPUT ************************************************************** # -# FP_DST(a6) = value loaded from FP register file # -# # -# ALGORITHM *********************************************************** # -# Using the index in d0, load FP_DST(a6) with a number from the # -# FP register file. # -# # -######################################################################### - - global load_fpn2 -load_fpn2: - mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 - jmp (tbl_load_fpn2.b,%pc,%d0.w*1) - -tbl_load_fpn2: - short load_fpn2_0 - tbl_load_fpn2 - short load_fpn2_1 - tbl_load_fpn2 - short load_fpn2_2 - tbl_load_fpn2 - short load_fpn2_3 - tbl_load_fpn2 - short load_fpn2_4 - tbl_load_fpn2 - short load_fpn2_5 - tbl_load_fpn2 - short load_fpn2_6 - tbl_load_fpn2 - short load_fpn2_7 - tbl_load_fpn2 - -load_fpn2_0: - mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) - mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) - mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_1: - mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) - mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) - mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_2: - fmovm.x &0x20, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_3: - fmovm.x &0x10, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_4: - fmovm.x &0x08, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_5: - fmovm.x &0x04, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_6: - fmovm.x &0x02, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_7: - fmovm.x &0x01, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts - -############################################################################# - -######################################################################### -# XDEF **************************************************************** # -# store_fpreg(): store an fp value to the fpreg designated d0. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# fp0 = extended precision value to store # -# d0 = index of floating-point register # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Store the value in fp0 to the FP register designated by the # -# value in d0. The FP number can be DENORM or SNAN so we have to be # -# careful that we don't take an exception here. # -# # -######################################################################### - - global store_fpreg -store_fpreg: - mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 - jmp (tbl_store_fpreg.b,%pc,%d0.w*1) - -tbl_store_fpreg: - short store_fpreg_0 - tbl_store_fpreg - short store_fpreg_1 - tbl_store_fpreg - short store_fpreg_2 - tbl_store_fpreg - short store_fpreg_3 - tbl_store_fpreg - short store_fpreg_4 - tbl_store_fpreg - short store_fpreg_5 - tbl_store_fpreg - short store_fpreg_6 - tbl_store_fpreg - short store_fpreg_7 - tbl_store_fpreg - -store_fpreg_0: - fmovm.x &0x80, EXC_FP0(%a6) - rts -store_fpreg_1: - fmovm.x &0x80, EXC_FP1(%a6) - rts -store_fpreg_2: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x20 - rts -store_fpreg_3: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x10 - rts -store_fpreg_4: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x08 - rts -store_fpreg_5: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x04 - rts -store_fpreg_6: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x02 - rts -store_fpreg_7: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x01 - rts - -######################################################################### -# XDEF **************************************************************** # -# get_packed(): fetch a packed operand from memory and then # -# convert it to a floating-point binary number. # -# # -# XREF **************************************************************** # -# _dcalc_ea() - calculate the correct <ea> # -# _mem_read() - fetch the packed operand from memory # -# facc_in_x() - the fetch failed so jump to special exit code # -# decbin() - convert packed to binary extended precision # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If no failure on _mem_read(): # -# FP_SRC(a6) = packed operand now as a binary FP number # -# # -# ALGORITHM *********************************************************** # -# Get the correct <ea> which is the value on the exception stack # -# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # -# Then, fetch the operand from memory. If the fetch fails, exit # -# through facc_in_x(). # -# If the packed operand is a ZERO,NAN, or INF, convert it to # -# its binary representation here. Else, call decbin() which will # -# convert the packed value to an extended precision binary value. # -# # -######################################################################### - -# the stacked <ea> for packed is correct except for -(An). -# the base reg must be updated for both -(An) and (An)+. - global get_packed -get_packed: - mov.l &0xc,%d0 # packed is 12 bytes - bsr.l _dcalc_ea # fetch <ea>; correct An - - lea FP_SRC(%a6),%a1 # pass: ptr to super dst - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _dmem_read # read packed operand - - tst.l %d1 # did dfetch fail? - bne.l facc_in_x # yes - -# The packed operand is an INF or a NAN if the exponent field is all ones. - bfextu FP_SRC(%a6){&1:&15},%d0 # get exp - cmpi.w %d0,&0x7fff # INF or NAN? - bne.b gp_try_zero # no - rts # operand is an INF or NAN - -# The packed operand is a zero if the mantissa is all zero, else it's -# a normal packed op. -gp_try_zero: - mov.b 3+FP_SRC(%a6),%d0 # get byte 4 - andi.b &0x0f,%d0 # clear all but last nybble - bne.b gp_not_spec # not a zero - tst.l FP_SRC_HI(%a6) # is lw 2 zero? - bne.b gp_not_spec # not a zero - tst.l FP_SRC_LO(%a6) # is lw 3 zero? - bne.b gp_not_spec # not a zero - rts # operand is a ZERO -gp_not_spec: - lea FP_SRC(%a6),%a0 # pass: ptr to packed op - bsr.l decbin # convert to extended - fmovm.x &0x80,FP_SRC(%a6) # make this the srcop - rts - -######################################################################### -# decbin(): Converts normalized packed bcd value pointed to by register # -# a0 to extended-precision value in fp0. # -# # -# INPUT *************************************************************** # -# a0 = pointer to normalized packed bcd value # -# # -# OUTPUT ************************************************************** # -# fp0 = exact fp representation of the packed bcd value. # -# # -# ALGORITHM *********************************************************** # -# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # -# and NaN operands are dispatched without entering this routine) # -# value in 68881/882 format at location (a0). # -# # -# A1. Convert the bcd exponent to binary by successive adds and # -# muls. Set the sign according to SE. Subtract 16 to compensate # -# for the mantissa which is to be interpreted as 17 integer # -# digits, rather than 1 integer and 16 fraction digits. # -# Note: this operation can never overflow. # -# # -# A2. Convert the bcd mantissa to binary by successive # -# adds and muls in FP0. Set the sign according to SM. # -# The mantissa digits will be converted with the decimal point # -# assumed following the least-significant digit. # -# Note: this operation can never overflow. # -# # -# A3. Count the number of leading/trailing zeros in the # -# bcd string. If SE is positive, count the leading zeros; # -# if negative, count the trailing zeros. Set the adjusted # -# exponent equal to the exponent from A1 and the zero count # -# added if SM = 1 and subtracted if SM = 0. Scale the # -# mantissa the equivalent of forcing in the bcd value: # -# # -# SM = 0 a non-zero digit in the integer position # -# SM = 1 a non-zero digit in Mant0, lsd of the fraction # -# # -# this will insure that any value, regardless of its # -# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # -# consistently. # -# # -# A4. Calculate the factor 10^exp in FP1 using a table of # -# 10^(2^n) values. To reduce the error in forming factors # -# greater than 10^27, a directed rounding scheme is used with # -# tables rounded to RN, RM, and RP, according to the table # -# in the comments of the pwrten section. # -# # -# A5. Form the final binary number by scaling the mantissa by # -# the exponent factor. This is done by multiplying the # -# mantissa in FP0 by the factor in FP1 if the adjusted # -# exponent sign is positive, and dividing FP0 by FP1 if # -# it is negative. # -# # -# Clean up and return. Check if the final mul or div was inexact. # -# If so, set INEX1 in USER_FPSR. # -# # -######################################################################### - -# -# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded -# to nearest, minus, and plus, respectively. The tables include -# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding -# is required until the power is greater than 27, however, all -# tables include the first 5 for ease of indexing. -# -RTABLE: - byte 0,0,0,0 - byte 2,3,2,3 - byte 2,3,3,2 - byte 3,2,2,3 - - set FNIBS,7 - set FSTRT,0 - - set ESTRT,4 - set EDIGITS,2 - - global decbin -decbin: - mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input - mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it - mov.l 0x8(%a0),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 - - movm.l &0x3c00,-(%sp) # save d2-d5 - fmovm.x &0x1,-(%sp) # save fp1 -# -# Calculate exponent: -# 1. Copy bcd value in memory for use as a working copy. -# 2. Calculate absolute value of exponent in d1 by mul and add. -# 3. Correct for exponent sign. -# 4. Subtract 16 to compensate for interpreting the mant as all integer digits. -# (i.e., all digits assumed left of the decimal point.) -# -# Register usage: -# -# calc_e: -# (*) d0: temp digit storage -# (*) d1: accumulator for binary exponent -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: first word of bcd -# ( ) a0: pointer to working bcd value -# ( ) a6: pointer to original bcd value -# (*) FP_SCR1: working copy of original bcd value -# (*) L_SCR1: copy of original exponent word -# -calc_e: - mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part - mov.l &ESTRT,%d3 # counter to pick up digits - mov.l (%a0),%d4 # get first word of bcd - clr.l %d1 # zero d1 for accumulator -e_gd: - mulu.l &0xa,%d1 # mul partial product by one digit place - bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 - add.l %d0,%d1 # d1 = d1 + d0 - addq.b &4,%d3 # advance d3 to the next digit - dbf.w %d2,e_gd # if we have used all 3 digits, exit loop - btst &30,%d4 # get SE - beq.b e_pos # don't negate if pos - neg.l %d1 # negate before subtracting -e_pos: - sub.l &16,%d1 # sub to compensate for shift of mant - bge.b e_save # if still pos, do not neg - neg.l %d1 # now negative, make pos and set SE - or.l &0x40000000,%d4 # set SE in d4, - or.l &0x40000000,(%a0) # and in working bcd -e_save: - mov.l %d1,-(%sp) # save exp on stack -# -# -# Calculate mantissa: -# 1. Calculate absolute value of mantissa in fp0 by mul and add. -# 2. Correct for mantissa sign. -# (i.e., all digits assumed left of the decimal point.) -# -# Register usage: -# -# calc_m: -# (*) d0: temp digit storage -# (*) d1: lword counter -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: words 2 and 3 of bcd -# ( ) a0: pointer to working bcd value -# ( ) a6: pointer to original bcd value -# (*) fp0: mantissa accumulator -# ( ) FP_SCR1: working copy of original bcd value -# ( ) L_SCR1: copy of original exponent word -# -calc_m: - mov.l &1,%d1 # word counter, init to 1 - fmov.s &0x00000000,%fp0 # accumulator -# -# -# Since the packed number has a long word between the first & second parts, -# get the integer digit then skip down & get the rest of the -# mantissa. We will unroll the loop once. -# - bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word - fadd.b %d0,%fp0 # add digit to sum in fp0 -# -# -# Get the rest of the mantissa. -# -loadlw: - mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 - mov.l &FSTRT,%d3 # counter to pick up digits - mov.l &FNIBS,%d2 # reset number of digits per a0 ptr -md2b: - fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 - bfextu %d4{%d3:&4},%d0 # get the digit and zero extend - fadd.b %d0,%fp0 # fp0 = fp0 + digit -# -# -# If all the digits (8) in that long word have been converted (d2=0), -# then inc d1 (=2) to point to the next long word and reset d3 to 0 -# to initialize the digit offset, and set d2 to 7 for the digit count; -# else continue with this long word. -# - addq.b &4,%d3 # advance d3 to the next digit - dbf.w %d2,md2b # check for last digit in this lw -nextlw: - addq.l &1,%d1 # inc lw pointer in mantissa - cmp.l %d1,&2 # test for last lw - ble.b loadlw # if not, get last one -# -# Check the sign of the mant and make the value in fp0 the same sign. -# -m_sign: - btst &31,(%a0) # test sign of the mantissa - beq.b ap_st_z # if clear, go to append/strip zeros - fneg.x %fp0 # if set, negate fp0 -# -# Append/strip zeros: -# -# For adjusted exponents which have an absolute value greater than 27*, -# this routine calculates the amount needed to normalize the mantissa -# for the adjusted exponent. That number is subtracted from the exp -# if the exp was positive, and added if it was negative. The purpose -# of this is to reduce the value of the exponent and the possibility -# of error in calculation of pwrten. -# -# 1. Branch on the sign of the adjusted exponent. -# 2p.(positive exp) -# 2. Check M16 and the digits in lwords 2 and 3 in decending order. -# 3. Add one for each zero encountered until a non-zero digit. -# 4. Subtract the count from the exp. -# 5. Check if the exp has crossed zero in #3 above; make the exp abs -# and set SE. -# 6. Multiply the mantissa by 10**count. -# 2n.(negative exp) -# 2. Check the digits in lwords 3 and 2 in decending order. -# 3. Add one for each zero encountered until a non-zero digit. -# 4. Add the count to the exp. -# 5. Check if the exp has crossed zero in #3 above; clear SE. -# 6. Divide the mantissa by 10**count. -# -# *Why 27? If the adjusted exponent is within -28 < expA < 28, than -# any adjustment due to append/strip zeros will drive the resultane -# exponent towards zero. Since all pwrten constants with a power -# of 27 or less are exact, there is no need to use this routine to -# attempt to lessen the resultant exponent. -# -# Register usage: -# -# ap_st_z: -# (*) d0: temp digit storage -# (*) d1: zero count -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: first word of bcd -# (*) d5: lword counter -# ( ) a0: pointer to working bcd value -# ( ) FP_SCR1: working copy of original bcd value -# ( ) L_SCR1: copy of original exponent word -# -# -# First check the absolute value of the exponent to see if this -# routine is necessary. If so, then check the sign of the exponent -# and do append (+) or strip (-) zeros accordingly. -# This section handles a positive adjusted exponent. -# -ap_st_z: - mov.l (%sp),%d1 # load expA for range test - cmp.l %d1,&27 # test is with 27 - ble.w pwrten # if abs(expA) <28, skip ap/st zeros - btst &30,(%a0) # check sign of exp - bne.b ap_st_n # if neg, go to neg side - clr.l %d1 # zero count reg - mov.l (%a0),%d4 # load lword 1 to d4 - bfextu %d4{&28:&4},%d0 # get M16 in d0 - bne.b ap_p_fx # if M16 is non-zero, go fix exp - addq.l &1,%d1 # inc zero count - mov.l &1,%d5 # init lword counter - mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 - bne.b ap_p_cl # if lw 2 is zero, skip it - addq.l &8,%d1 # and inc count by 8 - addq.l &1,%d5 # inc lword counter - mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 -ap_p_cl: - clr.l %d3 # init offset reg - mov.l &7,%d2 # init digit counter -ap_p_gd: - bfextu %d4{%d3:&4},%d0 # get digit - bne.b ap_p_fx # if non-zero, go to fix exp - addq.l &4,%d3 # point to next digit - addq.l &1,%d1 # inc digit counter - dbf.w %d2,ap_p_gd # get next digit -ap_p_fx: - mov.l %d1,%d0 # copy counter to d2 - mov.l (%sp),%d1 # get adjusted exp from memory - sub.l %d0,%d1 # subtract count from exp - bge.b ap_p_fm # if still pos, go to pwrten - neg.l %d1 # now its neg; get abs - mov.l (%a0),%d4 # load lword 1 to d4 - or.l &0x40000000,%d4 # and set SE in d4 - or.l &0x40000000,(%a0) # and in memory -# -# Calculate the mantissa multiplier to compensate for the striping of -# zeros from the mantissa. -# -ap_p_fm: - lea.l PTENRN(%pc),%a1 # get address of power-of-ten table - clr.l %d3 # init table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 - mov.l &3,%d2 # init d2 to count bits in counter -ap_p_el: - asr.l &1,%d0 # shift lsb into carry - bcc.b ap_p_en # if 1, mul fp1 by pwrten factor - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -ap_p_en: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b ap_p_el # if not, get next bit - fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) - bra.b pwrten # go calc pwrten -# -# This section handles a negative adjusted exponent. -# -ap_st_n: - clr.l %d1 # clr counter - mov.l &2,%d5 # set up d5 to point to lword 3 - mov.l (%a0,%d5.L*4),%d4 # get lword 3 - bne.b ap_n_cl # if not zero, check digits - sub.l &1,%d5 # dec d5 to point to lword 2 - addq.l &8,%d1 # inc counter by 8 - mov.l (%a0,%d5.L*4),%d4 # get lword 2 -ap_n_cl: - mov.l &28,%d3 # point to last digit - mov.l &7,%d2 # init digit counter -ap_n_gd: - bfextu %d4{%d3:&4},%d0 # get digit - bne.b ap_n_fx # if non-zero, go to exp fix - subq.l &4,%d3 # point to previous digit - addq.l &1,%d1 # inc digit counter - dbf.w %d2,ap_n_gd # get next digit -ap_n_fx: - mov.l %d1,%d0 # copy counter to d0 - mov.l (%sp),%d1 # get adjusted exp from memory - sub.l %d0,%d1 # subtract count from exp - bgt.b ap_n_fm # if still pos, go fix mantissa - neg.l %d1 # take abs of exp and clr SE - mov.l (%a0),%d4 # load lword 1 to d4 - and.l &0xbfffffff,%d4 # and clr SE in d4 - and.l &0xbfffffff,(%a0) # and in memory -# -# Calculate the mantissa multiplier to compensate for the appending of -# zeros to the mantissa. -# -ap_n_fm: - lea.l PTENRN(%pc),%a1 # get address of power-of-ten table - clr.l %d3 # init table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 - mov.l &3,%d2 # init d2 to count bits in counter -ap_n_el: - asr.l &1,%d0 # shift lsb into carry - bcc.b ap_n_en # if 1, mul fp1 by pwrten factor - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -ap_n_en: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b ap_n_el # if not, get next bit - fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) -# -# -# Calculate power-of-ten factor from adjusted and shifted exponent. -# -# Register usage: -# -# pwrten: -# (*) d0: temp -# ( ) d1: exponent -# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp -# (*) d3: FPCR work copy -# ( ) d4: first word of bcd -# (*) a1: RTABLE pointer -# calc_p: -# (*) d0: temp -# ( ) d1: exponent -# (*) d3: PWRTxx table index -# ( ) a0: pointer to working copy of bcd -# (*) a1: PWRTxx pointer -# (*) fp1: power-of-ten accumulator -# -# Pwrten calculates the exponent factor in the selected rounding mode -# according to the following table: -# -# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode -# -# ANY ANY RN RN -# -# + + RP RP -# - + RP RM -# + - RP RM -# - - RP RP -# -# + + RM RM -# - + RM RP -# + - RM RP -# - - RM RM -# -# + + RZ RM -# - + RZ RM -# + - RZ RP -# - - RZ RP -# -# -pwrten: - mov.l USER_FPCR(%a6),%d3 # get user's FPCR - bfextu %d3{&26:&2},%d2 # isolate rounding mode bits - mov.l (%a0),%d4 # reload 1st bcd word to d4 - asl.l &2,%d2 # format d2 to be - bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} - add.l %d0,%d2 # in d2 as index into RTABLE - lea.l RTABLE(%pc),%a1 # load rtable base - mov.b (%a1,%d2),%d0 # load new rounding bits from table - clr.l %d3 # clear d3 to force no exc and extended - bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR - fmov.l %d3,%fpcr # write new FPCR - asr.l &1,%d0 # write correct PTENxx table - bcc.b not_rp # to a1 - lea.l PTENRP(%pc),%a1 # it is RP - bra.b calc_p # go to init section -not_rp: - asr.l &1,%d0 # keep checking - bcc.b not_rm - lea.l PTENRM(%pc),%a1 # it is RM - bra.b calc_p # go to init section -not_rm: - lea.l PTENRN(%pc),%a1 # it is RN -calc_p: - mov.l %d1,%d0 # copy exp to d0;use d0 - bpl.b no_neg # if exp is negative, - neg.l %d0 # invert it - or.l &0x40000000,(%a0) # and set SE bit -no_neg: - clr.l %d3 # table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 -e_loop: - asr.l &1,%d0 # shift next bit into carry - bcc.b e_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -e_next: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b e_loop # not zero, continue shifting -# -# -# Check the sign of the adjusted exp and make the value in fp0 the -# same sign. If the exp was pos then multiply fp1*fp0; -# else divide fp0/fp1. -# -# Register Usage: -# norm: -# ( ) a0: pointer to working bcd value -# (*) fp0: mantissa accumulator -# ( ) fp1: scaling factor - 10**(abs(exp)) -# -pnorm: - btst &30,(%a0) # test the sign of the exponent - beq.b mul # if clear, go to multiply -div: - fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp - bra.b end_dec -mul: - fmul.x %fp1,%fp0 # exp is positive, so multiply by exp -# -# -# Clean up and return with result in fp0. -# -# If the final mul/div in decbin incurred an inex exception, -# it will be inex2, but will be reported as inex1 by get_op. -# -end_dec: - fmov.l %fpsr,%d0 # get status register - bclr &inex2_bit+8,%d0 # test for inex2 and clear it - beq.b no_exc # skip this if no exc - ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX -no_exc: - add.l &0x4,%sp # clear 1 lw param - fmovm.x (%sp)+,&0x40 # restore fp1 - movm.l (%sp)+,&0x3c # restore d2-d5 - fmov.l &0x0,%fpcr - fmov.l &0x0,%fpsr - rts - -######################################################################### -# bindec(): Converts an input in extended precision format to bcd format# -# # -# INPUT *************************************************************** # -# a0 = pointer to the input extended precision value in memory. # -# the input may be either normalized, unnormalized, or # -# denormalized. # -# d0 = contains the k-factor sign-extended to 32-bits. # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = bcd format result on the stack. # -# # -# ALGORITHM *********************************************************** # -# # -# A1. Set RM and size ext; Set SIGMA = sign of input. # -# The k-factor is saved for use in d7. Clear the # -# BINDEC_FLG for separating normalized/denormalized # -# input. If input is unnormalized or denormalized, # -# normalize it. # -# # -# A2. Set X = abs(input). # -# # -# A3. Compute ILOG. # -# ILOG is the log base 10 of the input value. It is # -# approximated by adding e + 0.f when the original # -# value is viewed as 2^^e * 1.f in extended precision. # -# This value is stored in d6. # -# # -# A4. Clr INEX bit. # -# The operation in A3 above may have set INEX2. # -# # -# A5. Set ICTR = 0; # -# ICTR is a flag used in A13. It must be set before the # -# loop entry A6. # -# # -# A6. Calculate LEN. # -# LEN is the number of digits to be displayed. The # -# k-factor can dictate either the total number of digits, # -# if it is a positive number, or the number of digits # -# after the decimal point which are to be included as # -# significant. See the 68882 manual for examples. # -# If LEN is computed to be greater than 17, set OPERR in # -# USER_FPSR. LEN is stored in d4. # -# # -# A7. Calculate SCALE. # -# SCALE is equal to 10^ISCALE, where ISCALE is the number # -# of decimal places needed to insure LEN integer digits # -# in the output before conversion to bcd. LAMBDA is the # -# sign of ISCALE, used in A9. Fp1 contains # -# 10^^(abs(ISCALE)) using a rounding mode which is a # -# function of the original rounding mode and the signs # -# of ISCALE and X. A table is given in the code. # -# # -# A8. Clr INEX; Force RZ. # -# The operation in A3 above may have set INEX2. # -# RZ mode is forced for the scaling operation to insure # -# only one rounding error. The grs bits are collected in # -# the INEX flag for use in A10. # -# # -# A9. Scale X -> Y. # -# The mantissa is scaled to the desired number of # -# significant digits. The excess digits are collected # -# in INEX2. # -# # -# A10. Or in INEX. # -# If INEX is set, round error occurred. This is # -# compensated for by 'or-ing' in the INEX2 flag to # -# the lsb of Y. # -# # -# A11. Restore original FPCR; set size ext. # -# Perform FINT operation in the user's rounding mode. # -# Keep the size to extended. # -# # -# A12. Calculate YINT = FINT(Y) according to user's rounding # -# mode. The FPSP routine sintd0 is used. The output # -# is in fp0. # -# # -# A13. Check for LEN digits. # -# If the int operation results in more than LEN digits, # -# or less than LEN -1 digits, adjust ILOG and repeat from # -# A6. This test occurs only on the first pass. If the # -# result is exactly 10^LEN, decrement ILOG and divide # -# the mantissa by 10. # -# # -# A14. Convert the mantissa to bcd. # -# The binstr routine is used to convert the LEN digit # -# mantissa to bcd in memory. The input to binstr is # -# to be a fraction; i.e. (mantissa)/10^LEN and adjusted # -# such that the decimal point is to the left of bit 63. # -# The bcd digits are stored in the correct position in # -# the final string area in memory. # -# # -# A15. Convert the exponent to bcd. # -# As in A14 above, the exp is converted to bcd and the # -# digits are stored in the final string. # -# Test the length of the final exponent string. If the # -# length is 4, set operr. # -# # -# A16. Write sign bits to final string. # -# # -######################################################################### - -set BINDEC_FLG, EXC_TEMP # DENORM flag - -# Constants in extended precision -PLOG2: - long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 -PLOG2UP1: - long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 - -# Constants in single precision -FONE: - long 0x3F800000,0x00000000,0x00000000,0x00000000 -FTWO: - long 0x40000000,0x00000000,0x00000000,0x00000000 -FTEN: - long 0x41200000,0x00000000,0x00000000,0x00000000 -F4933: - long 0x459A2800,0x00000000,0x00000000,0x00000000 - -RBDTBL: - byte 0,0,0,0 - byte 3,3,2,2 - byte 3,2,2,3 - byte 2,3,3,2 - -# Implementation Notes: -# -# The registers are used as follows: -# -# d0: scratch; LEN input to binstr -# d1: scratch -# d2: upper 32-bits of mantissa for binstr -# d3: scratch;lower 32-bits of mantissa for binstr -# d4: LEN -# d5: LAMBDA/ICTR -# d6: ILOG -# d7: k-factor -# a0: ptr for original operand/final result -# a1: scratch pointer -# a2: pointer to FP_X; abs(original value) in ext -# fp0: scratch -# fp1: scratch -# fp2: scratch -# F_SCR1: -# F_SCR2: -# L_SCR1: -# L_SCR2: - - global bindec -bindec: - movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} - fmovm.x &0x7,-(%sp) # {%fp0-%fp2} - -# A1. Set RM and size ext. Set SIGMA = sign input; -# The k-factor is saved for use in d7. Clear BINDEC_FLG for -# separating normalized/denormalized input. If the input -# is a denormalized number, set the BINDEC_FLG memory word -# to signal denorm. If the input is unnormalized, normalize -# the input and test for denormalized result. -# - fmov.l &rm_mode*0x10,%fpcr # set RM and ext - mov.l (%a0),L_SCR2(%a6) # save exponent for sign check - mov.l %d0,%d7 # move k-factor to d7 - - clr.b BINDEC_FLG(%a6) # clr norm/denorm flag - cmpi.b STAG(%a6),&DENORM # is input a DENORM? - bne.w A2_str # no; input is a NORM - -# -# Normalize the denorm -# -un_de_norm: - mov.w (%a0),%d0 - and.w &0x7fff,%d0 # strip sign of normalized exp - mov.l 4(%a0),%d1 - mov.l 8(%a0),%d2 -norm_loop: - sub.w &1,%d0 - lsl.l &1,%d2 - roxl.l &1,%d1 - tst.l %d1 - bge.b norm_loop -# -# Test if the normalized input is denormalized -# - tst.w %d0 - bgt.b pos_exp # if greater than zero, it is a norm - st BINDEC_FLG(%a6) # set flag for denorm -pos_exp: - and.w &0x7fff,%d0 # strip sign of normalized exp - mov.w %d0,(%a0) - mov.l %d1,4(%a0) - mov.l %d2,8(%a0) - -# A2. Set X = abs(input). -# -A2_str: - mov.l (%a0),FP_SCR1(%a6) # move input to work space - mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space - mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space - and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) - -# A3. Compute ILOG. -# ILOG is the log base 10 of the input value. It is approx- -# imated by adding e + 0.f when the original value is viewed -# as 2^^e * 1.f in extended precision. This value is stored -# in d6. -# -# Register usage: -# Input/Output -# d0: k-factor/exponent -# d2: x/x -# d3: x/x -# d4: x/x -# d5: x/x -# d6: x/ILOG -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/x -# a2: x/x -# fp0: x/float(ILOG) -# fp1: x/x -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X)/Abs(X) with $3fff exponent -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - - tst.b BINDEC_FLG(%a6) # check for denorm - beq.b A3_cont # if clr, continue with norm - mov.l &-4933,%d6 # force ILOG = -4933 - bra.b A4_str -A3_cont: - mov.w FP_SCR1(%a6),%d0 # move exp to d0 - mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff - fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f - sub.w &0x3fff,%d0 # strip off bias - fadd.w %d0,%fp0 # add in exp - fsub.s FONE(%pc),%fp0 # subtract off 1.0 - fbge.w pos_res # if pos, branch - fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 - fmov.l %fp0,%d6 # put ILOG in d6 as a lword - bra.b A4_str # go move out ILOG -pos_res: - fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 - fmov.l %fp0,%d6 # put ILOG in d6 as a lword - - -# A4. Clr INEX bit. -# The operation in A3 above may have set INEX2. - -A4_str: - fmov.l &0,%fpsr # zero all of fpsr - nothing needed - - -# A5. Set ICTR = 0; -# ICTR is a flag used in A13. It must be set before the -# loop entry A6. The lower word of d5 is used for ICTR. - - clr.w %d5 # clear ICTR - -# A6. Calculate LEN. -# LEN is the number of digits to be displayed. The k-factor -# can dictate either the total number of digits, if it is -# a positive number, or the number of digits after the -# original decimal point which are to be included as -# significant. See the 68882 manual for examples. -# If LEN is computed to be greater than 17, set OPERR in -# USER_FPSR. LEN is stored in d4. -# -# Register usage: -# Input/Output -# d0: exponent/Unchanged -# d2: x/x/scratch -# d3: x/x -# d4: exc picture/LEN -# d5: ICTR/Unchanged -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/x -# a2: x/x -# fp0: float(ILOG)/Unchanged -# fp1: x/x -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A6_str: - tst.l %d7 # branch on sign of k - ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k - mov.l %d7,%d4 # if k > 0, LEN = k - bra.b len_ck # skip to LEN check -k_neg: - mov.l %d6,%d4 # first load ILOG to d4 - sub.l %d7,%d4 # subtract off k - addq.l &1,%d4 # add in the 1 -len_ck: - tst.l %d4 # LEN check: branch on sign of LEN - ble.b LEN_ng # if neg, set LEN = 1 - cmp.l %d4,&17 # test if LEN > 17 - ble.b A7_str # if not, forget it - mov.l &17,%d4 # set max LEN = 17 - tst.l %d7 # if negative, never set OPERR - ble.b A7_str # if positive, continue - or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR - bra.b A7_str # finished here -LEN_ng: - mov.l &1,%d4 # min LEN is 1 - - -# A7. Calculate SCALE. -# SCALE is equal to 10^ISCALE, where ISCALE is the number -# of decimal places needed to insure LEN integer digits -# in the output before conversion to bcd. LAMBDA is the sign -# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using -# the rounding mode as given in the following table (see -# Coonen, p. 7.23 as ref.; however, the SCALE variable is -# of opposite sign in bindec.sa from Coonen). -# -# Initial USE -# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] -# ---------------------------------------------- -# RN 00 0 0 00/0 RN -# RN 00 0 1 00/0 RN -# RN 00 1 0 00/0 RN -# RN 00 1 1 00/0 RN -# RZ 01 0 0 11/3 RP -# RZ 01 0 1 11/3 RP -# RZ 01 1 0 10/2 RM -# RZ 01 1 1 10/2 RM -# RM 10 0 0 11/3 RP -# RM 10 0 1 10/2 RM -# RM 10 1 0 10/2 RM -# RM 10 1 1 11/3 RP -# RP 11 0 0 10/2 RM -# RP 11 0 1 11/3 RP -# RP 11 1 0 11/3 RP -# RP 11 1 1 10/2 RM -# -# Register usage: -# Input/Output -# d0: exponent/scratch - final is 0 -# d2: x/0 or 24 for A9 -# d3: x/scratch - offset ptr into PTENRM array -# d4: LEN/Unchanged -# d5: 0/ICTR:LAMBDA -# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/ptr to PTENRM array -# a2: x/x -# fp0: float(ILOG)/Unchanged -# fp1: x/10^ISCALE -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A7_str: - tst.l %d7 # test sign of k - bgt.b k_pos # if pos and > 0, skip this - cmp.l %d7,%d6 # test k - ILOG - blt.b k_pos # if ILOG >= k, skip this - mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k -k_pos: - mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 - addq.l &1,%d0 # add the 1 - sub.l %d4,%d0 # sub off LEN - swap %d5 # use upper word of d5 for LAMBDA - clr.w %d5 # set it zero initially - clr.w %d2 # set up d2 for very small case - tst.l %d0 # test sign of ISCALE - bge.b iscale # if pos, skip next inst - addq.w &1,%d5 # if neg, set LAMBDA true - cmp.l %d0,&0xffffecd4 # test iscale <= -4908 - bgt.b no_inf # if false, skip rest - add.l &24,%d0 # add in 24 to iscale - mov.l &24,%d2 # put 24 in d2 for A9 -no_inf: - neg.l %d0 # and take abs of ISCALE -iscale: - fmov.s FONE(%pc),%fp1 # init fp1 to 1 - bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits - lsl.w &1,%d1 # put them in bits 2:1 - add.w %d5,%d1 # add in LAMBDA - lsl.w &1,%d1 # put them in bits 3:1 - tst.l L_SCR2(%a6) # test sign of original x - bge.b x_pos # if pos, don't set bit 0 - addq.l &1,%d1 # if neg, set bit 0 -x_pos: - lea.l RBDTBL(%pc),%a2 # load rbdtbl base - mov.b (%a2,%d1),%d3 # load d3 with new rmode - lsl.l &4,%d3 # put bits in proper position - fmov.l %d3,%fpcr # load bits into fpu - lsr.l &4,%d3 # put bits in proper position - tst.b %d3 # decode new rmode for pten table - bne.b not_rn # if zero, it is RN - lea.l PTENRN(%pc),%a1 # load a1 with RN table base - bra.b rmode # exit decode -not_rn: - lsr.b &1,%d3 # get lsb in carry - bcc.b not_rp2 # if carry clear, it is RM - lea.l PTENRP(%pc),%a1 # load a1 with RP table base - bra.b rmode # exit decode -not_rp2: - lea.l PTENRM(%pc),%a1 # load a1 with RM table base -rmode: - clr.l %d3 # clr table index -e_loop2: - lsr.l &1,%d0 # shift next bit into carry - bcc.b e_next2 # if zero, skip the mul - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -e_next2: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if ISCALE is zero - bne.b e_loop2 # if not, loop - -# A8. Clr INEX; Force RZ. -# The operation in A3 above may have set INEX2. -# RZ mode is forced for the scaling operation to insure -# only one rounding error. The grs bits are collected in -# the INEX flag for use in A10. -# -# Register usage: -# Input/Output - - fmov.l &0,%fpsr # clr INEX - fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode - -# A9. Scale X -> Y. -# The mantissa is scaled to the desired number of significant -# digits. The excess digits are collected in INEX2. If mul, -# Check d2 for excess 10 exponential value. If not zero, -# the iscale value would have caused the pwrten calculation -# to overflow. Only a negative iscale can cause this, so -# multiply by 10^(d2), which is now only allowed to be 24, -# with a multiply by 10^8 and 10^16, which is exact since -# 10^24 is exact. If the input was denormalized, we must -# create a busy stack frame with the mul command and the -# two operands, and allow the fpu to complete the multiply. -# -# Register usage: -# Input/Output -# d0: FPCR with RZ mode/Unchanged -# d2: 0 or 24/unchanged -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: ptr to PTENRM array/Unchanged -# a2: x/x -# fp0: float(ILOG)/X adjusted for SCALE (Y) -# fp1: 10^ISCALE/Unchanged -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A9_str: - fmov.x (%a0),%fp0 # load X from memory - fabs.x %fp0 # use abs(X) - tst.w %d5 # LAMBDA is in lower word of d5 - bne.b sc_mul # if neg (LAMBDA = 1), scale by mul - fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 - bra.w A10_st # branch to A10 - -sc_mul: - tst.b BINDEC_FLG(%a6) # check for denorm - beq.w A9_norm # if norm, continue with mul - -# for DENORM, we must calculate: -# fp0 = input_op * 10^ISCALE * 10^24 -# since the input operand is a DENORM, we can't multiply it directly. -# so, we do the multiplication of the exponents and mantissas separately. -# in this way, we avoid underflow on intermediate stages of the -# multiplication and guarantee a result without exception. - fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack - - mov.w (%sp),%d3 # grab exponent - andi.w &0x7fff,%d3 # clear sign - ori.w &0x8000,(%a0) # make DENORM exp negative - add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp - subi.w &0x3fff,%d3 # subtract BIAS - add.w 36(%a1),%d3 - subi.w &0x3fff,%d3 # subtract BIAS - add.w 48(%a1),%d3 - subi.w &0x3fff,%d3 # subtract BIAS - - bmi.w sc_mul_err # is result is DENORM, punt!!! - - andi.w &0x8000,(%sp) # keep sign - or.w %d3,(%sp) # insert new exponent - andi.w &0x7fff,(%a0) # clear sign bit on DENORM again - mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk - mov.l 0x4(%a0),-(%sp) - mov.l &0x3fff0000,-(%sp) # force exp to zero - fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 - fmul.x (%sp)+,%fp0 - -# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 -# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 - mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa - mov.l 36+4(%a1),-(%sp) - mov.l &0x3fff0000,-(%sp) # force exp to zero - mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa - mov.l 48+4(%a1),-(%sp) - mov.l &0x3fff0000,-(%sp)# force exp to zero - fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 - fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 - bra.b A10_st - -sc_mul_err: - bra.b sc_mul_err - -A9_norm: - tst.w %d2 # test for small exp case - beq.b A9_con # if zero, continue as normal - fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 - fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 -A9_con: - fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 - -# A10. Or in INEX. -# If INEX is set, round error occurred. This is compensated -# for by 'or-ing' in the INEX2 flag to the lsb of Y. -# -# Register usage: -# Input/Output -# d0: FPCR with RZ mode/FPSR with INEX2 isolated -# d2: x/x -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: ptr to PTENxx array/Unchanged -# a2: x/ptr to FP_SCR1(a6) -# fp0: Y/Y with lsb adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: x/x - -A10_st: - fmov.l %fpsr,%d0 # get FPSR - fmov.x %fp0,FP_SCR1(%a6) # move Y to memory - lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 - btst &9,%d0 # check if INEX2 set - beq.b A11_st # if clear, skip rest - or.l &1,8(%a2) # or in 1 to lsb of mantissa - fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu - - -# A11. Restore original FPCR; set size ext. -# Perform FINT operation in the user's rounding mode. Keep -# the size to extended. The sintdo entry point in the sint -# routine expects the FPCR value to be in USER_FPCR for -# mode and precision. The original FPCR is saved in L_SCR1. - -A11_st: - mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later - and.l &0x00000030,USER_FPCR(%a6) # set size to ext, -# ;block exceptions - - -# A12. Calculate YINT = FINT(Y) according to user's rounding mode. -# The FPSP routine sintd0 is used. The output is in fp0. -# -# Register usage: -# Input/Output -# d0: FPSR with AINEX cleared/FPCR with size set to ext -# d2: x/x/scratch -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/Unchanged -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/src ptr for sintdo -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored -# fp0: Y/YINT -# fp1: 10^ISCALE/Unchanged -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Y adjusted for inex/Y with original exponent -# L_SCR1:x/original USER_FPCR -# L_SCR2:first word of X packed/Unchanged - -A12_st: - movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} - mov.l L_SCR1(%a6),-(%sp) - mov.l L_SCR2(%a6),-(%sp) - - lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) - fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) - tst.l L_SCR2(%a6) # test sign of original operand - bge.b do_fint12 # if pos, use Y - or.l &0x80000000,(%a0) # if neg, use -Y -do_fint12: - mov.l USER_FPSR(%a6),-(%sp) -# bsr sintdo # sint routine returns int in fp0 - - fmov.l USER_FPCR(%a6),%fpcr - fmov.l &0x0,%fpsr # clear the AEXC bits!!! -## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode -## andi.l &0x00000030,%d0 -## fmov.l %d0,%fpcr - fint.x FP_SCR1(%a6),%fp0 # do fint() - fmov.l %fpsr,%d0 - or.w %d0,FPSR_EXCEPT(%a6) -## fmov.l &0x0,%fpcr -## fmov.l %fpsr,%d0 # don't keep ccodes -## or.w %d0,FPSR_EXCEPT(%a6) - - mov.b (%sp),USER_FPSR(%a6) - add.l &4,%sp - - mov.l (%sp)+,L_SCR2(%a6) - mov.l (%sp)+,L_SCR1(%a6) - movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} - - mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent - mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR - -# A13. Check for LEN digits. -# If the int operation results in more than LEN digits, -# or less than LEN -1 digits, adjust ILOG and repeat from -# A6. This test occurs only on the first pass. If the -# result is exactly 10^LEN, decrement ILOG and divide -# the mantissa by 10. The calculation of 10^LEN cannot -# be inexact, since all powers of ten up to 10^27 are exact -# in extended precision, so the use of a previous power-of-ten -# table will introduce no error. -# -# -# Register usage: -# Input/Output -# d0: FPCR with size set to ext/scratch final = 0 -# d2: x/x -# d3: x/scratch final = x -# d4: LEN/LEN adjusted -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG/ILOG adjusted -# d7: k-factor/Unchanged -# a0: pointer into memory for packed bcd string formation -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: int portion of Y/abs(YINT) adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: x/10^LEN -# F_SCR1:x/x -# F_SCR2:Y with original exponent/Unchanged -# L_SCR1:original USER_FPCR/Unchanged -# L_SCR2:first word of X packed/Unchanged - -A13_st: - swap %d5 # put ICTR in lower word of d5 - tst.w %d5 # check if ICTR = 0 - bne not_zr # if non-zero, go to second test -# -# Compute 10^(LEN-1) -# - fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 - mov.l %d4,%d0 # put LEN in d0 - subq.l &1,%d0 # d0 = LEN -1 - clr.l %d3 # clr table index -l_loop: - lsr.l &1,%d0 # shift next bit into carry - bcc.b l_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) -l_next: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if LEN is zero - bne.b l_loop # if not, loop -# -# 10^LEN-1 is computed for this test and A14. If the input was -# denormalized, check only the case in which YINT > 10^LEN. -# - tst.b BINDEC_FLG(%a6) # check if input was norm - beq.b A13_con # if norm, continue with checking - fabs.x %fp0 # take abs of YINT - bra test_2 -# -# Compare abs(YINT) to 10^(LEN-1) and 10^LEN -# -A13_con: - fabs.x %fp0 # take abs of YINT - fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) - fbge.w test_2 # if greater, do next test - subq.l &1,%d6 # subtract 1 from ILOG - mov.w &1,%d5 # set ICTR - fmov.l &rm_mode*0x10,%fpcr # set rmode to RM - fmul.s FTEN(%pc),%fp2 # compute 10^LEN - bra.w A6_str # return to A6 and recompute YINT -test_2: - fmul.s FTEN(%pc),%fp2 # compute 10^LEN - fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN - fblt.w A14_st # if less, all is ok, go to A14 - fbgt.w fix_ex # if greater, fix and redo - fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 - addq.l &1,%d6 # and inc ILOG - bra.b A14_st # and continue elsewhere -fix_ex: - addq.l &1,%d6 # increment ILOG by 1 - mov.w &1,%d5 # set ICTR - fmov.l &rm_mode*0x10,%fpcr # set rmode to RM - bra.w A6_str # return to A6 and recompute YINT -# -# Since ICTR <> 0, we have already been through one adjustment, -# and shouldn't have another; this is to check if abs(YINT) = 10^LEN -# 10^LEN is again computed using whatever table is in a1 since the -# value calculated cannot be inexact. -# -not_zr: - fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 - mov.l %d4,%d0 # put LEN in d0 - clr.l %d3 # clr table index -z_loop: - lsr.l &1,%d0 # shift next bit into carry - bcc.b z_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) -z_next: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if LEN is zero - bne.b z_loop # if not, loop - fabs.x %fp0 # get abs(YINT) - fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN - fbneq.w A14_st # if not, skip this - fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 - addq.l &1,%d6 # and inc ILOG by 1 - addq.l &1,%d4 # and inc LEN - fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN - -# A14. Convert the mantissa to bcd. -# The binstr routine is used to convert the LEN digit -# mantissa to bcd in memory. The input to binstr is -# to be a fraction; i.e. (mantissa)/10^LEN and adjusted -# such that the decimal point is to the left of bit 63. -# The bcd digits are stored in the correct position in -# the final string area in memory. -# -# -# Register usage: -# Input/Output -# d0: x/LEN call to binstr - final is 0 -# d1: x/0 -# d2: x/ms 32-bits of mant of abs(YINT) -# d3: x/ls 32-bits of mant of abs(YINT) -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG -# d7: k-factor/Unchanged -# a0: pointer into memory for packed bcd string formation -# /ptr to first mantissa byte in result string -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: int portion of Y/abs(YINT) adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:x/Work area for final result -# F_SCR2:Y with original exponent/Unchanged -# L_SCR1:original USER_FPCR/Unchanged -# L_SCR2:first word of X packed/Unchanged - -A14_st: - fmov.l &rz_mode*0x10,%fpcr # force rz for conversion - fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN - lea.l FP_SCR0(%a6),%a0 - fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory - mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 - mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 - clr.l 4(%a0) # zero word 2 of FP_RES - clr.l 8(%a0) # zero word 3 of FP_RES - mov.l (%a0),%d0 # move exponent to d0 - swap %d0 # put exponent in lower word - beq.b no_sft # if zero, don't shift - sub.l &0x3ffd,%d0 # sub bias less 2 to make fract - tst.l %d0 # check if > 1 - bgt.b no_sft # if so, don't shift - neg.l %d0 # make exp positive -m_loop: - lsr.l &1,%d2 # shift d2:d3 right, add 0s - roxr.l &1,%d3 # the number of places - dbf.w %d0,m_loop # given in d0 -no_sft: - tst.l %d2 # check for mantissa of zero - bne.b no_zr # if not, go on - tst.l %d3 # continue zero check - beq.b zer_m # if zero, go directly to binstr -no_zr: - clr.l %d1 # put zero in d1 for addx - add.l &0x00000080,%d3 # inc at bit 7 - addx.l %d1,%d2 # continue inc - and.l &0xffffff80,%d3 # strip off lsb not used by 882 -zer_m: - mov.l %d4,%d0 # put LEN in d0 for binstr call - addq.l &3,%a0 # a0 points to M16 byte in result - bsr binstr # call binstr to convert mant - - -# A15. Convert the exponent to bcd. -# As in A14 above, the exp is converted to bcd and the -# digits are stored in the final string. -# -# Digits are stored in L_SCR1(a6) on return from BINDEC as: -# -# 32 16 15 0 -# ----------------------------------------- -# | 0 | e3 | e2 | e1 | e4 | X | X | X | -# ----------------------------------------- -# -# And are moved into their proper places in FP_SCR0. If digit e4 -# is non-zero, OPERR is signaled. In all cases, all 4 digits are -# written as specified in the 881/882 manual for packed decimal. -# -# Register usage: -# Input/Output -# d0: x/LEN call to binstr - final is 0 -# d1: x/scratch (0);shift count for final exponent packing -# d2: x/ms 32-bits of exp fraction/scratch -# d3: x/ls 32-bits of exp fraction -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG -# d7: k-factor/Unchanged -# a0: ptr to result string/ptr to L_SCR1(a6) -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: abs(YINT) adjusted/float(ILOG) -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:Work area for final result/BCD result -# F_SCR2:Y with original exponent/ILOG/10^4 -# L_SCR1:original USER_FPCR/Exponent digits on return from binstr -# L_SCR2:first word of X packed/Unchanged - -A15_st: - tst.b BINDEC_FLG(%a6) # check for denorm - beq.b not_denorm - ftest.x %fp0 # test for zero - fbeq.w den_zero # if zero, use k-factor or 4933 - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG - bra.b convrt -den_zero: - tst.l %d7 # check sign of the k-factor - blt.b use_ilog # if negative, use ILOG - fmov.s F4933(%pc),%fp0 # force exponent to 4933 - bra.b convrt # do it -use_ilog: - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG - bra.b convrt -not_denorm: - ftest.x %fp0 # test for zero - fbneq.w not_zero # if zero, force exponent - fmov.s FONE(%pc),%fp0 # force exponent to 1 - bra.b convrt # do it -not_zero: - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG -convrt: - fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 - fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory - mov.l 4(%a2),%d2 # move word 2 to d2 - mov.l 8(%a2),%d3 # move word 3 to d3 - mov.w (%a2),%d0 # move exp to d0 - beq.b x_loop_fin # if zero, skip the shift - sub.w &0x3ffd,%d0 # subtract off bias - neg.w %d0 # make exp positive -x_loop: - lsr.l &1,%d2 # shift d2:d3 right - roxr.l &1,%d3 # the number of places - dbf.w %d0,x_loop # given in d0 -x_loop_fin: - clr.l %d1 # put zero in d1 for addx - add.l &0x00000080,%d3 # inc at bit 6 - addx.l %d1,%d2 # continue inc - and.l &0xffffff80,%d3 # strip off lsb not used by 882 - mov.l &4,%d0 # put 4 in d0 for binstr call - lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits - bsr binstr # call binstr to convert exp - mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 - mov.l &12,%d1 # use d1 for shift count - lsr.l %d1,%d0 # shift d0 right by 12 - bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 - lsr.l %d1,%d0 # shift d0 right by 12 - bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 - tst.b %d0 # check if e4 is zero - beq.b A16_st # if zero, skip rest - or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR - - -# A16. Write sign bits to final string. -# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). -# -# Register usage: -# Input/Output -# d0: x/scratch - final is x -# d2: x/x -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG/ILOG adjusted -# d7: k-factor/Unchanged -# a0: ptr to L_SCR1(a6)/Unchanged -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: float(ILOG)/Unchanged -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:BCD result with correct signs -# F_SCR2:ILOG/10^4 -# L_SCR1:Exponent digits on return from binstr -# L_SCR2:first word of X packed/Unchanged - -A16_st: - clr.l %d0 # clr d0 for collection of signs - and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 - tst.l L_SCR2(%a6) # check sign of original mantissa - bge.b mant_p # if pos, don't set SM - mov.l &2,%d0 # move 2 in to d0 for SM -mant_p: - tst.l %d6 # check sign of ILOG - bge.b wr_sgn # if pos, don't set SE - addq.l &1,%d0 # set bit 0 in d0 for SE -wr_sgn: - bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 - -# Clean up and restore all registers used. - - fmov.l &0,%fpsr # clear possible inex2/ainex bits - fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} - movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} - rts - - global PTENRN -PTENRN: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - - global PTENRP -PTENRP: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - - global PTENRM -PTENRM: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 - -######################################################################### -# binstr(): Converts a 64-bit binary integer to bcd. # -# # -# INPUT *************************************************************** # -# d2:d3 = 64-bit binary integer # -# d0 = desired length (LEN) # -# a0 = pointer to start in memory for bcd characters # -# (This pointer must point to byte 4 of the first # -# lword of the packed decimal memory string.) # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to LEN bcd digits representing the 64-bit integer. # -# # -# ALGORITHM *********************************************************** # -# The 64-bit binary is assumed to have a decimal point before # -# bit 63. The fraction is multiplied by 10 using a mul by 2 # -# shift and a mul by 8 shift. The bits shifted out of the # -# msb form a decimal digit. This process is iterated until # -# LEN digits are formed. # -# # -# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # -# digit formed will be assumed the least significant. This is # -# to force the first byte formed to have a 0 in the upper 4 bits. # -# # -# A2. Beginning of the loop: # -# Copy the fraction in d2:d3 to d4:d5. # -# # -# A3. Multiply the fraction in d2:d3 by 8 using bit-field # -# extracts and shifts. The three msbs from d2 will go into d1. # -# # -# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # -# will be collected by the carry. # -# # -# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # -# into d2:d3. D1 will contain the bcd digit formed. # -# # -# A6. Test d7. If zero, the digit formed is the ms digit. If non- # -# zero, it is the ls digit. Put the digit in its place in the # -# upper word of d0. If it is the ls digit, write the word # -# from d0 to memory. # -# # -# A7. Decrement d6 (LEN counter) and repeat the loop until zero. # -# # -######################################################################### - -# Implementation Notes: -# -# The registers are used as follows: -# -# d0: LEN counter -# d1: temp used to form the digit -# d2: upper 32-bits of fraction for mul by 8 -# d3: lower 32-bits of fraction for mul by 8 -# d4: upper 32-bits of fraction for mul by 2 -# d5: lower 32-bits of fraction for mul by 2 -# d6: temp for bit-field extracts -# d7: byte digit formation word;digit count {0,1} -# a0: pointer into memory for packed bcd string formation -# - - global binstr -binstr: - movm.l &0xff00,-(%sp) # {%d0-%d7} - -# -# A1: Init d7 -# - mov.l &1,%d7 # init d7 for second digit - subq.l &1,%d0 # for dbf d0 would have LEN+1 passes -# -# A2. Copy d2:d3 to d4:d5. Start loop. -# -loop: - mov.l %d2,%d4 # copy the fraction before muls - mov.l %d3,%d5 # to d4:d5 -# -# A3. Multiply d2:d3 by 8; extract msbs into d1. -# - bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 - asl.l &3,%d2 # shift d2 left by 3 places - bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 - asl.l &3,%d3 # shift d3 left by 3 places - or.l %d6,%d2 # or in msbs from d3 into d2 -# -# A4. Multiply d4:d5 by 2; add carry out to d1. -# - asl.l &1,%d5 # mul d5 by 2 - roxl.l &1,%d4 # mul d4 by 2 - swap %d6 # put 0 in d6 lower word - addx.w %d6,%d1 # add in extend from mul by 2 -# -# A5. Add mul by 8 to mul by 2. D1 contains the digit formed. -# - add.l %d5,%d3 # add lower 32 bits - nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) - addx.l %d4,%d2 # add with extend upper 32 bits - nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) - addx.w %d6,%d1 # add in extend from add to d1 - swap %d6 # with d6 = 0; put 0 in upper word -# -# A6. Test d7 and branch. -# - tst.w %d7 # if zero, store digit & to loop - beq.b first_d # if non-zero, form byte & write -sec_d: - swap %d7 # bring first digit to word d7b - asl.w &4,%d7 # first digit in upper 4 bits d7b - add.w %d1,%d7 # add in ls digit to d7b - mov.b %d7,(%a0)+ # store d7b byte in memory - swap %d7 # put LEN counter in word d7a - clr.w %d7 # set d7a to signal no digits done - dbf.w %d0,loop # do loop some more! - bra.b end_bstr # finished, so exit -first_d: - swap %d7 # put digit word in d7b - mov.w %d1,%d7 # put new digit in d7b - swap %d7 # put LEN counter in word d7a - addq.w &1,%d7 # set d7a to signal first digit done - dbf.w %d0,loop # do loop some more! - swap %d7 # put last digit in string - lsl.w &4,%d7 # move it to upper 4 bits - mov.b %d7,(%a0)+ # store it in memory string -# -# Clean up and return with result in fp0. -# -end_bstr: - movm.l (%sp)+,&0xff # {%d0-%d7} - rts - -######################################################################### -# XDEF **************************************************************** # -# facc_in_b(): dmem_read_byte failed # -# facc_in_w(): dmem_read_word failed # -# facc_in_l(): dmem_read_long failed # -# facc_in_d(): dmem_read of dbl prec failed # -# facc_in_x(): dmem_read of ext prec failed # -# # -# facc_out_b(): dmem_write_byte failed # -# facc_out_w(): dmem_write_word failed # -# facc_out_l(): dmem_write_long failed # -# facc_out_d(): dmem_write of dbl prec failed # -# facc_out_x(): dmem_write of ext prec failed # -# # -# XREF **************************************************************** # -# _real_access() - exit through access error handler # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Flow jumps here when an FP data fetch call gets an error # -# result. This means the operating system wants an access error frame # -# made out of the current exception stack frame. # -# So, we first call restore() which makes sure that any updated # -# -(an)+ register gets returned to its pre-exception value and then # -# we change the stack to an access error stack frame. # -# # -######################################################################### - -facc_in_b: - movq.l &0x1,%d0 # one byte - bsr.w restore # fix An - - mov.w &0x0121,EXC_VOFF(%a6) # set FSLW - bra.w facc_finish - -facc_in_w: - movq.l &0x2,%d0 # two bytes - bsr.w restore # fix An - - mov.w &0x0141,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_l: - movq.l &0x4,%d0 # four bytes - bsr.w restore # fix An - - mov.w &0x0101,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_d: - movq.l &0x8,%d0 # eight bytes - bsr.w restore # fix An - - mov.w &0x0161,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_x: - movq.l &0xc,%d0 # twelve bytes - bsr.w restore # fix An - - mov.w &0x0161,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -################################################################ - -facc_out_b: - movq.l &0x1,%d0 # one byte - bsr.w restore # restore An - - mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_w: - movq.l &0x2,%d0 # two bytes - bsr.w restore # restore An - - mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_l: - movq.l &0x4,%d0 # four bytes - bsr.w restore # restore An - - mov.w &0x0081,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_d: - movq.l &0x8,%d0 # eight bytes - bsr.w restore # restore An - - mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_x: - mov.l &0xc,%d0 # twelve bytes - bsr.w restore # restore An - - mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW - -# here's where we actually create the access error frame from the -# current exception stack frame. -facc_finish: - mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - mov.l (%sp),-(%sp) # store SR, hi(PC) - mov.l 0x8(%sp),0x4(%sp) # store lo(PC) - mov.l 0xc(%sp),0x8(%sp) # store EA - mov.l &0x00000001,0xc(%sp) # store FSLW - mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) - mov.w &0x4008,0x6(%sp) # store voff - - btst &0x5,(%sp) # supervisor or user mode? - beq.b facc_out2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -facc_out2: - bra.l _real_access - -################################################################## - -# if the effective addressing mode was predecrement or postincrement, -# the emulation has already changed its value to the correct post- -# instruction value. but since we're exiting to the access error -# handler, then AN must be returned to its pre-instruction value. -# we do that here. -restore: - mov.b EXC_OPWORD+0x1(%a6),%d1 - andi.b &0x38,%d1 # extract opmode - cmpi.b %d1,&0x18 # postinc? - beq.w rest_inc - cmpi.b %d1,&0x20 # predec? - beq.w rest_dec - rts - -rest_inc: - mov.b EXC_OPWORD+0x1(%a6),%d1 - andi.w &0x0007,%d1 # fetch An - - mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 - jmp (tbl_rest_inc.b,%pc,%d1.w*1) - -tbl_rest_inc: - short ri_a0 - tbl_rest_inc - short ri_a1 - tbl_rest_inc - short ri_a2 - tbl_rest_inc - short ri_a3 - tbl_rest_inc - short ri_a4 - tbl_rest_inc - short ri_a5 - tbl_rest_inc - short ri_a6 - tbl_rest_inc - short ri_a7 - tbl_rest_inc - -ri_a0: - sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 - rts -ri_a1: - sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 - rts -ri_a2: - sub.l %d0,%a2 # fix a2 - rts -ri_a3: - sub.l %d0,%a3 # fix a3 - rts -ri_a4: - sub.l %d0,%a4 # fix a4 - rts -ri_a5: - sub.l %d0,%a5 # fix a5 - rts -ri_a6: - sub.l %d0,(%a6) # fix stacked a6 - rts -# if it's a fmove out instruction, we don't have to fix a7 -# because we hadn't changed it yet. if it's an opclass two -# instruction (data moved in) and the exception was in supervisor -# mode, then also also wasn't updated. if it was user mode, then -# restore the correct a7 which is in the USP currently. -ri_a7: - cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? - bne.b ri_a7_done # out - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.b ri_a7_done # supervisor - movc %usp,%a0 # restore USP - sub.l %d0,%a0 - movc %a0,%usp -ri_a7_done: - rts - -# need to invert adjustment value if the <ea> was predec -rest_dec: - neg.l %d0 - bra.b rest_inc |