summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/m68k/ifpsp060/src
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/m68k/ifpsp060/src
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/m68k/ifpsp060/src')
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC12
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S10980
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S24785
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S1456
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S932
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S4299
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S6386
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S14745
8 files changed, 0 insertions, 63595 deletions
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC
deleted file mode 100644
index 6be5cff2..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/README-SRC
+++ /dev/null
@@ -1,12 +0,0 @@
-This is the original source code from Motorola for the 68060 processor
-support code, providing emulation for rarely used m68k instructions
-not implemented in the 68060 silicon.
-
-The code provided here will not assemble out of the box using the GNU
-assembler, however it is being included in order to comply with the
-GNU General Public License.
-
-You don't need to actually assemble these files in order to compile a
-workin m68k kernel, the precompiled .sa files in arch/m68k/ifpsp060
-are sufficient and were generated from these source files by
-Motorola.
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S
deleted file mode 100644
index 3b7ea2dc..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fplsp.S
+++ /dev/null
@@ -1,10980 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-#
-# lfptop.s:
-# This file is appended to the top of the 060ILSP package
-# and contains the entry points into the package. The user, in
-# effect, branches to one of the branch table entries located here.
-#
-
- bra.l _facoss_
- short 0x0000
- bra.l _facosd_
- short 0x0000
- bra.l _facosx_
- short 0x0000
-
- bra.l _fasins_
- short 0x0000
- bra.l _fasind_
- short 0x0000
- bra.l _fasinx_
- short 0x0000
-
- bra.l _fatans_
- short 0x0000
- bra.l _fatand_
- short 0x0000
- bra.l _fatanx_
- short 0x0000
-
- bra.l _fatanhs_
- short 0x0000
- bra.l _fatanhd_
- short 0x0000
- bra.l _fatanhx_
- short 0x0000
-
- bra.l _fcoss_
- short 0x0000
- bra.l _fcosd_
- short 0x0000
- bra.l _fcosx_
- short 0x0000
-
- bra.l _fcoshs_
- short 0x0000
- bra.l _fcoshd_
- short 0x0000
- bra.l _fcoshx_
- short 0x0000
-
- bra.l _fetoxs_
- short 0x0000
- bra.l _fetoxd_
- short 0x0000
- bra.l _fetoxx_
- short 0x0000
-
- bra.l _fetoxm1s_
- short 0x0000
- bra.l _fetoxm1d_
- short 0x0000
- bra.l _fetoxm1x_
- short 0x0000
-
- bra.l _fgetexps_
- short 0x0000
- bra.l _fgetexpd_
- short 0x0000
- bra.l _fgetexpx_
- short 0x0000
-
- bra.l _fgetmans_
- short 0x0000
- bra.l _fgetmand_
- short 0x0000
- bra.l _fgetmanx_
- short 0x0000
-
- bra.l _flog10s_
- short 0x0000
- bra.l _flog10d_
- short 0x0000
- bra.l _flog10x_
- short 0x0000
-
- bra.l _flog2s_
- short 0x0000
- bra.l _flog2d_
- short 0x0000
- bra.l _flog2x_
- short 0x0000
-
- bra.l _flogns_
- short 0x0000
- bra.l _flognd_
- short 0x0000
- bra.l _flognx_
- short 0x0000
-
- bra.l _flognp1s_
- short 0x0000
- bra.l _flognp1d_
- short 0x0000
- bra.l _flognp1x_
- short 0x0000
-
- bra.l _fmods_
- short 0x0000
- bra.l _fmodd_
- short 0x0000
- bra.l _fmodx_
- short 0x0000
-
- bra.l _frems_
- short 0x0000
- bra.l _fremd_
- short 0x0000
- bra.l _fremx_
- short 0x0000
-
- bra.l _fscales_
- short 0x0000
- bra.l _fscaled_
- short 0x0000
- bra.l _fscalex_
- short 0x0000
-
- bra.l _fsins_
- short 0x0000
- bra.l _fsind_
- short 0x0000
- bra.l _fsinx_
- short 0x0000
-
- bra.l _fsincoss_
- short 0x0000
- bra.l _fsincosd_
- short 0x0000
- bra.l _fsincosx_
- short 0x0000
-
- bra.l _fsinhs_
- short 0x0000
- bra.l _fsinhd_
- short 0x0000
- bra.l _fsinhx_
- short 0x0000
-
- bra.l _ftans_
- short 0x0000
- bra.l _ftand_
- short 0x0000
- bra.l _ftanx_
- short 0x0000
-
- bra.l _ftanhs_
- short 0x0000
- bra.l _ftanhd_
- short 0x0000
- bra.l _ftanhx_
- short 0x0000
-
- bra.l _ftentoxs_
- short 0x0000
- bra.l _ftentoxd_
- short 0x0000
- bra.l _ftentoxx_
- short 0x0000
-
- bra.l _ftwotoxs_
- short 0x0000
- bra.l _ftwotoxd_
- short 0x0000
- bra.l _ftwotoxx_
- short 0x0000
-
- bra.l _fabss_
- short 0x0000
- bra.l _fabsd_
- short 0x0000
- bra.l _fabsx_
- short 0x0000
-
- bra.l _fadds_
- short 0x0000
- bra.l _faddd_
- short 0x0000
- bra.l _faddx_
- short 0x0000
-
- bra.l _fdivs_
- short 0x0000
- bra.l _fdivd_
- short 0x0000
- bra.l _fdivx_
- short 0x0000
-
- bra.l _fints_
- short 0x0000
- bra.l _fintd_
- short 0x0000
- bra.l _fintx_
- short 0x0000
-
- bra.l _fintrzs_
- short 0x0000
- bra.l _fintrzd_
- short 0x0000
- bra.l _fintrzx_
- short 0x0000
-
- bra.l _fmuls_
- short 0x0000
- bra.l _fmuld_
- short 0x0000
- bra.l _fmulx_
- short 0x0000
-
- bra.l _fnegs_
- short 0x0000
- bra.l _fnegd_
- short 0x0000
- bra.l _fnegx_
- short 0x0000
-
- bra.l _fsqrts_
- short 0x0000
- bra.l _fsqrtd_
- short 0x0000
- bra.l _fsqrtx_
- short 0x0000
-
- bra.l _fsubs_
- short 0x0000
- bra.l _fsubd_
- short 0x0000
- bra.l _fsubx_
- short 0x0000
-
-# leave room for future possible additions
- align 0x400
-
-#
-# This file contains a set of define statements for constants
-# in order to promote readability within the corecode itself.
-#
-
-set LOCAL_SIZE, 192 # stack frame size(bytes)
-set LV, -LOCAL_SIZE # stack offset
-
-set EXC_SR, 0x4 # stack status register
-set EXC_PC, 0x6 # stack pc
-set EXC_VOFF, 0xa # stacked vector offset
-set EXC_EA, 0xc # stacked <ea>
-
-set EXC_FP, 0x0 # frame pointer
-
-set EXC_AREGS, -68 # offset of all address regs
-set EXC_DREGS, -100 # offset of all data regs
-set EXC_FPREGS, -36 # offset of all fp regs
-
-set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
-set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
-set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
-set EXC_A5, EXC_AREGS+(5*4)
-set EXC_A4, EXC_AREGS+(4*4)
-set EXC_A3, EXC_AREGS+(3*4)
-set EXC_A2, EXC_AREGS+(2*4)
-set EXC_A1, EXC_AREGS+(1*4)
-set EXC_A0, EXC_AREGS+(0*4)
-set EXC_D7, EXC_DREGS+(7*4)
-set EXC_D6, EXC_DREGS+(6*4)
-set EXC_D5, EXC_DREGS+(5*4)
-set EXC_D4, EXC_DREGS+(4*4)
-set EXC_D3, EXC_DREGS+(3*4)
-set EXC_D2, EXC_DREGS+(2*4)
-set EXC_D1, EXC_DREGS+(1*4)
-set EXC_D0, EXC_DREGS+(0*4)
-
-set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
-set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
-set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
-
-set FP_SCR1, LV+80 # fp scratch 1
-set FP_SCR1_EX, FP_SCR1+0
-set FP_SCR1_SGN, FP_SCR1+2
-set FP_SCR1_HI, FP_SCR1+4
-set FP_SCR1_LO, FP_SCR1+8
-
-set FP_SCR0, LV+68 # fp scratch 0
-set FP_SCR0_EX, FP_SCR0+0
-set FP_SCR0_SGN, FP_SCR0+2
-set FP_SCR0_HI, FP_SCR0+4
-set FP_SCR0_LO, FP_SCR0+8
-
-set FP_DST, LV+56 # fp destination operand
-set FP_DST_EX, FP_DST+0
-set FP_DST_SGN, FP_DST+2
-set FP_DST_HI, FP_DST+4
-set FP_DST_LO, FP_DST+8
-
-set FP_SRC, LV+44 # fp source operand
-set FP_SRC_EX, FP_SRC+0
-set FP_SRC_SGN, FP_SRC+2
-set FP_SRC_HI, FP_SRC+4
-set FP_SRC_LO, FP_SRC+8
-
-set USER_FPIAR, LV+40 # FP instr address register
-
-set USER_FPSR, LV+36 # FP status register
-set FPSR_CC, USER_FPSR+0 # FPSR condition codes
-set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
-set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
-set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
-
-set USER_FPCR, LV+32 # FP control register
-set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
-set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
-
-set L_SCR3, LV+28 # integer scratch 3
-set L_SCR2, LV+24 # integer scratch 2
-set L_SCR1, LV+20 # integer scratch 1
-
-set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
-
-set EXC_TEMP2, LV+24 # temporary space
-set EXC_TEMP, LV+16 # temporary space
-
-set DTAG, LV+15 # destination operand type
-set STAG, LV+14 # source operand type
-
-set SPCOND_FLG, LV+10 # flag: special case (see below)
-
-set EXC_CC, LV+8 # saved condition codes
-set EXC_EXTWPTR, LV+4 # saved current PC (active)
-set EXC_EXTWORD, LV+2 # saved extension word
-set EXC_CMDREG, LV+2 # saved extension word
-set EXC_OPWORD, LV+0 # saved operation word
-
-################################
-
-# Helpful macros
-
-set FTEMP, 0 # offsets within an
-set FTEMP_EX, 0 # extended precision
-set FTEMP_SGN, 2 # value saved in memory.
-set FTEMP_HI, 4
-set FTEMP_LO, 8
-set FTEMP_GRS, 12
-
-set LOCAL, 0 # offsets within an
-set LOCAL_EX, 0 # extended precision
-set LOCAL_SGN, 2 # value saved in memory.
-set LOCAL_HI, 4
-set LOCAL_LO, 8
-set LOCAL_GRS, 12
-
-set DST, 0 # offsets within an
-set DST_EX, 0 # extended precision
-set DST_HI, 4 # value saved in memory.
-set DST_LO, 8
-
-set SRC, 0 # offsets within an
-set SRC_EX, 0 # extended precision
-set SRC_HI, 4 # value saved in memory.
-set SRC_LO, 8
-
-set SGL_LO, 0x3f81 # min sgl prec exponent
-set SGL_HI, 0x407e # max sgl prec exponent
-set DBL_LO, 0x3c01 # min dbl prec exponent
-set DBL_HI, 0x43fe # max dbl prec exponent
-set EXT_LO, 0x0 # min ext prec exponent
-set EXT_HI, 0x7ffe # max ext prec exponent
-
-set EXT_BIAS, 0x3fff # extended precision bias
-set SGL_BIAS, 0x007f # single precision bias
-set DBL_BIAS, 0x03ff # double precision bias
-
-set NORM, 0x00 # operand type for STAG/DTAG
-set ZERO, 0x01 # operand type for STAG/DTAG
-set INF, 0x02 # operand type for STAG/DTAG
-set QNAN, 0x03 # operand type for STAG/DTAG
-set DENORM, 0x04 # operand type for STAG/DTAG
-set SNAN, 0x05 # operand type for STAG/DTAG
-set UNNORM, 0x06 # operand type for STAG/DTAG
-
-##################
-# FPSR/FPCR bits #
-##################
-set neg_bit, 0x3 # negative result
-set z_bit, 0x2 # zero result
-set inf_bit, 0x1 # infinite result
-set nan_bit, 0x0 # NAN result
-
-set q_sn_bit, 0x7 # sign bit of quotient byte
-
-set bsun_bit, 7 # branch on unordered
-set snan_bit, 6 # signalling NAN
-set operr_bit, 5 # operand error
-set ovfl_bit, 4 # overflow
-set unfl_bit, 3 # underflow
-set dz_bit, 2 # divide by zero
-set inex2_bit, 1 # inexact result 2
-set inex1_bit, 0 # inexact result 1
-
-set aiop_bit, 7 # accrued inexact operation bit
-set aovfl_bit, 6 # accrued overflow bit
-set aunfl_bit, 5 # accrued underflow bit
-set adz_bit, 4 # accrued dz bit
-set ainex_bit, 3 # accrued inexact bit
-
-#############################
-# FPSR individual bit masks #
-#############################
-set neg_mask, 0x08000000 # negative bit mask (lw)
-set inf_mask, 0x02000000 # infinity bit mask (lw)
-set z_mask, 0x04000000 # zero bit mask (lw)
-set nan_mask, 0x01000000 # nan bit mask (lw)
-
-set neg_bmask, 0x08 # negative bit mask (byte)
-set inf_bmask, 0x02 # infinity bit mask (byte)
-set z_bmask, 0x04 # zero bit mask (byte)
-set nan_bmask, 0x01 # nan bit mask (byte)
-
-set bsun_mask, 0x00008000 # bsun exception mask
-set snan_mask, 0x00004000 # snan exception mask
-set operr_mask, 0x00002000 # operr exception mask
-set ovfl_mask, 0x00001000 # overflow exception mask
-set unfl_mask, 0x00000800 # underflow exception mask
-set dz_mask, 0x00000400 # dz exception mask
-set inex2_mask, 0x00000200 # inex2 exception mask
-set inex1_mask, 0x00000100 # inex1 exception mask
-
-set aiop_mask, 0x00000080 # accrued illegal operation
-set aovfl_mask, 0x00000040 # accrued overflow
-set aunfl_mask, 0x00000020 # accrued underflow
-set adz_mask, 0x00000010 # accrued divide by zero
-set ainex_mask, 0x00000008 # accrued inexact
-
-######################################
-# FPSR combinations used in the FPSP #
-######################################
-set dzinf_mask, inf_mask+dz_mask+adz_mask
-set opnan_mask, nan_mask+operr_mask+aiop_mask
-set nzi_mask, 0x01ffffff #clears N, Z, and I
-set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
-set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
-set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
-set inx1a_mask, inex1_mask+ainex_mask
-set inx2a_mask, inex2_mask+ainex_mask
-set snaniop_mask, nan_mask+snan_mask+aiop_mask
-set snaniop2_mask, snan_mask+aiop_mask
-set naniop_mask, nan_mask+aiop_mask
-set neginf_mask, neg_mask+inf_mask
-set infaiop_mask, inf_mask+aiop_mask
-set negz_mask, neg_mask+z_mask
-set opaop_mask, operr_mask+aiop_mask
-set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
-set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
-
-#########
-# misc. #
-#########
-set rnd_stky_bit, 29 # stky bit pos in longword
-
-set sign_bit, 0x7 # sign bit
-set signan_bit, 0x6 # signalling nan bit
-
-set sgl_thresh, 0x3f81 # minimum sgl exponent
-set dbl_thresh, 0x3c01 # minimum dbl exponent
-
-set x_mode, 0x0 # extended precision
-set s_mode, 0x4 # single precision
-set d_mode, 0x8 # double precision
-
-set rn_mode, 0x0 # round-to-nearest
-set rz_mode, 0x1 # round-to-zero
-set rm_mode, 0x2 # round-tp-minus-infinity
-set rp_mode, 0x3 # round-to-plus-infinity
-
-set mantissalen, 64 # length of mantissa in bits
-
-set BYTE, 1 # len(byte) == 1 byte
-set WORD, 2 # len(word) == 2 bytes
-set LONG, 4 # len(longword) == 2 bytes
-
-set BSUN_VEC, 0xc0 # bsun vector offset
-set INEX_VEC, 0xc4 # inexact vector offset
-set DZ_VEC, 0xc8 # dz vector offset
-set UNFL_VEC, 0xcc # unfl vector offset
-set OPERR_VEC, 0xd0 # operr vector offset
-set OVFL_VEC, 0xd4 # ovfl vector offset
-set SNAN_VEC, 0xd8 # snan vector offset
-
-###########################
-# SPecial CONDition FLaGs #
-###########################
-set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
-set fbsun_flg, 0x02 # flag bit: bsun exception
-set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
-set mda7_flg, 0x08 # flag bit: -(a7) <ea>
-set fmovm_flg, 0x40 # flag bit: fmovm instruction
-set immed_flg, 0x80 # flag bit: &<data> <ea>
-
-set ftrapcc_bit, 0x0
-set fbsun_bit, 0x1
-set mia7_bit, 0x2
-set mda7_bit, 0x3
-set immed_bit, 0x7
-
-##################################
-# TRANSCENDENTAL "LAST-OP" FLAGS #
-##################################
-set FMUL_OP, 0x0 # fmul instr performed last
-set FDIV_OP, 0x1 # fdiv performed last
-set FADD_OP, 0x2 # fadd performed last
-set FMOV_OP, 0x3 # fmov performed last
-
-#############
-# CONSTANTS #
-#############
-T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
-T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
-
-PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
-PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
-TWOBYPI:
- long 0x3FE45F30,0x6DC9C883
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fsins_
-_fsins_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L0_2s
- bsr.l ssin # operand is a NORM
- bra.b _L0_6s
-_L0_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L0_3s # no
- bsr.l src_zero # yes
- bra.b _L0_6s
-_L0_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L0_4s # no
- bsr.l t_operr # yes
- bra.b _L0_6s
-_L0_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L0_5s # no
- bsr.l src_qnan # yes
- bra.b _L0_6s
-_L0_5s:
- bsr.l ssind # operand is a DENORM
-_L0_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsind_
-_fsind_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L0_2d
- bsr.l ssin # operand is a NORM
- bra.b _L0_6d
-_L0_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L0_3d # no
- bsr.l src_zero # yes
- bra.b _L0_6d
-_L0_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L0_4d # no
- bsr.l t_operr # yes
- bra.b _L0_6d
-_L0_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L0_5d # no
- bsr.l src_qnan # yes
- bra.b _L0_6d
-_L0_5d:
- bsr.l ssind # operand is a DENORM
-_L0_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsinx_
-_fsinx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L0_2x
- bsr.l ssin # operand is a NORM
- bra.b _L0_6x
-_L0_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L0_3x # no
- bsr.l src_zero # yes
- bra.b _L0_6x
-_L0_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L0_4x # no
- bsr.l t_operr # yes
- bra.b _L0_6x
-_L0_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L0_5x # no
- bsr.l src_qnan # yes
- bra.b _L0_6x
-_L0_5x:
- bsr.l ssind # operand is a DENORM
-_L0_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fcoss_
-_fcoss_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L1_2s
- bsr.l scos # operand is a NORM
- bra.b _L1_6s
-_L1_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L1_3s # no
- bsr.l ld_pone # yes
- bra.b _L1_6s
-_L1_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L1_4s # no
- bsr.l t_operr # yes
- bra.b _L1_6s
-_L1_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L1_5s # no
- bsr.l src_qnan # yes
- bra.b _L1_6s
-_L1_5s:
- bsr.l scosd # operand is a DENORM
-_L1_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcosd_
-_fcosd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L1_2d
- bsr.l scos # operand is a NORM
- bra.b _L1_6d
-_L1_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L1_3d # no
- bsr.l ld_pone # yes
- bra.b _L1_6d
-_L1_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L1_4d # no
- bsr.l t_operr # yes
- bra.b _L1_6d
-_L1_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L1_5d # no
- bsr.l src_qnan # yes
- bra.b _L1_6d
-_L1_5d:
- bsr.l scosd # operand is a DENORM
-_L1_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcosx_
-_fcosx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L1_2x
- bsr.l scos # operand is a NORM
- bra.b _L1_6x
-_L1_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L1_3x # no
- bsr.l ld_pone # yes
- bra.b _L1_6x
-_L1_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L1_4x # no
- bsr.l t_operr # yes
- bra.b _L1_6x
-_L1_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L1_5x # no
- bsr.l src_qnan # yes
- bra.b _L1_6x
-_L1_5x:
- bsr.l scosd # operand is a DENORM
-_L1_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fsinhs_
-_fsinhs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L2_2s
- bsr.l ssinh # operand is a NORM
- bra.b _L2_6s
-_L2_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L2_3s # no
- bsr.l src_zero # yes
- bra.b _L2_6s
-_L2_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L2_4s # no
- bsr.l src_inf # yes
- bra.b _L2_6s
-_L2_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L2_5s # no
- bsr.l src_qnan # yes
- bra.b _L2_6s
-_L2_5s:
- bsr.l ssinhd # operand is a DENORM
-_L2_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsinhd_
-_fsinhd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L2_2d
- bsr.l ssinh # operand is a NORM
- bra.b _L2_6d
-_L2_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L2_3d # no
- bsr.l src_zero # yes
- bra.b _L2_6d
-_L2_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L2_4d # no
- bsr.l src_inf # yes
- bra.b _L2_6d
-_L2_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L2_5d # no
- bsr.l src_qnan # yes
- bra.b _L2_6d
-_L2_5d:
- bsr.l ssinhd # operand is a DENORM
-_L2_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fsinhx_
-_fsinhx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L2_2x
- bsr.l ssinh # operand is a NORM
- bra.b _L2_6x
-_L2_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L2_3x # no
- bsr.l src_zero # yes
- bra.b _L2_6x
-_L2_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L2_4x # no
- bsr.l src_inf # yes
- bra.b _L2_6x
-_L2_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L2_5x # no
- bsr.l src_qnan # yes
- bra.b _L2_6x
-_L2_5x:
- bsr.l ssinhd # operand is a DENORM
-_L2_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _flognp1s_
-_flognp1s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L3_2s
- bsr.l slognp1 # operand is a NORM
- bra.b _L3_6s
-_L3_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L3_3s # no
- bsr.l src_zero # yes
- bra.b _L3_6s
-_L3_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L3_4s # no
- bsr.l sopr_inf # yes
- bra.b _L3_6s
-_L3_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L3_5s # no
- bsr.l src_qnan # yes
- bra.b _L3_6s
-_L3_5s:
- bsr.l slognp1d # operand is a DENORM
-_L3_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognp1d_
-_flognp1d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L3_2d
- bsr.l slognp1 # operand is a NORM
- bra.b _L3_6d
-_L3_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L3_3d # no
- bsr.l src_zero # yes
- bra.b _L3_6d
-_L3_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L3_4d # no
- bsr.l sopr_inf # yes
- bra.b _L3_6d
-_L3_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L3_5d # no
- bsr.l src_qnan # yes
- bra.b _L3_6d
-_L3_5d:
- bsr.l slognp1d # operand is a DENORM
-_L3_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognp1x_
-_flognp1x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L3_2x
- bsr.l slognp1 # operand is a NORM
- bra.b _L3_6x
-_L3_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L3_3x # no
- bsr.l src_zero # yes
- bra.b _L3_6x
-_L3_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L3_4x # no
- bsr.l sopr_inf # yes
- bra.b _L3_6x
-_L3_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L3_5x # no
- bsr.l src_qnan # yes
- bra.b _L3_6x
-_L3_5x:
- bsr.l slognp1d # operand is a DENORM
-_L3_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fetoxm1s_
-_fetoxm1s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L4_2s
- bsr.l setoxm1 # operand is a NORM
- bra.b _L4_6s
-_L4_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L4_3s # no
- bsr.l src_zero # yes
- bra.b _L4_6s
-_L4_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L4_4s # no
- bsr.l setoxm1i # yes
- bra.b _L4_6s
-_L4_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L4_5s # no
- bsr.l src_qnan # yes
- bra.b _L4_6s
-_L4_5s:
- bsr.l setoxm1d # operand is a DENORM
-_L4_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxm1d_
-_fetoxm1d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L4_2d
- bsr.l setoxm1 # operand is a NORM
- bra.b _L4_6d
-_L4_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L4_3d # no
- bsr.l src_zero # yes
- bra.b _L4_6d
-_L4_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L4_4d # no
- bsr.l setoxm1i # yes
- bra.b _L4_6d
-_L4_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L4_5d # no
- bsr.l src_qnan # yes
- bra.b _L4_6d
-_L4_5d:
- bsr.l setoxm1d # operand is a DENORM
-_L4_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxm1x_
-_fetoxm1x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L4_2x
- bsr.l setoxm1 # operand is a NORM
- bra.b _L4_6x
-_L4_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L4_3x # no
- bsr.l src_zero # yes
- bra.b _L4_6x
-_L4_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L4_4x # no
- bsr.l setoxm1i # yes
- bra.b _L4_6x
-_L4_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L4_5x # no
- bsr.l src_qnan # yes
- bra.b _L4_6x
-_L4_5x:
- bsr.l setoxm1d # operand is a DENORM
-_L4_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _ftanhs_
-_ftanhs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L5_2s
- bsr.l stanh # operand is a NORM
- bra.b _L5_6s
-_L5_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L5_3s # no
- bsr.l src_zero # yes
- bra.b _L5_6s
-_L5_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L5_4s # no
- bsr.l src_one # yes
- bra.b _L5_6s
-_L5_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L5_5s # no
- bsr.l src_qnan # yes
- bra.b _L5_6s
-_L5_5s:
- bsr.l stanhd # operand is a DENORM
-_L5_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftanhd_
-_ftanhd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L5_2d
- bsr.l stanh # operand is a NORM
- bra.b _L5_6d
-_L5_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L5_3d # no
- bsr.l src_zero # yes
- bra.b _L5_6d
-_L5_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L5_4d # no
- bsr.l src_one # yes
- bra.b _L5_6d
-_L5_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L5_5d # no
- bsr.l src_qnan # yes
- bra.b _L5_6d
-_L5_5d:
- bsr.l stanhd # operand is a DENORM
-_L5_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftanhx_
-_ftanhx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L5_2x
- bsr.l stanh # operand is a NORM
- bra.b _L5_6x
-_L5_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L5_3x # no
- bsr.l src_zero # yes
- bra.b _L5_6x
-_L5_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L5_4x # no
- bsr.l src_one # yes
- bra.b _L5_6x
-_L5_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L5_5x # no
- bsr.l src_qnan # yes
- bra.b _L5_6x
-_L5_5x:
- bsr.l stanhd # operand is a DENORM
-_L5_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fatans_
-_fatans_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L6_2s
- bsr.l satan # operand is a NORM
- bra.b _L6_6s
-_L6_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L6_3s # no
- bsr.l src_zero # yes
- bra.b _L6_6s
-_L6_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L6_4s # no
- bsr.l spi_2 # yes
- bra.b _L6_6s
-_L6_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L6_5s # no
- bsr.l src_qnan # yes
- bra.b _L6_6s
-_L6_5s:
- bsr.l satand # operand is a DENORM
-_L6_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatand_
-_fatand_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L6_2d
- bsr.l satan # operand is a NORM
- bra.b _L6_6d
-_L6_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L6_3d # no
- bsr.l src_zero # yes
- bra.b _L6_6d
-_L6_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L6_4d # no
- bsr.l spi_2 # yes
- bra.b _L6_6d
-_L6_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L6_5d # no
- bsr.l src_qnan # yes
- bra.b _L6_6d
-_L6_5d:
- bsr.l satand # operand is a DENORM
-_L6_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatanx_
-_fatanx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L6_2x
- bsr.l satan # operand is a NORM
- bra.b _L6_6x
-_L6_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L6_3x # no
- bsr.l src_zero # yes
- bra.b _L6_6x
-_L6_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L6_4x # no
- bsr.l spi_2 # yes
- bra.b _L6_6x
-_L6_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L6_5x # no
- bsr.l src_qnan # yes
- bra.b _L6_6x
-_L6_5x:
- bsr.l satand # operand is a DENORM
-_L6_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fasins_
-_fasins_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L7_2s
- bsr.l sasin # operand is a NORM
- bra.b _L7_6s
-_L7_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L7_3s # no
- bsr.l src_zero # yes
- bra.b _L7_6s
-_L7_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L7_4s # no
- bsr.l t_operr # yes
- bra.b _L7_6s
-_L7_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L7_5s # no
- bsr.l src_qnan # yes
- bra.b _L7_6s
-_L7_5s:
- bsr.l sasind # operand is a DENORM
-_L7_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fasind_
-_fasind_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L7_2d
- bsr.l sasin # operand is a NORM
- bra.b _L7_6d
-_L7_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L7_3d # no
- bsr.l src_zero # yes
- bra.b _L7_6d
-_L7_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L7_4d # no
- bsr.l t_operr # yes
- bra.b _L7_6d
-_L7_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L7_5d # no
- bsr.l src_qnan # yes
- bra.b _L7_6d
-_L7_5d:
- bsr.l sasind # operand is a DENORM
-_L7_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fasinx_
-_fasinx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L7_2x
- bsr.l sasin # operand is a NORM
- bra.b _L7_6x
-_L7_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L7_3x # no
- bsr.l src_zero # yes
- bra.b _L7_6x
-_L7_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L7_4x # no
- bsr.l t_operr # yes
- bra.b _L7_6x
-_L7_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L7_5x # no
- bsr.l src_qnan # yes
- bra.b _L7_6x
-_L7_5x:
- bsr.l sasind # operand is a DENORM
-_L7_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fatanhs_
-_fatanhs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L8_2s
- bsr.l satanh # operand is a NORM
- bra.b _L8_6s
-_L8_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L8_3s # no
- bsr.l src_zero # yes
- bra.b _L8_6s
-_L8_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L8_4s # no
- bsr.l t_operr # yes
- bra.b _L8_6s
-_L8_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L8_5s # no
- bsr.l src_qnan # yes
- bra.b _L8_6s
-_L8_5s:
- bsr.l satanhd # operand is a DENORM
-_L8_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatanhd_
-_fatanhd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L8_2d
- bsr.l satanh # operand is a NORM
- bra.b _L8_6d
-_L8_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L8_3d # no
- bsr.l src_zero # yes
- bra.b _L8_6d
-_L8_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L8_4d # no
- bsr.l t_operr # yes
- bra.b _L8_6d
-_L8_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L8_5d # no
- bsr.l src_qnan # yes
- bra.b _L8_6d
-_L8_5d:
- bsr.l satanhd # operand is a DENORM
-_L8_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fatanhx_
-_fatanhx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L8_2x
- bsr.l satanh # operand is a NORM
- bra.b _L8_6x
-_L8_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L8_3x # no
- bsr.l src_zero # yes
- bra.b _L8_6x
-_L8_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L8_4x # no
- bsr.l t_operr # yes
- bra.b _L8_6x
-_L8_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L8_5x # no
- bsr.l src_qnan # yes
- bra.b _L8_6x
-_L8_5x:
- bsr.l satanhd # operand is a DENORM
-_L8_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _ftans_
-_ftans_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L9_2s
- bsr.l stan # operand is a NORM
- bra.b _L9_6s
-_L9_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L9_3s # no
- bsr.l src_zero # yes
- bra.b _L9_6s
-_L9_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L9_4s # no
- bsr.l t_operr # yes
- bra.b _L9_6s
-_L9_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L9_5s # no
- bsr.l src_qnan # yes
- bra.b _L9_6s
-_L9_5s:
- bsr.l stand # operand is a DENORM
-_L9_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftand_
-_ftand_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L9_2d
- bsr.l stan # operand is a NORM
- bra.b _L9_6d
-_L9_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L9_3d # no
- bsr.l src_zero # yes
- bra.b _L9_6d
-_L9_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L9_4d # no
- bsr.l t_operr # yes
- bra.b _L9_6d
-_L9_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L9_5d # no
- bsr.l src_qnan # yes
- bra.b _L9_6d
-_L9_5d:
- bsr.l stand # operand is a DENORM
-_L9_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftanx_
-_ftanx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L9_2x
- bsr.l stan # operand is a NORM
- bra.b _L9_6x
-_L9_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L9_3x # no
- bsr.l src_zero # yes
- bra.b _L9_6x
-_L9_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L9_4x # no
- bsr.l t_operr # yes
- bra.b _L9_6x
-_L9_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L9_5x # no
- bsr.l src_qnan # yes
- bra.b _L9_6x
-_L9_5x:
- bsr.l stand # operand is a DENORM
-_L9_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fetoxs_
-_fetoxs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L10_2s
- bsr.l setox # operand is a NORM
- bra.b _L10_6s
-_L10_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L10_3s # no
- bsr.l ld_pone # yes
- bra.b _L10_6s
-_L10_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L10_4s # no
- bsr.l szr_inf # yes
- bra.b _L10_6s
-_L10_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L10_5s # no
- bsr.l src_qnan # yes
- bra.b _L10_6s
-_L10_5s:
- bsr.l setoxd # operand is a DENORM
-_L10_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxd_
-_fetoxd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L10_2d
- bsr.l setox # operand is a NORM
- bra.b _L10_6d
-_L10_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L10_3d # no
- bsr.l ld_pone # yes
- bra.b _L10_6d
-_L10_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L10_4d # no
- bsr.l szr_inf # yes
- bra.b _L10_6d
-_L10_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L10_5d # no
- bsr.l src_qnan # yes
- bra.b _L10_6d
-_L10_5d:
- bsr.l setoxd # operand is a DENORM
-_L10_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fetoxx_
-_fetoxx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L10_2x
- bsr.l setox # operand is a NORM
- bra.b _L10_6x
-_L10_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L10_3x # no
- bsr.l ld_pone # yes
- bra.b _L10_6x
-_L10_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L10_4x # no
- bsr.l szr_inf # yes
- bra.b _L10_6x
-_L10_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L10_5x # no
- bsr.l src_qnan # yes
- bra.b _L10_6x
-_L10_5x:
- bsr.l setoxd # operand is a DENORM
-_L10_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _ftwotoxs_
-_ftwotoxs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L11_2s
- bsr.l stwotox # operand is a NORM
- bra.b _L11_6s
-_L11_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L11_3s # no
- bsr.l ld_pone # yes
- bra.b _L11_6s
-_L11_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L11_4s # no
- bsr.l szr_inf # yes
- bra.b _L11_6s
-_L11_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L11_5s # no
- bsr.l src_qnan # yes
- bra.b _L11_6s
-_L11_5s:
- bsr.l stwotoxd # operand is a DENORM
-_L11_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftwotoxd_
-_ftwotoxd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L11_2d
- bsr.l stwotox # operand is a NORM
- bra.b _L11_6d
-_L11_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L11_3d # no
- bsr.l ld_pone # yes
- bra.b _L11_6d
-_L11_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L11_4d # no
- bsr.l szr_inf # yes
- bra.b _L11_6d
-_L11_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L11_5d # no
- bsr.l src_qnan # yes
- bra.b _L11_6d
-_L11_5d:
- bsr.l stwotoxd # operand is a DENORM
-_L11_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftwotoxx_
-_ftwotoxx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L11_2x
- bsr.l stwotox # operand is a NORM
- bra.b _L11_6x
-_L11_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L11_3x # no
- bsr.l ld_pone # yes
- bra.b _L11_6x
-_L11_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L11_4x # no
- bsr.l szr_inf # yes
- bra.b _L11_6x
-_L11_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L11_5x # no
- bsr.l src_qnan # yes
- bra.b _L11_6x
-_L11_5x:
- bsr.l stwotoxd # operand is a DENORM
-_L11_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _ftentoxs_
-_ftentoxs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L12_2s
- bsr.l stentox # operand is a NORM
- bra.b _L12_6s
-_L12_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L12_3s # no
- bsr.l ld_pone # yes
- bra.b _L12_6s
-_L12_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L12_4s # no
- bsr.l szr_inf # yes
- bra.b _L12_6s
-_L12_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L12_5s # no
- bsr.l src_qnan # yes
- bra.b _L12_6s
-_L12_5s:
- bsr.l stentoxd # operand is a DENORM
-_L12_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftentoxd_
-_ftentoxd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L12_2d
- bsr.l stentox # operand is a NORM
- bra.b _L12_6d
-_L12_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L12_3d # no
- bsr.l ld_pone # yes
- bra.b _L12_6d
-_L12_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L12_4d # no
- bsr.l szr_inf # yes
- bra.b _L12_6d
-_L12_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L12_5d # no
- bsr.l src_qnan # yes
- bra.b _L12_6d
-_L12_5d:
- bsr.l stentoxd # operand is a DENORM
-_L12_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _ftentoxx_
-_ftentoxx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L12_2x
- bsr.l stentox # operand is a NORM
- bra.b _L12_6x
-_L12_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L12_3x # no
- bsr.l ld_pone # yes
- bra.b _L12_6x
-_L12_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L12_4x # no
- bsr.l szr_inf # yes
- bra.b _L12_6x
-_L12_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L12_5x # no
- bsr.l src_qnan # yes
- bra.b _L12_6x
-_L12_5x:
- bsr.l stentoxd # operand is a DENORM
-_L12_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _flogns_
-_flogns_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L13_2s
- bsr.l slogn # operand is a NORM
- bra.b _L13_6s
-_L13_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L13_3s # no
- bsr.l t_dz2 # yes
- bra.b _L13_6s
-_L13_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L13_4s # no
- bsr.l sopr_inf # yes
- bra.b _L13_6s
-_L13_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L13_5s # no
- bsr.l src_qnan # yes
- bra.b _L13_6s
-_L13_5s:
- bsr.l slognd # operand is a DENORM
-_L13_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognd_
-_flognd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L13_2d
- bsr.l slogn # operand is a NORM
- bra.b _L13_6d
-_L13_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L13_3d # no
- bsr.l t_dz2 # yes
- bra.b _L13_6d
-_L13_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L13_4d # no
- bsr.l sopr_inf # yes
- bra.b _L13_6d
-_L13_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L13_5d # no
- bsr.l src_qnan # yes
- bra.b _L13_6d
-_L13_5d:
- bsr.l slognd # operand is a DENORM
-_L13_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flognx_
-_flognx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L13_2x
- bsr.l slogn # operand is a NORM
- bra.b _L13_6x
-_L13_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L13_3x # no
- bsr.l t_dz2 # yes
- bra.b _L13_6x
-_L13_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L13_4x # no
- bsr.l sopr_inf # yes
- bra.b _L13_6x
-_L13_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L13_5x # no
- bsr.l src_qnan # yes
- bra.b _L13_6x
-_L13_5x:
- bsr.l slognd # operand is a DENORM
-_L13_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _flog10s_
-_flog10s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L14_2s
- bsr.l slog10 # operand is a NORM
- bra.b _L14_6s
-_L14_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L14_3s # no
- bsr.l t_dz2 # yes
- bra.b _L14_6s
-_L14_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L14_4s # no
- bsr.l sopr_inf # yes
- bra.b _L14_6s
-_L14_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L14_5s # no
- bsr.l src_qnan # yes
- bra.b _L14_6s
-_L14_5s:
- bsr.l slog10d # operand is a DENORM
-_L14_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog10d_
-_flog10d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L14_2d
- bsr.l slog10 # operand is a NORM
- bra.b _L14_6d
-_L14_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L14_3d # no
- bsr.l t_dz2 # yes
- bra.b _L14_6d
-_L14_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L14_4d # no
- bsr.l sopr_inf # yes
- bra.b _L14_6d
-_L14_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L14_5d # no
- bsr.l src_qnan # yes
- bra.b _L14_6d
-_L14_5d:
- bsr.l slog10d # operand is a DENORM
-_L14_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog10x_
-_flog10x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L14_2x
- bsr.l slog10 # operand is a NORM
- bra.b _L14_6x
-_L14_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L14_3x # no
- bsr.l t_dz2 # yes
- bra.b _L14_6x
-_L14_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L14_4x # no
- bsr.l sopr_inf # yes
- bra.b _L14_6x
-_L14_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L14_5x # no
- bsr.l src_qnan # yes
- bra.b _L14_6x
-_L14_5x:
- bsr.l slog10d # operand is a DENORM
-_L14_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _flog2s_
-_flog2s_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L15_2s
- bsr.l slog2 # operand is a NORM
- bra.b _L15_6s
-_L15_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L15_3s # no
- bsr.l t_dz2 # yes
- bra.b _L15_6s
-_L15_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L15_4s # no
- bsr.l sopr_inf # yes
- bra.b _L15_6s
-_L15_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L15_5s # no
- bsr.l src_qnan # yes
- bra.b _L15_6s
-_L15_5s:
- bsr.l slog2d # operand is a DENORM
-_L15_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog2d_
-_flog2d_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L15_2d
- bsr.l slog2 # operand is a NORM
- bra.b _L15_6d
-_L15_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L15_3d # no
- bsr.l t_dz2 # yes
- bra.b _L15_6d
-_L15_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L15_4d # no
- bsr.l sopr_inf # yes
- bra.b _L15_6d
-_L15_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L15_5d # no
- bsr.l src_qnan # yes
- bra.b _L15_6d
-_L15_5d:
- bsr.l slog2d # operand is a DENORM
-_L15_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _flog2x_
-_flog2x_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L15_2x
- bsr.l slog2 # operand is a NORM
- bra.b _L15_6x
-_L15_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L15_3x # no
- bsr.l t_dz2 # yes
- bra.b _L15_6x
-_L15_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L15_4x # no
- bsr.l sopr_inf # yes
- bra.b _L15_6x
-_L15_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L15_5x # no
- bsr.l src_qnan # yes
- bra.b _L15_6x
-_L15_5x:
- bsr.l slog2d # operand is a DENORM
-_L15_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fcoshs_
-_fcoshs_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L16_2s
- bsr.l scosh # operand is a NORM
- bra.b _L16_6s
-_L16_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L16_3s # no
- bsr.l ld_pone # yes
- bra.b _L16_6s
-_L16_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L16_4s # no
- bsr.l ld_pinf # yes
- bra.b _L16_6s
-_L16_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L16_5s # no
- bsr.l src_qnan # yes
- bra.b _L16_6s
-_L16_5s:
- bsr.l scoshd # operand is a DENORM
-_L16_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcoshd_
-_fcoshd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L16_2d
- bsr.l scosh # operand is a NORM
- bra.b _L16_6d
-_L16_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L16_3d # no
- bsr.l ld_pone # yes
- bra.b _L16_6d
-_L16_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L16_4d # no
- bsr.l ld_pinf # yes
- bra.b _L16_6d
-_L16_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L16_5d # no
- bsr.l src_qnan # yes
- bra.b _L16_6d
-_L16_5d:
- bsr.l scoshd # operand is a DENORM
-_L16_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fcoshx_
-_fcoshx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L16_2x
- bsr.l scosh # operand is a NORM
- bra.b _L16_6x
-_L16_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L16_3x # no
- bsr.l ld_pone # yes
- bra.b _L16_6x
-_L16_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L16_4x # no
- bsr.l ld_pinf # yes
- bra.b _L16_6x
-_L16_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L16_5x # no
- bsr.l src_qnan # yes
- bra.b _L16_6x
-_L16_5x:
- bsr.l scoshd # operand is a DENORM
-_L16_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _facoss_
-_facoss_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L17_2s
- bsr.l sacos # operand is a NORM
- bra.b _L17_6s
-_L17_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L17_3s # no
- bsr.l ld_ppi2 # yes
- bra.b _L17_6s
-_L17_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L17_4s # no
- bsr.l t_operr # yes
- bra.b _L17_6s
-_L17_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L17_5s # no
- bsr.l src_qnan # yes
- bra.b _L17_6s
-_L17_5s:
- bsr.l sacosd # operand is a DENORM
-_L17_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _facosd_
-_facosd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L17_2d
- bsr.l sacos # operand is a NORM
- bra.b _L17_6d
-_L17_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L17_3d # no
- bsr.l ld_ppi2 # yes
- bra.b _L17_6d
-_L17_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L17_4d # no
- bsr.l t_operr # yes
- bra.b _L17_6d
-_L17_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L17_5d # no
- bsr.l src_qnan # yes
- bra.b _L17_6d
-_L17_5d:
- bsr.l sacosd # operand is a DENORM
-_L17_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _facosx_
-_facosx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L17_2x
- bsr.l sacos # operand is a NORM
- bra.b _L17_6x
-_L17_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L17_3x # no
- bsr.l ld_ppi2 # yes
- bra.b _L17_6x
-_L17_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L17_4x # no
- bsr.l t_operr # yes
- bra.b _L17_6x
-_L17_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L17_5x # no
- bsr.l src_qnan # yes
- bra.b _L17_6x
-_L17_5x:
- bsr.l sacosd # operand is a DENORM
-_L17_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fgetexps_
-_fgetexps_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L18_2s
- bsr.l sgetexp # operand is a NORM
- bra.b _L18_6s
-_L18_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L18_3s # no
- bsr.l src_zero # yes
- bra.b _L18_6s
-_L18_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L18_4s # no
- bsr.l t_operr # yes
- bra.b _L18_6s
-_L18_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L18_5s # no
- bsr.l src_qnan # yes
- bra.b _L18_6s
-_L18_5s:
- bsr.l sgetexpd # operand is a DENORM
-_L18_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetexpd_
-_fgetexpd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L18_2d
- bsr.l sgetexp # operand is a NORM
- bra.b _L18_6d
-_L18_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L18_3d # no
- bsr.l src_zero # yes
- bra.b _L18_6d
-_L18_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L18_4d # no
- bsr.l t_operr # yes
- bra.b _L18_6d
-_L18_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L18_5d # no
- bsr.l src_qnan # yes
- bra.b _L18_6d
-_L18_5d:
- bsr.l sgetexpd # operand is a DENORM
-_L18_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetexpx_
-_fgetexpx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L18_2x
- bsr.l sgetexp # operand is a NORM
- bra.b _L18_6x
-_L18_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L18_3x # no
- bsr.l src_zero # yes
- bra.b _L18_6x
-_L18_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L18_4x # no
- bsr.l t_operr # yes
- bra.b _L18_6x
-_L18_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L18_5x # no
- bsr.l src_qnan # yes
- bra.b _L18_6x
-_L18_5x:
- bsr.l sgetexpd # operand is a DENORM
-_L18_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fgetmans_
-_fgetmans_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L19_2s
- bsr.l sgetman # operand is a NORM
- bra.b _L19_6s
-_L19_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L19_3s # no
- bsr.l src_zero # yes
- bra.b _L19_6s
-_L19_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L19_4s # no
- bsr.l t_operr # yes
- bra.b _L19_6s
-_L19_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L19_5s # no
- bsr.l src_qnan # yes
- bra.b _L19_6s
-_L19_5s:
- bsr.l sgetmand # operand is a DENORM
-_L19_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetmand_
-_fgetmand_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L19_2d
- bsr.l sgetman # operand is a NORM
- bra.b _L19_6d
-_L19_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L19_3d # no
- bsr.l src_zero # yes
- bra.b _L19_6d
-_L19_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L19_4d # no
- bsr.l t_operr # yes
- bra.b _L19_6d
-_L19_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L19_5d # no
- bsr.l src_qnan # yes
- bra.b _L19_6d
-_L19_5d:
- bsr.l sgetmand # operand is a DENORM
-_L19_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fgetmanx_
-_fgetmanx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L19_2x
- bsr.l sgetman # operand is a NORM
- bra.b _L19_6x
-_L19_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L19_3x # no
- bsr.l src_zero # yes
- bra.b _L19_6x
-_L19_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L19_4x # no
- bsr.l t_operr # yes
- bra.b _L19_6x
-_L19_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L19_5x # no
- bsr.l src_qnan # yes
- bra.b _L19_6x
-_L19_5x:
- bsr.l sgetmand # operand is a DENORM
-_L19_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# MONADIC TEMPLATE #
-#########################################################################
- global _fsincoss_
-_fsincoss_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L20_2s
- bsr.l ssincos # operand is a NORM
- bra.b _L20_6s
-_L20_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L20_3s # no
- bsr.l ssincosz # yes
- bra.b _L20_6s
-_L20_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L20_4s # no
- bsr.l ssincosi # yes
- bra.b _L20_6s
-_L20_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L20_5s # no
- bsr.l ssincosqnan # yes
- bra.b _L20_6s
-_L20_5s:
- bsr.l ssincosd # operand is a DENORM
-_L20_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x &0x03,-(%sp) # store off fp0/fp1
- fmovm.x (%sp)+,&0x40 # fp0 now in fp1
- fmovm.x (%sp)+,&0x80 # fp1 now in fp0
- unlk %a6
- rts
-
- global _fsincosd_
-_fsincosd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl input
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- mov.b %d1,STAG(%a6)
- tst.b %d1
- bne.b _L20_2d
- bsr.l ssincos # operand is a NORM
- bra.b _L20_6d
-_L20_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L20_3d # no
- bsr.l ssincosz # yes
- bra.b _L20_6d
-_L20_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L20_4d # no
- bsr.l ssincosi # yes
- bra.b _L20_6d
-_L20_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L20_5d # no
- bsr.l ssincosqnan # yes
- bra.b _L20_6d
-_L20_5d:
- bsr.l ssincosd # operand is a DENORM
-_L20_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x &0x03,-(%sp) # store off fp0/fp1
- fmovm.x (%sp)+,&0x40 # fp0 now in fp1
- fmovm.x (%sp)+,&0x80 # fp1 now in fp0
- unlk %a6
- rts
-
- global _fsincosx_
-_fsincosx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_SRC(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.b %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- tst.b %d1
- bne.b _L20_2x
- bsr.l ssincos # operand is a NORM
- bra.b _L20_6x
-_L20_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L20_3x # no
- bsr.l ssincosz # yes
- bra.b _L20_6x
-_L20_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L20_4x # no
- bsr.l ssincosi # yes
- bra.b _L20_6x
-_L20_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L20_5x # no
- bsr.l ssincosqnan # yes
- bra.b _L20_6x
-_L20_5x:
- bsr.l ssincosd # operand is a DENORM
-_L20_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x &0x03,-(%sp) # store off fp0/fp1
- fmovm.x (%sp)+,&0x40 # fp0 now in fp1
- fmovm.x (%sp)+,&0x80 # fp1 now in fp0
- unlk %a6
- rts
-
-
-#########################################################################
-# DYADIC TEMPLATE #
-#########################################################################
- global _frems_
-_frems_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.s 0xc(%a6),%fp0 # load sgl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L21_2s
- bsr.l srem_snorm # operand is a NORM
- bra.b _L21_6s
-_L21_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L21_3s # no
- bsr.l srem_szero # yes
- bra.b _L21_6s
-_L21_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L21_4s # no
- bsr.l srem_sinf # yes
- bra.b _L21_6s
-_L21_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L21_5s # no
- bsr.l sop_sqnan # yes
- bra.b _L21_6s
-_L21_5s:
- bsr.l srem_sdnrm # operand is a DENORM
-_L21_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fremd_
-_fremd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.d 0x10(%a6),%fp0 # load dbl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L21_2d
- bsr.l srem_snorm # operand is a NORM
- bra.b _L21_6d
-_L21_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L21_3d # no
- bsr.l srem_szero # yes
- bra.b _L21_6d
-_L21_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L21_4d # no
- bsr.l srem_sinf # yes
- bra.b _L21_6d
-_L21_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L21_5d # no
- bsr.l sop_sqnan # yes
- bra.b _L21_6d
-_L21_5d:
- bsr.l srem_sdnrm # operand is a DENORM
-_L21_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fremx_
-_fremx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_DST(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- lea FP_SRC(%a6),%a0
- mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
- mov.l 0x14+0x4(%a6),0x4(%a0)
- mov.l 0x14+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L21_2x
- bsr.l srem_snorm # operand is a NORM
- bra.b _L21_6x
-_L21_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L21_3x # no
- bsr.l srem_szero # yes
- bra.b _L21_6x
-_L21_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L21_4x # no
- bsr.l srem_sinf # yes
- bra.b _L21_6x
-_L21_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L21_5x # no
- bsr.l sop_sqnan # yes
- bra.b _L21_6x
-_L21_5x:
- bsr.l srem_sdnrm # operand is a DENORM
-_L21_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# DYADIC TEMPLATE #
-#########################################################################
- global _fmods_
-_fmods_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.s 0xc(%a6),%fp0 # load sgl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L22_2s
- bsr.l smod_snorm # operand is a NORM
- bra.b _L22_6s
-_L22_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L22_3s # no
- bsr.l smod_szero # yes
- bra.b _L22_6s
-_L22_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L22_4s # no
- bsr.l smod_sinf # yes
- bra.b _L22_6s
-_L22_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L22_5s # no
- bsr.l sop_sqnan # yes
- bra.b _L22_6s
-_L22_5s:
- bsr.l smod_sdnrm # operand is a DENORM
-_L22_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fmodd_
-_fmodd_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.d 0x10(%a6),%fp0 # load dbl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L22_2d
- bsr.l smod_snorm # operand is a NORM
- bra.b _L22_6d
-_L22_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L22_3d # no
- bsr.l smod_szero # yes
- bra.b _L22_6d
-_L22_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L22_4d # no
- bsr.l smod_sinf # yes
- bra.b _L22_6d
-_L22_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L22_5d # no
- bsr.l sop_sqnan # yes
- bra.b _L22_6d
-_L22_5d:
- bsr.l smod_sdnrm # operand is a DENORM
-_L22_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fmodx_
-_fmodx_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_DST(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- lea FP_SRC(%a6),%a0
- mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
- mov.l 0x14+0x4(%a6),0x4(%a0)
- mov.l 0x14+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L22_2x
- bsr.l smod_snorm # operand is a NORM
- bra.b _L22_6x
-_L22_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L22_3x # no
- bsr.l smod_szero # yes
- bra.b _L22_6x
-_L22_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L22_4x # no
- bsr.l smod_sinf # yes
- bra.b _L22_6x
-_L22_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L22_5x # no
- bsr.l sop_sqnan # yes
- bra.b _L22_6x
-_L22_5x:
- bsr.l smod_sdnrm # operand is a DENORM
-_L22_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# DYADIC TEMPLATE #
-#########################################################################
- global _fscales_
-_fscales_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.s 0x8(%a6),%fp0 # load sgl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.s 0xc(%a6),%fp0 # load sgl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L23_2s
- bsr.l sscale_snorm # operand is a NORM
- bra.b _L23_6s
-_L23_2s:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L23_3s # no
- bsr.l sscale_szero # yes
- bra.b _L23_6s
-_L23_3s:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L23_4s # no
- bsr.l sscale_sinf # yes
- bra.b _L23_6s
-_L23_4s:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L23_5s # no
- bsr.l sop_sqnan # yes
- bra.b _L23_6s
-_L23_5s:
- bsr.l sscale_sdnrm # operand is a DENORM
-_L23_6s:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fscaled_
-_fscaled_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- fmov.d 0x8(%a6),%fp0 # load dbl dst
- fmov.x %fp0,FP_DST(%a6)
- lea FP_DST(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- fmov.d 0x10(%a6),%fp0 # load dbl src
- fmov.x %fp0,FP_SRC(%a6)
- lea FP_SRC(%a6),%a0
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L23_2d
- bsr.l sscale_snorm # operand is a NORM
- bra.b _L23_6d
-_L23_2d:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L23_3d # no
- bsr.l sscale_szero # yes
- bra.b _L23_6d
-_L23_3d:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L23_4d # no
- bsr.l sscale_sinf # yes
- bra.b _L23_6d
-_L23_4d:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L23_5d # no
- bsr.l sop_sqnan # yes
- bra.b _L23_6d
-_L23_5d:
- bsr.l sscale_sdnrm # operand is a DENORM
-_L23_6d:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
- global _fscalex_
-_fscalex_:
- link %a6,&-LOCAL_SIZE
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
-
- fmov.l &0x0,%fpcr # zero FPCR
-
-#
-# copy, convert, and tag input argument
-#
- lea FP_DST(%a6),%a0
- mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
- mov.l 0x8+0x4(%a6),0x4(%a0)
- mov.l 0x8+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,DTAG(%a6)
-
- lea FP_SRC(%a6),%a0
- mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
- mov.l 0x14+0x4(%a6),0x4(%a0)
- mov.l 0x14+0x8(%a6),0x8(%a0)
- bsr.l tag # fetch operand type
- mov.b %d0,STAG(%a6)
- mov.l %d0,%d1
-
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- lea FP_DST(%a6),%a1 # pass ptr to dst
-
- tst.b %d1
- bne.b _L23_2x
- bsr.l sscale_snorm # operand is a NORM
- bra.b _L23_6x
-_L23_2x:
- cmpi.b %d1,&ZERO # is operand a ZERO?
- bne.b _L23_3x # no
- bsr.l sscale_szero # yes
- bra.b _L23_6x
-_L23_3x:
- cmpi.b %d1,&INF # is operand an INF?
- bne.b _L23_4x # no
- bsr.l sscale_sinf # yes
- bra.b _L23_6x
-_L23_4x:
- cmpi.b %d1,&QNAN # is operand a QNAN?
- bne.b _L23_5x # no
- bsr.l sop_sqnan # yes
- bra.b _L23_6x
-_L23_5x:
- bsr.l sscale_sdnrm # operand is a DENORM
-_L23_6x:
-
-#
-# Result is now in FP0
-#
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
- fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
- unlk %a6
- rts
-
-
-#########################################################################
-# ssin(): computes the sine of a normalized input #
-# ssind(): computes the sine of a denormalized input #
-# scos(): computes the cosine of a normalized input #
-# scosd(): computes the cosine of a denormalized input #
-# ssincos(): computes the sine and cosine of a normalized input #
-# ssincosd(): computes the sine and cosine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = sin(X) or cos(X) #
-# #
-# For ssincos(X): #
-# fp0 = sin(X) #
-# fp1 = cos(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 1 ulp in 64 significant bit, i.e. #
-# within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# SIN and COS: #
-# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. #
-# #
-# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
-# #
-# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
-# k = N mod 4, so in particular, k = 0,1,2,or 3. #
-# Overwrite k by k := k + AdjN. #
-# #
-# 4. If k is even, go to 6. #
-# #
-# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. #
-# Return sgn*cos(r) where cos(r) is approximated by an #
-# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
-# s = r*r. #
-# Exit. #
-# #
-# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) #
-# where sin(r) is approximated by an odd polynomial in r #
-# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. #
-# Exit. #
-# #
-# 7. If |X| > 1, go to 9. #
-# #
-# 8. (|X|<2**(-40)) If SIN is invoked, return X; #
-# otherwise return 1. #
-# #
-# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
-# go back to 3. #
-# #
-# SINCOS: #
-# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
-# #
-# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
-# k = N mod 4, so in particular, k = 0,1,2,or 3. #
-# #
-# 3. If k is even, go to 5. #
-# #
-# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
-# j1 exclusive or with the l.s.b. of k. #
-# sgn1 := (-1)**j1, sgn2 := (-1)**j2. #
-# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where #
-# sin(r) and cos(r) are computed as odd and even #
-# polynomials in r, respectively. Exit #
-# #
-# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. #
-# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where #
-# sin(r) and cos(r) are computed as odd and even #
-# polynomials in r, respectively. Exit #
-# #
-# 6. If |X| > 1, go to 8. #
-# #
-# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. #
-# #
-# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
-# go back to 2. #
-# #
-#########################################################################
-
-SINA7: long 0xBD6AAA77,0xCCC994F5
-SINA6: long 0x3DE61209,0x7AAE8DA1
-SINA5: long 0xBE5AE645,0x2A118AE4
-SINA4: long 0x3EC71DE3,0xA5341531
-SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
-SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000
-SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
-
-COSB8: long 0x3D2AC4D0,0xD6011EE3
-COSB7: long 0xBDA9396F,0x9F45AC19
-COSB6: long 0x3E21EED9,0x0612C972
-COSB5: long 0xBE927E4F,0xB79D9FCF
-COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
-COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
-COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
-COSB1: long 0xBF000000
-
- set INARG,FP_SCR0
-
- set X,FP_SCR0
-# set XDCARE,X+2
- set XFRAC,X+4
-
- set RPRIME,FP_SCR0
- set SPRIME,FP_SCR1
-
- set POSNEG1,L_SCR1
- set TWOTO63,L_SCR1
-
- set ENDFLAG,L_SCR2
- set INT,L_SCR2
-
- set ADJN,L_SCR3
-
-############################################
- global ssin
-ssin:
- mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0
- bra.b SINBGN
-
-############################################
- global scos
-scos:
- mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1
-
-############################################
-SINBGN:
-#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
-
- fmov.x (%a0),%fp0 # LOAD INPUT
- fmov.x %fp0,X(%a6) # save input at X
-
-# "COMPACTIFY" X
- mov.l (%a0),%d1 # put exp in hi word
- mov.w 4(%a0),%d1 # fetch hi(man)
- and.l &0x7FFFFFFF,%d1 # strip sign
-
- cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)?
- bge.b SOK1 # no
- bra.w SINSM # yes; input is very small
-
-SOK1:
- cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
- blt.b SINMAIN # no
- bra.w SREDUCEX # yes; input is very large
-
-#--THIS IS THE USUAL CASE, |X| <= 15 PI.
-#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
-SINMAIN:
- fmov.x %fp0,%fp1
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
-
- mov.l INT(%a6),%d1 # make a copy of N
- asl.l &4,%d1 # N *= 16
- add.l %d1,%a1 # tbl_addr = a1 + (N*16)
-
-# A1 IS THE ADDRESS OF N*PIBY2
-# ...WHICH IS IN TWO PIECES Y1 & Y2
- fsub.x (%a1)+,%fp0 # X-Y1
- fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2
-
-SINCONT:
-#--continuation from REDUCEX
-
-#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
- mov.l INT(%a6),%d1
- add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN
- ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE
- cmp.l %d1,&0
- blt.w COSPOLY
-
-#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
-#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
-#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
-#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
-#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
-#--WHERE T=S*S.
-#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
-#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
-SINPOLY:
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.x %fp0,X(%a6) # X IS R
- fmul.x %fp0,%fp0 # FP0 IS S
-
- fmov.d SINA7(%pc),%fp3
- fmov.d SINA6(%pc),%fp2
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS T
-
- ror.l &1,%d1
- and.l &0x80000000,%d1
-# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
- eor.l %d1,X(%a6) # X IS NOW R'= SGN*R
-
- fmul.x %fp1,%fp3 # TA7
- fmul.x %fp1,%fp2 # TA6
-
- fadd.d SINA5(%pc),%fp3 # A5+TA7
- fadd.d SINA4(%pc),%fp2 # A4+TA6
-
- fmul.x %fp1,%fp3 # T(A5+TA7)
- fmul.x %fp1,%fp2 # T(A4+TA6)
-
- fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7)
- fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6)
-
- fmul.x %fp3,%fp1 # T(A3+T(A5+TA7))
-
- fmul.x %fp0,%fp2 # S(A2+T(A4+TA6))
- fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7))
- fmul.x X(%a6),%fp0 # R'*S
-
- fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
-
- fmul.x %fp1,%fp0 # SIN(R')-R'
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.x X(%a6),%fp0 # last inst - possible exception set
- bra t_inx2
-
-#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
-#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
-#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
-#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
-#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
-#--WHERE T=S*S.
-#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
-#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
-#--AND IS THEREFORE STORED AS SINGLE PRECISION.
-COSPOLY:
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.x %fp0,%fp0 # FP0 IS S
-
- fmov.d COSB8(%pc),%fp2
- fmov.d COSB7(%pc),%fp3
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS T
-
- fmov.x %fp0,X(%a6) # X IS S
- ror.l &1,%d1
- and.l &0x80000000,%d1
-# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
-
- fmul.x %fp1,%fp2 # TB8
-
- eor.l %d1,X(%a6) # X IS NOW S'= SGN*S
- and.l &0x80000000,%d1
-
- fmul.x %fp1,%fp3 # TB7
-
- or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE
- mov.l %d1,POSNEG1(%a6)
-
- fadd.d COSB6(%pc),%fp2 # B6+TB8
- fadd.d COSB5(%pc),%fp3 # B5+TB7
-
- fmul.x %fp1,%fp2 # T(B6+TB8)
- fmul.x %fp1,%fp3 # T(B5+TB7)
-
- fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8)
- fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7)
-
- fmul.x %fp1,%fp2 # T(B4+T(B6+TB8))
- fmul.x %fp3,%fp1 # T(B3+T(B5+TB7))
-
- fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8))
- fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7))
-
- fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8)))
-
- fadd.x %fp1,%fp0
-
- fmul.x X(%a6),%fp0
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set
- bra t_inx2
-
-##############################################
-
-# SINe: Big OR Small?
-#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
-#--IF |X| < 2**(-40), RETURN X OR 1.
-SINBORS:
- cmp.l %d1,&0x3FFF8000
- bgt.l SREDUCEX
-
-SINSM:
- mov.l ADJN(%a6),%d1
- cmp.l %d1,&0
- bgt.b COSTINY
-
-# here, the operation may underflow iff the precision is sgl or dbl.
-# extended denorms are handled through another entry point.
-SINTINY:
-# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
- bra t_catch
-
-COSTINY:
- fmov.s &0x3F800000,%fp0 # fp0 = 1.0
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.s &0x80800000,%fp0 # last inst - possible exception set
- bra t_pinx2
-
-################################################
- global ssind
-#--SIN(X) = X FOR DENORMALIZED X
-ssind:
- bra t_extdnrm
-
-############################################
- global scosd
-#--COS(X) = 1 FOR DENORMALIZED X
-scosd:
- fmov.s &0x3F800000,%fp0 # fp0 = 1.0
- bra t_pinx2
-
-##################################################
-
- global ssincos
-ssincos:
-#--SET ADJN TO 4
- mov.l &4,ADJN(%a6)
-
- fmov.x (%a0),%fp0 # LOAD INPUT
- fmov.x %fp0,X(%a6)
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1 # COMPACTIFY X
-
- cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
- bge.b SCOK1
- bra.w SCSM
-
-SCOK1:
- cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
- blt.b SCMAIN
- bra.w SREDUCEX
-
-
-#--THIS IS THE USUAL CASE, |X| <= 15 PI.
-#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
-SCMAIN:
- fmov.x %fp0,%fp1
-
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
-
- mov.l INT(%a6),%d1
- asl.l &4,%d1
- add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2
-
- fsub.x (%a1)+,%fp0 # X-Y1
- fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
-
-SCCONT:
-#--continuation point from REDUCEX
-
- mov.l INT(%a6),%d1
- ror.l &1,%d1
- cmp.l %d1,&0 # D0 < 0 IFF N IS ODD
- bge.w NEVEN
-
-SNODD:
-#--REGISTERS SAVED SO FAR: D0, A0, FP2.
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,RPRIME(%a6)
- fmul.x %fp0,%fp0 # FP0 IS S = R*R
- fmov.d SINA7(%pc),%fp1 # A7
- fmov.d COSB8(%pc),%fp2 # B8
- fmul.x %fp0,%fp1 # SA7
- fmul.x %fp0,%fp2 # SB8
-
- mov.l %d2,-(%sp)
- mov.l %d1,%d2
- ror.l &1,%d2
- and.l &0x80000000,%d2
- eor.l %d1,%d2
- and.l &0x80000000,%d2
-
- fadd.d SINA6(%pc),%fp1 # A6+SA7
- fadd.d COSB7(%pc),%fp2 # B7+SB8
-
- fmul.x %fp0,%fp1 # S(A6+SA7)
- eor.l %d2,RPRIME(%a6)
- mov.l (%sp)+,%d2
- fmul.x %fp0,%fp2 # S(B7+SB8)
- ror.l &1,%d1
- and.l &0x80000000,%d1
- mov.l &0x3F800000,POSNEG1(%a6)
- eor.l %d1,POSNEG1(%a6)
-
- fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7)
- fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8)
-
- fmul.x %fp0,%fp1 # S(A5+S(A6+SA7))
- fmul.x %fp0,%fp2 # S(B6+S(B7+SB8))
- fmov.x %fp0,SPRIME(%a6)
-
- fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7))
- eor.l %d1,SPRIME(%a6)
- fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8))
-
- fmul.x %fp0,%fp1 # S(A4+...)
- fmul.x %fp0,%fp2 # S(B5+...)
-
- fadd.d SINA3(%pc),%fp1 # A3+S(A4+...)
- fadd.d COSB4(%pc),%fp2 # B4+S(B5+...)
-
- fmul.x %fp0,%fp1 # S(A3+...)
- fmul.x %fp0,%fp2 # S(B4+...)
-
- fadd.x SINA2(%pc),%fp1 # A2+S(A3+...)
- fadd.x COSB3(%pc),%fp2 # B3+S(B4+...)
-
- fmul.x %fp0,%fp1 # S(A2+...)
- fmul.x %fp0,%fp2 # S(B3+...)
-
- fadd.x SINA1(%pc),%fp1 # A1+S(A2+...)
- fadd.x COSB2(%pc),%fp2 # B2+S(B3+...)
-
- fmul.x %fp0,%fp1 # S(A1+...)
- fmul.x %fp2,%fp0 # S(B2+...)
-
- fmul.x RPRIME(%a6),%fp1 # R'S(A1+...)
- fadd.s COSB1(%pc),%fp0 # B1+S(B2...)
- fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...))
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr
- fadd.x RPRIME(%a6),%fp1 # COS(X)
- bsr sto_cos # store cosine result
- fadd.s POSNEG1(%a6),%fp0 # SIN(X)
- bra t_inx2
-
-NEVEN:
-#--REGISTERS SAVED SO FAR: FP2.
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,RPRIME(%a6)
- fmul.x %fp0,%fp0 # FP0 IS S = R*R
-
- fmov.d COSB8(%pc),%fp1 # B8
- fmov.d SINA7(%pc),%fp2 # A7
-
- fmul.x %fp0,%fp1 # SB8
- fmov.x %fp0,SPRIME(%a6)
- fmul.x %fp0,%fp2 # SA7
-
- ror.l &1,%d1
- and.l &0x80000000,%d1
-
- fadd.d COSB7(%pc),%fp1 # B7+SB8
- fadd.d SINA6(%pc),%fp2 # A6+SA7
-
- eor.l %d1,RPRIME(%a6)
- eor.l %d1,SPRIME(%a6)
-
- fmul.x %fp0,%fp1 # S(B7+SB8)
-
- or.l &0x3F800000,%d1
- mov.l %d1,POSNEG1(%a6)
-
- fmul.x %fp0,%fp2 # S(A6+SA7)
-
- fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8)
- fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7)
-
- fmul.x %fp0,%fp1 # S(B6+S(B7+SB8))
- fmul.x %fp0,%fp2 # S(A5+S(A6+SA7))
-
- fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8))
- fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7))
-
- fmul.x %fp0,%fp1 # S(B5+...)
- fmul.x %fp0,%fp2 # S(A4+...)
-
- fadd.d COSB4(%pc),%fp1 # B4+S(B5+...)
- fadd.d SINA3(%pc),%fp2 # A3+S(A4+...)
-
- fmul.x %fp0,%fp1 # S(B4+...)
- fmul.x %fp0,%fp2 # S(A3+...)
-
- fadd.x COSB3(%pc),%fp1 # B3+S(B4+...)
- fadd.x SINA2(%pc),%fp2 # A2+S(A3+...)
-
- fmul.x %fp0,%fp1 # S(B3+...)
- fmul.x %fp0,%fp2 # S(A2+...)
-
- fadd.x COSB2(%pc),%fp1 # B2+S(B3+...)
- fadd.x SINA1(%pc),%fp2 # A1+S(A2+...)
-
- fmul.x %fp0,%fp1 # S(B2+...)
- fmul.x %fp2,%fp0 # s(a1+...)
-
-
- fadd.s COSB1(%pc),%fp1 # B1+S(B2...)
- fmul.x RPRIME(%a6),%fp0 # R'S(A1+...)
- fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...))
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr
- fadd.s POSNEG1(%a6),%fp1 # COS(X)
- bsr sto_cos # store cosine result
- fadd.x RPRIME(%a6),%fp0 # SIN(X)
- bra t_inx2
-
-################################################
-
-SCBORS:
- cmp.l %d1,&0x3FFF8000
- bgt.w SREDUCEX
-
-################################################
-
-SCSM:
-# mov.w &0x0000,XDCARE(%a6)
- fmov.s &0x3F800000,%fp1
-
- fmov.l %d0,%fpcr
- fsub.s &0x00800000,%fp1
- bsr sto_cos # store cosine result
- fmov.l %fpcr,%d0 # d0 must have fpcr,too
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0
- bra t_catch
-
-##############################################
-
- global ssincosd
-#--SIN AND COS OF X FOR DENORMALIZED X
-ssincosd:
- mov.l %d0,-(%sp) # save d0
- fmov.s &0x3F800000,%fp1
- bsr sto_cos # store cosine result
- mov.l (%sp)+,%d0 # restore d0
- bra t_extdnrm
-
-############################################
-
-#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
-#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
-#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
-SREDUCEX:
- fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
- mov.l %d2,-(%sp) # save d2
- fmov.s &0x00000000,%fp1 # fp1 = 0
-
-#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
-#--there is a danger of unwanted overflow in first LOOP iteration. In this
-#--case, reduce argument by one remainder step to make subsequent reduction
-#--safe.
- cmp.l %d1,&0x7ffeffff # is arg dangerously large?
- bne.b SLOOP # no
-
-# yes; create 2**16383*PI/2
- mov.w &0x7ffe,FP_SCR0_EX(%a6)
- mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
-
-# create low half of 2**16383*PI/2 at FP_SCR1
- mov.w &0x7fdc,FP_SCR1_EX(%a6)
- mov.l &0x85a308d3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
-
- ftest.x %fp0 # test sign of argument
- fblt.w sred_neg
-
- or.b &0x80,FP_SCR0_EX(%a6) # positive arg
- or.b &0x80,FP_SCR1_EX(%a6)
-sred_neg:
- fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
- fmov.x %fp0,%fp1 # save high result in fp1
- fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
- fsub.x %fp0,%fp1 # determine low component of result
- fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
-
-#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
-#--integer quotient will be stored in N
-#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
-SLOOP:
- fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
- mov.w INARG(%a6),%d1
- mov.l %d1,%a1 # save a copy of D0
- and.l &0x00007FFF,%d1
- sub.l &0x00003FFF,%d1 # d0 = K
- cmp.l %d1,&28
- ble.b SLASTLOOP
-SCONTLOOP:
- sub.l &27,%d1 # d0 = L := K-27
- mov.b &0,ENDFLAG(%a6)
- bra.b SWORK
-SLASTLOOP:
- clr.l %d1 # d0 = L := 0
- mov.b &1,ENDFLAG(%a6)
-
-SWORK:
-#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
-#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
-#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
-#--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
- sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
-
- mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
- mov.l &0x4E44152A,FP_SCR0_LO(%a6)
- mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
-
- fmov.x %fp0,%fp2
- fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
-
-#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
-#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
-#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
-#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
-#--US THE DESIRED VALUE IN FLOATING POINT.
- mov.l %a1,%d2
- swap %d2
- and.l &0x80000000,%d2
- or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
- mov.l %d2,TWOTO63(%a6)
- fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
- fsub.s TWOTO63(%a6),%fp2 # fp2 = N
-# fint.x %fp2
-
-#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- mov.l %d1,%d2 # d2 = L
-
- add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
- mov.w %d2,FP_SCR0_EX(%a6)
- mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
-
- add.l &0x00003FDD,%d1
- mov.w %d1,FP_SCR1_EX(%a6)
- mov.l &0x85A308D3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
-
- mov.b ENDFLAG(%a6),%d1
-
-#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
-#--P2 = 2**(L) * Piby2_2
- fmov.x %fp2,%fp4 # fp4 = N
- fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
- fmov.x %fp2,%fp5 # fp5 = N
- fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
- fmov.x %fp4,%fp3 # fp3 = W = N*P1
-
-#--we want P+p = W+w but |p| <= half ulp of P
-#--Then, we need to compute A := R-P and a := r-p
- fadd.x %fp5,%fp3 # fp3 = P
- fsub.x %fp3,%fp4 # fp4 = W-P
-
- fsub.x %fp3,%fp0 # fp0 = A := R - P
- fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
-
- fmov.x %fp0,%fp3 # fp3 = A
- fsub.x %fp4,%fp1 # fp1 = a := r - p
-
-#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
-#--|r| <= half ulp of R.
- fadd.x %fp1,%fp0 # fp0 = R := A+a
-#--No need to calculate r if this is the last loop
- cmp.b %d1,&0
- bgt.w SRESTORE
-
-#--Need to calculate r
- fsub.x %fp0,%fp3 # fp3 = A-R
- fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
- bra.w SLOOP
-
-SRESTORE:
- fmov.l %fp2,INT(%a6)
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
-
- mov.l ADJN(%a6),%d1
- cmp.l %d1,&4
-
- blt.w SINCONT
- bra.w SCCONT
-
-#########################################################################
-# stan(): computes the tangent of a normalized input #
-# stand(): computes the tangent of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = tan(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulp in 64 significant bit, i.e. #
-# within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
-# #
-# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
-# k = N mod 2, so in particular, k = 0 or 1. #
-# #
-# 3. If k is odd, go to 5. #
-# #
-# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a #
-# rational function U/V where #
-# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
-# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. #
-# Exit. #
-# #
-# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by #
-# a rational function U/V where #
-# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
-# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, #
-# -Cot(r) = -V/U. Exit. #
-# #
-# 6. If |X| > 1, go to 8. #
-# #
-# 7. (|X|<2**(-40)) Tan(X) = X. Exit. #
-# #
-# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
-# to 2. #
-# #
-#########################################################################
-
-TANQ4:
- long 0x3EA0B759,0xF50F8688
-TANP3:
- long 0xBEF2BAA5,0xA8924F04
-
-TANQ3:
- long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
-
-TANP2:
- long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
-
-TANQ2:
- long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
-
-TANP1:
- long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
-
-TANQ1:
- long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
-
-INVTWOPI:
- long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
-
-TWOPI1:
- long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
-TWOPI2:
- long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
-
-#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
-#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
-#--MOST 69 BITS LONG.
-# global PITBL
-PITBL:
- long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
- long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
- long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
- long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
- long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
- long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
- long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
- long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
- long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
- long 0xC0040000,0x90836524,0x88034B96,0x20B00000
- long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
- long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
- long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
- long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
- long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
- long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
- long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
- long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
- long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
- long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
- long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
- long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
- long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
- long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
- long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
- long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
- long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
- long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
- long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
- long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
- long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
- long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
- long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
- long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
- long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
- long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
- long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
- long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
- long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
- long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
- long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
- long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
- long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
- long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
- long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
- long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
- long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
- long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
- long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
- long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
- long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
- long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
- long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
- long 0x40040000,0x90836524,0x88034B96,0xA0B00000
- long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
- long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
- long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
- long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
- long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
- long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
- long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
- long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
- long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
-
- set INARG,FP_SCR0
-
- set TWOTO63,L_SCR1
- set INT,L_SCR1
- set ENDFLAG,L_SCR2
-
- global stan
-stan:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
- bge.b TANOK1
- bra.w TANSM
-TANOK1:
- cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
- blt.b TANMAIN
- bra.w REDUCEX
-
-TANMAIN:
-#--THIS IS THE USUAL CASE, |X| <= 15 PI.
-#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmov.x %fp0,%fp1
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,%d1 # CONVERT TO INTEGER
-
- asl.l &4,%d1
- add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2
-
- fsub.x (%a1)+,%fp0 # X-Y1
-
- fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
-
- ror.l &5,%d1
- and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0
-
-TANCONT:
- fmovm.x &0x0c,-(%sp) # save fp2,fp3
-
- cmp.l %d1,&0
- blt.w NODD
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # S = R*R
-
- fmov.d TANQ4(%pc),%fp3
- fmov.d TANP3(%pc),%fp2
-
- fmul.x %fp1,%fp3 # SQ4
- fmul.x %fp1,%fp2 # SP3
-
- fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
- fadd.x TANP2(%pc),%fp2 # P2+SP3
-
- fmul.x %fp1,%fp3 # S(Q3+SQ4)
- fmul.x %fp1,%fp2 # S(P2+SP3)
-
- fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
- fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
-
- fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4))
- fmul.x %fp1,%fp2 # S(P1+S(P2+SP3))
-
- fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
- fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3))
-
- fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4)))
-
- fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3))
-
- fadd.s &0x3F800000,%fp1 # 1+S(Q1+...)
-
- fmovm.x (%sp)+,&0x30 # restore fp2,fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fdiv.x %fp1,%fp0 # last inst - possible exception set
- bra t_inx2
-
-NODD:
- fmov.x %fp0,%fp1
- fmul.x %fp0,%fp0 # S = R*R
-
- fmov.d TANQ4(%pc),%fp3
- fmov.d TANP3(%pc),%fp2
-
- fmul.x %fp0,%fp3 # SQ4
- fmul.x %fp0,%fp2 # SP3
-
- fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
- fadd.x TANP2(%pc),%fp2 # P2+SP3
-
- fmul.x %fp0,%fp3 # S(Q3+SQ4)
- fmul.x %fp0,%fp2 # S(P2+SP3)
-
- fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
- fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
-
- fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4))
- fmul.x %fp0,%fp2 # S(P1+S(P2+SP3))
-
- fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
- fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3))
-
- fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4)))
-
- fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3))
- fadd.s &0x3F800000,%fp0 # 1+S(Q1+...)
-
- fmovm.x (%sp)+,&0x30 # restore fp2,fp3
-
- fmov.x %fp1,-(%sp)
- eor.l &0x80000000,(%sp)
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fdiv.x (%sp)+,%fp0 # last inst - possible exception set
- bra t_inx2
-
-TANBORS:
-#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
-#--IF |X| < 2**(-40), RETURN X OR 1.
- cmp.l %d1,&0x3FFF8000
- bgt.b REDUCEX
-
-TANSM:
- fmov.x %fp0,-(%sp)
- fmov.l %d0,%fpcr # restore users round mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%sp)+,%fp0 # last inst - posibble exception set
- bra t_catch
-
- global stand
-#--TAN(X) = X FOR DENORMALIZED X
-stand:
- bra t_extdnrm
-
-#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
-#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
-#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
-REDUCEX:
- fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
- mov.l %d2,-(%sp) # save d2
- fmov.s &0x00000000,%fp1 # fp1 = 0
-
-#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
-#--there is a danger of unwanted overflow in first LOOP iteration. In this
-#--case, reduce argument by one remainder step to make subsequent reduction
-#--safe.
- cmp.l %d1,&0x7ffeffff # is arg dangerously large?
- bne.b LOOP # no
-
-# yes; create 2**16383*PI/2
- mov.w &0x7ffe,FP_SCR0_EX(%a6)
- mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
-
-# create low half of 2**16383*PI/2 at FP_SCR1
- mov.w &0x7fdc,FP_SCR1_EX(%a6)
- mov.l &0x85a308d3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
-
- ftest.x %fp0 # test sign of argument
- fblt.w red_neg
-
- or.b &0x80,FP_SCR0_EX(%a6) # positive arg
- or.b &0x80,FP_SCR1_EX(%a6)
-red_neg:
- fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
- fmov.x %fp0,%fp1 # save high result in fp1
- fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
- fsub.x %fp0,%fp1 # determine low component of result
- fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
-
-#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
-#--integer quotient will be stored in N
-#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
-LOOP:
- fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
- mov.w INARG(%a6),%d1
- mov.l %d1,%a1 # save a copy of D0
- and.l &0x00007FFF,%d1
- sub.l &0x00003FFF,%d1 # d0 = K
- cmp.l %d1,&28
- ble.b LASTLOOP
-CONTLOOP:
- sub.l &27,%d1 # d0 = L := K-27
- mov.b &0,ENDFLAG(%a6)
- bra.b WORK
-LASTLOOP:
- clr.l %d1 # d0 = L := 0
- mov.b &1,ENDFLAG(%a6)
-
-WORK:
-#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
-#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
-#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
-#--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
- sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
-
- mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
- mov.l &0x4E44152A,FP_SCR0_LO(%a6)
- mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
-
- fmov.x %fp0,%fp2
- fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
-
-#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
-#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
-#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
-#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
-#--US THE DESIRED VALUE IN FLOATING POINT.
- mov.l %a1,%d2
- swap %d2
- and.l &0x80000000,%d2
- or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
- mov.l %d2,TWOTO63(%a6)
- fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
- fsub.s TWOTO63(%a6),%fp2 # fp2 = N
-# fintrz.x %fp2,%fp2
-
-#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- mov.l %d1,%d2 # d2 = L
-
- add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
- mov.w %d2,FP_SCR0_EX(%a6)
- mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
-
- add.l &0x00003FDD,%d1
- mov.w %d1,FP_SCR1_EX(%a6)
- mov.l &0x85A308D3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
-
- mov.b ENDFLAG(%a6),%d1
-
-#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
-#--P2 = 2**(L) * Piby2_2
- fmov.x %fp2,%fp4 # fp4 = N
- fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
- fmov.x %fp2,%fp5 # fp5 = N
- fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
- fmov.x %fp4,%fp3 # fp3 = W = N*P1
-
-#--we want P+p = W+w but |p| <= half ulp of P
-#--Then, we need to compute A := R-P and a := r-p
- fadd.x %fp5,%fp3 # fp3 = P
- fsub.x %fp3,%fp4 # fp4 = W-P
-
- fsub.x %fp3,%fp0 # fp0 = A := R - P
- fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
-
- fmov.x %fp0,%fp3 # fp3 = A
- fsub.x %fp4,%fp1 # fp1 = a := r - p
-
-#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
-#--|r| <= half ulp of R.
- fadd.x %fp1,%fp0 # fp0 = R := A+a
-#--No need to calculate r if this is the last loop
- cmp.b %d1,&0
- bgt.w RESTORE
-
-#--Need to calculate r
- fsub.x %fp0,%fp3 # fp3 = A-R
- fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
- bra.w LOOP
-
-RESTORE:
- fmov.l %fp2,INT(%a6)
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
-
- mov.l INT(%a6),%d1
- ror.l &1,%d1
-
- bra.w TANCONT
-
-#########################################################################
-# satan(): computes the arctangent of a normalized number #
-# satand(): computes the arctangent of a denormalized number #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arctan(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 2 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
-# #
-# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
-# Note that k = -4, -3,..., or 3. #
-# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 #
-# significant bits of X with a bit-1 attached at the 6-th #
-# bit position. Define u to be u = (X-F) / (1 + X*F). #
-# #
-# Step 3. Approximate arctan(u) by a polynomial poly. #
-# #
-# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
-# table of values calculated beforehand. Exit. #
-# #
-# Step 5. If |X| >= 16, go to Step 7. #
-# #
-# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
-# #
-# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
-# polynomial in X'. #
-# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
-# #
-#########################################################################
-
-ATANA3: long 0xBFF6687E,0x314987D8
-ATANA2: long 0x4002AC69,0x34A26DB3
-ATANA1: long 0xBFC2476F,0x4E1DA28E
-
-ATANB6: long 0x3FB34444,0x7F876989
-ATANB5: long 0xBFB744EE,0x7FAF45DB
-ATANB4: long 0x3FBC71C6,0x46940220
-ATANB3: long 0xBFC24924,0x921872F9
-ATANB2: long 0x3FC99999,0x99998FA9
-ATANB1: long 0xBFD55555,0x55555555
-
-ATANC5: long 0xBFB70BF3,0x98539E6A
-ATANC4: long 0x3FBC7187,0x962D1D7D
-ATANC3: long 0xBFC24924,0x827107B8
-ATANC2: long 0x3FC99999,0x9996263E
-ATANC1: long 0xBFD55555,0x55555536
-
-PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
-NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
-PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000
-NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000
-
-ATANTBL:
- long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
- long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
- long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
- long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
- long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
- long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
- long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
- long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
- long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
- long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
- long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
- long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
- long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
- long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
- long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
- long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
- long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
- long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
- long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
- long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
- long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
- long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
- long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
- long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
- long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
- long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
- long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
- long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
- long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
- long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
- long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
- long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
- long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
- long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
- long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
- long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
- long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
- long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
- long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
- long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
- long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
- long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
- long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
- long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
- long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
- long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
- long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
- long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
- long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
- long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
- long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
- long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
- long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
- long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
- long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
- long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
- long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
- long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
- long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
- long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
- long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
- long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
- long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
- long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
- long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
- long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
- long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
- long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
- long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
- long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
- long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
- long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
- long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
- long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
- long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
- long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
- long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
- long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
- long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
- long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
- long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
- long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
- long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
- long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
- long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
- long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
- long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
- long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
- long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
- long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
- long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
- long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
- long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
- long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
- long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
- long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
- long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
- long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
- long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
- long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
- long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
- long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
- long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
- long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
- long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
- long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
- long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
- long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
- long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
- long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
- long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
- long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
- long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
- long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
- long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
- long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
- long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
- long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
- long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
- long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
- long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
- long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
- long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
- long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
- long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
- long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
- long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
- long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
- set XFRACLO,X+8
-
- set ATANF,FP_SCR1
- set ATANFHI,ATANF+4
- set ATANFLO,ATANF+8
-
- global satan
-#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
-satan:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FFB8000 # |X| >= 1/16?
- bge.b ATANOK1
- bra.w ATANSM
-
-ATANOK1:
- cmp.l %d1,&0x4002FFFF # |X| < 16 ?
- ble.b ATANMAIN
- bra.w ATANBIG
-
-#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
-#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
-#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
-#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
-#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
-#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
-#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
-#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
-#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
-#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
-#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
-#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
-#--WILL INVOLVE A VERY LONG POLYNOMIAL.
-
-#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
-#--WE CHOSE F TO BE +-2^K * 1.BBBB1
-#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
-#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
-#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
-#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
-
-ATANMAIN:
-
- and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS
- or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1
- mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F
-
- fmov.x %fp0,%fp1 # FP1 IS X
- fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0
- fsub.x X(%a6),%fp0 # FP0 IS X-F
- fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F
- fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F)
-
-#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
-#--CREATE ATAN(F) AND STORE IT IN ATANF, AND
-#--SAVE REGISTERS FP2.
-
- mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY
- mov.l %d1,%d2 # THE EXP AND 16 BITS OF X
- and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION
- and.l &0x7FFF0000,%d2 # EXPONENT OF F
- sub.l &0x3FFB0000,%d2 # K+4
- asr.l &1,%d2
- add.l %d2,%d1 # THE 7 BITS IDENTIFYING F
- asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|)
- lea ATANTBL(%pc),%a1
- add.l %d1,%a1 # ADDRESS OF ATAN(|F|)
- mov.l (%a1)+,ATANF(%a6)
- mov.l (%a1)+,ATANFHI(%a6)
- mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|)
- mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN
- and.l &0x80000000,%d1 # SIGN(F)
- or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|)
- mov.l (%sp)+,%d2 # RESTORE d2
-
-#--THAT'S ALL I HAVE TO DO FOR NOW,
-#--BUT ALAS, THE DIVIDE IS STILL CRANKING!
-
-#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
-#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
-#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
-#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
-#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
-#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
-#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
-
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1
- fmov.d ATANA3(%pc),%fp2
- fadd.x %fp1,%fp2 # A3+V
- fmul.x %fp1,%fp2 # V*(A3+V)
- fmul.x %fp0,%fp1 # U*V
- fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V)
- fmul.d ATANA1(%pc),%fp1 # A1*U*V
- fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V))
- fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- fadd.x ATANF(%a6),%fp0 # ATAN(X)
- bra t_inx2
-
-ATANBORS:
-#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
-#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
- cmp.l %d1,&0x3FFF8000
- bgt.w ATANBIG # I.E. |X| >= 16
-
-ATANSM:
-#--|X| <= 1/16
-#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
-#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
-#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
-#--WHERE Y = X*X, AND Z = Y*Y.
-
- cmp.l %d1,&0x3FD78000
- blt.w ATANTINY
-
-#--COMPUTE POLYNOMIAL
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.x %fp0,%fp0 # FPO IS Y = X*X
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
-
- fmov.d ATANB6(%pc),%fp2
- fmov.d ATANB5(%pc),%fp3
-
- fmul.x %fp1,%fp2 # Z*B6
- fmul.x %fp1,%fp3 # Z*B5
-
- fadd.d ATANB4(%pc),%fp2 # B4+Z*B6
- fadd.d ATANB3(%pc),%fp3 # B3+Z*B5
-
- fmul.x %fp1,%fp2 # Z*(B4+Z*B6)
- fmul.x %fp3,%fp1 # Z*(B3+Z*B5)
-
- fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6)
- fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5)
-
- fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6))
- fmul.x X(%a6),%fp0 # X*Y
-
- fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
-
- fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- fadd.x X(%a6),%fp0
- bra t_inx2
-
-ATANTINY:
-#--|X| < 2^(-40), ATAN(X) = X
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
-
- bra t_catch
-
-ATANBIG:
-#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
-#--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
- cmp.l %d1,&0x40638000
- bgt.w ATANHUGE
-
-#--APPROXIMATE ATAN(-1/X) BY
-#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
-#--THIS CAN BE RE-WRITTEN AS
-#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
-
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.s &0xBF800000,%fp1 # LOAD -1
- fdiv.x %fp0,%fp1 # FP1 IS -1/X
-
-#--DIVIDE IS STILL CRANKING
-
- fmov.x %fp1,%fp0 # FP0 IS X'
- fmul.x %fp0,%fp0 # FP0 IS Y = X'*X'
- fmov.x %fp1,X(%a6) # X IS REALLY X'
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
-
- fmov.d ATANC5(%pc),%fp3
- fmov.d ATANC4(%pc),%fp2
-
- fmul.x %fp1,%fp3 # Z*C5
- fmul.x %fp1,%fp2 # Z*B4
-
- fadd.d ATANC3(%pc),%fp3 # C3+Z*C5
- fadd.d ATANC2(%pc),%fp2 # C2+Z*C4
-
- fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED
- fmul.x %fp0,%fp2 # Y*(C2+Z*C4)
-
- fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5)
- fmul.x X(%a6),%fp0 # X'*Y
-
- fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
-
- fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)]
-# ... +[Y*(B2+Z*(B4+Z*B6))])
- fadd.x X(%a6),%fp0
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- tst.b (%a0)
- bpl.b pos_big
-
-neg_big:
- fadd.x NPIBY2(%pc),%fp0
- bra t_minx2
-
-pos_big:
- fadd.x PPIBY2(%pc),%fp0
- bra t_pinx2
-
-ATANHUGE:
-#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
- tst.b (%a0)
- bpl.b pos_huge
-
-neg_huge:
- fmov.x NPIBY2(%pc),%fp0
- fmov.l %d0,%fpcr
- fadd.x PTINY(%pc),%fp0
- bra t_minx2
-
-pos_huge:
- fmov.x PPIBY2(%pc),%fp0
- fmov.l %d0,%fpcr
- fadd.x NTINY(%pc),%fp0
- bra t_pinx2
-
- global satand
-#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
-satand:
- bra t_extdnrm
-
-#########################################################################
-# sasin(): computes the inverse sine of a normalized input #
-# sasind(): computes the inverse sine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arcsin(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# ASIN #
-# 1. If |X| >= 1, go to 3. #
-# #
-# 2. (|X| < 1) Calculate asin(X) by #
-# z := sqrt( [1-X][1+X] ) #
-# asin(X) = atan( x / z ). #
-# Exit. #
-# #
-# 3. If |X| > 1, go to 5. #
-# #
-# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
-# #
-# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
-# Exit. #
-# #
-#########################################################################
-
- global sasin
-sasin:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ASINBIG
-
-# This catch is added here for the '060 QSP. Originally, the call to
-# satan() would handle this case by causing the exception which would
-# not be caught until gen_except(). Now, with the exceptions being
-# detected inside of satan(), the exception would have been handled there
-# instead of inside sasin() as expected.
- cmp.l %d1,&0x3FD78000
- blt.w ASINTINY
-
-#--THIS IS THE USUAL CASE, |X| < 1
-#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
-
-ASINMAIN:
- fmov.s &0x3F800000,%fp1
- fsub.x %fp0,%fp1 # 1-X
- fmovm.x &0x4,-(%sp) # {fp2}
- fmov.s &0x3F800000,%fp2
- fadd.x %fp0,%fp2 # 1+X
- fmul.x %fp2,%fp1 # (1+X)(1-X)
- fmovm.x (%sp)+,&0x20 # {fp2}
- fsqrt.x %fp1 # SQRT([1-X][1+X])
- fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X])
- fmovm.x &0x01,-(%sp) # save X/SQRT(...)
- lea (%sp),%a0 # pass ptr to X/SQRT(...)
- bsr satan
- add.l &0xc,%sp # clear X/SQRT(...) from stack
- bra t_inx2
-
-ASINBIG:
- fabs.x %fp0 # |X|
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr # cause an operr exception
-
-#--|X| = 1, ASIN(X) = +- PI/2.
-ASINONE:
- fmov.x PIBY2(%pc),%fp0
- mov.l (%a0),%d1
- and.l &0x80000000,%d1 # SIGN BIT OF X
- or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT
- mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT
- fmov.l %d0,%fpcr
- fmul.s (%sp)+,%fp0
- bra t_inx2
-
-#--|X| < 2^(-40), ATAN(X) = X
-ASINTINY:
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%a0),%fp0 # last inst - possible exception
- bra t_catch
-
- global sasind
-#--ASIN(X) = X FOR DENORMALIZED X
-sasind:
- bra t_extdnrm
-
-#########################################################################
-# sacos(): computes the inverse cosine of a normalized input #
-# sacosd(): computes the inverse cosine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arccos(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# ACOS #
-# 1. If |X| >= 1, go to 3. #
-# #
-# 2. (|X| < 1) Calculate acos(X) by #
-# z := (1-X) / (1+X) #
-# acos(X) = 2 * atan( sqrt(z) ). #
-# Exit. #
-# #
-# 3. If |X| > 1, go to 5. #
-# #
-# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
-# #
-# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
-# Exit. #
-# #
-#########################################################################
-
- global sacos
-sacos:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1 # pack exp w/ upper 16 fraction
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ACOSBIG
-
-#--THIS IS THE USUAL CASE, |X| < 1
-#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) )
-
-ACOSMAIN:
- fmov.s &0x3F800000,%fp1
- fadd.x %fp0,%fp1 # 1+X
- fneg.x %fp0 # -X
- fadd.s &0x3F800000,%fp0 # 1-X
- fdiv.x %fp1,%fp0 # (1-X)/(1+X)
- fsqrt.x %fp0 # SQRT((1-X)/(1+X))
- mov.l %d0,-(%sp) # save original users fpcr
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save SQRT(...) to stack
- lea (%sp),%a0 # pass ptr to sqrt
- bsr satan # ATAN(SQRT([1-X]/[1+X]))
- add.l &0xc,%sp # clear SQRT(...) from stack
-
- fmov.l (%sp)+,%fpcr # restore users round prec,mode
- fadd.x %fp0,%fp0 # 2 * ATAN( STUFF )
- bra t_pinx2
-
-ACOSBIG:
- fabs.x %fp0
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr # cause an operr exception
-
-#--|X| = 1, ACOS(X) = 0 OR PI
- tst.b (%a0) # is X positive or negative?
- bpl.b ACOSP1
-
-#--X = -1
-#Returns PI and inexact exception
-ACOSM1:
- fmov.x PI(%pc),%fp0 # load PI
- fmov.l %d0,%fpcr # load round mode,prec
- fadd.s &0x00800000,%fp0 # add a small value
- bra t_pinx2
-
-ACOSP1:
- bra ld_pzero # answer is positive zero
-
- global sacosd
-#--ACOS(X) = PI/2 FOR DENORMALIZED X
-sacosd:
- fmov.l %d0,%fpcr # load user's rnd mode/prec
- fmov.x PIBY2(%pc),%fp0
- bra t_pinx2
-
-#########################################################################
-# setox(): computes the exponential for a normalized input #
-# setoxd(): computes the exponential for a denormalized input #
-# setoxm1(): computes the exponential minus 1 for a normalized input #
-# setoxm1d(): computes the exponential minus 1 for a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = exp(X) or exp(X)-1 #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 0.85 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM and IMPLEMENTATION **************************************** #
-# #
-# setoxd #
-# ------ #
-# Step 1. Set ans := 1.0 #
-# #
-# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #
-# Notes: This will always generate one exception -- inexact. #
-# #
-# #
-# setox #
-# ----- #
-# #
-# Step 1. Filter out extreme cases of input argument. #
-# 1.1 If |X| >= 2^(-65), go to Step 1.3. #
-# 1.2 Go to Step 7. #
-# 1.3 If |X| < 16380 log(2), go to Step 2. #
-# 1.4 Go to Step 8. #
-# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
-# To avoid the use of floating-point comparisons, a #
-# compact representation of |X| is used. This format is a #
-# 32-bit integer, the upper (more significant) 16 bits #
-# are the sign and biased exponent field of |X|; the #
-# lower 16 bits are the 16 most significant fraction #
-# (including the explicit bit) bits of |X|. Consequently, #
-# the comparisons in Steps 1.1 and 1.3 can be performed #
-# by integer comparison. Note also that the constant #
-# 16380 log(2) used in Step 1.3 is also in the compact #
-# form. Thus taking the branch to Step 2 guarantees #
-# |X| < 16380 log(2). There is no harm to have a small #
-# number of cases where |X| is less than, but close to, #
-# 16380 log(2) and the branch to Step 9 is taken. #
-# #
-# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
-# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 #
-# was taken) #
-# 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
-# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
-# or 63. #
-# 2.4 Calculate M = (N - J)/64; so N = 64M + J. #
-# 2.5 Calculate the address of the stored value of #
-# 2^(J/64). #
-# 2.6 Create the value Scale = 2^M. #
-# Notes: The calculation in 2.2 is really performed by #
-# Z := X * constant #
-# N := round-to-nearest-integer(Z) #
-# where #
-# constant := single-precision( 64/log 2 ). #
-# #
-# Using a single-precision constant avoids memory #
-# access. Another effect of using a single-precision #
-# "constant" is that the calculated value Z is #
-# #
-# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
-# #
-# This error has to be considered later in Steps 3 and 4. #
-# #
-# Step 3. Calculate X - N*log2/64. #
-# 3.1 R := X + N*L1, #
-# where L1 := single-precision(-log2/64). #
-# 3.2 R := R + N*L2, #
-# L2 := extended-precision(-log2/64 - L1).#
-# Notes: a) The way L1 and L2 are chosen ensures L1+L2 #
-# approximate the value -log2/64 to 88 bits of accuracy. #
-# b) N*L1 is exact because N is no longer than 22 bits #
-# and L1 is no longer than 24 bits. #
-# c) The calculation X+N*L1 is also exact due to #
-# cancellation. Thus, R is practically X+N(L1+L2) to full #
-# 64 bits. #
-# d) It is important to estimate how large can |R| be #
-# after Step 3.2. #
-# #
-# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
-# X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
-# X*64/log2 - N = f - eps*X 64/log2 #
-# X - N*log2/64 = f*log2/64 - eps*X #
-# #
-# #
-# Now |X| <= 16446 log2, thus #
-# #
-# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
-# <= 0.57 log2/64. #
-# This bound will be used in Step 4. #
-# #
-# Step 4. Approximate exp(R)-1 by a polynomial #
-# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) #
-# Notes: a) In order to reduce memory access, the coefficients #
-# are made as "short" as possible: A1 (which is 1/2), A4 #
-# and A5 are single precision; A2 and A3 are double #
-# precision. #
-# b) Even with the restrictions above, #
-# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
-# Note that 0.0062 is slightly bigger than 0.57 log2/64. #
-# c) To fully utilize the pipeline, p is separated into #
-# two independent pieces of roughly equal complexities #
-# p = [ R + R*S*(A2 + S*A4) ] + #
-# [ S*(A1 + S*(A3 + S*A5)) ] #
-# where S = R*R. #
-# #
-# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
-# ans := T + ( T*p + t) #
-# where T and t are the stored values for 2^(J/64). #
-# Notes: 2^(J/64) is stored as T and t where T+t approximates #
-# 2^(J/64) to roughly 85 bits; T is in extended precision #
-# and t is in single precision. Note also that T is #
-# rounded to 62 bits so that the last two bits of T are #
-# zero. The reason for such a special form is that T-1, #
-# T-2, and T-8 will all be exact --- a property that will #
-# give much more accurate computation of the function #
-# EXPM1. #
-# #
-# Step 6. Reconstruction of exp(X) #
-# exp(X) = 2^M * 2^(J/64) * exp(R). #
-# 6.1 If AdjFlag = 0, go to 6.3 #
-# 6.2 ans := ans * AdjScale #
-# 6.3 Restore the user FPCR #
-# 6.4 Return ans := ans * Scale. Exit. #
-# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, #
-# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
-# neither overflow nor underflow. If AdjFlag = 1, that #
-# means that #
-# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
-# Hence, exp(X) may overflow or underflow or neither. #
-# When that is the case, AdjScale = 2^(M1) where M1 is #
-# approximately M. Thus 6.2 will never cause #
-# over/underflow. Possible exception in 6.4 is overflow #
-# or underflow. The inexact exception is not generated in #
-# 6.4. Although one can argue that the inexact flag #
-# should always be raised, to simulate that exception #
-# cost to much than the flag is worth in practical uses. #
-# #
-# Step 7. Return 1 + X. #
-# 7.1 ans := X #
-# 7.2 Restore user FPCR. #
-# 7.3 Return ans := 1 + ans. Exit #
-# Notes: For non-zero X, the inexact exception will always be #
-# raised by 7.3. That is the only exception raised by 7.3.#
-# Note also that we use the FMOVEM instruction to move X #
-# in Step 7.1 to avoid unnecessary trapping. (Although #
-# the FMOVEM may not seem relevant since X is normalized, #
-# the precaution will be useful in the library version of #
-# this code where the separate entry for denormalized #
-# inputs will be done away with.) #
-# #
-# Step 8. Handle exp(X) where |X| >= 16380log2. #
-# 8.1 If |X| > 16480 log2, go to Step 9. #
-# (mimic 2.2 - 2.6) #
-# 8.2 N := round-to-integer( X * 64/log2 ) #
-# 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
-# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, #
-# AdjFlag := 1. #
-# 8.5 Calculate the address of the stored value #
-# 2^(J/64). #
-# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. #
-# 8.7 Go to Step 3. #
-# Notes: Refer to notes for 2.2 - 2.6. #
-# #
-# Step 9. Handle exp(X), |X| > 16480 log2. #
-# 9.1 If X < 0, go to 9.3 #
-# 9.2 ans := Huge, go to 9.4 #
-# 9.3 ans := Tiny. #
-# 9.4 Restore user FPCR. #
-# 9.5 Return ans := ans * ans. Exit. #
-# Notes: Exp(X) will surely overflow or underflow, depending on #
-# X's sign. "Huge" and "Tiny" are respectively large/tiny #
-# extended-precision numbers whose square over/underflow #
-# with an inexact result. Thus, 9.5 always raises the #
-# inexact together with either overflow or underflow. #
-# #
-# setoxm1d #
-# -------- #
-# #
-# Step 1. Set ans := 0 #
-# #
-# Step 2. Return ans := X + ans. Exit. #
-# Notes: This will return X with the appropriate rounding #
-# precision prescribed by the user FPCR. #
-# #
-# setoxm1 #
-# ------- #
-# #
-# Step 1. Check |X| #
-# 1.1 If |X| >= 1/4, go to Step 1.3. #
-# 1.2 Go to Step 7. #
-# 1.3 If |X| < 70 log(2), go to Step 2. #
-# 1.4 Go to Step 10. #
-# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
-# However, it is conceivable |X| can be small very often #
-# because EXPM1 is intended to evaluate exp(X)-1 #
-# accurately when |X| is small. For further details on #
-# the comparisons, see the notes on Step 1 of setox. #
-# #
-# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
-# 2.1 N := round-to-nearest-integer( X * 64/log2 ). #
-# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
-# or 63. #
-# 2.3 Calculate M = (N - J)/64; so N = 64M + J. #
-# 2.4 Calculate the address of the stored value of #
-# 2^(J/64). #
-# 2.5 Create the values Sc = 2^M and #
-# OnebySc := -2^(-M). #
-# Notes: See the notes on Step 2 of setox. #
-# #
-# Step 3. Calculate X - N*log2/64. #
-# 3.1 R := X + N*L1, #
-# where L1 := single-precision(-log2/64). #
-# 3.2 R := R + N*L2, #
-# L2 := extended-precision(-log2/64 - L1).#
-# Notes: Applying the analysis of Step 3 of setox in this case #
-# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in #
-# this case). #
-# #
-# Step 4. Approximate exp(R)-1 by a polynomial #
-# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) #
-# Notes: a) In order to reduce memory access, the coefficients #
-# are made as "short" as possible: A1 (which is 1/2), A5 #
-# and A6 are single precision; A2, A3 and A4 are double #
-# precision. #
-# b) Even with the restriction above, #
-# |p - (exp(R)-1)| < |R| * 2^(-72.7) #
-# for all |R| <= 0.0055. #
-# c) To fully utilize the pipeline, p is separated into #
-# two independent pieces of roughly equal complexity #
-# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + #
-# [ R + S*(A1 + S*(A3 + S*A5)) ] #
-# where S = R*R. #
-# #
-# Step 5. Compute 2^(J/64)*p by #
-# p := T*p #
-# where T and t are the stored values for 2^(J/64). #
-# Notes: 2^(J/64) is stored as T and t where T+t approximates #
-# 2^(J/64) to roughly 85 bits; T is in extended precision #
-# and t is in single precision. Note also that T is #
-# rounded to 62 bits so that the last two bits of T are #
-# zero. The reason for such a special form is that T-1, #
-# T-2, and T-8 will all be exact --- a property that will #
-# be exploited in Step 6 below. The total relative error #
-# in p is no bigger than 2^(-67.7) compared to the final #
-# result. #
-# #
-# Step 6. Reconstruction of exp(X)-1 #
-# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). #
-# 6.1 If M <= 63, go to Step 6.3. #
-# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 #
-# 6.3 If M >= -3, go to 6.5. #
-# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 #
-# 6.5 ans := (T + OnebySc) + (p + t). #
-# 6.6 Restore user FPCR. #
-# 6.7 Return ans := Sc * ans. Exit. #
-# Notes: The various arrangements of the expressions give #
-# accurate evaluations. #
-# #
-# Step 7. exp(X)-1 for |X| < 1/4. #
-# 7.1 If |X| >= 2^(-65), go to Step 9. #
-# 7.2 Go to Step 8. #
-# #
-# Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
-# 8.1 If |X| < 2^(-16312), goto 8.3 #
-# 8.2 Restore FPCR; return ans := X - 2^(-16382). #
-# Exit. #
-# 8.3 X := X * 2^(140). #
-# 8.4 Restore FPCR; ans := ans - 2^(-16382). #
-# Return ans := ans*2^(140). Exit #
-# Notes: The idea is to return "X - tiny" under the user #
-# precision and rounding modes. To avoid unnecessary #
-# inefficiency, we stay away from denormalized numbers #
-# the best we can. For |X| >= 2^(-16312), the #
-# straightforward 8.2 generates the inexact exception as #
-# the case warrants. #
-# #
-# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
-# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) #
-# Notes: a) In order to reduce memory access, the coefficients #
-# are made as "short" as possible: B1 (which is 1/2), B9 #
-# to B12 are single precision; B3 to B8 are double #
-# precision; and B2 is double extended. #
-# b) Even with the restriction above, #
-# |p - (exp(X)-1)| < |X| 2^(-70.6) #
-# for all |X| <= 0.251. #
-# Note that 0.251 is slightly bigger than 1/4. #
-# c) To fully preserve accuracy, the polynomial is #
-# computed as #
-# X + ( S*B1 + Q ) where S = X*X and #
-# Q = X*S*(B2 + X*(B3 + ... + X*B12)) #
-# d) To fully utilize the pipeline, Q is separated into #
-# two independent pieces of roughly equal complexity #
-# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + #
-# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] #
-# #
-# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
-# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all #
-# practical purposes. Therefore, go to Step 1 of setox. #
-# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical #
-# purposes. #
-# ans := -1 #
-# Restore user FPCR #
-# Return ans := ans + 2^(-126). Exit. #
-# Notes: 10.2 will always create an inexact and return -1 + tiny #
-# in the user rounding precision and mode. #
-# #
-#########################################################################
-
-L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
-
-EEXPA3: long 0x3FA55555,0x55554CC1
-EEXPA2: long 0x3FC55555,0x55554A54
-
-EM1A4: long 0x3F811111,0x11174385
-EM1A3: long 0x3FA55555,0x55554F5A
-
-EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000
-
-EM1B8: long 0x3EC71DE3,0xA5774682
-EM1B7: long 0x3EFA01A0,0x19D7CB68
-
-EM1B6: long 0x3F2A01A0,0x1A019DF3
-EM1B5: long 0x3F56C16C,0x16C170E2
-
-EM1B4: long 0x3F811111,0x11111111
-EM1B3: long 0x3FA55555,0x55555555
-
-EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
- long 0x00000000
-
-TWO140: long 0x48B00000,0x00000000
-TWON140:
- long 0x37300000,0x00000000
-
-EEXPTBL:
- long 0x3FFF0000,0x80000000,0x00000000,0x00000000
- long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
- long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
- long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
- long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
- long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
- long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
- long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
- long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
- long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
- long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
- long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
- long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
- long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
- long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
- long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
- long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
- long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
- long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
- long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
- long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
- long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
- long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
- long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
- long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
- long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
- long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
- long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
- long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
- long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
- long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
- long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
- long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
- long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
- long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
- long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
- long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
- long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
- long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
- long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
- long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
- long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
- long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
- long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
- long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
- long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
- long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
- long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
- long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
- long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
- long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
- long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
- long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
- long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
- long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
- long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
- long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
- long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
- long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
- long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
- long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
- long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
- long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
- long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
-
- set ADJFLAG,L_SCR2
- set SCALE,FP_SCR0
- set ADJSCALE,FP_SCR1
- set SC,FP_SCR0
- set ONEBYSC,FP_SCR1
-
- global setox
-setox:
-#--entry point for EXP(X), here X is finite, non-zero, and not NaN's
-
-#--Step 1.
- mov.l (%a0),%d1 # load part of input X
- and.l &0x7FFF0000,%d1 # biased expo. of X
- cmp.l %d1,&0x3FBE0000 # 2^(-65)
- bge.b EXPC1 # normal case
- bra EXPSM
-
-EXPC1:
-#--The case |X| >= 2^(-65)
- mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
- cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits
- blt.b EXPMAIN # normal case
- bra EEXPBIG
-
-EXPMAIN:
-#--Step 2.
-#--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- mov.l &0,ADJFLAG(%a6)
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
-
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M)
- mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB
-
-EXPCONT1:
-#--Step 3.
-#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
-#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
- fmov.x %fp0,%fp2
- fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
- fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
- fadd.x %fp1,%fp0 # X + N*L1
- fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
-
-#--Step 4.
-#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
-#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
-#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
-#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # fp1 IS S = R*R
-
- fmov.s &0x3AB60B70,%fp2 # fp2 IS A5
-
- fmul.x %fp1,%fp2 # fp2 IS S*A5
- fmov.x %fp1,%fp3
- fmul.s &0x3C088895,%fp3 # fp3 IS S*A4
-
- fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5
- fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5)
- mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended
- mov.l &0x80000000,SCALE+4(%a6)
- clr.l SCALE+8(%a6)
-
- fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4)
-
- fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5)
- fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5))
- fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4),
-
- fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64)
- fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
-
-#--Step 5
-#--final reconstruction process
-#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
-
- fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1)
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
- fadd.s (%a1),%fp0 # accurate 2^(J/64)
-
- fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*...
- mov.l ADJFLAG(%a6),%d1
-
-#--Step 6
- tst.l %d1
- beq.b NORMAL
-ADJUST:
- fmul.x ADJSCALE(%a6),%fp0
-NORMAL:
- fmov.l %d0,%fpcr # restore user FPCR
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x SCALE(%a6),%fp0 # multiply 2^(M)
- bra t_catch
-
-EXPSM:
-#--Step 7
- fmovm.x (%a0),&0x80 # load X
- fmov.l %d0,%fpcr
- fadd.s &0x3F800000,%fp0 # 1+X in user mode
- bra t_pinx2
-
-EEXPBIG:
-#--Step 8
- cmp.l %d1,&0x400CB27C # 16480 log2
- bgt.b EXP2BIG
-#--Steps 8.2 -- 8.6
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- mov.l &1,ADJFLAG(%a6)
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is K
- mov.l %d1,L_SCR1(%a6) # save K temporarily
- asr.l &1,%d1 # D0 is M1
- sub.l %d1,L_SCR1(%a6) # a1 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M1)
- mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1)
- mov.l &0x80000000,ADJSCALE+4(%a6)
- clr.l ADJSCALE+8(%a6)
- mov.l L_SCR1(%a6),%d1 # D0 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M)
- bra.w EXPCONT1 # go back to Step 3
-
-EXP2BIG:
-#--Step 9
- tst.b (%a0) # is X positive or negative?
- bmi t_unfl2
- bra t_ovfl2
-
- global setoxd
-setoxd:
-#--entry point for EXP(X), X is denormalized
- mov.l (%a0),-(%sp)
- andi.l &0x80000000,(%sp)
- ori.l &0x00800000,(%sp) # sign(X)*2^(-126)
-
- fmov.s &0x3F800000,%fp0
-
- fmov.l %d0,%fpcr
- fadd.s (%sp)+,%fp0
- bra t_pinx2
-
- global setoxm1
-setoxm1:
-#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
-
-#--Step 1.
-#--Step 1.1
- mov.l (%a0),%d1 # load part of input X
- and.l &0x7FFF0000,%d1 # biased expo. of X
- cmp.l %d1,&0x3FFD0000 # 1/4
- bge.b EM1CON1 # |X| >= 1/4
- bra EM1SM
-
-EM1CON1:
-#--Step 1.3
-#--The case |X| >= 1/4
- mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
- cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits
- ble.b EM1MAIN # 1/4 <= |X| <= 70log2
- bra EM1BIG
-
-EM1MAIN:
-#--Step 2.
-#--This is the case: 1/4 <= |X| <= 70 log2.
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
-
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is M
- mov.l %d1,L_SCR1(%a6) # save a copy of M
-
-#--Step 3.
-#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
-#--a0 points to 2^(J/64), D0 and a1 both contain M
- fmov.x %fp0,%fp2
- fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
- fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
- fadd.x %fp1,%fp0 # X + N*L1
- fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
- add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M
-
-#--Step 4.
-#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
-#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
-#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
-#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # fp1 IS S = R*R
-
- fmov.s &0x3950097B,%fp2 # fp2 IS a6
-
- fmul.x %fp1,%fp2 # fp2 IS S*A6
- fmov.x %fp1,%fp3
- fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5
-
- fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6
- fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5
- mov.w %d1,SC(%a6) # SC is 2^(M) in extended
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6)
- mov.l L_SCR1(%a6),%d1 # D0 is M
- neg.w %d1 # D0 is -M
- fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5)
- add.w &0x3FFF,%d1 # biased expo. of 2^(-M)
- fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6)
- fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6))
- or.w &0x8000,%d1 # signed/expo. of -2^(-M)
- mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M)
- mov.l &0x80000000,ONEBYSC+4(%a6)
- clr.l ONEBYSC+8(%a6)
- fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5))
-
- fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6))
- fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5))
-
- fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
-
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
-
-#--Step 5
-#--Compute 2^(J/64)*p
-
- fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1)
-
-#--Step 6
-#--Step 6.1
- mov.l L_SCR1(%a6),%d1 # retrieve M
- cmp.l %d1,&63
- ble.b MLE63
-#--Step 6.2 M >= 64
- fmov.s 12(%a1),%fp1 # fp1 is t
- fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc
- fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released
- fadd.x (%a1),%fp0 # T+(p+(t+OnebySc))
- bra EM1SCALE
-MLE63:
-#--Step 6.3 M <= 63
- cmp.l %d1,&-3
- bge.b MGEN3
-MLTN3:
-#--Step 6.4 M <= -4
- fadd.s 12(%a1),%fp0 # p+t
- fadd.x (%a1),%fp0 # T+(p+t)
- fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t))
- bra EM1SCALE
-MGEN3:
-#--Step 6.5 -3 <= M <= 63
- fmov.x (%a1)+,%fp1 # fp1 is T
- fadd.s (%a1),%fp0 # fp0 is p+t
- fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc
- fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t)
-
-EM1SCALE:
-#--Step 6.6
- fmov.l %d0,%fpcr
- fmul.x SC(%a6),%fp0
- bra t_inx2
-
-EM1SM:
-#--Step 7 |X| < 1/4.
- cmp.l %d1,&0x3FBE0000 # 2^(-65)
- bge.b EM1POLY
-
-EM1TINY:
-#--Step 8 |X| < 2^(-65)
- cmp.l %d1,&0x00330000 # 2^(-16312)
- blt.b EM12TINY
-#--Step 8.2
- mov.l &0x80010000,SC(%a6) # SC is -2^(-16382)
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
- fmov.x (%a0),%fp0
- fmov.l %d0,%fpcr
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x SC(%a6),%fp0
- bra t_catch
-
-EM12TINY:
-#--Step 8.3
- fmov.x (%a0),%fp0
- fmul.d TWO140(%pc),%fp0
- mov.l &0x80010000,SC(%a6)
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
- fadd.x SC(%a6),%fp0
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.d TWON140(%pc),%fp0
- bra t_catch
-
-EM1POLY:
-#--Step 9 exp(X)-1 by a simple polynomial
- fmov.x (%a0),%fp0 # fp0 is X
- fmul.x %fp0,%fp0 # fp0 is S := X*X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- fmov.s &0x2F30CAA8,%fp1 # fp1 is B12
- fmul.x %fp0,%fp1 # fp1 is S*B12
- fmov.s &0x310F8290,%fp2 # fp2 is B11
- fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12
-
- fmul.x %fp0,%fp2 # fp2 is S*B11
- fmul.x %fp0,%fp1 # fp1 is S*(B10 + ...
-
- fadd.s &0x3493F281,%fp2 # fp2 is B9+S*...
- fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B9+...
- fmul.x %fp0,%fp1 # fp1 is S*(B8+...
-
- fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*...
- fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B7+...
- fmul.x %fp0,%fp1 # fp1 is S*(B6+...
-
- fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*...
- fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B5+...
- fmul.x %fp0,%fp1 # fp1 is S*(B4+...
-
- fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*...
- fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B3+...
- fmul.x %fp0,%fp1 # fp1 is S*(B2+...
-
- fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...)
- fmul.x (%a0),%fp1 # fp1 is X*S*(B2...
-
- fmul.s &0x3F000000,%fp0 # fp0 is S*B1
- fadd.x %fp2,%fp1 # fp1 is Q
-
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
-
- fadd.x %fp1,%fp0 # fp0 is S*B1+Q
-
- fmov.l %d0,%fpcr
- fadd.x (%a0),%fp0
- bra t_inx2
-
-EM1BIG:
-#--Step 10 |X| > 70 log2
- mov.l (%a0),%d1
- cmp.l %d1,&0
- bgt.w EXPC1
-#--Step 10.2
- fmov.s &0xBF800000,%fp0 # fp0 is -1
- fmov.l %d0,%fpcr
- fadd.s &0x00800000,%fp0 # -1 + 2^(-126)
- bra t_minx2
-
- global setoxm1d
-setoxm1d:
-#--entry point for EXPM1(X), here X is denormalized
-#--Step 0.
- bra t_extdnrm
-
-#########################################################################
-# sgetexp(): returns the exponent portion of the input argument. #
-# The exponent bias is removed and the exponent value is #
-# returned as an extended precision number in fp0. #
-# sgetexpd(): handles denormalized numbers. #
-# #
-# sgetman(): extracts the mantissa of the input argument. The #
-# mantissa is converted to an extended precision number w/ #
-# an exponent of $3fff and is returned in fp0. The range of #
-# the result is [1.0 - 2.0). #
-# sgetmand(): handles denormalized numbers. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = exponent(X) or mantissa(X) #
-# #
-#########################################################################
-
- global sgetexp
-sgetexp:
- mov.w SRC_EX(%a0),%d0 # get the exponent
- bclr &0xf,%d0 # clear the sign bit
- subi.w &0x3fff,%d0 # subtract off the bias
- fmov.w %d0,%fp0 # return exp in fp0
- blt.b sgetexpn # it's negative
- rts
-
-sgetexpn:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- global sgetexpd
-sgetexpd:
- bsr.l norm # normalize
- neg.w %d0 # new exp = -(shft amt)
- subi.w &0x3fff,%d0 # subtract off the bias
- fmov.w %d0,%fp0 # return exp in fp0
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- global sgetman
-sgetman:
- mov.w SRC_EX(%a0),%d0 # get the exp
- ori.w &0x7fff,%d0 # clear old exp
- bclr &0xe,%d0 # make it the new exp +-3fff
-
-# here, we build the result in a tmp location so as not to disturb the input
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0
- bmi.b sgetmann # it's negative
- rts
-
-sgetmann:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-#
-# For denormalized numbers, shift the mantissa until the j-bit = 1,
-# then load the exponent with +/1 $3fff.
-#
- global sgetmand
-sgetmand:
- bsr.l norm # normalize exponent
- bra.b sgetman
-
-#########################################################################
-# scosh(): computes the hyperbolic cosine of a normalized input #
-# scoshd(): computes the hyperbolic cosine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = cosh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# COSH #
-# 1. If |X| > 16380 log2, go to 3. #
-# #
-# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae #
-# y = |X|, z = exp(Y), and #
-# cosh(X) = (1/2)*( z + 1/z ). #
-# Exit. #
-# #
-# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. #
-# #
-# 4. (16380 log2 < |X| <= 16480 log2) #
-# cosh(X) = sign(X) * exp(|X|)/2. #
-# However, invoking exp(|X|) may cause premature #
-# overflow. Thus, we calculate sinh(X) as follows: #
-# Y := |X| #
-# Fact := 2**(16380) #
-# Y' := Y - 16381 log2 #
-# cosh(X) := Fact * exp(Y'). #
-# Exit. #
-# #
-# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
-# Huge*Huge to generate overflow and an infinity with #
-# the appropriate sign. Huge is the largest finite number #
-# in extended format. Exit. #
-# #
-#########################################################################
-
-TWO16380:
- long 0x7FFB0000,0x80000000,0x00000000,0x00000000
-
- global scosh
-scosh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x400CB167
- bgt.b COSHBIG
-
-#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
-#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
-
- fabs.x %fp0 # |X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save |X| to stack
- lea (%sp),%a0 # pass ptr to |X|
- bsr setox # FP0 IS EXP(|X|)
- add.l &0xc,%sp # erase |X| from stack
- fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|)
- mov.l (%sp)+,%d0
-
- fmov.s &0x3E800000,%fp1 # (1/4)
- fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|))
-
- fmov.l %d0,%fpcr
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x %fp1,%fp0
- bra t_catch
-
-COSHBIG:
- cmp.l %d1,&0x400CB2B3
- bgt.b COSHHUGE
-
- fabs.x %fp0
- fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
- fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save fp0 to stack
- lea (%sp),%a0 # pass ptr to fp0
- bsr setox
- add.l &0xc,%sp # clear fp0 from stack
- mov.l (%sp)+,%d0
-
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x TWO16380(%pc),%fp0
- bra t_catch
-
-COSHHUGE:
- bra t_ovfl2
-
- global scoshd
-#--COSH(X) = 1 FOR DENORMALIZED X
-scoshd:
- fmov.s &0x3F800000,%fp0
-
- fmov.l %d0,%fpcr
- fadd.s &0x00800000,%fp0
- bra t_pinx2
-
-#########################################################################
-# ssinh(): computes the hyperbolic sine of a normalized input #
-# ssinhd(): computes the hyperbolic sine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = sinh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# SINH #
-# 1. If |X| > 16380 log2, go to 3. #
-# #
-# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula #
-# y = |X|, sgn = sign(X), and z = expm1(Y), #
-# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). #
-# Exit. #
-# #
-# 3. If |X| > 16480 log2, go to 5. #
-# #
-# 4. (16380 log2 < |X| <= 16480 log2) #
-# sinh(X) = sign(X) * exp(|X|)/2. #
-# However, invoking exp(|X|) may cause premature overflow. #
-# Thus, we calculate sinh(X) as follows: #
-# Y := |X| #
-# sgn := sign(X) #
-# sgnFact := sgn * 2**(16380) #
-# Y' := Y - 16381 log2 #
-# sinh(X) := sgnFact * exp(Y'). #
-# Exit. #
-# #
-# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
-# sign(X)*Huge*Huge to generate overflow and an infinity with #
-# the appropriate sign. Huge is the largest finite number in #
-# extended format. Exit. #
-# #
-#########################################################################
-
- global ssinh
-ssinh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- mov.l %d1,%a1 # save (compacted) operand
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x400CB167
- bgt.b SINHBIG
-
-#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
-#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
-
- fabs.x %fp0 # Y = |X|
-
- movm.l &0x8040,-(%sp) # {a1/d0}
- fmovm.x &0x01,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- clr.l %d0
- bsr setoxm1 # FP0 IS Z = EXPM1(Y)
- add.l &0xc,%sp # clear Y from stack
- fmov.l &0,%fpcr
- movm.l (%sp)+,&0x0201 # {a1/d0}
-
- fmov.x %fp0,%fp1
- fadd.s &0x3F800000,%fp1 # 1+Z
- fmov.x %fp0,-(%sp)
- fdiv.x %fp1,%fp0 # Z/(1+Z)
- mov.l %a1,%d1
- and.l &0x80000000,%d1
- or.l &0x3F000000,%d1
- fadd.x (%sp)+,%fp0
- mov.l %d1,-(%sp)
-
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set
- bra t_catch
-
-SINHBIG:
- cmp.l %d1,&0x400CB2B3
- bgt t_ovfl
- fabs.x %fp0
- fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
- mov.l &0,-(%sp)
- mov.l &0x80000000,-(%sp)
- mov.l %a1,%d1
- and.l &0x80000000,%d1
- or.l &0x7FFB0000,%d1
- mov.l %d1,-(%sp) # EXTENDED FMT
- fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save fp0 on stack
- lea (%sp),%a0 # pass ptr to fp0
- bsr setox
- add.l &0xc,%sp # clear fp0 from stack
-
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x (%sp)+,%fp0 # possible exception
- bra t_catch
-
- global ssinhd
-#--SINH(X) = X FOR DENORMALIZED X
-ssinhd:
- bra t_extdnrm
-
-#########################################################################
-# stanh(): computes the hyperbolic tangent of a normalized input #
-# stanhd(): computes the hyperbolic tangent of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = tanh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# TANH #
-# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. #
-# #
-# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by #
-# sgn := sign(X), y := 2|X|, z := expm1(Y), and #
-# tanh(X) = sgn*( z/(2+z) ). #
-# Exit. #
-# #
-# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, #
-# go to 7. #
-# #
-# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. #
-# #
-# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by #
-# sgn := sign(X), y := 2|X|, z := exp(Y), #
-# tanh(X) = sgn - [ sgn*2/(1+z) ]. #
-# Exit. #
-# #
-# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we #
-# calculate Tanh(X) by #
-# sgn := sign(X), Tiny := 2**(-126), #
-# tanh(X) := sgn - sgn*Tiny. #
-# Exit. #
-# #
-# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. #
-# #
-#########################################################################
-
- set X,FP_SCR0
- set XFRAC,X+4
-
- set SGN,L_SCR3
-
- set V,FP_SCR0
-
- global stanh
-stanh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- fmov.x %fp0,X(%a6)
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- mov.l %d1,X(%a6)
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)?
- blt.w TANHBORS # yes
- cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2?
- bgt.w TANHBORS # yes
-
-#--THIS IS THE USUAL CASE
-#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
-
- mov.l X(%a6),%d1
- mov.l %d1,SGN(%a6)
- and.l &0x7FFF0000,%d1
- add.l &0x00010000,%d1 # EXPONENT OF 2|X|
- mov.l %d1,X(%a6)
- and.l &0x80000000,SGN(%a6)
- fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x1,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- bsr setoxm1 # FP0 IS Z = EXPM1(Y)
- add.l &0xc,%sp # clear Y from stack
- mov.l (%sp)+,%d0
-
- fmov.x %fp0,%fp1
- fadd.s &0x40000000,%fp1 # Z+2
- mov.l SGN(%a6),%d1
- fmov.x %fp1,V(%a6)
- eor.l %d1,V(%a6)
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fdiv.x V(%a6),%fp0
- bra t_inx2
-
-TANHBORS:
- cmp.l %d1,&0x3FFF8000
- blt.w TANHSM
-
- cmp.l %d1,&0x40048AA1
- bgt.w TANHHUGE
-
-#-- (5/2) LOG2 < |X| < 50 LOG2,
-#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
-#--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
-
- mov.l X(%a6),%d1
- mov.l %d1,SGN(%a6)
- and.l &0x7FFF0000,%d1
- add.l &0x00010000,%d1 # EXPO OF 2|X|
- mov.l %d1,X(%a6) # Y = 2|X|
- and.l &0x80000000,SGN(%a6)
- mov.l SGN(%a6),%d1
- fmov.x X(%a6),%fp0 # Y = 2|X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- bsr setox # FP0 IS EXP(Y)
- add.l &0xc,%sp # clear Y from stack
- mov.l (%sp)+,%d0
- mov.l SGN(%a6),%d1
- fadd.s &0x3F800000,%fp0 # EXP(Y)+1
-
- eor.l &0xC0000000,%d1 # -SIGN(X)*2
- fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT
- fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ]
-
- mov.l SGN(%a6),%d1
- or.l &0x3F800000,%d1 # SGN
- fmov.s %d1,%fp0 # SGN IN SGL FMT
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x %fp1,%fp0
- bra t_inx2
-
-TANHSM:
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
- bra t_catch
-
-#---RETURN SGN(X) - SGN(X)EPS
-TANHHUGE:
- mov.l X(%a6),%d1
- and.l &0x80000000,%d1
- or.l &0x3F800000,%d1
- fmov.s %d1,%fp0
- and.l &0x80000000,%d1
- eor.l &0x80800000,%d1 # -SIGN(X)*EPS
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fadd.s %d1,%fp0
- bra t_inx2
-
- global stanhd
-#--TANH(X) = X FOR DENORMALIZED X
-stanhd:
- bra t_extdnrm
-
-#########################################################################
-# slogn(): computes the natural logarithm of a normalized input #
-# slognd(): computes the natural logarithm of a denormalized input #
-# slognp1(): computes the log(1+X) of a normalized input #
-# slognp1d(): computes the log(1+X) of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = log(X) or log(1+X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 2 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# LOGN: #
-# Step 1. If |X-1| < 1/16, approximate log(X) by an odd #
-# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, #
-# move on to Step 2. #
-# #
-# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
-# seven significant bits of Y plus 2**(-7), i.e. #
-# F = 1.xxxxxx1 in base 2 where the six "x" match those #
-# of Y. Note that |Y-F| <= 2**(-7). #
-# #
-# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a #
-# polynomial in u, log(1+u) = poly. #
-# #
-# Step 4. Reconstruct #
-# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) #
-# by k*log(2) + (log(F) + poly). The values of log(F) are #
-# calculated beforehand and stored in the program. #
-# #
-# lognp1: #
-# Step 1: If |X| < 1/16, approximate log(1+X) by an odd #
-# polynomial in u where u = 2X/(2+X). Otherwise, move on #
-# to Step 2. #
-# #
-# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done #
-# in Step 2 of the algorithm for LOGN and compute #
-# log(1+X) as k*log(2) + log(F) + poly where poly #
-# approximates log(1+u), u = (Y-F)/F. #
-# #
-# Implementation Notes: #
-# Note 1. There are 64 different possible values for F, thus 64 #
-# log(F)'s need to be tabulated. Moreover, the values of #
-# 1/F are also tabulated so that the division in (Y-F)/F #
-# can be performed by a multiplication. #
-# #
-# Note 2. In Step 2 of lognp1, in order to preserved accuracy, #
-# the value Y-F has to be calculated carefully when #
-# 1/2 <= X < 3/2. #
-# #
-# Note 3. To fully exploit the pipeline, polynomials are usually #
-# separated into two parts evaluated independently before #
-# being added up. #
-# #
-#########################################################################
-LOGOF2:
- long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
-
-one:
- long 0x3F800000
-zero:
- long 0x00000000
-infty:
- long 0x7F800000
-negone:
- long 0xBF800000
-
-LOGA6:
- long 0x3FC2499A,0xB5E4040B
-LOGA5:
- long 0xBFC555B5,0x848CB7DB
-
-LOGA4:
- long 0x3FC99999,0x987D8730
-LOGA3:
- long 0xBFCFFFFF,0xFF6F7E97
-
-LOGA2:
- long 0x3FD55555,0x555555A4
-LOGA1:
- long 0xBFE00000,0x00000008
-
-LOGB5:
- long 0x3F175496,0xADD7DAD6
-LOGB4:
- long 0x3F3C71C2,0xFE80C7E0
-
-LOGB3:
- long 0x3F624924,0x928BCCFF
-LOGB2:
- long 0x3F899999,0x999995EC
-
-LOGB1:
- long 0x3FB55555,0x55555555
-TWO:
- long 0x40000000,0x00000000
-
-LTHOLD:
- long 0x3f990000,0x80000000,0x00000000,0x00000000
-
-LOGTBL:
- long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
- long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
- long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
- long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
- long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
- long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
- long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
- long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
- long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
- long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
- long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
- long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
- long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
- long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
- long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
- long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
- long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
- long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
- long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
- long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
- long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
- long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
- long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
- long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
- long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
- long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
- long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
- long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
- long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
- long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
- long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
- long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
- long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
- long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
- long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
- long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
- long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
- long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
- long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
- long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
- long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
- long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
- long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
- long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
- long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
- long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
- long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
- long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
- long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
- long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
- long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
- long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
- long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
- long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
- long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
- long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
- long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
- long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
- long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
- long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
- long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
- long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
- long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
- long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
- long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
- long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
- long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
- long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
- long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
- long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
- long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
- long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
- long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
- long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
- long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
- long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
- long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
- long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
- long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
- long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
- long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
- long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
- long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
- long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
- long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
- long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
- long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
- long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
- long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
- long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
- long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
- long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
- long 0x3FFE0000,0x94458094,0x45809446,0x00000000
- long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
- long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
- long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
- long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
- long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
- long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
- long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
- long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
- long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
- long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
- long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
- long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
- long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
- long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
- long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
- long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
- long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
- long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
- long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
- long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
- long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
- long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
- long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
- long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
- long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
- long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
- long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
- long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
- long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
- long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
- long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
- long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
- long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
- long 0x3FFE0000,0x80808080,0x80808081,0x00000000
- long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
-
- set ADJK,L_SCR1
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
-
- set F,FP_SCR1
- set FFRAC,F+4
-
- set KLOG2,FP_SCR0
-
- set SAVEU,FP_SCR0
-
- global slogn
-#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
-slogn:
- fmov.x (%a0),%fp0 # LOAD INPUT
- mov.l &0x00000000,ADJK(%a6)
-
-LOGBGN:
-#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
-#--A FINITE, NON-ZERO, NORMALIZED NUMBER.
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
-
- mov.l (%a0),X(%a6)
- mov.l 4(%a0),X+4(%a6)
- mov.l 8(%a0),X+8(%a6)
-
- cmp.l %d1,&0 # CHECK IF X IS NEGATIVE
- blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID
-# X IS POSITIVE, CHECK IF X IS NEAR 1
- cmp.l %d1,&0x3ffef07d # IS X < 15/16?
- blt.b LOGMAIN # YES
- cmp.l %d1,&0x3fff8841 # IS X > 17/16?
- ble.w LOGNEAR1 # NO
-
-LOGMAIN:
-#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
-
-#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
-#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
-#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
-#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
-#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
-#--LOG(1+U) CAN BE VERY EFFICIENT.
-#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
-#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
-
-#--GET K, Y, F, AND ADDRESS OF 1/F.
- asr.l &8,%d1
- asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X
- sub.l &0x3FFF,%d1 # THIS IS K
- add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM.
- lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F)
- fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT
-
-#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
- mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X
- mov.l XFRAC(%a6),FFRAC(%a6)
- and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y
- or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT
- mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT
- add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F
-
- fmov.x X(%a6),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # Y-F
- fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY
-#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
-#--REGISTERS SAVED: FPCR, FP1, FP2
-
-LP1CONT1:
-#--AN RE-ENTRY POINT FOR LOGNP1
- fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F
- fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY
- fmov.x %fp0,%fp2
- fmul.x %fp2,%fp2 # FP2 IS V=U*U
- fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1
-
-#--LOG(1+U) IS APPROXIMATED BY
-#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
-#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
-
- fmov.x %fp2,%fp3
- fmov.x %fp2,%fp1
-
- fmul.d LOGA6(%pc),%fp1 # V*A6
- fmul.d LOGA5(%pc),%fp2 # V*A5
-
- fadd.d LOGA4(%pc),%fp1 # A4+V*A6
- fadd.d LOGA3(%pc),%fp2 # A3+V*A5
-
- fmul.x %fp3,%fp1 # V*(A4+V*A6)
- fmul.x %fp3,%fp2 # V*(A3+V*A5)
-
- fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6)
- fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5)
-
- fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6))
- add.l &16,%a0 # ADDRESS OF LOG(F)
- fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5))
-
- fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6))
- fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5))
-
- fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6))
- fmovm.x (%sp)+,&0x30 # RESTORE FP2-3
- fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U)
-
- fmov.l %d0,%fpcr
- fadd.x KLOG2(%a6),%fp0 # FINAL ADD
- bra t_inx2
-
-
-LOGNEAR1:
-
-# if the input is exactly equal to one, then exit through ld_pzero.
-# if these 2 lines weren't here, the correct answer would be returned
-# but the INEX2 bit would be set.
- fcmp.b %fp0,&0x1 # is it equal to one?
- fbeq.l ld_pzero # yes
-
-#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
- fmov.x %fp0,%fp1
- fsub.s one(%pc),%fp1 # FP1 IS X-1
- fadd.s one(%pc),%fp0 # FP0 IS X+1
- fadd.x %fp1,%fp1 # FP1 IS 2(X-1)
-#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
-#--IN U, U = 2(X-1)/(X+1) = FP1/FP0
-
-LP1CONT2:
-#--THIS IS AN RE-ENTRY POINT FOR LOGNP1
- fdiv.x %fp0,%fp1 # FP1 IS U
- fmovm.x &0xc,-(%sp) # SAVE FP2-3
-#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
-#--LET V=U*U, W=V*V, CALCULATE
-#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
-#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
- fmov.x %fp1,%fp0
- fmul.x %fp0,%fp0 # FP0 IS V
- fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS W
-
- fmov.d LOGB5(%pc),%fp3
- fmov.d LOGB4(%pc),%fp2
-
- fmul.x %fp1,%fp3 # W*B5
- fmul.x %fp1,%fp2 # W*B4
-
- fadd.d LOGB3(%pc),%fp3 # B3+W*B5
- fadd.d LOGB2(%pc),%fp2 # B2+W*B4
-
- fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED
-
- fmul.x %fp0,%fp2 # V*(B2+W*B4)
-
- fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5)
- fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V
-
- fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
- fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED
-
- fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
-
- fmov.l %d0,%fpcr
- fadd.x SAVEU(%a6),%fp0
- bra t_inx2
-
-#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
-LOGNEG:
- bra t_operr
-
- global slognd
-slognd:
-#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
-
- mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0
-
-#----normalize the input value by left shifting k bits (k to be determined
-#----below), adjusting exponent and storing -k to ADJK
-#----the value TWOTO100 is no longer needed.
-#----Note that this code assumes the denormalized input is NON-ZERO.
-
- movm.l &0x3f00,-(%sp) # save some registers {d2-d7}
- mov.l (%a0),%d3 # D3 is exponent of smallest norm. #
- mov.l 4(%a0),%d4
- mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X)
- clr.l %d2 # D2 used for holding K
-
- tst.l %d4
- bne.b Hi_not0
-
-Hi_0:
- mov.l %d5,%d4
- clr.l %d5
- mov.l &32,%d2
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- lsl.l %d6,%d4
- add.l %d6,%d2 # (D3,D4,D5) is normalized
-
- mov.l %d3,X(%a6)
- mov.l %d4,XFRAC(%a6)
- mov.l %d5,XFRAC+4(%a6)
- neg.l %d2
- mov.l %d2,ADJK(%a6)
- fmov.x X(%a6),%fp0
- movm.l (%sp)+,&0xfc # restore registers {d2-d7}
- lea X(%a6),%a0
- bra.w LOGBGN # begin regular log(X)
-
-Hi_not0:
- clr.l %d6
- bfffo %d4{&0:&32},%d6 # find first 1
- mov.l %d6,%d2 # get k
- lsl.l %d6,%d4
- mov.l %d5,%d7 # a copy of D5
- lsl.l %d6,%d5
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d4 # (D3,D4,D5) normalized
-
- mov.l %d3,X(%a6)
- mov.l %d4,XFRAC(%a6)
- mov.l %d5,XFRAC+4(%a6)
- neg.l %d2
- mov.l %d2,ADJK(%a6)
- fmov.x X(%a6),%fp0
- movm.l (%sp)+,&0xfc # restore registers {d2-d7}
- lea X(%a6),%a0
- bra.w LOGBGN # begin regular log(X)
-
- global slognp1
-#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
-slognp1:
- fmov.x (%a0),%fp0 # LOAD INPUT
- fabs.x %fp0 # test magnitude
- fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold
- fbgt.w LP1REAL # if greater, continue
- fmov.l %d0,%fpcr
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%a0),%fp0 # return signed argument
- bra t_catch
-
-LP1REAL:
- fmov.x (%a0),%fp0 # LOAD INPUT
- mov.l &0x00000000,ADJK(%a6)
- fmov.x %fp0,%fp1 # FP1 IS INPUT Z
- fadd.s one(%pc),%fp0 # X := ROUND(1+Z)
- fmov.x %fp0,X(%a6)
- mov.w XFRAC(%a6),XDCARE(%a6)
- mov.l X(%a6),%d1
- cmp.l %d1,&0
- ble.w LP1NEG0 # LOG OF ZERO OR -VE
- cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]?
- blt.w LOGMAIN
- cmp.l %d1,&0x3fffc000
- bgt.w LOGMAIN
-#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
-#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
-#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
-
-LP1NEAR1:
-#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
- cmp.l %d1,&0x3ffef07d
- blt.w LP1CARE
- cmp.l %d1,&0x3fff8841
- bgt.w LP1CARE
-
-LP1ONE16:
-#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
-#--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
- fadd.x %fp1,%fp1 # FP1 IS 2Z
- fadd.s one(%pc),%fp0 # FP0 IS 1+X
-#--U = FP1/FP0
- bra.w LP1CONT2
-
-LP1CARE:
-#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
-#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
-#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
-#--THERE ARE ONLY TWO CASES.
-#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
-#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
-#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
-#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
-
- mov.l XFRAC(%a6),FFRAC(%a6)
- and.l &0xFE000000,FFRAC(%a6)
- or.l &0x01000000,FFRAC(%a6) # F OBTAINED
- cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1
- bge.b KISZERO
-
-KISNEG1:
- fmov.s TWO(%pc),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # 2-F
- mov.l FFRAC(%a6),%d1
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F
- fadd.x %fp1,%fp1 # GET 2Z
- fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3}
- fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z
- lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F
- add.l %d1,%a0
- fmov.s negone(%pc),%fp1 # FP1 IS K = -1
- bra.w LP1CONT1
-
-KISZERO:
- fmov.s one(%pc),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # 1-F
- mov.l FFRAC(%a6),%d1
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1
- fadd.x %fp1,%fp0 # FP0 IS Y-F
- fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3}
- lea LOGTBL(%pc),%a0
- add.l %d1,%a0 # A0 IS ADDRESS OF 1/F
- fmov.s zero(%pc),%fp1 # FP1 IS K = 0
- bra.w LP1CONT1
-
-LP1NEG0:
-#--FPCR SAVED. D0 IS X IN COMPACT FORM.
- cmp.l %d1,&0
- blt.b LP1NEG
-LP1ZERO:
- fmov.s negone(%pc),%fp0
-
- fmov.l %d0,%fpcr
- bra t_dz
-
-LP1NEG:
- fmov.s zero(%pc),%fp0
-
- fmov.l %d0,%fpcr
- bra t_operr
-
- global slognp1d
-#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
-# Simply return the denorm
-slognp1d:
- bra t_extdnrm
-
-#########################################################################
-# satanh(): computes the inverse hyperbolic tangent of a norm input #
-# satanhd(): computes the inverse hyperbolic tangent of a denorm input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arctanh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# ATANH #
-# 1. If |X| >= 1, go to 3. #
-# #
-# 2. (|X| < 1) Calculate atanh(X) by #
-# sgn := sign(X) #
-# y := |X| #
-# z := 2y/(1-y) #
-# atanh(X) := sgn * (1/2) * logp1(z) #
-# Exit. #
-# #
-# 3. If |X| > 1, go to 5. #
-# #
-# 4. (|X| = 1) Generate infinity with an appropriate sign and #
-# divide-by-zero by #
-# sgn := sign(X) #
-# atan(X) := sgn / (+0). #
-# Exit. #
-# #
-# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
-# Exit. #
-# #
-#########################################################################
-
- global satanh
-satanh:
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ATANHBIG
-
-#--THIS IS THE USUAL CASE, |X| < 1
-#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
-
- fabs.x (%a0),%fp0 # Y = |X|
- fmov.x %fp0,%fp1
- fneg.x %fp1 # -Y
- fadd.x %fp0,%fp0 # 2Y
- fadd.s &0x3F800000,%fp1 # 1-Y
- fdiv.x %fp1,%fp0 # 2Y/(1-Y)
- mov.l (%a0),%d1
- and.l &0x80000000,%d1
- or.l &0x3F000000,%d1 # SIGN(X)*HALF
- mov.l %d1,-(%sp)
-
- mov.l %d0,-(%sp) # save rnd prec,mode
- clr.l %d0 # pass ext prec,RN
- fmovm.x &0x01,-(%sp) # save Z on stack
- lea (%sp),%a0 # pass ptr to Z
- bsr slognp1 # LOG1P(Z)
- add.l &0xc,%sp # clear Z from stack
-
- mov.l (%sp)+,%d0 # fetch old prec,mode
- fmov.l %d0,%fpcr # load it
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.s (%sp)+,%fp0
- bra t_catch
-
-ATANHBIG:
- fabs.x (%a0),%fp0 # |X|
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr
- bra t_dz
-
- global satanhd
-#--ATANH(X) = X FOR DENORMALIZED X
-satanhd:
- bra t_extdnrm
-
-#########################################################################
-# slog10(): computes the base-10 logarithm of a normalized input #
-# slog10d(): computes the base-10 logarithm of a denormalized input #
-# slog2(): computes the base-2 logarithm of a normalized input #
-# slog2d(): computes the base-2 logarithm of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = log_10(X) or log_2(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 1.7 ulps in 64 significant bit, #
-# i.e. within 0.5003 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# slog10d: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
-# Notes: Even if X is denormalized, log(X) is always normalized. #
-# #
-# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
-# 2.1 Restore the user FPCR #
-# 2.2 Return ans := Y * INV_L10. #
-# #
-# slog10: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. #
-# #
-# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
-# 2.1 Restore the user FPCR #
-# 2.2 Return ans := Y * INV_L10. #
-# #
-# sLog2d: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
-# Notes: Even if X is denormalized, log(X) is always normalized. #
-# #
-# Step 2. Compute log_10(X) = log(X) * (1/log(2)). #
-# 2.1 Restore the user FPCR #
-# 2.2 Return ans := Y * INV_L2. #
-# #
-# sLog2: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. If X is not an integer power of two, i.e., X != 2^k, #
-# go to Step 3. #
-# #
-# Step 2. Return k. #
-# 2.1 Get integer k, X = 2^k. #
-# 2.2 Restore the user FPCR. #
-# 2.3 Return ans := convert-to-double-extended(k). #
-# #
-# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. #
-# #
-# Step 4. Compute log_2(X) = log(X) * (1/log(2)). #
-# 4.1 Restore the user FPCR #
-# 4.2 Return ans := Y * INV_L2. #
-# #
-#########################################################################
-
-INV_L10:
- long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
-
-INV_L2:
- long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
-
- global slog10
-#--entry point for Log10(X), X is normalized
-slog10:
- fmov.b &0x1,%fp0
- fcmp.x %fp0,(%a0) # if operand == 1,
- fbeq.l ld_pzero # return an EXACT zero
-
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slogn # log(X), X normal.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L10(%pc),%fp0
- bra t_inx2
-
- global slog10d
-#--entry point for Log10(X), X is denormalized
-slog10d:
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slognd # log(X), X denorm.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L10(%pc),%fp0
- bra t_minx2
-
- global slog2
-#--entry point for Log2(X), X is normalized
-slog2:
- mov.l (%a0),%d1
- blt.w invalid
-
- mov.l 8(%a0),%d1
- bne.b continue # X is not 2^k
-
- mov.l 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- bne.b continue
-
-#--X = 2^k.
- mov.w (%a0),%d1
- and.l &0x00007FFF,%d1
- sub.l &0x3FFF,%d1
- beq.l ld_pzero
- fmov.l %d0,%fpcr
- fmov.l %d1,%fp0
- bra t_inx2
-
-continue:
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slogn # log(X), X normal.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L2(%pc),%fp0
- bra t_inx2
-
-invalid:
- bra t_operr
-
- global slog2d
-#--entry point for Log2(X), X is denormalized
-slog2d:
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slognd # log(X), X denorm.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L2(%pc),%fp0
- bra t_minx2
-
-#########################################################################
-# stwotox(): computes 2**X for a normalized input #
-# stwotoxd(): computes 2**X for a denormalized input #
-# stentox(): computes 10**X for a normalized input #
-# stentoxd(): computes 10**X for a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = 2**X or 10**X #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 2 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# twotox #
-# 1. If |X| > 16480, go to ExpBig. #
-# #
-# 2. If |X| < 2**(-70), go to ExpSm. #
-# #
-# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore #
-# decompose N as #
-# N = 64(M + M') + j, j = 0,1,2,...,63. #
-# #
-# 4. Overwrite r := r * log2. Then #
-# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
-# Go to expr to compute that expression. #
-# #
-# tentox #
-# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. #
-# #
-# 2. If |X| < 2**(-70), go to ExpSm. #
-# #
-# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set #
-# N := round-to-int(y). Decompose N as #
-# N = 64(M + M') + j, j = 0,1,2,...,63. #
-# #
-# 4. Define r as #
-# r := ((X - N*L1)-N*L2) * L10 #
-# where L1, L2 are the leading and trailing parts of #
-# log_10(2)/64 and L10 is the natural log of 10. Then #
-# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
-# Go to expr to compute that expression. #
-# #
-# expr #
-# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. #
-# #
-# 2. Overwrite Fact1 and Fact2 by #
-# Fact1 := 2**(M) * Fact1 #
-# Fact2 := 2**(M) * Fact2 #
-# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). #
-# #
-# 3. Calculate P where 1 + P approximates exp(r): #
-# P = r + r*r*(A1+r*(A2+...+r*A5)). #
-# #
-# 4. Let AdjFact := 2**(M'). Return #
-# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). #
-# Exit. #
-# #
-# ExpBig #
-# 1. Generate overflow by Huge * Huge if X > 0; otherwise, #
-# generate underflow by Tiny * Tiny. #
-# #
-# ExpSm #
-# 1. Return 1 + X. #
-# #
-#########################################################################
-
-L2TEN64:
- long 0x406A934F,0x0979A371 # 64LOG10/LOG2
-L10TWO1:
- long 0x3F734413,0x509F8000 # LOG2/64LOG10
-
-L10TWO2:
- long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000
-
-LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000
-
-LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
-
-EXPA5: long 0x3F56C16D,0x6F7BD0B2
-EXPA4: long 0x3F811112,0x302C712C
-EXPA3: long 0x3FA55555,0x55554CC1
-EXPA2: long 0x3FC55555,0x55554A54
-EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000
-
-TEXPTBL:
- long 0x3FFF0000,0x80000000,0x00000000,0x3F738000
- long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA
- long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9
- long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9
- long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA
- long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C
- long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1
- long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA
- long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373
- long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670
- long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700
- long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0
- long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D
- long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319
- long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B
- long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5
- long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A
- long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B
- long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF
- long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA
- long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD
- long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E
- long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B
- long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB
- long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB
- long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274
- long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C
- long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00
- long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301
- long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367
- long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F
- long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C
- long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB
- long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB
- long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C
- long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA
- long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD
- long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51
- long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A
- long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2
- long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB
- long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17
- long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C
- long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8
- long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53
- long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE
- long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124
- long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243
- long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A
- long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61
- long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610
- long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1
- long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12
- long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE
- long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4
- long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F
- long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A
- long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A
- long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC
- long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F
- long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A
- long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795
- long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B
- long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581
-
- set INT,L_SCR1
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
-
- set ADJFACT,FP_SCR0
-
- set FACT1,FP_SCR0
- set FACT1HI,FACT1+4
- set FACT1LOW,FACT1+8
-
- set FACT2,FP_SCR1
- set FACT2HI,FACT2+4
- set FACT2LOW,FACT2+8
-
- global stwotox
-#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
-stwotox:
- fmovm.x (%a0),&0x80 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
- bge.b TWOOK1
- bra.w EXPBORS
-
-TWOOK1:
- cmp.l %d1,&0x400D80C0 # |X| > 16480?
- ble.b TWOMAIN
- bra.w EXPBORS
-
-TWOMAIN:
-#--USUAL CASE, 2^(-70) <= |X| <= 16480
-
- fmov.x %fp0,%fp1
- fmul.s &0x42800000,%fp1 # 64 * X
- fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X)
- mov.l %d2,-(%sp)
- lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
- fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
- mov.l INT(%a6),%d1
- mov.l %d1,%d2
- and.l &0x3F,%d1 # D0 IS J
- asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
- add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
- asr.l &6,%d2 # d2 IS L, N = 64L + J
- mov.l %d2,%d1
- asr.l &1,%d1 # D0 IS M
- sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
- add.l &0x3FFF,%d2
-
-#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
-#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
-#--ADJFACT = 2^(M').
-#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
-
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.s &0x3C800000,%fp1 # (1/64)*N
- mov.l (%a1)+,FACT1(%a6)
- mov.l (%a1)+,FACT1HI(%a6)
- mov.l (%a1)+,FACT1LOW(%a6)
- mov.w (%a1)+,FACT2(%a6)
-
- fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X)
-
- mov.w (%a1)+,FACT2HI(%a6)
- clr.w FACT2HI+2(%a6)
- clr.l FACT2LOW(%a6)
- add.w %d1,FACT1(%a6)
- fmul.x LOG2(%pc),%fp0 # FP0 IS R
- add.w %d1,FACT2(%a6)
-
- bra.w expr
-
-EXPBORS:
-#--FPCR, D0 SAVED
- cmp.l %d1,&0x3FFF8000
- bgt.b TEXPBIG
-
-#--|X| IS SMALL, RETURN 1 + X
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fadd.s &0x3F800000,%fp0 # RETURN 1 + X
- bra t_pinx2
-
-TEXPBIG:
-#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
-#--REGISTERS SAVE SO FAR ARE FPCR AND D0
- mov.l X(%a6),%d1
- cmp.l %d1,&0
- blt.b EXPNEG
-
- bra t_ovfl2 # t_ovfl expects positive value
-
-EXPNEG:
- bra t_unfl2 # t_unfl expects positive value
-
- global stwotoxd
-stwotoxd:
-#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
-
- fmov.l %d0,%fpcr # set user's rounding mode/precision
- fmov.s &0x3F800000,%fp0 # RETURN 1 + X
- mov.l (%a0),%d1
- or.l &0x00800001,%d1
- fadd.s %d1,%fp0
- bra t_pinx2
-
- global stentox
-#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
-stentox:
- fmovm.x (%a0),&0x80 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
- bge.b TENOK1
- bra.w EXPBORS
-
-TENOK1:
- cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ?
- ble.b TENMAIN
- bra.w EXPBORS
-
-TENMAIN:
-#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
-
- fmov.x %fp0,%fp1
- fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2
- fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2)
- mov.l %d2,-(%sp)
- lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
- fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
- mov.l INT(%a6),%d1
- mov.l %d1,%d2
- and.l &0x3F,%d1 # D0 IS J
- asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
- add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
- asr.l &6,%d2 # d2 IS L, N = 64L + J
- mov.l %d2,%d1
- asr.l &1,%d1 # D0 IS M
- sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
- add.l &0x3FFF,%d2
-
-#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
-#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
-#--ADJFACT = 2^(M').
-#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.x %fp1,%fp2
-
- fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD
- mov.l (%a1)+,FACT1(%a6)
-
- fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL
-
- mov.l (%a1)+,FACT1HI(%a6)
- mov.l (%a1)+,FACT1LOW(%a6)
- fsub.x %fp1,%fp0 # X - N L_LEAD
- mov.w (%a1)+,FACT2(%a6)
-
- fsub.x %fp2,%fp0 # X - N L_TRAIL
-
- mov.w (%a1)+,FACT2HI(%a6)
- clr.w FACT2HI+2(%a6)
- clr.l FACT2LOW(%a6)
-
- fmul.x LOG10(%pc),%fp0 # FP0 IS R
- add.w %d1,FACT1(%a6)
- add.w %d1,FACT2(%a6)
-
-expr:
-#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
-#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
-#--FP0 IS R. THE FOLLOWING CODE COMPUTES
-#-- 2**(M'+M) * 2**(J/64) * EXP(R)
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS S = R*R
-
- fmov.d EXPA5(%pc),%fp2 # FP2 IS A5
- fmov.d EXPA4(%pc),%fp3 # FP3 IS A4
-
- fmul.x %fp1,%fp2 # FP2 IS S*A5
- fmul.x %fp1,%fp3 # FP3 IS S*A4
-
- fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5
- fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4
-
- fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5)
- fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4)
-
- fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5)
- fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4)
-
- fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5))
- fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4)
- fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
-#--FINAL RECONSTRUCTION PROCESS
-#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
-
- fmul.x FACT1(%a6),%fp0
- fadd.x FACT2(%a6),%fp0
- fadd.x FACT1(%a6),%fp0
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT
- mov.l (%sp)+,%d2
- mov.l &0x80000000,ADJFACT+4(%a6)
- clr.l ADJFACT+8(%a6)
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT
- bra t_catch
-
- global stentoxd
-stentoxd:
-#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
-
- fmov.l %d0,%fpcr # set user's rounding mode/precision
- fmov.s &0x3F800000,%fp0 # RETURN 1 + X
- mov.l (%a0),%d1
- or.l &0x00800001,%d1
- fadd.s %d1,%fp0
- bra t_pinx2
-
-#########################################################################
-# sscale(): computes the destination operand scaled by the source #
-# operand. If the absoulute value of the source operand is #
-# >= 2^14, an overflow or underflow is returned. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to double-extended source operand X #
-# a1 = pointer to double-extended destination operand Y #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = scale(X,Y) #
-# #
-#########################################################################
-
-set SIGN, L_SCR1
-
- global sscale
-sscale:
- mov.l %d0,-(%sp) # store off ctrl bits for now
-
- mov.w DST_EX(%a1),%d1 # get dst exponent
- smi.b SIGN(%a6) # use SIGN to hold dst sign
- andi.l &0x00007fff,%d1 # strip sign from dst exp
-
- mov.w SRC_EX(%a0),%d0 # check src bounds
- andi.w &0x7fff,%d0 # clr src sign bit
- cmpi.w %d0,&0x3fff # is src ~ ZERO?
- blt.w src_small # yes
- cmpi.w %d0,&0x400c # no; is src too big?
- bgt.w src_out # yes
-
-#
-# Source is within 2^14 range.
-#
-src_ok:
- fintrz.x SRC(%a0),%fp0 # calc int of src
- fmov.l %fp0,%d0 # int src to d0
-# don't want any accrued bits from the fintrz showing up later since
-# we may need to read the fpsr for the last fp op in t_catch2().
- fmov.l &0x0,%fpsr
-
- tst.b DST_HI(%a1) # is dst denormalized?
- bmi.b sok_norm
-
-# the dst is a DENORM. normalize the DENORM and add the adjustment to
-# the src value. then, jump to the norm part of the routine.
-sok_dnrm:
- mov.l %d0,-(%sp) # save src for now
-
- mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy
- mov.l DST_HI(%a1),FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
-
- lea FP_SCR0(%a6),%a0 # pass ptr to DENORM
- bsr.l norm # normalize the DENORM
- neg.l %d0
- add.l (%sp)+,%d0 # add adjustment to src
-
- fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM
-
- cmpi.w %d0,&-0x3fff # is the shft amt really low?
- bge.b sok_norm2 # thank goodness no
-
-# the multiply factor that we're trying to create should be a denorm
-# for the multiply to work. therefore, we're going to actually do a
-# multiply with a denorm which will cause an unimplemented data type
-# exception to be put into the machine which will be caught and corrected
-# later. we don't do this with the DENORMs above because this method
-# is slower. but, don't fret, I don't see it being used much either.
- fmov.l (%sp)+,%fpcr # restore user fpcr
- mov.l &0x80000000,%d1 # load normalized mantissa
- subi.l &-0x3fff,%d0 # how many should we shift?
- neg.l %d0 # make it positive
- cmpi.b %d0,&0x20 # is it > 32?
- bge.b sok_dnrm_32 # yes
- lsr.l %d0,%d1 # no; bit stays in upper lw
- clr.l -(%sp) # insert zero low mantissa
- mov.l %d1,-(%sp) # insert new high mantissa
- clr.l -(%sp) # make zero exponent
- bra.b sok_norm_cont
-sok_dnrm_32:
- subi.b &0x20,%d0 # get shift count
- lsr.l %d0,%d1 # make low mantissa longword
- mov.l %d1,-(%sp) # insert new low mantissa
- clr.l -(%sp) # insert zero high mantissa
- clr.l -(%sp) # make zero exponent
- bra.b sok_norm_cont
-
-# the src will force the dst to a DENORM value or worse. so, let's
-# create an fp multiply that will create the result.
-sok_norm:
- fmovm.x DST(%a1),&0x80 # load fp0 with normalized src
-sok_norm2:
- fmov.l (%sp)+,%fpcr # restore user fpcr
-
- addi.w &0x3fff,%d0 # turn src amt into exp value
- swap %d0 # put exponent in high word
- clr.l -(%sp) # insert new exponent
- mov.l &0x80000000,-(%sp) # insert new high mantissa
- mov.l %d0,-(%sp) # insert new lo mantissa
-
-sok_norm_cont:
- fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x (%sp)+,%fp0 # do the multiply
- bra t_catch2 # catch any exceptions
-
-#
-# Source is outside of 2^14 range. Test the sign and branch
-# to the appropriate exception handler.
-#
-src_out:
- mov.l (%sp)+,%d0 # restore ctrl bits
- exg %a0,%a1 # swap src,dst ptrs
- tst.b SRC_EX(%a1) # is src negative?
- bmi t_unfl # yes; underflow
- bra t_ovfl_sc # no; overflow
-
-#
-# The source input is below 1, so we check for denormalized numbers
-# and set unfl.
-#
-src_small:
- tst.b DST_HI(%a1) # is dst denormalized?
- bpl.b ssmall_done # yes
-
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr # no; load control bits
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x DST(%a1),%fp0 # simply return dest
- bra t_catch2
-ssmall_done:
- mov.l (%sp)+,%d0 # load control bits into d1
- mov.l %a1,%a0 # pass ptr to dst
- bra t_resdnrm
-
-#########################################################################
-# smod(): computes the fp MOD of the input values X,Y. #
-# srem(): computes the fp (IEEE) REM of the input values X,Y. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input X #
-# a1 = pointer to extended precision input Y #
-# d0 = round precision,mode #
-# #
-# The input operands X and Y can be either normalized or #
-# denormalized. #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = FREM(X,Y) or FMOD(X,Y) #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# Step 1. Save and strip signs of X and Y: signX := sign(X), #
-# signY := sign(Y), X := |X|, Y := |Y|, #
-# signQ := signX EOR signY. Record whether MOD or REM #
-# is requested. #
-# #
-# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. #
-# If (L < 0) then #
-# R := X, go to Step 4. #
-# else #
-# R := 2^(-L)X, j := L. #
-# endif #
-# #
-# Step 3. Perform MOD(X,Y) #
-# 3.1 If R = Y, go to Step 9. #
-# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} #
-# 3.3 If j = 0, go to Step 4. #
-# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to #
-# Step 3.1. #
-# #
-# Step 4. At this point, R = X - QY = MOD(X,Y). Set #
-# Last_Subtract := false (used in Step 7 below). If #
-# MOD is requested, go to Step 6. #
-# #
-# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
-# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
-# Step 6. #
-# 5.2 If R > Y/2, then { set Last_Subtract := true, #
-# Q := Q + 1, Y := signY*Y }. Go to Step 6. #
-# 5.3 This is the tricky case of R = Y/2. If Q is odd, #
-# then { Q := Q + 1, signX := -signX }. #
-# #
-# Step 6. R := signX*R. #
-# #
-# Step 7. If Last_Subtract = true, R := R - Y. #
-# #
-# Step 8. Return signQ, last 7 bits of Q, and R as required. #
-# #
-# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
-# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), #
-# R := 0. Return signQ, last 7 bits of Q, and R. #
-# #
-#########################################################################
-
- set Mod_Flag,L_SCR3
- set Sc_Flag,L_SCR3+1
-
- set SignY,L_SCR2
- set SignX,L_SCR2+2
- set SignQ,L_SCR3+2
-
- set Y,FP_SCR0
- set Y_Hi,Y+4
- set Y_Lo,Y+8
-
- set R,FP_SCR1
- set R_Hi,R+4
- set R_Lo,R+8
-
-Scale:
- long 0x00010000,0x80000000,0x00000000,0x00000000
-
- global smod
-smod:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp) # save ctrl bits
- clr.b Mod_Flag(%a6)
- bra.b Mod_Rem
-
- global srem
-srem:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp) # save ctrl bits
- mov.b &0x1,Mod_Flag(%a6)
-
-Mod_Rem:
-#..Save sign of X and Y
- movm.l &0x3f00,-(%sp) # save data registers
- mov.w SRC_EX(%a0),%d3
- mov.w %d3,SignY(%a6)
- and.l &0x00007FFF,%d3 # Y := |Y|
-
-#
- mov.l SRC_HI(%a0),%d4
- mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y|
-
- tst.l %d3
- bne.b Y_Normal
-
- mov.l &0x00003FFE,%d3 # $3FFD + 1
- tst.l %d4
- bne.b HiY_not0
-
-HiY_0:
- mov.l %d5,%d4
- clr.l %d5
- sub.l &32,%d3
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- lsl.l %d6,%d4
- sub.l %d6,%d3 # (D3,D4,D5) is normalized
-# ...with bias $7FFD
- bra.b Chk_X
-
-HiY_not0:
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- sub.l %d6,%d3
- lsl.l %d6,%d4
- mov.l %d5,%d7 # a copy of D5
- lsl.l %d6,%d5
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d4 # (D3,D4,D5) normalized
-# ...with bias $7FFD
- bra.b Chk_X
-
-Y_Normal:
- add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized
-# ...with bias $7FFD
-
-Chk_X:
- mov.w DST_EX(%a1),%d0
- mov.w %d0,SignX(%a6)
- mov.w SignY(%a6),%d1
- eor.l %d0,%d1
- and.l &0x00008000,%d1
- mov.w %d1,SignQ(%a6) # sign(Q) obtained
- and.l &0x00007FFF,%d0
- mov.l DST_HI(%a1),%d1
- mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X|
- tst.l %d0
- bne.b X_Normal
- mov.l &0x00003FFE,%d0
- tst.l %d1
- bne.b HiX_not0
-
-HiX_0:
- mov.l %d2,%d1
- clr.l %d2
- sub.l &32,%d0
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- lsl.l %d6,%d1
- sub.l %d6,%d0 # (D0,D1,D2) is normalized
-# ...with bias $7FFD
- bra.b Init
-
-HiX_not0:
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- sub.l %d6,%d0
- lsl.l %d6,%d1
- mov.l %d2,%d7 # a copy of D2
- lsl.l %d6,%d2
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d1 # (D0,D1,D2) normalized
-# ...with bias $7FFD
- bra.b Init
-
-X_Normal:
- add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized
-# ...with bias $7FFD
-
-Init:
-#
- mov.l %d3,L_SCR1(%a6) # save biased exp(Y)
- mov.l %d0,-(%sp) # save biased exp(X)
- sub.l %d3,%d0 # L := expo(X)-expo(Y)
-
- clr.l %d6 # D6 := carry <- 0
- clr.l %d3 # D3 is Q
- mov.l &0,%a1 # A1 is k; j+k=L, Q=0
-
-#..(Carry,D1,D2) is R
- tst.l %d0
- bge.b Mod_Loop_pre
-
-#..expo(X) < expo(Y). Thus X = mod(X,Y)
-#
- mov.l (%sp)+,%d0 # restore d0
- bra.w Get_Mod
-
-Mod_Loop_pre:
- addq.l &0x4,%sp # erase exp(X)
-#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
-Mod_Loop:
- tst.l %d6 # test carry bit
- bgt.b R_GT_Y
-
-#..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
- cmp.l %d1,%d4 # compare hi(R) and hi(Y)
- bne.b R_NE_Y
- cmp.l %d2,%d5 # compare lo(R) and lo(Y)
- bne.b R_NE_Y
-
-#..At this point, R = Y
- bra.w Rem_is_0
-
-R_NE_Y:
-#..use the borrow of the previous compare
- bcs.b R_LT_Y # borrow is set iff R < Y
-
-R_GT_Y:
-#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
-#..and Y < (D1,D2) < 2Y. Either way, perform R - Y
- sub.l %d5,%d2 # lo(R) - lo(Y)
- subx.l %d4,%d1 # hi(R) - hi(Y)
- clr.l %d6 # clear carry
- addq.l &1,%d3 # Q := Q + 1
-
-R_LT_Y:
-#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
- tst.l %d0 # see if j = 0.
- beq.b PostLoop
-
- add.l %d3,%d3 # Q := 2Q
- add.l %d2,%d2 # lo(R) = 2lo(R)
- roxl.l &1,%d1 # hi(R) = 2hi(R) + carry
- scs %d6 # set Carry if 2(R) overflows
- addq.l &1,%a1 # k := k+1
- subq.l &1,%d0 # j := j - 1
-#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
-
- bra.b Mod_Loop
-
-PostLoop:
-#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
-
-#..normalize R.
- mov.l L_SCR1(%a6),%d0 # new biased expo of R
- tst.l %d1
- bne.b HiR_not0
-
-HiR_0:
- mov.l %d2,%d1
- clr.l %d2
- sub.l &32,%d0
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- lsl.l %d6,%d1
- sub.l %d6,%d0 # (D0,D1,D2) is normalized
-# ...with bias $7FFD
- bra.b Get_Mod
-
-HiR_not0:
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- bmi.b Get_Mod # already normalized
- sub.l %d6,%d0
- lsl.l %d6,%d1
- mov.l %d2,%d7 # a copy of D2
- lsl.l %d6,%d2
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d1 # (D0,D1,D2) normalized
-
-#
-Get_Mod:
- cmp.l %d0,&0x000041FE
- bge.b No_Scale
-Do_Scale:
- mov.w %d0,R(%a6)
- mov.l %d1,R_Hi(%a6)
- mov.l %d2,R_Lo(%a6)
- mov.l L_SCR1(%a6),%d6
- mov.w %d6,Y(%a6)
- mov.l %d4,Y_Hi(%a6)
- mov.l %d5,Y_Lo(%a6)
- fmov.x R(%a6),%fp0 # no exception
- mov.b &1,Sc_Flag(%a6)
- bra.b ModOrRem
-No_Scale:
- mov.l %d1,R_Hi(%a6)
- mov.l %d2,R_Lo(%a6)
- sub.l &0x3FFE,%d0
- mov.w %d0,R(%a6)
- mov.l L_SCR1(%a6),%d6
- sub.l &0x3FFE,%d6
- mov.l %d6,L_SCR1(%a6)
- fmov.x R(%a6),%fp0
- mov.w %d6,Y(%a6)
- mov.l %d4,Y_Hi(%a6)
- mov.l %d5,Y_Lo(%a6)
- clr.b Sc_Flag(%a6)
-
-#
-ModOrRem:
- tst.b Mod_Flag(%a6)
- beq.b Fix_Sign
-
- mov.l L_SCR1(%a6),%d6 # new biased expo(Y)
- subq.l &1,%d6 # biased expo(Y/2)
- cmp.l %d0,%d6
- blt.b Fix_Sign
- bgt.b Last_Sub
-
- cmp.l %d1,%d4
- bne.b Not_EQ
- cmp.l %d2,%d5
- bne.b Not_EQ
- bra.w Tie_Case
-
-Not_EQ:
- bcs.b Fix_Sign
-
-Last_Sub:
-#
- fsub.x Y(%a6),%fp0 # no exceptions
- addq.l &1,%d3 # Q := Q + 1
-
-#
-Fix_Sign:
-#..Get sign of X
- mov.w SignX(%a6),%d6
- bge.b Get_Q
- fneg.x %fp0
-
-#..Get Q
-#
-Get_Q:
- clr.l %d6
- mov.w SignQ(%a6),%d6 # D6 is sign(Q)
- mov.l &8,%d7
- lsr.l %d7,%d6
- and.l &0x0000007F,%d3 # 7 bits of Q
- or.l %d6,%d3 # sign and bits of Q
-# swap %d3
-# fmov.l %fpsr,%d6
-# and.l &0xFF00FFFF,%d6
-# or.l %d3,%d6
-# fmov.l %d6,%fpsr # put Q in fpsr
- mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr
-
-#
-Restore:
- movm.l (%sp)+,&0xfc # {%d2-%d7}
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr
- tst.b Sc_Flag(%a6)
- beq.b Finish
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x Scale(%pc),%fp0 # may cause underflow
- bra t_catch2
-# the '040 package did this apparently to see if the dst operand for the
-# preceding fmul was a denorm. but, it better not have been since the
-# algorithm just got done playing with fp0 and expected no exceptions
-# as a result. trust me...
-# bra t_avoid_unsupp # check for denorm as a
-# ;result of the scaling
-
-Finish:
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x %fp0,%fp0 # capture exceptions & round
- bra t_catch2
-
-Rem_is_0:
-#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
- addq.l &1,%d3
- cmp.l %d0,&8 # D0 is j
- bge.b Q_Big
-
- lsl.l %d0,%d3
- bra.b Set_R_0
-
-Q_Big:
- clr.l %d3
-
-Set_R_0:
- fmov.s &0x00000000,%fp0
- clr.b Sc_Flag(%a6)
- bra.w Fix_Sign
-
-Tie_Case:
-#..Check parity of Q
- mov.l %d3,%d6
- and.l &0x00000001,%d6
- tst.l %d6
- beq.w Fix_Sign # Q is even
-
-#..Q is odd, Q := Q + 1, signX := -signX
- addq.l &1,%d3
- mov.w SignX(%a6),%d6
- eor.l &0x00008000,%d6
- mov.w %d6,SignX(%a6)
- bra.w Fix_Sign
-
-#########################################################################
-# XDEF **************************************************************** #
-# tag(): return the optype of the input ext fp number #
-# #
-# This routine is used by the 060FPLSP. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# If it's an unnormalized zero, alter the operand and force it #
-# to be a normal zero. #
-# #
-#########################################################################
-
- global tag
-tag:
- mov.w FTEMP_EX(%a0), %d0 # extract exponent
- andi.w &0x7fff, %d0 # strip off sign
- cmpi.w %d0, &0x7fff # is (EXP == MAX)?
- beq.b inf_or_nan_x
-not_inf_or_nan_x:
- btst &0x7,FTEMP_HI(%a0)
- beq.b not_norm_x
-is_norm_x:
- mov.b &NORM, %d0
- rts
-not_norm_x:
- tst.w %d0 # is exponent = 0?
- bne.b is_unnorm_x
-not_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_denorm_x
- tst.l FTEMP_LO(%a0)
- bne.b is_denorm_x
-is_zero_x:
- mov.b &ZERO, %d0
- rts
-is_denorm_x:
- mov.b &DENORM, %d0
- rts
-is_unnorm_x:
- bsr.l unnorm_fix # convert to norm,denorm,or zero
- rts
-is_unnorm_reg_x:
- mov.b &UNNORM, %d0
- rts
-inf_or_nan_x:
- tst.l FTEMP_LO(%a0)
- bne.b is_nan_x
- mov.l FTEMP_HI(%a0), %d0
- and.l &0x7fffffff, %d0 # msb is a don't care!
- bne.b is_nan_x
-is_inf_x:
- mov.b &INF, %d0
- rts
-is_nan_x:
- mov.b &QNAN, %d0
- rts
-
-#############################################################
-
-qnan: long 0x7fff0000, 0xffffffff, 0xffffffff
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. #
-# t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. #
-# #
-# These rouitnes are used by the 060FPLSP package. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand. #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default DZ result. #
-# #
-# ALGORITHM *********************************************************** #
-# Transcendental emulation for the 060FPLSP has detected that #
-# a DZ exception should occur for the instruction. If DZ is disabled, #
-# return the default result. #
-# If DZ is enabled, the dst operand should be returned unscathed #
-# in fp0 while fp1 is used to create a DZ exception so that the #
-# operating system can log that such an event occurred. #
-# #
-#########################################################################
-
- global t_dz
-t_dz:
- tst.b SRC_EX(%a0) # check sign for neg or pos
- bpl.b dz_pinf # branch if pos sign
-
- global t_dz2
-t_dz2:
- ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ
-
- btst &dz_bit,FPCR_ENABLE(%a6)
- bne.b dz_minf_ena
-
-# dz is disabled. return a -INF.
- fmov.s &0xff800000,%fp0 # return -INF
- rts
-
-# dz is enabled. create a dz exception so the user can record it
-# but use fp1 instead. return the dst operand unscathed in fp0.
-dz_minf_ena:
- fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.s &0xbf800000,%fp1 # load -1
- fdiv.s &0x00000000,%fp1 # -1 / 0
- rts
-
-dz_pinf:
- ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ
-
- btst &dz_bit,FPCR_ENABLE(%a6)
- bne.b dz_pinf_ena
-
-# dz is disabled. return a +INF.
- fmov.s &0x7f800000,%fp0 # return +INF
- rts
-
-# dz is enabled. create a dz exception so the user can record it
-# but use fp1 instead. return the dst operand unscathed in fp0.
-dz_pinf_ena:
- fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.s &0x3f800000,%fp1 # load +1
- fdiv.s &0x00000000,%fp1 # +1 / 0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_operr(): Handle 060FPLSP OPERR exception during emulation. #
-# #
-# This routine is used by the 060FPLSP package. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# fp1 = source operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# fp1 = unchanged #
-# #
-# ALGORITHM *********************************************************** #
-# An operand error should occur as the result of transcendental #
-# emulation in the 060FPLSP. If OPERR is disabled, just return a NAN #
-# in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 #
-# and the source operand in fp1. Use fp2 to create an OPERR exception #
-# so that the operating system can log the event. #
-# #
-#########################################################################
-
- global t_operr
-t_operr:
- ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP
-
- btst &operr_bit,FPCR_ENABLE(%a6)
- bne.b operr_ena
-
-# operr is disabled. return a QNAN in fp0
- fmovm.x qnan(%pc),&0x80 # return QNAN
- rts
-
-# operr is enabled. create an operr exception so the user can record it
-# but use fp2 instead. return the dst operand unscathed in fp0.
-operr_ena:
- fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x &0x04,-(%sp) # save fp2
- fmov.s &0x7f800000,%fp2 # load +INF
- fmul.s &0x00000000,%fp2 # +INF x 0
- fmovm.x (%sp)+,&0x20 # restore fp2
- rts
-
-pls_huge:
- long 0x7ffe0000,0xffffffff,0xffffffff
-mns_huge:
- long 0xfffe0000,0xffffffff,0xffffffff
-pls_tiny:
- long 0x00000000,0x80000000,0x00000000
-mns_tiny:
- long 0x80000000,0x80000000,0x00000000
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_unfl(): Handle 060FPLSP underflow exception during emulation. #
-# t_unfl2(): Handle 060FPLSP underflow exception during #
-# emulation. result always positive. #
-# #
-# This routine is used by the 060FPLSP package. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default underflow result #
-# #
-# ALGORITHM *********************************************************** #
-# An underflow should occur as the result of transcendental #
-# emulation in the 060FPLSP. Create an underflow by using "fmul" #
-# and two very small numbers of appropriate sign so the operating #
-# system can log the event. #
-# #
-#########################################################################
-
- global t_unfl
-t_unfl:
- tst.b SRC_EX(%a0)
- bpl.b unf_pos
-
- global t_unfl2
-t_unfl2:
- ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX
-
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x mns_tiny(%pc),&0x80
- fmul.x pls_tiny(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-unf_pos:
- ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX
-
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x pls_tiny(%pc),&0x80
- fmul.x %fp0,%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_ovfl(): Handle 060FPLSP overflow exception during emulation. #
-# (monadic) #
-# t_ovfl2(): Handle 060FPLSP overflow exception during #
-# emulation. result always positive. (dyadic) #
-# t_ovfl_sc(): Handle 060FPLSP overflow exception during #
-# emulation for "fscale". #
-# #
-# This routine is used by the 060FPLSP package. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default underflow result #
-# #
-# ALGORITHM *********************************************************** #
-# An overflow should occur as the result of transcendental #
-# emulation in the 060FPLSP. Create an overflow by using "fmul" #
-# and two very lareg numbers of appropriate sign so the operating #
-# system can log the event. #
-# For t_ovfl_sc() we take special care not to lose the INEX2 bit. #
-# #
-#########################################################################
-
- global t_ovfl_sc
-t_ovfl_sc:
- ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX
-
- mov.b %d0,%d1 # fetch rnd prec,mode
- andi.b &0xc0,%d1 # extract prec
- beq.w ovfl_work
-
-# dst op is a DENORM. we have to normalize the mantissa to see if the
-# result would be inexact for the given precision. make a copy of the
-# dst so we don't screw up the version passed to us.
- mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6)
- mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6)
- mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0
- movm.l &0xc080,-(%sp) # save d0-d1/a0
- bsr.l norm # normalize mantissa
- movm.l (%sp)+,&0x0103 # restore d0-d1/a0
-
- cmpi.b %d1,&0x40 # is precision sgl?
- bne.b ovfl_sc_dbl # no; dbl
-ovfl_sc_sgl:
- tst.l LOCAL_LO(%a0) # is lo lw of sgl set?
- bne.b ovfl_sc_inx # yes
- tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set?
- bne.b ovfl_sc_inx # yes
- bra.w ovfl_work # don't set INEX2
-ovfl_sc_dbl:
- mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of
- andi.l &0x7ff,%d1 # dbl mantissa set?
- beq.w ovfl_work # no; don't set INEX2
-ovfl_sc_inx:
- ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2
- bra.b ovfl_work # continue
-
- global t_ovfl
-t_ovfl:
- ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX
-ovfl_work:
- tst.b SRC_EX(%a0)
- bpl.b ovfl_p
-ovfl_m:
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x mns_huge(%pc),&0x80
- fmul.x pls_huge(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- ori.b &neg_mask,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-ovfl_p:
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x pls_huge(%pc),&0x80
- fmul.x pls_huge(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-
- global t_ovfl2
-t_ovfl2:
- ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX
- fmov.l USER_FPCR(%a6),%fpcr
- fmovm.x pls_huge(%pc),&0x80
- fmul.x pls_huge(%pc),%fp0
-
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0
- mov.b %d0,FPSR_CC(%a6)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during #
-# emulation. #
-# t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during #
-# emulation. #
-# #
-# These routines are used by the 060FPLSP package. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# fp0 = default underflow or overflow result #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# #
-# ALGORITHM *********************************************************** #
-# If an overflow or underflow occurred during the last #
-# instruction of transcendental 060FPLSP emulation, then it has already #
-# occurred and has been logged. Now we need to see if an inexact #
-# exception should occur. #
-# #
-#########################################################################
-
- global t_catch2
-t_catch2:
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
- bra.b inx2_work
-
- global t_catch
-t_catch:
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_inx2(): Handle inexact 060FPLSP exception during emulation. #
-# t_pinx2(): Handle inexact 060FPLSP exception for "+" results. #
-# t_minx2(): Handle inexact 060FPLSP exception for "-" results. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# fp0 = default result #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# #
-# ALGORITHM *********************************************************** #
-# The last instruction of transcendental emulation for the #
-# 060FPLSP should be inexact. So, if inexact is enabled, then we create #
-# the event here by adding a large and very small number together #
-# so that the operating system can log the event. #
-# Must check, too, if the result was zero, in which case we just #
-# set the FPSR bits and return. #
-# #
-#########################################################################
-
- global t_inx2
-t_inx2:
- fblt.w t_minx2
- fbeq.w inx2_zero
-
- global t_pinx2
-t_pinx2:
- ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX
- bra.b inx2_work
-
- global t_minx2
-t_minx2:
- ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6)
-
-inx2_work:
- btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
- bne.b inx2_work_ena # yes
- rts
-inx2_work_ena:
- fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions
- fmov.s &0x3f800000,%fp1 # load +1
- fadd.x pls_tiny(%pc),%fp1 # cause exception
- rts
-
-inx2_zero:
- mov.b &z_bmask,FPSR_CC(%a6)
- ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_extdnrm(): Handle DENORM inputs in 060FPLSP. #
-# t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". #
-# #
-# This routine is used by the 060FPLSP package. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# #
-# ALGORITHM *********************************************************** #
-# For all functions that have a denormalized input and that #
-# f(x)=x, this is the entry point. #
-# DENORM value is moved using "fmove" which triggers an exception #
-# if enabled so the operating system can log the event. #
-# #
-#########################################################################
-
- global t_extdnrm
-t_extdnrm:
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.x SRC_EX(%a0),%fp0
- fmov.l %fpsr,%d0
- ori.l &unfinx_mask,%d0
- or.l %d0,USER_FPSR(%a6)
- rts
-
- global t_resdnrm
-t_resdnrm:
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.x SRC_EX(%a0),%fp0
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
- rts
-
-##########################################
-
-#
-# sto_cos:
-# This is used by fsincos library emulation. The correct
-# values are already in fp0 and fp1 so we do nothing here.
-#
- global sto_cos
-sto_cos:
- rts
-
-##########################################
-
-#
-# dst_qnan --- force result when destination is a NaN
-#
- global dst_qnan
-dst_qnan:
- fmov.x DST(%a1),%fp0
- tst.b DST_EX(%a1)
- bmi.b dst_qnan_m
-dst_qnan_p:
- mov.b &nan_bmask,FPSR_CC(%a6)
- rts
-dst_qnan_m:
- mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6)
- rts
-
-#
-# src_qnan --- force result when source is a NaN
-#
- global src_qnan
-src_qnan:
- fmov.x SRC(%a0),%fp0
- tst.b SRC_EX(%a0)
- bmi.b src_qnan_m
-src_qnan_p:
- mov.b &nan_bmask,FPSR_CC(%a6)
- rts
-src_qnan_m:
- mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6)
- rts
-
-##########################################
-
-#
-# Native instruction support
-#
-# Some systems may need entry points even for 68060 native
-# instructions. These routines are provided for
-# convenience.
-#
- global _fadds_
-_fadds_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src
- rts
-
- global _faddd_
-_faddd_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src
- rts
-
- global _faddx_
-_faddx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fadd.x 0x10(%sp),%fp0 # fadd w/ ext src
- rts
-
- global _fsubs_
-_fsubs_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src
- rts
-
- global _fsubd_
-_fsubd_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src
- rts
-
- global _fsubx_
-_fsubx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fsub.x 0x10(%sp),%fp0 # fsub w/ ext src
- rts
-
- global _fmuls_
-_fmuls_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src
- rts
-
- global _fmuld_
-_fmuld_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src
- rts
-
- global _fmulx_
-_fmulx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fmul.x 0x10(%sp),%fp0 # fmul w/ ext src
- rts
-
- global _fdivs_
-_fdivs_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.s 0x8(%sp),%fp0 # load sgl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src
- rts
-
- global _fdivd_
-_fdivd_:
- fmov.l %fpcr,-(%sp) # save fpcr
- fmov.l &0x00000000,%fpcr # clear fpcr for load
- fmov.d 0x8(%sp),%fp0 # load dbl dst
- fmov.l (%sp)+,%fpcr # restore fpcr
- fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src
- rts
-
- global _fdivx_
-_fdivx_:
- fmovm.x 0x4(%sp),&0x80 # load ext dst
- fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src
- rts
-
- global _fabss_
-_fabss_:
- fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src
- rts
-
- global _fabsd_
-_fabsd_:
- fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src
- rts
-
- global _fabsx_
-_fabsx_:
- fabs.x 0x4(%sp),%fp0 # fabs w/ ext src
- rts
-
- global _fnegs_
-_fnegs_:
- fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src
- rts
-
- global _fnegd_
-_fnegd_:
- fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src
- rts
-
- global _fnegx_
-_fnegx_:
- fneg.x 0x4(%sp),%fp0 # fneg w/ ext src
- rts
-
- global _fsqrts_
-_fsqrts_:
- fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src
- rts
-
- global _fsqrtd_
-_fsqrtd_:
- fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src
- rts
-
- global _fsqrtx_
-_fsqrtx_:
- fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src
- rts
-
- global _fints_
-_fints_:
- fint.s 0x4(%sp),%fp0 # fint w/ sgl src
- rts
-
- global _fintd_
-_fintd_:
- fint.d 0x4(%sp),%fp0 # fint w/ dbl src
- rts
-
- global _fintx_
-_fintx_:
- fint.x 0x4(%sp),%fp0 # fint w/ ext src
- rts
-
- global _fintrzs_
-_fintrzs_:
- fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src
- rts
-
- global _fintrzd_
-_fintrzd_:
- fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src
- rts
-
- global _fintrzx_
-_fintrzx_:
- fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src
- rts
-
-########################################################################
-
-#########################################################################
-# src_zero(): Return signed zero according to sign of src operand. #
-#########################################################################
- global src_zero
-src_zero:
- tst.b SRC_EX(%a0) # get sign of src operand
- bmi.b ld_mzero # if neg, load neg zero
-
-#
-# ld_pzero(): return a positive zero.
-#
- global ld_pzero
-ld_pzero:
- fmov.s &0x00000000,%fp0 # load +0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
-# ld_mzero(): return a negative zero.
- global ld_mzero
-ld_mzero:
- fmov.s &0x80000000,%fp0 # load -0
- mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits
- rts
-
-#########################################################################
-# dst_zero(): Return signed zero according to sign of dst operand. #
-#########################################################################
- global dst_zero
-dst_zero:
- tst.b DST_EX(%a1) # get sign of dst operand
- bmi.b ld_mzero # if neg, load neg zero
- bra.b ld_pzero # load positive zero
-
-#########################################################################
-# src_inf(): Return signed inf according to sign of src operand. #
-#########################################################################
- global src_inf
-src_inf:
- tst.b SRC_EX(%a0) # get sign of src operand
- bmi.b ld_minf # if negative branch
-
-#
-# ld_pinf(): return a positive infinity.
-#
- global ld_pinf
-ld_pinf:
- fmov.s &0x7f800000,%fp0 # load +INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit
- rts
-
-#
-# ld_minf():return a negative infinity.
-#
- global ld_minf
-ld_minf:
- fmov.s &0xff800000,%fp0 # load -INF
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
-#########################################################################
-# dst_inf(): Return signed inf according to sign of dst operand. #
-#########################################################################
- global dst_inf
-dst_inf:
- tst.b DST_EX(%a1) # get sign of dst operand
- bmi.b ld_minf # if negative branch
- bra.b ld_pinf
-
- global szr_inf
-#################################################################
-# szr_inf(): Return +ZERO for a negative src operand or #
-# +INF for a positive src operand. #
-# Routine used for fetox, ftwotox, and ftentox. #
-#################################################################
-szr_inf:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_pzero
- bra.b ld_pinf
-
-#########################################################################
-# sopr_inf(): Return +INF for a positive src operand or #
-# jump to operand error routine for a negative src operand. #
-# Routine used for flogn, flognp1, flog10, and flog2. #
-#########################################################################
- global sopr_inf
-sopr_inf:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.w t_operr
- bra.b ld_pinf
-
-#################################################################
-# setoxm1i(): Return minus one for a negative src operand or #
-# positive infinity for a positive src operand. #
-# Routine used for fetoxm1. #
-#################################################################
- global setoxm1i
-setoxm1i:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mone
- bra.b ld_pinf
-
-#########################################################################
-# src_one(): Return signed one according to sign of src operand. #
-#########################################################################
- global src_one
-src_one:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mone
-
-#
-# ld_pone(): return positive one.
-#
- global ld_pone
-ld_pone:
- fmov.s &0x3f800000,%fp0 # load +1
- clr.b FPSR_CC(%a6)
- rts
-
-#
-# ld_mone(): return negative one.
-#
- global ld_mone
-ld_mone:
- fmov.s &0xbf800000,%fp0 # load -1
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235
-mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235
-
-#################################################################
-# spi_2(): Return signed PI/2 according to sign of src operand. #
-#################################################################
- global spi_2
-spi_2:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mpi2
-
-#
-# ld_ppi2(): return positive PI/2.
-#
- global ld_ppi2
-ld_ppi2:
- fmov.l %d0,%fpcr
- fmov.x ppiby2(%pc),%fp0 # load +pi/2
- bra.w t_pinx2 # set INEX2
-
-#
-# ld_mpi2(): return negative PI/2.
-#
- global ld_mpi2
-ld_mpi2:
- fmov.l %d0,%fpcr
- fmov.x mpiby2(%pc),%fp0 # load -pi/2
- bra.w t_minx2 # set INEX2
-
-####################################################
-# The following routines give support for fsincos. #
-####################################################
-
-#
-# ssincosz(): When the src operand is ZERO, store a one in the
-# cosine register and return a ZERO in fp0 w/ the same sign
-# as the src operand.
-#
- global ssincosz
-ssincosz:
- fmov.s &0x3f800000,%fp1
- tst.b SRC_EX(%a0) # test sign
- bpl.b sincoszp
- fmov.s &0x80000000,%fp0 # return sin result in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6)
- rts
-sincoszp:
- fmov.s &0x00000000,%fp0 # return sin result in fp0
- mov.b &z_bmask,FPSR_CC(%a6)
- rts
-
-#
-# ssincosi(): When the src operand is INF, store a QNAN in the cosine
-# register and jump to the operand error routine for negative
-# src operands.
-#
- global ssincosi
-ssincosi:
- fmov.x qnan(%pc),%fp1 # load NAN
- bra.w t_operr
-
-#
-# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine
-# register and branch to the src QNAN routine.
-#
- global ssincosqnan
-ssincosqnan:
- fmov.x LOCAL_EX(%a0),%fp1
- bra.w src_qnan
-
-########################################################################
-
- global smod_sdnrm
- global smod_snorm
-smod_sdnrm:
-smod_snorm:
- mov.b DTAG(%a6),%d1
- beq.l smod
- cmpi.b %d1,&ZERO
- beq.w smod_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l smod
- bra.l dst_qnan
-
- global smod_szero
-smod_szero:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&ZERO
- beq.l t_operr
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l t_operr
- bra.l dst_qnan
-
- global smod_sinf
-smod_sinf:
- mov.b DTAG(%a6),%d1
- beq.l smod_fpn
- cmpi.b %d1,&ZERO
- beq.l smod_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l smod_fpn
- bra.l dst_qnan
-
-smod_zro:
-srem_zro:
- mov.b SRC_EX(%a0),%d1 # get src sign
- mov.b DST_EX(%a1),%d0 # get dst sign
- eor.b %d0,%d1 # get qbyte sign
- andi.b &0x80,%d1
- mov.b %d1,FPSR_QBYTE(%a6)
- tst.b %d0
- bpl.w ld_pzero
- bra.w ld_mzero
-
-smod_fpn:
-srem_fpn:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp)
- mov.b SRC_EX(%a0),%d1 # get src sign
- mov.b DST_EX(%a1),%d0 # get dst sign
- eor.b %d0,%d1 # get qbyte sign
- andi.b &0x80,%d1
- mov.b %d1,FPSR_QBYTE(%a6)
- cmpi.b DTAG(%a6),&DENORM
- bne.b smod_nrm
- lea DST(%a1),%a0
- mov.l (%sp)+,%d0
- bra t_resdnrm
-smod_nrm:
- fmov.l (%sp)+,%fpcr
- fmov.x DST(%a1),%fp0
- tst.b DST_EX(%a1)
- bmi.b smod_nrm_neg
- rts
-
-smod_nrm_neg:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code
- rts
-
-#########################################################################
- global srem_snorm
- global srem_sdnrm
-srem_sdnrm:
-srem_snorm:
- mov.b DTAG(%a6),%d1
- beq.l srem
- cmpi.b %d1,&ZERO
- beq.w srem_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l srem
- bra.l dst_qnan
-
- global srem_szero
-srem_szero:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&ZERO
- beq.l t_operr
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l t_operr
- bra.l dst_qnan
-
- global srem_sinf
-srem_sinf:
- mov.b DTAG(%a6),%d1
- beq.w srem_fpn
- cmpi.b %d1,&ZERO
- beq.w srem_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l srem_fpn
- bra.l dst_qnan
-
-#########################################################################
-
- global sscale_snorm
- global sscale_sdnrm
-sscale_snorm:
-sscale_sdnrm:
- mov.b DTAG(%a6),%d1
- beq.l sscale
- cmpi.b %d1,&ZERO
- beq.l dst_zero
- cmpi.b %d1,&INF
- beq.l dst_inf
- cmpi.b %d1,&DENORM
- beq.l sscale
- bra.l dst_qnan
-
- global sscale_szero
-sscale_szero:
- mov.b DTAG(%a6),%d1
- beq.l sscale
- cmpi.b %d1,&ZERO
- beq.l dst_zero
- cmpi.b %d1,&INF
- beq.l dst_inf
- cmpi.b %d1,&DENORM
- beq.l sscale
- bra.l dst_qnan
-
- global sscale_sinf
-sscale_sinf:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l t_operr
-
-########################################################################
-
- global sop_sqnan
-sop_sqnan:
- mov.b DTAG(%a6),%d1
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l src_qnan
-
-#########################################################################
-# norm(): normalize the mantissa of an extended precision input. the #
-# input operand should not be normalized already. #
-# #
-# XDEF **************************************************************** #
-# norm() #
-# #
-# XREF **************************************************************** #
-# none #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer fp extended precision operand to normalize #
-# #
-# OUTPUT ************************************************************** #
-# d0 = number of bit positions the mantissa was shifted #
-# a0 = the input operand's mantissa is normalized; the exponent #
-# is unchanged. #
-# #
-#########################################################################
- global norm
-norm:
- mov.l %d2, -(%sp) # create some temp regs
- mov.l %d3, -(%sp)
-
- mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
- mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
-
- bfffo %d0{&0:&32}, %d2 # how many places to shift?
- beq.b norm_lo # hi(man) is all zeroes!
-
-norm_hi:
- lsl.l %d2, %d0 # left shift hi(man)
- bfextu %d1{&0:%d2}, %d3 # extract lo bits
-
- or.l %d3, %d0 # create hi(man)
- lsl.l %d2, %d1 # create lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
-norm_lo:
- bfffo %d1{&0:&32}, %d2 # how many places to shift?
- lsl.l %d2, %d1 # shift lo(man)
- add.l &32, %d2 # add 32 to shft amount
-
- mov.l %d1, FTEMP_HI(%a0) # store hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) is now zero
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
-#########################################################################
-# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
-# - returns corresponding optype tag #
-# #
-# XDEF **************************************************************** #
-# unnorm_fix() #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to unnormalized extended precision number #
-# #
-# OUTPUT ************************************************************** #
-# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
-# a0 = input operand has been converted to a norm, denorm, or #
-# zero; both the exponent and mantissa are changed. #
-# #
-#########################################################################
-
- global unnorm_fix
-unnorm_fix:
- bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
- bne.b unnorm_shift # hi(man) is not all zeroes
-
-#
-# hi(man) is all zeroes so see if any bits in lo(man) are set
-#
-unnorm_chk_lo:
- bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
- beq.w unnorm_zero # yes
-
- add.w &32, %d0 # no; fix shift distance
-
-#
-# d0 = # shifts needed for complete normalization
-#
-unnorm_shift:
- clr.l %d1 # clear top word
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1 # strip off sgn
-
- cmp.w %d0, %d1 # will denorm push exp < 0?
- bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
-
-#
-# exponent would not go < 0. therefore, number stays normalized
-#
- sub.w %d0, %d1 # shift exponent value
- mov.w FTEMP_EX(%a0), %d0 # load old exponent
- and.w &0x8000, %d0 # save old sign
- or.w %d0, %d1 # {sgn,new exp}
- mov.w %d1, FTEMP_EX(%a0) # insert new exponent
-
- bsr.l norm # normalize UNNORM
-
- mov.b &NORM, %d0 # return new optype tag
- rts
-
-#
-# exponent would go < 0, so only denormalize until exp = 0
-#
-unnorm_nrm_zero:
- cmp.b %d1, &32 # is exp <= 32?
- bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
-
- bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
- mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # extract new lo(man)
- mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
-#
-# only mantissa bits set are in lo(man)
-#
-unnorm_nrm_zero_lrg:
- sub.w &32, %d1 # adjust shft amt by 32
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # left shift lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) = 0
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
-#
-# whole mantissa is zero so this UNNORM is actually a zero
-#
-unnorm_zero:
- and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
-
- mov.b &ZERO, %d0 # fix optype tag
- rts
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S
deleted file mode 100644
index 78cb60f5..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/fpsp.S
+++ /dev/null
@@ -1,24785 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-#
-# freal.s:
-# This file is appended to the top of the 060FPSP package
-# and contains the entry points into the package. The user, in
-# effect, branches to one of the branch table entries located
-# after _060FPSP_TABLE.
-# Also, subroutine stubs exist in this file (_fpsp_done for
-# example) that are referenced by the FPSP package itself in order
-# to call a given routine. The stub routine actually performs the
-# callout. The FPSP code does a "bsr" to the stub routine. This
-# extra layer of hierarchy adds a slight performance penalty but
-# it makes the FPSP code easier to read and more mainatinable.
-#
-
-set _off_bsun, 0x00
-set _off_snan, 0x04
-set _off_operr, 0x08
-set _off_ovfl, 0x0c
-set _off_unfl, 0x10
-set _off_dz, 0x14
-set _off_inex, 0x18
-set _off_fline, 0x1c
-set _off_fpu_dis, 0x20
-set _off_trap, 0x24
-set _off_trace, 0x28
-set _off_access, 0x2c
-set _off_done, 0x30
-
-set _off_imr, 0x40
-set _off_dmr, 0x44
-set _off_dmw, 0x48
-set _off_irw, 0x4c
-set _off_irl, 0x50
-set _off_drb, 0x54
-set _off_drw, 0x58
-set _off_drl, 0x5c
-set _off_dwb, 0x60
-set _off_dww, 0x64
-set _off_dwl, 0x68
-
-_060FPSP_TABLE:
-
-###############################################################
-
-# Here's the table of ENTRY POINTS for those linking the package.
- bra.l _fpsp_snan
- short 0x0000
- bra.l _fpsp_operr
- short 0x0000
- bra.l _fpsp_ovfl
- short 0x0000
- bra.l _fpsp_unfl
- short 0x0000
- bra.l _fpsp_dz
- short 0x0000
- bra.l _fpsp_inex
- short 0x0000
- bra.l _fpsp_fline
- short 0x0000
- bra.l _fpsp_unsupp
- short 0x0000
- bra.l _fpsp_effadd
- short 0x0000
-
- space 56
-
-###############################################################
- global _fpsp_done
-_fpsp_done:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_ovfl
-_real_ovfl:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_unfl
-_real_unfl:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_inex
-_real_inex:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_bsun
-_real_bsun:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_operr
-_real_operr:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_snan
-_real_snan:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_dz
-_real_dz:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_fline
-_real_fline:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_fpu_disabled
-_real_fpu_disabled:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_trap
-_real_trap:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_trace
-_real_trace:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_access
-_real_access:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#######################################
-
- global _imem_read
-_imem_read:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read
-_dmem_read:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write
-_dmem_write:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_word
-_imem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_long
-_imem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_byte
-_dmem_read_byte:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_word
-_dmem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_long
-_dmem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_byte
-_dmem_write_byte:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_word
-_dmem_write_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_long
-_dmem_write_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#
-# This file contains a set of define statements for constants
-# in order to promote readability within the corecode itself.
-#
-
-set LOCAL_SIZE, 192 # stack frame size(bytes)
-set LV, -LOCAL_SIZE # stack offset
-
-set EXC_SR, 0x4 # stack status register
-set EXC_PC, 0x6 # stack pc
-set EXC_VOFF, 0xa # stacked vector offset
-set EXC_EA, 0xc # stacked <ea>
-
-set EXC_FP, 0x0 # frame pointer
-
-set EXC_AREGS, -68 # offset of all address regs
-set EXC_DREGS, -100 # offset of all data regs
-set EXC_FPREGS, -36 # offset of all fp regs
-
-set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
-set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
-set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
-set EXC_A5, EXC_AREGS+(5*4)
-set EXC_A4, EXC_AREGS+(4*4)
-set EXC_A3, EXC_AREGS+(3*4)
-set EXC_A2, EXC_AREGS+(2*4)
-set EXC_A1, EXC_AREGS+(1*4)
-set EXC_A0, EXC_AREGS+(0*4)
-set EXC_D7, EXC_DREGS+(7*4)
-set EXC_D6, EXC_DREGS+(6*4)
-set EXC_D5, EXC_DREGS+(5*4)
-set EXC_D4, EXC_DREGS+(4*4)
-set EXC_D3, EXC_DREGS+(3*4)
-set EXC_D2, EXC_DREGS+(2*4)
-set EXC_D1, EXC_DREGS+(1*4)
-set EXC_D0, EXC_DREGS+(0*4)
-
-set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
-set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
-set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
-
-set FP_SCR1, LV+80 # fp scratch 1
-set FP_SCR1_EX, FP_SCR1+0
-set FP_SCR1_SGN, FP_SCR1+2
-set FP_SCR1_HI, FP_SCR1+4
-set FP_SCR1_LO, FP_SCR1+8
-
-set FP_SCR0, LV+68 # fp scratch 0
-set FP_SCR0_EX, FP_SCR0+0
-set FP_SCR0_SGN, FP_SCR0+2
-set FP_SCR0_HI, FP_SCR0+4
-set FP_SCR0_LO, FP_SCR0+8
-
-set FP_DST, LV+56 # fp destination operand
-set FP_DST_EX, FP_DST+0
-set FP_DST_SGN, FP_DST+2
-set FP_DST_HI, FP_DST+4
-set FP_DST_LO, FP_DST+8
-
-set FP_SRC, LV+44 # fp source operand
-set FP_SRC_EX, FP_SRC+0
-set FP_SRC_SGN, FP_SRC+2
-set FP_SRC_HI, FP_SRC+4
-set FP_SRC_LO, FP_SRC+8
-
-set USER_FPIAR, LV+40 # FP instr address register
-
-set USER_FPSR, LV+36 # FP status register
-set FPSR_CC, USER_FPSR+0 # FPSR condition codes
-set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
-set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
-set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
-
-set USER_FPCR, LV+32 # FP control register
-set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
-set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
-
-set L_SCR3, LV+28 # integer scratch 3
-set L_SCR2, LV+24 # integer scratch 2
-set L_SCR1, LV+20 # integer scratch 1
-
-set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
-
-set EXC_TEMP2, LV+24 # temporary space
-set EXC_TEMP, LV+16 # temporary space
-
-set DTAG, LV+15 # destination operand type
-set STAG, LV+14 # source operand type
-
-set SPCOND_FLG, LV+10 # flag: special case (see below)
-
-set EXC_CC, LV+8 # saved condition codes
-set EXC_EXTWPTR, LV+4 # saved current PC (active)
-set EXC_EXTWORD, LV+2 # saved extension word
-set EXC_CMDREG, LV+2 # saved extension word
-set EXC_OPWORD, LV+0 # saved operation word
-
-################################
-
-# Helpful macros
-
-set FTEMP, 0 # offsets within an
-set FTEMP_EX, 0 # extended precision
-set FTEMP_SGN, 2 # value saved in memory.
-set FTEMP_HI, 4
-set FTEMP_LO, 8
-set FTEMP_GRS, 12
-
-set LOCAL, 0 # offsets within an
-set LOCAL_EX, 0 # extended precision
-set LOCAL_SGN, 2 # value saved in memory.
-set LOCAL_HI, 4
-set LOCAL_LO, 8
-set LOCAL_GRS, 12
-
-set DST, 0 # offsets within an
-set DST_EX, 0 # extended precision
-set DST_HI, 4 # value saved in memory.
-set DST_LO, 8
-
-set SRC, 0 # offsets within an
-set SRC_EX, 0 # extended precision
-set SRC_HI, 4 # value saved in memory.
-set SRC_LO, 8
-
-set SGL_LO, 0x3f81 # min sgl prec exponent
-set SGL_HI, 0x407e # max sgl prec exponent
-set DBL_LO, 0x3c01 # min dbl prec exponent
-set DBL_HI, 0x43fe # max dbl prec exponent
-set EXT_LO, 0x0 # min ext prec exponent
-set EXT_HI, 0x7ffe # max ext prec exponent
-
-set EXT_BIAS, 0x3fff # extended precision bias
-set SGL_BIAS, 0x007f # single precision bias
-set DBL_BIAS, 0x03ff # double precision bias
-
-set NORM, 0x00 # operand type for STAG/DTAG
-set ZERO, 0x01 # operand type for STAG/DTAG
-set INF, 0x02 # operand type for STAG/DTAG
-set QNAN, 0x03 # operand type for STAG/DTAG
-set DENORM, 0x04 # operand type for STAG/DTAG
-set SNAN, 0x05 # operand type for STAG/DTAG
-set UNNORM, 0x06 # operand type for STAG/DTAG
-
-##################
-# FPSR/FPCR bits #
-##################
-set neg_bit, 0x3 # negative result
-set z_bit, 0x2 # zero result
-set inf_bit, 0x1 # infinite result
-set nan_bit, 0x0 # NAN result
-
-set q_sn_bit, 0x7 # sign bit of quotient byte
-
-set bsun_bit, 7 # branch on unordered
-set snan_bit, 6 # signalling NAN
-set operr_bit, 5 # operand error
-set ovfl_bit, 4 # overflow
-set unfl_bit, 3 # underflow
-set dz_bit, 2 # divide by zero
-set inex2_bit, 1 # inexact result 2
-set inex1_bit, 0 # inexact result 1
-
-set aiop_bit, 7 # accrued inexact operation bit
-set aovfl_bit, 6 # accrued overflow bit
-set aunfl_bit, 5 # accrued underflow bit
-set adz_bit, 4 # accrued dz bit
-set ainex_bit, 3 # accrued inexact bit
-
-#############################
-# FPSR individual bit masks #
-#############################
-set neg_mask, 0x08000000 # negative bit mask (lw)
-set inf_mask, 0x02000000 # infinity bit mask (lw)
-set z_mask, 0x04000000 # zero bit mask (lw)
-set nan_mask, 0x01000000 # nan bit mask (lw)
-
-set neg_bmask, 0x08 # negative bit mask (byte)
-set inf_bmask, 0x02 # infinity bit mask (byte)
-set z_bmask, 0x04 # zero bit mask (byte)
-set nan_bmask, 0x01 # nan bit mask (byte)
-
-set bsun_mask, 0x00008000 # bsun exception mask
-set snan_mask, 0x00004000 # snan exception mask
-set operr_mask, 0x00002000 # operr exception mask
-set ovfl_mask, 0x00001000 # overflow exception mask
-set unfl_mask, 0x00000800 # underflow exception mask
-set dz_mask, 0x00000400 # dz exception mask
-set inex2_mask, 0x00000200 # inex2 exception mask
-set inex1_mask, 0x00000100 # inex1 exception mask
-
-set aiop_mask, 0x00000080 # accrued illegal operation
-set aovfl_mask, 0x00000040 # accrued overflow
-set aunfl_mask, 0x00000020 # accrued underflow
-set adz_mask, 0x00000010 # accrued divide by zero
-set ainex_mask, 0x00000008 # accrued inexact
-
-######################################
-# FPSR combinations used in the FPSP #
-######################################
-set dzinf_mask, inf_mask+dz_mask+adz_mask
-set opnan_mask, nan_mask+operr_mask+aiop_mask
-set nzi_mask, 0x01ffffff #clears N, Z, and I
-set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
-set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
-set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
-set inx1a_mask, inex1_mask+ainex_mask
-set inx2a_mask, inex2_mask+ainex_mask
-set snaniop_mask, nan_mask+snan_mask+aiop_mask
-set snaniop2_mask, snan_mask+aiop_mask
-set naniop_mask, nan_mask+aiop_mask
-set neginf_mask, neg_mask+inf_mask
-set infaiop_mask, inf_mask+aiop_mask
-set negz_mask, neg_mask+z_mask
-set opaop_mask, operr_mask+aiop_mask
-set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
-set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
-
-#########
-# misc. #
-#########
-set rnd_stky_bit, 29 # stky bit pos in longword
-
-set sign_bit, 0x7 # sign bit
-set signan_bit, 0x6 # signalling nan bit
-
-set sgl_thresh, 0x3f81 # minimum sgl exponent
-set dbl_thresh, 0x3c01 # minimum dbl exponent
-
-set x_mode, 0x0 # extended precision
-set s_mode, 0x4 # single precision
-set d_mode, 0x8 # double precision
-
-set rn_mode, 0x0 # round-to-nearest
-set rz_mode, 0x1 # round-to-zero
-set rm_mode, 0x2 # round-tp-minus-infinity
-set rp_mode, 0x3 # round-to-plus-infinity
-
-set mantissalen, 64 # length of mantissa in bits
-
-set BYTE, 1 # len(byte) == 1 byte
-set WORD, 2 # len(word) == 2 bytes
-set LONG, 4 # len(longword) == 2 bytes
-
-set BSUN_VEC, 0xc0 # bsun vector offset
-set INEX_VEC, 0xc4 # inexact vector offset
-set DZ_VEC, 0xc8 # dz vector offset
-set UNFL_VEC, 0xcc # unfl vector offset
-set OPERR_VEC, 0xd0 # operr vector offset
-set OVFL_VEC, 0xd4 # ovfl vector offset
-set SNAN_VEC, 0xd8 # snan vector offset
-
-###########################
-# SPecial CONDition FLaGs #
-###########################
-set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
-set fbsun_flg, 0x02 # flag bit: bsun exception
-set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
-set mda7_flg, 0x08 # flag bit: -(a7) <ea>
-set fmovm_flg, 0x40 # flag bit: fmovm instruction
-set immed_flg, 0x80 # flag bit: &<data> <ea>
-
-set ftrapcc_bit, 0x0
-set fbsun_bit, 0x1
-set mia7_bit, 0x2
-set mda7_bit, 0x3
-set immed_bit, 0x7
-
-##################################
-# TRANSCENDENTAL "LAST-OP" FLAGS #
-##################################
-set FMUL_OP, 0x0 # fmul instr performed last
-set FDIV_OP, 0x1 # fdiv performed last
-set FADD_OP, 0x2 # fadd performed last
-set FMOV_OP, 0x3 # fmov performed last
-
-#############
-# CONSTANTS #
-#############
-T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
-T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
-
-PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
-PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
-TWOBYPI:
- long 0x3FE45F30,0x6DC9C883
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Overflow exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
-# _real_ovfl() - "callout" for Overflow exception enabled code #
-# _real_inex() - "callout" for Inexact exception enabled code #
-# _real_trace() - "callout" for Trace exception code #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Ovfl exception stack frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# Overflow Exception enabled: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# Overflow Exception disabled: #
-# - The system stack is unchanged #
-# - The "exception present" flag in the fsave frame is cleared #
-# #
-# ALGORITHM *********************************************************** #
-# On the 060, if an FP overflow is present as the result of any #
-# instruction, the 060 will take an overflow exception whether the #
-# exception is enabled or disabled in the FPCR. For the disabled case, #
-# This handler emulates the instruction to determine what the correct #
-# default result should be for the operation. This default result is #
-# then stored in either the FP regfile, data regfile, or memory. #
-# Finally, the handler exits through the "callout" _fpsp_done() #
-# denoting that no exceptional conditions exist within the machine. #
-# If the exception is enabled, then this handler must create the #
-# exceptional operand and plave it in the fsave state frame, and store #
-# the default result (only if the instruction is opclass 3). For #
-# exceptions enabled, this handler must exit through the "callout" #
-# _real_ovfl() so that the operating system enabled overflow handler #
-# can handle this case. #
-# Two other conditions exist. First, if overflow was disabled #
-# but the inexact exception was enabled, this handler must exit #
-# through the "callout" _real_inex() regardless of whether the result #
-# was inexact. #
-# Also, in the case of an opclass three instruction where #
-# overflow was disabled and the trace exception was enabled, this #
-# handler must exit through the "callout" _real_trace(). #
-# #
-#########################################################################
-
- global _fpsp_ovfl
-_fpsp_ovfl:
-
-#$# sub.l &24,%sp # make room for src/dst
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
- bne.w fovfl_out
-
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-# since, I believe, only NORMs and DENORMs can come through here,
-# maybe we can avoid the subroutine call.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
-
-# bit five of the fp extension word separates the monadic and dyadic operations
-# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos
-# will never take this exception.
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fovfl_extract # monadic
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fovfl_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-fovfl_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-fovfl_extract:
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
-#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
-#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
-# maybe we can make these entry points ONLY the OVFL entry points of each routine.
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-# the operation has been emulated. the result is in fp0.
-# the EXOP, if an exception occurred, is in fp1.
-# we must save the default result regardless of whether
-# traps are enabled or disabled.
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
-
-# the exceptional possibilities we have left ourselves with are ONLY overflow
-# and inexact. and, the inexact is such that overflow occurred and was disabled
-# but inexact was enabled.
- btst &ovfl_bit,FPCR_ENABLE(%a6)
- bne.b fovfl_ovfl_on
-
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.b fovfl_inex_on
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
- bra.l _fpsp_done
-
-# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
-# in fp1. now, simply jump to _real_ovfl()!
-fovfl_ovfl_on:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
-
- mov.w &0xe005,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_ovfl
-
-# overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore,
-# we must jump to real_inex().
-fovfl_inex_on:
-
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
-
- mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_inex
-
-########################################################################
-fovfl_out:
-
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-
-# the src operand is definitely a NORM(!), so tag it as such
- mov.b &NORM,STAG(%a6) # set src optype tag
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- bsr.l fout
-
- btst &ovfl_bit,FPCR_ENABLE(%a6)
- bne.w fovfl_ovfl_on
-
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.w fovfl_inex_on
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
-
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
-
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- bra.l _real_trace
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Underflow exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
-# _real_ovfl() - "callout" for Overflow exception enabled code #
-# _real_inex() - "callout" for Inexact exception enabled code #
-# _real_trace() - "callout" for Trace exception code #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Unfl exception stack frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# Underflow Exception enabled: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# Underflow Exception disabled: #
-# - The system stack is unchanged #
-# - The "exception present" flag in the fsave frame is cleared #
-# #
-# ALGORITHM *********************************************************** #
-# On the 060, if an FP underflow is present as the result of any #
-# instruction, the 060 will take an underflow exception whether the #
-# exception is enabled or disabled in the FPCR. For the disabled case, #
-# This handler emulates the instruction to determine what the correct #
-# default result should be for the operation. This default result is #
-# then stored in either the FP regfile, data regfile, or memory. #
-# Finally, the handler exits through the "callout" _fpsp_done() #
-# denoting that no exceptional conditions exist within the machine. #
-# If the exception is enabled, then this handler must create the #
-# exceptional operand and plave it in the fsave state frame, and store #
-# the default result (only if the instruction is opclass 3). For #
-# exceptions enabled, this handler must exit through the "callout" #
-# _real_unfl() so that the operating system enabled overflow handler #
-# can handle this case. #
-# Two other conditions exist. First, if underflow was disabled #
-# but the inexact exception was enabled and the result was inexact, #
-# this handler must exit through the "callout" _real_inex(). #
-# was inexact. #
-# Also, in the case of an opclass three instruction where #
-# underflow was disabled and the trace exception was enabled, this #
-# handler must exit through the "callout" _real_trace(). #
-# #
-#########################################################################
-
- global _fpsp_unfl
-_fpsp_unfl:
-
-#$# sub.l &24,%sp # make room for src/dst
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
- bne.w funfl_out
-
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
-
-# bit five of the fp ext word separates the monadic and dyadic operations
-# that can pass through fpsp_unfl(). remember that fcmp, and ftst
-# will never take this exception.
- btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic?
- beq.b funfl_extract # monadic
-
-# now, what's left that's not dyadic is fsincos. we can distinguish it
-# from all dyadics by the '0110xxx pattern
- btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos?
- bne.b funfl_extract # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b funfl_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-funfl_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-funfl_extract:
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
-#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
-#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- andi.l &0x00ff01ff,USER_FPSR(%a6)
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
-# maybe we can make these entry points ONLY the OVFL entry points of each routine.
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
-
-# The `060 FPU multiplier hardware is such that if the result of a
-# multiply operation is the smallest possible normalized number
-# (0x00000000_80000000_00000000), then the machine will take an
-# underflow exception. Since this is incorrect, we need to check
-# if our emulation, after re-doing the operation, decided that
-# no underflow was called for. We do these checks only in
-# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this
-# special case will simply exit gracefully with the correct result.
-
-# the exceptional possibilities we have left ourselves with are ONLY overflow
-# and inexact. and, the inexact is such that overflow occurred and was disabled
-# but inexact was enabled.
- btst &unfl_bit,FPCR_ENABLE(%a6)
- bne.b funfl_unfl_on
-
-funfl_chkinex:
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.b funfl_inex_on
-
-funfl_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
- bra.l _fpsp_done
-
-# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
-# in fp1 (don't forget to save fp0). what to do now?
-# well, we simply have to get to go to _real_unfl()!
-funfl_unfl_on:
-
-# The `060 FPU multiplier hardware is such that if the result of a
-# multiply operation is the smallest possible normalized number
-# (0x00000000_80000000_00000000), then the machine will take an
-# underflow exception. Since this is incorrect, we check here to see
-# if our emulation, after re-doing the operation, decided that
-# no underflow was called for.
- btst &unfl_bit,FPSR_EXCEPT(%a6)
- beq.w funfl_chkinex
-
-funfl_unfl_on2:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
-
- mov.w &0xe003,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_unfl
-
-# underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore,
-# we must jump to real_inex().
-funfl_inex_on:
-
-# The `060 FPU multiplier hardware is such that if the result of a
-# multiply operation is the smallest possible normalized number
-# (0x00000000_80000000_00000000), then the machine will take an
-# underflow exception.
-# But, whether bogus or not, if inexact is enabled AND it occurred,
-# then we have to branch to real_inex.
-
- btst &inex2_bit,FPSR_EXCEPT(%a6)
- beq.w funfl_exit
-
-funfl_inex_on2:
-
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack
-
- mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_inex
-
-#######################################################################
-funfl_out:
-
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-
-# the src operand is definitely a NORM(!), so tag it as such
- mov.b &NORM,STAG(%a6) # set src optype tag
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- bsr.l fout
-
- btst &unfl_bit,FPCR_ENABLE(%a6)
- bne.w funfl_unfl_on2
-
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.w funfl_inex_on2
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
-
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
-
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- bra.l _real_trace
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented #
-# Data Type" exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Unimplemented Data Type exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_{word,long}() - read instruction word/longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# load_fpn1() - load src operand from FP regfile #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _real_inex() - "callout" to operating system inexact handler #
-# _fpsp_done() - "callout" for exit; work all done #
-# _real_trace() - "callout" for Trace enabled exception #
-# funimp_skew() - adjust fsave src ops to "incorrect" value #
-# _real_snan() - "callout" for SNAN exception #
-# _real_operr() - "callout" for OPERR exception #
-# _real_ovfl() - "callout" for OVFL exception #
-# _real_unfl() - "callout" for UNFL exception #
-# get_packed() - fetch packed operand from memory #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the "Unimp Data Type" stk frame #
-# - The fsave frame contains the ssrc op (for UNNORM/DENORM) #
-# #
-# OUTPUT ************************************************************** #
-# If Inexact exception (opclass 3): #
-# - The system stack is changed to an Inexact exception stk frame #
-# If SNAN exception (opclass 3): #
-# - The system stack is changed to an SNAN exception stk frame #
-# If OPERR exception (opclass 3): #
-# - The system stack is changed to an OPERR exception stk frame #
-# If OVFL exception (opclass 3): #
-# - The system stack is changed to an OVFL exception stk frame #
-# If UNFL exception (opclass 3): #
-# - The system stack is changed to an UNFL exception stack frame #
-# If Trace exception enabled: #
-# - The system stack is changed to a Trace exception stack frame #
-# Else: (normal case) #
-# - Correct result has been stored as appropriate #
-# #
-# ALGORITHM *********************************************************** #
-# Two main instruction types can enter here: (1) DENORM or UNNORM #
-# unimplemented data types. These can be either opclass 0,2 or 3 #
-# instructions, and (2) PACKED unimplemented data format instructions #
-# also of opclasses 0,2, or 3. #
-# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src #
-# operand from the fsave state frame and the dst operand (if dyadic) #
-# from the FP register file. The instruction is then emulated by #
-# choosing an emulation routine from a table of routines indexed by #
-# instruction type. Once the instruction has been emulated and result #
-# saved, then we check to see if any enabled exceptions resulted from #
-# instruction emulation. If none, then we exit through the "callout" #
-# _fpsp_done(). If there is an enabled FP exception, then we insert #
-# this exception into the FPU in the fsave state frame and then exit #
-# through _fpsp_done(). #
-# PACKED opclass 0 and 2 is similar in how the instruction is #
-# emulated and exceptions handled. The differences occur in how the #
-# handler loads the packed op (by calling get_packed() routine) and #
-# by the fact that a Trace exception could be pending for PACKED ops. #
-# If a Trace exception is pending, then the current exception stack #
-# frame is changed to a Trace exception stack frame and an exit is #
-# made through _real_trace(). #
-# For UNNORM/DENORM opclass 3, the actual move out to memory is #
-# performed by calling the routine fout(). If no exception should occur #
-# as the result of emulation, then an exit either occurs through #
-# _fpsp_done() or through _real_trace() if a Trace exception is pending #
-# (a Trace stack frame must be created here, too). If an FP exception #
-# should occur, then we must create an exception stack frame of that #
-# type and jump to either _real_snan(), _real_operr(), _real_inex(), #
-# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 #
-# emulation is performed in a similar manner. #
-# #
-#########################################################################
-
-#
-# (1) DENORM and UNNORM (unimplemented) data types:
-#
-# post-instruction
-# *****************
-# * EA *
-# pre-instruction * *
-# ***************** *****************
-# * 0x0 * 0x0dc * * 0x3 * 0x0dc *
-# ***************** *****************
-# * Next * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-#
-# (2) PACKED format (unsupported) opclasses two and three:
-# *****************
-# * EA *
-# * *
-# *****************
-# * 0x2 * 0x0dc *
-# *****************
-# * Next *
-# * PC *
-# *****************
-# * SR *
-# *****************
-#
- global _fpsp_unsupp
-_fpsp_unsupp:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # save fp state
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
- btst &0x5,EXC_SR(%a6) # user or supervisor mode?
- bne.b fu_s
-fu_u:
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # save on stack
- bra.b fu_cont
-# if the exception is an opclass zero or two unimplemented data type
-# exception, then the a7' calculated here is wrong since it doesn't
-# stack an ea. however, we don't need an a7' for this case anyways.
-fu_s:
- lea 0x4+EXC_EA(%a6),%a0 # load old a7'
- mov.l %a0,EXC_A7(%a6) # save on stack
-
-fu_cont:
-
-# the FPIAR holds the "current PC" of the faulting instruction
-# the FPIAR should be set correctly for ALL exceptions passing through
-# this point.
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
-
-############################
-
- clr.b SPCOND_FLG(%a6) # clear special condition flag
-
-# Separate opclass three (fpn-to-mem) ops since they have a different
-# stack frame and protocol.
- btst &0x5,EXC_CMDREG(%a6) # is it an fmove out?
- bne.w fu_out # yes
-
-# Separate packed opclass two instructions.
- bfextu EXC_CMDREG(%a6){&0:&6},%d0
- cmpi.b %d0,&0x13
- beq.w fu_in_pack
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field
- andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
-# Opclass two w/ memory-to-fpn operation will have an incorrect extended
-# precision format if the src format was single or double and the
-# source data type was an INF, NAN, DENORM, or UNNORM
- lea FP_SRC(%a6),%a0 # pass ptr to input
- bsr.l fix_skewed_ops
-
-# we don't know whether the src operand or the dst operand (or both) is the
-# UNNORM or DENORM. call the function that tags the operand type. if the
-# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2 # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-
-fu_op2:
- mov.b %d0,STAG(%a6) # save src optype tag
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
-
-# bit five of the fp extension word separates the monadic and dyadic operations
-# at this point
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fu_extract # monadic
- cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
- beq.b fu_extract # yes, so it's monadic, too
-
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-fu_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-fu_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-#
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : all dyadic ops
-# OPERR : fsqrt(-NORM)
-# OVFL : all except ftst,fcmp
-# UNFL : all except ftst,fcmp
-# DZ : fdiv
-# INEX2 : all except ftst,fcmp
-# INEX1 : none (packed doesn't go through here)
-#
-
-# we determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set
- bne.b fu_in_ena # some are enabled
-
-fu_in_cont:
-# fcmp and ftst do not store any result.
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
- andi.b &0x38,%d0 # extract bits 3-5
- cmpi.b %d0,&0x38 # is instr fcmp or ftst?
- beq.b fu_in_exit # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l store_fpreg # store the result
-
-fu_in_exit:
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- bra.l _fpsp_done
-
-fu_in_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_in_exc # there is at least one set
-
-#
-# No exceptions occurred that were also enabled. Now:
-#
-# if (OVFL && ovfl_disabled && inexact_enabled) {
-# branch to _real_inex() (even if the result was exact!);
-# } else {
-# save the result in the proper fp reg (unless the op is fcmp or ftst);
-# return;
-# }
-#
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.b fu_in_cont # no
-
-fu_in_ovflchk:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.b fu_in_cont # no
- bra.w fu_in_exc_ovfl # go insert overflow frame
-
-#
-# An exception occurred and that exception was enabled:
-#
-# shift enabled exception field into lo byte of d0;
-# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
-# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
-# /*
-# * this is the case where we must call _real_inex() now or else
-# * there will be no other way to pass it the exceptional operand
-# */
-# call _real_inex();
-# } else {
-# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
-# }
-#
-fu_in_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX? (6)
- bne.b fu_in_exc_exit # no
-
-# the enabled exception was inexact
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
- bne.w fu_in_exc_unfl # yes
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
- bne.w fu_in_exc_ovfl # yes
-
-# here, we insert the correct fsave status value into the fsave frame for the
-# corresponding exception. the operand in the fsave frame should be the original
-# src operand.
-fu_in_exc_exit:
- mov.l %d0,-(%sp) # save d0
- bsr.l funimp_skew # skew sgl or dbl inputs
- mov.l (%sp)+,%d0 # restore d0
-
- mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore src op
-
- unlk %a6
-
- bra.l _fpsp_done
-
-tbl_except:
- short 0xe000,0xe006,0xe004,0xe005
- short 0xe003,0xe002,0xe001,0xe001
-
-fu_in_exc_unfl:
- mov.w &0x4,%d0
- bra.b fu_in_exc_exit
-fu_in_exc_ovfl:
- mov.w &0x03,%d0
- bra.b fu_in_exc_exit
-
-# If the input operand to this operation was opclass two and a single
-# or double precision denorm, inf, or nan, the operand needs to be
-# "corrected" in order to have the proper equivalent extended precision
-# number.
- global fix_skewed_ops
-fix_skewed_ops:
- bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt
- cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl?
- beq.b fso_sgl # yes
- cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl?
- beq.b fso_dbl # yes
- rts # no
-
-fso_sgl:
- mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&0x3f80 # is |exp| == $3f80?
- beq.b fso_sgl_dnrm_zero # yes
- cmpi.w %d0,&0x407f # no; is |exp| == $407f?
- beq.b fso_infnan # yes
- rts # no
-
-fso_sgl_dnrm_zero:
- andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
- beq.b fso_zero # it's a skewed zero
-fso_sgl_dnrm:
-# here, we count on norm not to alter a0...
- bsr.l norm # normalize mantissa
- neg.w %d0 # -shft amt
- addi.w &0x3f81,%d0 # adjust new exponent
- andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
- or.w %d0,LOCAL_EX(%a0) # insert new exponent
- rts
-
-fso_zero:
- andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent
- rts
-
-fso_infnan:
- andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit
- ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff
- rts
-
-fso_dbl:
- mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&0x3c00 # is |exp| == $3c00?
- beq.b fso_dbl_dnrm_zero # yes
- cmpi.w %d0,&0x43ff # no; is |exp| == $43ff?
- beq.b fso_infnan # yes
- rts # no
-
-fso_dbl_dnrm_zero:
- andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
- bne.b fso_dbl_dnrm # it's a skewed denorm
- tst.l LOCAL_LO(%a0) # is it a zero?
- beq.b fso_zero # yes
-fso_dbl_dnrm:
-# here, we count on norm not to alter a0...
- bsr.l norm # normalize mantissa
- neg.w %d0 # -shft amt
- addi.w &0x3c01,%d0 # adjust new exponent
- andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
- or.w %d0,LOCAL_EX(%a0) # insert new exponent
- rts
-
-#################################################################
-
-# fmove out took an unimplemented data type exception.
-# the src operand is in FP_SRC. Call _fout() to write out the result and
-# to determine which exceptions, if any, to take.
-fu_out:
-
-# Separate packed move outs from the UNNORM and DENORM move outs.
- bfextu EXC_CMDREG(%a6){&3:&3},%d0
- cmpi.b %d0,&0x3
- beq.w fu_out_pack
- cmpi.b %d0,&0x7
- beq.w fu_out_pack
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field.
-# fmove out doesn't affect ccodes.
- and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
-# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine
-# call here. just figure out what it is...
- mov.w FP_SRC_EX(%a6),%d0 # get exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b fu_out_denorm # it's a DENORM
-
- lea FP_SRC(%a6),%a0
- bsr.l unnorm_fix # yes; fix it
-
- mov.b %d0,STAG(%a6)
-
- bra.b fu_out_cont
-fu_out_denorm:
- mov.b &DENORM,STAG(%a6)
-fu_out_cont:
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- mov.l (%a6),EXC_A6(%a6) # in case a6 changes
- bsr.l fout # call fmove out routine
-
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : none
-# OPERR : fmove.{b,w,l} out of large UNNORM
-# OVFL : fmove.{s,d}
-# UNFL : fmove.{s,d,x}
-# DZ : none
-# INEX2 : all
-# INEX1 : none (packed doesn't travel through here)
-
-# determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_out_ena # some are enabled
-
-fu_out_done:
-
- mov.l EXC_A6(%a6),(%a6) # in case a6 changed
-
-# on extended precision opclass three instructions using pre-decrement or
-# post-increment addressing mode, the address register is not updated. is the
-# address register was the stack pointer used from user mode, then let's update
-# it here. if it was used from supervisor mode, then we have to handle this
-# as a special case.
- btst &0x5,EXC_SR(%a6)
- bne.b fu_out_done_s
-
- mov.l EXC_A7(%a6),%a0 # restore a7
- mov.l %a0,%usp
-
-fu_out_done_cont:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- btst &0x7,(%sp) # is trace on?
- bne.b fu_out_trace # yes
-
- bra.l _fpsp_done
-
-# is the ea mode pre-decrement of the stack pointer from supervisor mode?
-# ("fmov.x fpm,-(a7)") if so,
-fu_out_done_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.b fu_out_done_cont
-
-# the extended precision result is still in fp0. but, we need to save it
-# somewhere on the stack until we can copy it to its final resting place.
-# here, we're counting on the top of the stack to be the old place-holders
-# for fp0/fp1 which have already been restored. that way, we can write
-# over those destinations with the shifted stack frame.
- fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
-
-# now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- btst &0x7,(%sp)
- bne.b fu_out_trace
-
- bra.l _fpsp_done
-
-fu_out_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_out_exc # there is at least one set
-
-# no exceptions were set.
-# if a disabled overflow occurred and inexact was enabled but the result
-# was exact, then a branch to _real_inex() is made.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.w fu_out_done # no
-
-fu_out_ovflchk:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.w fu_out_done # no
- bra.w fu_inex # yes
-
-#
-# The fp move out that took the "Unimplemented Data Type" exception was
-# being traced. Since the stack frames are similar, get the "current" PC
-# from FPIAR and put it in the trace stack frame then jump to _real_trace().
-#
-# UNSUPP FRAME TRACE FRAME
-# ***************** *****************
-# * EA * * Current *
-# * * * PC *
-# ***************** *****************
-# * 0x3 * 0x0dc * * 0x2 * 0x024 *
-# ***************** *****************
-# * Next * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-#
-fu_out_trace:
- mov.w &0x2024,0x6(%sp)
- fmov.l %fpiar,0x8(%sp)
- bra.l _real_trace
-
-# an exception occurred and that exception was enabled.
-fu_out_exc:
- subi.l &24,%d0 # fix offset to be 0-8
-
-# we don't mess with the existing fsave frame. just re-insert it and
-# jump to the "_real_{}()" handler...
- mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0
- jmp (tbl_fu_out.b,%pc,%d0.w*1)
-
- swbeg &0x8
-tbl_fu_out:
- short tbl_fu_out - tbl_fu_out # BSUN can't happen
- short tbl_fu_out - tbl_fu_out # SNAN can't happen
- short fu_operr - tbl_fu_out # OPERR
- short fu_ovfl - tbl_fu_out # OVFL
- short fu_unfl - tbl_fu_out # UNFL
- short tbl_fu_out - tbl_fu_out # DZ can't happen
- short fu_inex - tbl_fu_out # INEX2
- short tbl_fu_out - tbl_fu_out # INEX1 won't make it here
-
-# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just
-# frestore it.
-fu_snan:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8
- mov.w &0xe006,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6)
-
- unlk %a6
-
-
- bra.l _real_snan
-
-fu_operr:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe004,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6)
-
- unlk %a6
-
-
- bra.l _real_operr
-
-fu_ovfl:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4
- mov.w &0xe005,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6) # restore EXOP
-
- unlk %a6
-
- bra.l _real_ovfl
-
-# underflow can happen for extended precision. extended precision opclass
-# three instruction exceptions don't update the stack pointer. so, if the
-# exception occurred from user mode, then simply update a7 and exit normally.
-# if the exception occurred from supervisor mode, check if
-fu_unfl:
- mov.l EXC_A6(%a6),(%a6) # restore a6
-
- btst &0x5,EXC_SR(%a6)
- bne.w fu_unfl_s
-
- mov.l EXC_A7(%a6),%a0 # restore a7 whether we need
- mov.l %a0,%usp # to or not...
-
-fu_unfl_cont:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
- mov.w &0xe003,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6) # restore EXOP
-
- unlk %a6
-
- bra.l _real_unfl
-
-fu_unfl_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)?
- bne.b fu_unfl_cont
-
-# the extended precision result is still in fp0. but, we need to save it
-# somewhere on the stack until we can copy it to its final resting place
-# (where the exc frame is currently). make sure it's not at the top of the
-# frame or it will get overwritten when the exc stack frame is shifted "down".
- fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
- fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
- mov.w &0xe003,2+FP_DST(%a6)
-
- frestore FP_DST(%a6) # restore EXOP
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- bra.l _real_unfl
-
-# fmove in and out enter here.
-fu_inex:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6) # restore EXOP
-
- unlk %a6
-
-
- bra.l _real_inex
-
-#########################################################################
-#########################################################################
-fu_in_pack:
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field
- andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- bsr.l get_packed # fetch packed src operand
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- bsr.l set_tag_x # set src optype tag
-
- mov.b %d0,STAG(%a6) # save src optype tag
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
-
-# bit five of the fp extension word separates the monadic and dyadic operations
-# at this point
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fu_extract_p # monadic
- cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
- beq.b fu_extract_p # yes, so it's monadic, too
-
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_done_p # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-fu_op2_done_p:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-fu_extract_p:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-#
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : all dyadic ops
-# OPERR : fsqrt(-NORM)
-# OVFL : all except ftst,fcmp
-# UNFL : all except ftst,fcmp
-# DZ : fdiv
-# INEX2 : all except ftst,fcmp
-# INEX1 : all
-#
-
-# we determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_in_ena_p # some are enabled
-
-fu_in_cont_p:
-# fcmp and ftst do not store any result.
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
- andi.b &0x38,%d0 # extract bits 3-5
- cmpi.b %d0,&0x38 # is instr fcmp or ftst?
- beq.b fu_in_exit_p # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l store_fpreg # store the result
-
-fu_in_exit_p:
-
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.w fu_in_exit_s_p # supervisor
-
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
-
-fu_in_exit_cont_p:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel stack frame
-
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-# the exception occurred in supervisor mode. check to see if the
-# addressing mode was (a7)+. if so, we'll need to shift the
-# stack frame "up".
-fu_in_exit_s_p:
- btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+
- beq.b fu_in_exit_cont_p # no
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel stack frame
-
-# shift the stack frame "up". we don't really care about the <ea> field.
- mov.l 0x4(%sp),0x10(%sp)
- mov.l 0x0(%sp),0xc(%sp)
- add.l &0xc,%sp
-
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-fu_in_ena_p:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_in_exc_p # at least one was set
-
-#
-# No exceptions occurred that were also enabled. Now:
-#
-# if (OVFL && ovfl_disabled && inexact_enabled) {
-# branch to _real_inex() (even if the result was exact!);
-# } else {
-# save the result in the proper fp reg (unless the op is fcmp or ftst);
-# return;
-# }
-#
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.w fu_in_cont_p # no
-
-fu_in_ovflchk_p:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.w fu_in_cont_p # no
- bra.w fu_in_exc_ovfl_p # do _real_inex() now
-
-#
-# An exception occurred and that exception was enabled:
-#
-# shift enabled exception field into lo byte of d0;
-# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
-# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
-# /*
-# * this is the case where we must call _real_inex() now or else
-# * there will be no other way to pass it the exceptional operand
-# */
-# call _real_inex();
-# } else {
-# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
-# }
-#
-fu_in_exc_p:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX? (6 or 7)
- blt.b fu_in_exc_exit_p # no
-
-# the enabled exception was inexact
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
- bne.w fu_in_exc_unfl_p # yes
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
- bne.w fu_in_exc_ovfl_p # yes
-
-# here, we insert the correct fsave status value into the fsave frame for the
-# corresponding exception. the operand in the fsave frame should be the original
-# src operand.
-# as a reminder for future predicted pain and agony, we are passing in fsave the
-# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs.
-# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!!
-fu_in_exc_exit_p:
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.w fu_in_exc_exit_s_p # supervisor
-
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
-
-fu_in_exc_exit_cont_p:
- mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore src op
-
- unlk %a6
-
- btst &0x7,(%sp) # is trace enabled?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done
-
-tbl_except_p:
- short 0xe000,0xe006,0xe004,0xe005
- short 0xe003,0xe002,0xe001,0xe001
-
-fu_in_exc_ovfl_p:
- mov.w &0x3,%d0
- bra.w fu_in_exc_exit_p
-
-fu_in_exc_unfl_p:
- mov.w &0x4,%d0
- bra.w fu_in_exc_exit_p
-
-fu_in_exc_exit_s_p:
- btst &mia7_bit,SPCOND_FLG(%a6)
- beq.b fu_in_exc_exit_cont_p
-
- mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore src op
-
- unlk %a6 # unravel stack frame
-
-# shift stack frame "up". who cares about <ea> field.
- mov.l 0x4(%sp),0x10(%sp)
- mov.l 0x0(%sp),0xc(%sp)
- add.l &0xc,%sp
-
- btst &0x7,(%sp) # is trace on?
- bne.b fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-#
-# The opclass two PACKED instruction that took an "Unimplemented Data Type"
-# exception was being traced. Make the "current" PC the FPIAR and put it in the
-# trace stack frame then jump to _real_trace().
-#
-# UNSUPP FRAME TRACE FRAME
-# ***************** *****************
-# * EA * * Current *
-# * * * PC *
-# ***************** *****************
-# * 0x2 * 0x0dc * * 0x2 * 0x024 *
-# ***************** *****************
-# * Next * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-fu_trace_p:
- mov.w &0x2024,0x6(%sp)
- fmov.l %fpiar,0x8(%sp)
-
- bra.l _real_trace
-
-#########################################################
-#########################################################
-fu_out_pack:
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field.
-# fmove out doesn't affect ccodes.
- and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l load_fpn1
-
-# unlike other opclass 3, unimplemented data type exceptions, packed must be
-# able to detect all operand types.
- lea FP_SRC(%a6),%a0
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_p # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-
-fu_op2_p:
- mov.b %d0,STAG(%a6) # save src optype tag
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- mov.l (%a6),EXC_A6(%a6) # in case a6 changes
- bsr.l fout # call fmove out routine
-
-# Exceptions in order of precedence:
-# BSUN : no
-# SNAN : yes
-# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits))
-# OVFL : no
-# UNFL : no
-# DZ : no
-# INEX2 : yes
-# INEX1 : no
-
-# determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_out_ena_p # some are enabled
-
-fu_out_exit_p:
- mov.l EXC_A6(%a6),(%a6) # restore a6
-
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.b fu_out_exit_s_p # supervisor
-
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
-
-fu_out_exit_cont_p:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel stack frame
-
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-# the exception occurred in supervisor mode. check to see if the
-# addressing mode was -(a7). if so, we'll need to shift the
-# stack frame "down".
-fu_out_exit_s_p:
- btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7)
- beq.b fu_out_exit_cont_p # no
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
-
-# now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- btst &0x7,(%sp)
- bne.w fu_trace_p
-
- bra.l _fpsp_done
-
-fu_out_ena_p:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- beq.w fu_out_exit_p
-
- mov.l EXC_A6(%a6),(%a6) # restore a6
-
-# an exception occurred and that exception was enabled.
-# the only exception possible on packed move out are INEX, OPERR, and SNAN.
-fu_out_exc_p:
- cmpi.b %d0,&0x1a
- bgt.w fu_inex_p2
- beq.w fu_operr_p
-
-fu_snan_p:
- btst &0x5,EXC_SR(%a6)
- bne.b fu_snan_s_p
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_snan
-
-fu_snan_s_p:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_snan
-
-# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
-# the strategy is to move the exception frame "down" 12 bytes. then, we
-# can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe006,2+FP_SRC(%a6) # set fsave status
-
- frestore FP_SRC(%a6) # restore src operand
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
-
- bra.l _real_snan
-
-fu_operr_p:
- btst &0x5,EXC_SR(%a6)
- bne.w fu_operr_p_s
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_operr
-
-fu_operr_p_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_operr
-
-# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
-# the strategy is to move the exception frame "down" 12 bytes. then, we
-# can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe004,2+FP_SRC(%a6) # set fsave status
-
- frestore FP_SRC(%a6) # restore src operand
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
-
- bra.l _real_operr
-
-fu_inex_p2:
- btst &0x5,EXC_SR(%a6)
- bne.w fu_inex_s_p2
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_inex
-
-fu_inex_s_p2:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_inex
-
-# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
-# the strategy is to move the exception frame "down" 12 bytes. then, we
-# can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # set fsave status
-
- frestore FP_SRC(%a6) # restore src operand
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
-
- bra.l _real_inex
-
-#########################################################################
-
-#
-# if we're stuffing a source operand back into an fsave frame then we
-# have to make sure that for single or double source operands that the
-# format stuffed is as weird as the hardware usually makes it.
-#
- global funimp_skew
-funimp_skew:
- bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier
- cmpi.b %d0,&0x1 # was src sgl?
- beq.b funimp_skew_sgl # yes
- cmpi.b %d0,&0x5 # was src dbl?
- beq.b funimp_skew_dbl # yes
- rts
-
-funimp_skew_sgl:
- mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b funimp_skew_sgl_not
- cmpi.w %d0,&0x3f80
- bgt.b funimp_skew_sgl_not
- neg.w %d0 # make exponent negative
- addi.w &0x3f81,%d0 # find amt to shift
- mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man)
- lsr.l %d0,%d1 # shift it
- bset &31,%d1 # set j-bit
- mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man)
- andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent
- ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent
-funimp_skew_sgl_not:
- rts
-
-funimp_skew_dbl:
- mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b funimp_skew_dbl_not
- cmpi.w %d0,&0x3c00
- bgt.b funimp_skew_dbl_not
-
- tst.b FP_SRC_EX(%a6) # make "internal format"
- smi.b 0x2+FP_SRC(%a6)
- mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign
- clr.l %d0 # clear g,r,s
- lea FP_SRC(%a6),%a0 # pass ptr to src op
- mov.w &0x3c01,%d1 # pass denorm threshold
- bsr.l dnrm_lp # denorm it
- mov.w &0x3c00,%d0 # new exponent
- tst.b 0x2+FP_SRC(%a6) # is sign set?
- beq.b fss_dbl_denorm_done # no
- bset &15,%d0 # set sign
-fss_dbl_denorm_done:
- bset &0x7,FP_SRC_HI(%a6) # set j-bit
- mov.w %d0,FP_SRC_EX(%a6) # insert new exponent
-funimp_skew_dbl_not:
- rts
-
-#########################################################################
- global _mem_write2
-_mem_write2:
- btst &0x5,EXC_SR(%a6)
- beq.l _dmem_write
- mov.l 0x0(%a0),FP_DST_EX(%a6)
- mov.l 0x4(%a0),FP_DST_HI(%a6)
- mov.l 0x8(%a0),FP_DST_LO(%a6)
- clr.l %d1
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented #
-# effective address" exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Unimplemented Effective Address exception in an operating #
-# system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# decbin() - convert packed data to FP binary data #
-# _real_fpu_disabled() - "callout" for "FPU disabled" exception #
-# _real_access() - "callout" for access error exception #
-# _mem_read() - read extended immediate operand from memory #
-# _fpsp_done() - "callout" for exit; work all done #
-# _real_trace() - "callout" for Trace enabled exception #
-# fmovm_dynamic() - emulate dynamic fmovm instruction #
-# fmovm_ctrl() - emulate fmovm control instruction #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the "Unimplemented <ea>" stk frame #
-# #
-# OUTPUT ************************************************************** #
-# If access error: #
-# - The system stack is changed to an access error stack frame #
-# If FPU disabled: #
-# - The system stack is changed to an FPU disabled stack frame #
-# If Trace exception enabled: #
-# - The system stack is changed to a Trace exception stack frame #
-# Else: (normal case) #
-# - None (correct result has been stored as appropriate) #
-# #
-# ALGORITHM *********************************************************** #
-# This exception handles 3 types of operations: #
-# (1) FP Instructions using extended precision or packed immediate #
-# addressing mode. #
-# (2) The "fmovm.x" instruction w/ dynamic register specification. #
-# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. #
-# #
-# For immediate data operations, the data is read in w/ a #
-# _mem_read() "callout", converted to FP binary (if packed), and used #
-# as the source operand to the instruction specified by the instruction #
-# word. If no FP exception should be reported ads a result of the #
-# emulation, then the result is stored to the destination register and #
-# the handler exits through _fpsp_done(). If an enabled exc has been #
-# signalled as a result of emulation, then an fsave state frame #
-# corresponding to the FP exception type must be entered into the 060 #
-# FPU before exiting. In either the enabled or disabled cases, we #
-# must also check if a Trace exception is pending, in which case, we #
-# must create a Trace exception stack frame from the current exception #
-# stack frame. If no Trace is pending, we simply exit through #
-# _fpsp_done(). #
-# For "fmovm.x", call the routine fmovm_dynamic() which will #
-# decode and emulate the instruction. No FP exceptions can be pending #
-# as a result of this operation emulation. A Trace exception can be #
-# pending, though, which means the current stack frame must be changed #
-# to a Trace stack frame and an exit made through _real_trace(). #
-# For the case of "fmovm.x Dn,-(a7)", where the offending instruction #
-# was executed from supervisor mode, this handler must store the FP #
-# register file values to the system stack by itself since #
-# fmovm_dynamic() can't handle this. A normal exit is made through #
-# fpsp_done(). #
-# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. #
-# Again, a Trace exception may be pending and an exit made through #
-# _real_trace(). Else, a normal exit is made through _fpsp_done(). #
-# #
-# Before any of the above is attempted, it must be checked to #
-# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken #
-# before the "FPU disabled" exception, but the "FPU disabled" exception #
-# has higher priority, we check the disabled bit in the PCR. If set, #
-# then we must create an 8 word "FPU disabled" exception stack frame #
-# from the current 4 word exception stack frame. This includes #
-# reproducing the effective address of the instruction to put on the #
-# new stack frame. #
-# #
-# In the process of all emulation work, if a _mem_read() #
-# "callout" returns a failing result indicating an access error, then #
-# we must create an access error stack frame from the current stack #
-# frame. This information includes a faulting address and a fault- #
-# status-longword. These are created within this handler. #
-# #
-#########################################################################
-
- global _fpsp_effadd
-_fpsp_effadd:
-
-# This exception type takes priority over the "Line F Emulator"
-# exception. Therefore, the FPU could be disabled when entering here.
-# So, we must check to see if it's disabled and handle that case separately.
- mov.l %d0,-(%sp) # save d0
- movc %pcr,%d0 # load proc cr
- btst &0x1,%d0 # is FPU disabled?
- bne.w iea_disabled # yes
- mov.l (%sp)+,%d0 # restore d0
-
- link %a6,&-LOCAL_SIZE # init stack frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# PC of instruction that took the exception is the PC in the frame
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
-
-#########################################################################
-
- tst.w %d0 # is operation fmovem?
- bmi.w iea_fmovm # yes
-
-#
-# here, we will have:
-# fabs fdabs fsabs facos fmod
-# fadd fdadd fsadd fasin frem
-# fcmp fatan fscale
-# fdiv fddiv fsdiv fatanh fsin
-# fint fcos fsincos
-# fintrz fcosh fsinh
-# fmove fdmove fsmove fetox ftan
-# fmul fdmul fsmul fetoxm1 ftanh
-# fneg fdneg fsneg fgetexp ftentox
-# fsgldiv fgetman ftwotox
-# fsglmul flog10
-# fsqrt flog2
-# fsub fdsub fssub flogn
-# ftst flognp1
-# which can all use f<op>.{x,p}
-# so, now it's immediate data extended precision AND PACKED FORMAT!
-#
-iea_op:
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- btst &0xa,%d0 # is src fmt x or p?
- bne.b iea_op_pack # packed
-
-
- mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
- lea FP_SRC(%a6),%a1 # pass: ptr to super addr
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _imem_read # read extended immediate
-
- tst.l %d1 # did ifetch fail?
- bne.w iea_iacc # yes
-
- bra.b iea_op_setsrc
-
-iea_op_pack:
-
- mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
- lea FP_SRC(%a6),%a1 # pass: ptr to super dst
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _imem_read # read packed operand
-
- tst.l %d1 # did ifetch fail?
- bne.w iea_iacc # yes
-
-# The packed operand is an INF or a NAN if the exponent field is all ones.
- bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
- cmpi.w %d0,&0x7fff # INF or NAN?
- beq.b iea_op_setsrc # operand is an INF or NAN
-
-# The packed operand is a zero if the mantissa is all zero, else it's
-# a normal packed op.
- mov.b 3+FP_SRC(%a6),%d0 # get byte 4
- andi.b &0x0f,%d0 # clear all but last nybble
- bne.b iea_op_gp_not_spec # not a zero
- tst.l FP_SRC_HI(%a6) # is lw 2 zero?
- bne.b iea_op_gp_not_spec # not a zero
- tst.l FP_SRC_LO(%a6) # is lw 3 zero?
- beq.b iea_op_setsrc # operand is a ZERO
-iea_op_gp_not_spec:
- lea FP_SRC(%a6),%a0 # pass: ptr to packed op
- bsr.l decbin # convert to extended
- fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
-
-iea_op_setsrc:
- addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer
-
-# FP_SRC now holds the src operand.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # could be ANYTHING!!!
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b iea_op_getdst # no
- bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
- mov.b %d0,STAG(%a6) # set new optype tag
-iea_op_getdst:
- clr.b STORE_FLG(%a6) # clear "store result" boolean
-
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b iea_op_extract # monadic
- btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp?
- bne.b iea_op_spec # yes
-
-iea_op_loaddst:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
- bsr.l load_fpn2 # load dst operand
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,DTAG(%a6) # could be ANYTHING!!!
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b iea_op_extract # no
- bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
- mov.b %d0,DTAG(%a6) # set new optype tag
- bra.b iea_op_extract
-
-# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic
-iea_op_spec:
- btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos?
- beq.b iea_op_extract # yes
-# now, we're left with ftst and fcmp. so, first let's tag them so that they don't
-# store a result. then, only fcmp will branch back and pick up a dst operand.
- st STORE_FLG(%a6) # don't store a final result
- btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp?
- beq.b iea_op_loaddst # yes
-
-iea_op_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- fmov.l &0x0,%fpcr
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-#
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : all operations
-# OPERR : all reg-reg or mem-reg operations that can normally operr
-# OVFL : same as OPERR
-# UNFL : same as OPERR
-# DZ : same as OPERR
-# INEX2 : same as OPERR
-# INEX1 : all packed immediate operations
-#
-
-# we determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.b iea_op_ena # some are enabled
-
-# now, we save the result, unless, of course, the operation was ftst or fcmp.
-# these don't save results.
-iea_op_save:
- tst.b STORE_FLG(%a6) # does this op store a result?
- bne.b iea_op_exit1 # exit with no frestore
-
-iea_op_store:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
- bsr.l store_fpreg # store the result
-
-iea_op_exit1:
- mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel the frame
-
- btst &0x7,(%sp) # is trace on?
- bne.w iea_op_trace # yes
-
- bra.l _fpsp_done # exit to os
-
-iea_op_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b iea_op_exc # at least one was set
-
-# no exception occurred. now, did a disabled, exact overflow occur with inexact
-# enabled? if so, then we have to stuff an overflow frame into the FPU.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- beq.b iea_op_save
-
-iea_op_ovfl:
- btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
- beq.b iea_op_store # no
- bra.b iea_op_exc_ovfl # yes
-
-# an enabled exception occurred. we have to insert the exception type back into
-# the machine.
-iea_op_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX?
- bne.b iea_op_exc_force # no
-
-# the enabled exception was inexact. so, if it occurs with an overflow
-# or underflow that was disabled, then we have to force an overflow or
-# underflow frame.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- bne.b iea_op_exc_ovfl # yes
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
- bne.b iea_op_exc_unfl # yes
-
-iea_op_exc_force:
- mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
- bra.b iea_op_exit2 # exit with frestore
-
-tbl_iea_except:
- short 0xe002, 0xe006, 0xe004, 0xe005
- short 0xe003, 0xe002, 0xe001, 0xe001
-
-iea_op_exc_ovfl:
- mov.w &0xe005,2+FP_SRC(%a6)
- bra.b iea_op_exit2
-
-iea_op_exc_unfl:
- mov.w &0xe003,2+FP_SRC(%a6)
-
-iea_op_exit2:
- mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore exceptional state
-
- unlk %a6 # unravel the frame
-
- btst &0x7,(%sp) # is trace on?
- bne.b iea_op_trace # yes
-
- bra.l _fpsp_done # exit to os
-
-#
-# The opclass two instruction that took an "Unimplemented Effective Address"
-# exception was being traced. Make the "current" PC the FPIAR and put it in
-# the trace stack frame then jump to _real_trace().
-#
-# UNIMP EA FRAME TRACE FRAME
-# ***************** *****************
-# * 0x0 * 0x0f0 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x024 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# *****************
-# * SR *
-# *****************
-iea_op_trace:
- mov.l (%sp),-(%sp) # shift stack frame "down"
- mov.w 0x8(%sp),0x4(%sp)
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
-
- bra.l _real_trace
-
-#########################################################################
-iea_fmovm:
- btst &14,%d0 # ctrl or data reg
- beq.w iea_fmovm_ctrl
-
-iea_fmovm_data:
-
- btst &0x5,EXC_SR(%a6) # user or supervisor mode
- bne.b iea_fmovm_data_s
-
-iea_fmovm_data_u:
- mov.l %usp,%a0
- mov.l %a0,EXC_A7(%a6) # store current a7
- bsr.l fmovm_dynamic # do dynamic fmovm
- mov.l EXC_A7(%a6),%a0 # load possibly new a7
- mov.l %a0,%usp # update usp
- bra.w iea_fmovm_exit
-
-iea_fmovm_data_s:
- clr.b SPCOND_FLG(%a6)
- lea 0x2+EXC_VOFF(%a6),%a0
- mov.l %a0,EXC_A7(%a6)
- bsr.l fmovm_dynamic # do dynamic fmovm
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.w iea_fmovm_data_predec
- cmpi.b SPCOND_FLG(%a6),&mia7_flg
- bne.w iea_fmovm_exit
-
-# right now, d0 = the size.
-# the data has been fetched from the supervisor stack, but we have not
-# incremented the stack pointer by the appropriate number of bytes.
-# do it here.
-iea_fmovm_data_postinc:
- btst &0x7,EXC_SR(%a6)
- bne.b iea_fmovm_data_pi_trace
-
- mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
- mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0)
- mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
-
- lea (EXC_SR,%a6,%d0),%a0
- mov.l %a0,EXC_SR(%a6)
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
- mov.l (%sp)+,%sp
- bra.l _fpsp_done
-
-iea_fmovm_data_pi_trace:
- mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
- mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0)
- mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
- mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0)
-
- lea (EXC_SR-0x4,%a6,%d0),%a0
- mov.l %a0,EXC_SR(%a6)
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
- mov.l (%sp)+,%sp
- bra.l _real_trace
-
-# right now, d1 = size and d0 = the strg.
-iea_fmovm_data_predec:
- mov.b %d1,EXC_VOFF(%a6) # store strg
- mov.b %d0,0x1+EXC_VOFF(%a6) # store size
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.l (%a6),-(%sp) # make a copy of a6
- mov.l %d0,-(%sp) # save d0
- mov.l %d1,-(%sp) # save d1
- mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC
-
- clr.l %d0
- mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size
- neg.l %d0 # get negative of size
-
- btst &0x7,EXC_SR(%a6) # is trace enabled?
- beq.b iea_fmovm_data_p2
-
- mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
- mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0)
- mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0)
- mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
-
- pea (%a6,%d0) # create final sp
- bra.b iea_fmovm_data_p3
-
-iea_fmovm_data_p2:
- mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
- mov.l (%sp)+,(EXC_PC,%a6,%d0)
- mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
-
- pea (0x4,%a6,%d0) # create final sp
-
-iea_fmovm_data_p3:
- clr.l %d1
- mov.b EXC_VOFF(%a6),%d1 # fetch strg
-
- tst.b %d1
- bpl.b fm_1
- fmovm.x &0x80,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_1:
- lsl.b &0x1,%d1
- bpl.b fm_2
- fmovm.x &0x40,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_2:
- lsl.b &0x1,%d1
- bpl.b fm_3
- fmovm.x &0x20,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_3:
- lsl.b &0x1,%d1
- bpl.b fm_4
- fmovm.x &0x10,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_4:
- lsl.b &0x1,%d1
- bpl.b fm_5
- fmovm.x &0x08,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_5:
- lsl.b &0x1,%d1
- bpl.b fm_6
- fmovm.x &0x04,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_6:
- lsl.b &0x1,%d1
- bpl.b fm_7
- fmovm.x &0x02,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_7:
- lsl.b &0x1,%d1
- bpl.b fm_end
- fmovm.x &0x01,(0x4+0x8,%a6,%d0)
-fm_end:
- mov.l 0x4(%sp),%d1
- mov.l 0x8(%sp),%d0
- mov.l 0xc(%sp),%a6
- mov.l (%sp)+,%sp
-
- btst &0x7,(%sp) # is trace enabled?
- beq.l _fpsp_done
- bra.l _real_trace
-
-#########################################################################
-iea_fmovm_ctrl:
-
- bsr.l fmovm_ctrl # load ctrl regs
-
-iea_fmovm_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- btst &0x7,EXC_SR(%a6) # is trace on?
- bne.b iea_fmovm_trace # yes
-
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC
-
- unlk %a6 # unravel the frame
-
- bra.l _fpsp_done # exit to os
-
-#
-# The control reg instruction that took an "Unimplemented Effective Address"
-# exception was being traced. The "Current PC" for the trace frame is the
-# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR.
-# After fixing the stack frame, jump to _real_trace().
-#
-# UNIMP EA FRAME TRACE FRAME
-# ***************** *****************
-# * 0x0 * 0x0f0 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x024 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# *****************
-# * SR *
-# *****************
-# this ain't a pretty solution, but it works:
-# -restore a6 (not with unlk)
-# -shift stack frame down over where old a6 used to be
-# -add LOCAL_SIZE to stack pointer
-iea_fmovm_trace:
- mov.l (%a6),%a6 # restore frame pointer
- mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp)
- mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp)
- mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp)
- mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024
- add.l &LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_trace
-
-#########################################################################
-# The FPU is disabled and so we should really have taken the "Line
-# F Emulator" exception. So, here we create an 8-word stack frame
-# from our 4-word stack frame. This means we must calculate the length
-# the faulting instruction to get the "next PC". This is trivial for
-# immediate operands but requires some extra work for fmovm dynamic
-# which can use most addressing modes.
-iea_disabled:
- mov.l (%sp)+,%d0 # restore d0
-
- link %a6,&-LOCAL_SIZE # init stack frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
-
-# PC of instruction that took the exception is the PC in the frame
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
-
- tst.w %d0 # is instr fmovm?
- bmi.b iea_dis_fmovm # yes
-# instruction is using an extended precision immediate operand. Therefore,
-# the total instruction length is 16 bytes.
-iea_dis_immed:
- mov.l &0x10,%d0 # 16 bytes of instruction
- bra.b iea_dis_cont
-iea_dis_fmovm:
- btst &0xe,%d0 # is instr fmovm ctrl
- bne.b iea_dis_fmovm_data # no
-# the instruction is a fmovm.l with 2 or 3 registers.
- bfextu %d0{&19:&3},%d1
- mov.l &0xc,%d0
- cmpi.b %d1,&0x7 # move all regs?
- bne.b iea_dis_cont
- addq.l &0x4,%d0
- bra.b iea_dis_cont
-# the instruction is an fmovm.x dynamic which can use many addressing
-# modes and thus can have several different total instruction lengths.
-# call fmovm_calc_ea which will go through the ea calc process and,
-# as a by-product, will tell us how long the instruction is.
-iea_dis_fmovm_data:
- clr.l %d0
- bsr.l fmovm_calc_ea
- mov.l EXC_EXTWPTR(%a6),%d0
- sub.l EXC_PC(%a6),%d0
-iea_dis_cont:
- mov.w %d0,EXC_VOFF(%a6) # store stack shift value
-
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
-# here, we actually create the 8-word frame from the 4-word frame,
-# with the "next PC" as additional info.
-# the <ea> field is let as undefined.
- subq.l &0x8,%sp # make room for new stack
- mov.l %d0,-(%sp) # save d0
- mov.w 0xc(%sp),0x4(%sp) # move SR
- mov.l 0xe(%sp),0x6(%sp) # move Current PC
- clr.l %d0
- mov.w 0x12(%sp),%d0
- mov.l 0x6(%sp),0x10(%sp) # move Current PC
- add.l %d0,0x6(%sp) # make Next PC
- mov.w &0x402c,0xa(%sp) # insert offset,frame format
- mov.l (%sp)+,%d0 # restore d0
-
- bra.l _real_fpu_disabled
-
-##########
-
-iea_iacc:
- movc %pcr,%d0
- btst &0x1,%d0
- bne.b iea_iacc_cont
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
-iea_iacc_cont:
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- subq.w &0x8,%sp # make stack frame bigger
- mov.l 0x8(%sp),(%sp) # store SR,hi(PC)
- mov.w 0xc(%sp),0x4(%sp) # store lo(PC)
- mov.w &0x4008,0x6(%sp) # store voff
- mov.l 0x2(%sp),0x8(%sp) # store ea
- mov.l &0x09428001,0xc(%sp) # store fslw
-
-iea_acc_done:
- btst &0x5,(%sp) # user or supervisor mode?
- beq.b iea_acc_done2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-
-iea_acc_done2:
- bra.l _real_access
-
-iea_dacc:
- lea -LOCAL_SIZE(%a6),%sp
-
- movc %pcr,%d1
- btst &0x1,%d1
- bne.b iea_dacc_cont
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
- fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs
-iea_dacc_cont:
- mov.l (%a6),%a6
-
- mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp)
- mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp)
- mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp)
- mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp)
- mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp)
- mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp)
-
- movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1
- add.w &LOCAL_SIZE-0x4,%sp
-
- bra.b iea_acc_done
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_operr(): 060FPSP entry point for FP Operr exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Operand Error exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# _real_operr() - "callout" to operating system operr handler #
-# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
-# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
-# facc_out_{b,w,l}() - store to memory took access error (opcl 3) #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Operr exception frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# No access error: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the FP Operr exception is enabled, the goal #
-# is to get to the handler specified at _real_operr(). But, on the 060, #
-# for opclass zero and two instruction taking this exception, the #
-# input operand in the fsave frame may be incorrect for some cases #
-# and needs to be corrected. This handler calls fix_skewed_ops() to #
-# do just this and then exits through _real_operr(). #
-# For opclass 3 instructions, the 060 doesn't store the default #
-# operr result out to memory or data register file as it should. #
-# This code must emulate the move out before finally exiting through #
-# _real_inex(). The move out, if to memory, is performed using #
-# _mem_write() "callout" routines that may return a failing result. #
-# In this special case, the handler must exit through facc_out() #
-# which creates an access error stack frame from the current operr #
-# stack frame. #
-# #
-#########################################################################
-
- global _fpsp_operr
-_fpsp_operr:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &13,%d0 # is instr an fmove out?
- bne.b foperr_out # fmove out
-
-
-# here, we simply see if the operand in the fsave frame needs to be "unskewed".
-# this would be the case for opclass two operations with a source infinity or
-# denorm operand in the sgl or dbl format. NANs also become skewed, but can't
-# cause an operr so we don't need to check for them here.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-foperr_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_operr
-
-########################################################################
-
-#
-# the hardware does not save the default result to memory on enabled
-# operand error exceptions. we do this here before passing control to
-# the user operand error handler.
-#
-# byte, word, and long destination format operations can pass
-# through here. we simply need to test the sign of the src
-# operand and save the appropriate minimum or maximum integer value
-# to the effective address as pointed to by the stacked effective address.
-#
-# although packed opclass three operations can take operand error
-# exceptions, they won't pass through here since they are caught
-# first by the unsupported data format exception handler. that handler
-# sends them directly to _real_operr() if necessary.
-#
-foperr_out:
-
- mov.w FP_SRC_EX(%a6),%d1 # fetch exponent
- andi.w &0x7fff,%d1
- cmpi.w %d1,&0x7fff
- bne.b foperr_out_not_qnan
-# the operand is either an infinity or a QNAN.
- tst.l FP_SRC_LO(%a6)
- bne.b foperr_out_qnan
- mov.l FP_SRC_HI(%a6),%d1
- andi.l &0x7fffffff,%d1
- beq.b foperr_out_not_qnan
-foperr_out_qnan:
- mov.l FP_SRC_HI(%a6),L_SCR1(%a6)
- bra.b foperr_out_jmp
-
-foperr_out_not_qnan:
- mov.l &0x7fffffff,%d1
- tst.b FP_SRC_EX(%a6)
- bpl.b foperr_out_not_qnan2
- addq.l &0x1,%d1
-foperr_out_not_qnan2:
- mov.l %d1,L_SCR1(%a6)
-
-foperr_out_jmp:
- bfextu %d0{&19:&3},%d0 # extract dst format field
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
- mov.w (tbl_operr.b,%pc,%d0.w*2),%a0
- jmp (tbl_operr.b,%pc,%a0)
-
-tbl_operr:
- short foperr_out_l - tbl_operr # long word integer
- short tbl_operr - tbl_operr # sgl prec shouldn't happen
- short tbl_operr - tbl_operr # ext prec shouldn't happen
- short foperr_exit - tbl_operr # packed won't enter here
- short foperr_out_w - tbl_operr # word integer
- short tbl_operr - tbl_operr # dbl prec shouldn't happen
- short foperr_out_b - tbl_operr # byte integer
- short tbl_operr - tbl_operr # packed won't enter here
-
-foperr_out_b:
- mov.b L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_b_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_byte # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
-
- bra.w foperr_exit
-foperr_out_b_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_b # store result to regfile
- bra.w foperr_exit
-
-foperr_out_w:
- mov.w L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_w_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_word # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
-
- bra.w foperr_exit
-foperr_out_w_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_w # store result to regfile
- bra.w foperr_exit
-
-foperr_out_l:
- mov.l L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_l_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.w foperr_exit
-foperr_out_l_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w foperr_exit
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Signalling NAN exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# _real_snan() - "callout" to operating system SNAN handler #
-# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
-# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
-# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) #
-# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP SNAN exception frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# No access error: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the FP SNAN exception is enabled, the goal #
-# is to get to the handler specified at _real_snan(). But, on the 060, #
-# for opclass zero and two instructions taking this exception, the #
-# input operand in the fsave frame may be incorrect for some cases #
-# and needs to be corrected. This handler calls fix_skewed_ops() to #
-# do just this and then exits through _real_snan(). #
-# For opclass 3 instructions, the 060 doesn't store the default #
-# SNAN result out to memory or data register file as it should. #
-# This code must emulate the move out before finally exiting through #
-# _real_snan(). The move out, if to memory, is performed using #
-# _mem_write() "callout" routines that may return a failing result. #
-# In this special case, the handler must exit through facc_out() #
-# which creates an access error stack frame from the current SNAN #
-# stack frame. #
-# For the case of an extended precision opclass 3 instruction, #
-# if the effective addressing mode was -() or ()+, then the address #
-# register must get updated by calling _calc_ea_fout(). If the <ea> #
-# was -(a7) from supervisor mode, then the exception frame currently #
-# on the system stack must be carefully moved "down" to make room #
-# for the operand being moved. #
-# #
-#########################################################################
-
- global _fpsp_snan
-_fpsp_snan:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &13,%d0 # is instr an fmove out?
- bne.w fsnan_out # fmove out
-
-
-# here, we simply see if the operand in the fsave frame needs to be "unskewed".
-# this would be the case for opclass two operations with a source infinity or
-# denorm operand in the sgl or dbl format. NANs also become skewed and must be
-# fixed here.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-fsnan_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_snan
-
-########################################################################
-
-#
-# the hardware does not save the default result to memory on enabled
-# snan exceptions. we do this here before passing control to
-# the user snan handler.
-#
-# byte, word, long, and packed destination format operations can pass
-# through here. since packed format operations already were handled by
-# fpsp_unsupp(), then we need to do nothing else for them here.
-# for byte, word, and long, we simply need to test the sign of the src
-# operand and save the appropriate minimum or maximum integer value
-# to the effective address as pointed to by the stacked effective address.
-#
-fsnan_out:
-
- bfextu %d0{&19:&3},%d0 # extract dst format field
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
- mov.w (tbl_snan.b,%pc,%d0.w*2),%a0
- jmp (tbl_snan.b,%pc,%a0)
-
-tbl_snan:
- short fsnan_out_l - tbl_snan # long word integer
- short fsnan_out_s - tbl_snan # sgl prec shouldn't happen
- short fsnan_out_x - tbl_snan # ext prec shouldn't happen
- short tbl_snan - tbl_snan # packed needs no help
- short fsnan_out_w - tbl_snan # word integer
- short fsnan_out_d - tbl_snan # dbl prec shouldn't happen
- short fsnan_out_b - tbl_snan # byte integer
- short tbl_snan - tbl_snan # packed needs no help
-
-fsnan_out_b:
- mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN
- bset &6,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_b_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_byte # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
-
- bra.w fsnan_exit
-fsnan_out_b_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_b # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_w:
- mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN
- bset &14,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_w_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_word # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
-
- bra.w fsnan_exit
-fsnan_out_w_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_w # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_l:
- mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN
- bset &30,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_l_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.w fsnan_exit
-fsnan_out_l_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_s:
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_d_dn # yes
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
- mov.l FP_SRC_HI(%a6),%d1 # load mantissa
- lsr.l &0x8,%d1 # shift mantissa for sgl
- or.l %d1,%d0 # create sgl SNAN
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.w fsnan_exit
-fsnan_out_d_dn:
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
- mov.l %d1,-(%sp)
- mov.l FP_SRC_HI(%a6),%d1 # load mantissa
- lsr.l &0x8,%d1 # shift mantissa for sgl
- or.l %d1,%d0 # create sgl SNAN
- mov.l (%sp)+,%d1
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_d:
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit
- mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
- mov.l %d0,FP_SCR0_EX(%a6) # store to temp space
- mov.l &11,%d0 # load shift amt
- lsr.l %d0,%d1
- or.l %d1,FP_SCR0_EX(%a6) # create dbl hi
- mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
- andi.l &0x000007ff,%d1
- ror.l %d0,%d1
- mov.l %d1,FP_SCR0_HI(%a6) # store to temp space
- mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa
- lsr.l %d0,%d1
- or.l %d1,FP_SCR0_HI(%a6) # create dbl lo
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- movq.l &0x8,%d0 # pass: size of 8 bytes
- bsr.l _dmem_write # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- bra.w fsnan_exit
-
-# for extended precision, if the addressing mode is pre-decrement or
-# post-increment, then the address register did not get updated.
-# in addition, for pre-decrement, the stacked <ea> is incorrect.
-fsnan_out_x:
- clr.b SPCOND_FLG(%a6) # clear special case flag
-
- mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6)
- clr.w 2+FP_SCR0(%a6)
- mov.l FP_SRC_HI(%a6),%d0
- bset &30,%d0
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6)
-
- btst &0x5,EXC_SR(%a6) # supervisor mode exception?
- bne.b fsnan_out_x_s # yes
-
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea()
- mov.l (%a6),EXC_A6(%a6)
-
- bsr.l _calc_ea_fout # find the correct ea,update An
- mov.l %a0,%a1
- mov.l %a0,EXC_EA(%a6) # stack correct <ea>
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp # restore user stack pointer
- mov.l EXC_A6(%a6),(%a6)
-
-fsnan_out_x_save:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- movq.l &0xc,%d0 # pass: size of extended
- bsr.l _dmem_write # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_x # yes
-
- bra.w fsnan_exit
-
-fsnan_out_x_s:
- mov.l (%a6),EXC_A6(%a6)
-
- bsr.l _calc_ea_fout # find the correct ea,update An
- mov.l %a0,%a1
- mov.l %a0,EXC_EA(%a6) # stack correct <ea>
-
- mov.l EXC_A6(%a6),(%a6)
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
- bne.b fsnan_out_x_save # no
-
-# the operation was "fmove.x SNAN,-(a7)" from supervisor mode.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- mov.l EXC_A6(%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
- mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- bra.l _real_snan
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Inexact exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# smovcr() - emulate an "fmovcr" instruction #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _real_inex() - "callout" to operating system inexact handler #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Inexact exception frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the FP Inexact exception is enabled, the goal #
-# is to get to the handler specified at _real_inex(). But, on the 060, #
-# for opclass zero and two instruction taking this exception, the #
-# hardware doesn't store the correct result to the destination FP #
-# register as did the '040 and '881/2. This handler must emulate the #
-# instruction in order to get this value and then store it to the #
-# correct register before calling _real_inex(). #
-# For opclass 3 instructions, the 060 doesn't store the default #
-# inexact result out to memory or data register file as it should. #
-# This code must emulate the move out by calling fout() before finally #
-# exiting through _real_inex(). #
-# #
-#########################################################################
-
- global _fpsp_inex
-_fpsp_inex:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &13,%d0 # is instr an fmove out?
- bne.w finex_out # fmove out
-
-
-# the hardware, for "fabs" and "fneg" w/ a long source format, puts the
-# longword integer directly into the upper longword of the mantissa along
-# w/ an exponent value of 0x401e. we convert this to extended precision here.
- bfextu %d0{&19:&3},%d0 # fetch instr size
- bne.b finex_cont # instr size is not long
- cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e?
- bne.b finex_cont # no
- fmov.l &0x0,%fpcr
- fmov.l FP_SRC_HI(%a6),%fp0 # load integer src
- fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision
- mov.w &0xe001,0x2+FP_SRC(%a6)
-
-finex_cont:
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-# Here, we zero the ccode and exception byte field since we're going to
-# emulate the whole instruction. Notice, though, that we don't kill the
-# INEX1 bit. This is because a packed op has long since been converted
-# to extended before arriving here. Therefore, we need to retain the
-# INEX1 bit from when the operand was first converted.
- andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg
- cmpi.b %d1,&0x17 # is op an fmovecr?
- beq.w finex_fmovcr # yes
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
-
-# bits four and five of the fp extension word separate the monadic and dyadic
-# operations that can pass through fpsp_inex(). remember that fcmp and ftst
-# will never take this exception, but fsincos will.
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b finex_extract # monadic
-
- btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos?
- bne.b finex_extract # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b finex_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-finex_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-finex_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-# the operation has been emulated. the result is in fp0.
-finex_save:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
-
-finex_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_inex
-
-finex_fmovcr:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.l &0x0000007f,%d1 # pass rom offset
- bsr.l smovcr
- bra.b finex_save
-
-########################################################################
-
-#
-# the hardware does not save the default result to memory on enabled
-# inexact exceptions. we do this here before passing control to
-# the user inexact handler.
-#
-# byte, word, and long destination format operations can pass
-# through here. so can double and single precision.
-# although packed opclass three operations can take inexact
-# exceptions, they won't pass through here since they are caught
-# first by the unsupported data format exception handler. that handler
-# sends them directly to _real_inex() if necessary.
-#
-finex_out:
-
- mov.b &NORM,STAG(%a6) # src is a NORM
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
-
- andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- bsr.l fout # store the default result
-
- bra.b finex_exit
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_dz(): 060FPSP entry point for FP DZ exception. #
-# #
-# This handler should be the first code executed upon taking #
-# the FP DZ exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword from memory #
-# fix_skewed_ops() - adjust fsave operand #
-# _real_dz() - "callout" exit point from FP DZ handler #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP DZ exception stack. #
-# - The fsave frame contains the source operand. #
-# #
-# OUTPUT ************************************************************** #
-# - The system stack contains the FP DZ exception stack. #
-# - The fsave frame contains the adjusted source operand. #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the DZ exception is enabled, the goal is to #
-# get to the handler specified at _real_dz(). But, on the 060, when the #
-# exception is taken, the input operand in the fsave state frame may #
-# be incorrect for some cases and need to be adjusted. So, this package #
-# adjusts the operand using fix_skewed_ops() and then branches to #
-# _real_dz(). #
-# #
-#########################################################################
-
- global _fpsp_dz
-_fpsp_dz:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
-
-# here, we simply see if the operand in the fsave frame needs to be "unskewed".
-# this would be the case for opclass two operations with a source zero
-# in the sgl or dbl format.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-fdz_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_dz
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc. #
-# #
-# This handler should be the first code executed upon taking the #
-# "Line F Emulator" exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _fpsp_unimp() - handle "FP Unimplemented" exceptions #
-# _real_fpu_disabled() - handle "FPU disabled" exceptions #
-# _real_fline() - handle "FLINE" exceptions #
-# _imem_read_long() - read instruction longword #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains a "Line F Emulator" exception #
-# stack frame. #
-# #
-# OUTPUT ************************************************************** #
-# - The system stack is unchanged #
-# #
-# ALGORITHM *********************************************************** #
-# When a "Line F Emulator" exception occurs, there are 3 possible #
-# exception types, denoted by the exception stack frame format number: #
-# (1) FPU unimplemented instruction (6 word stack frame) #
-# (2) FPU disabled (8 word stack frame) #
-# (3) Line F (4 word stack frame) #
-# #
-# This module determines which and forks the flow off to the #
-# appropriate "callout" (for "disabled" and "Line F") or to the #
-# correct emulation code (for "FPU unimplemented"). #
-# This code also must check for "fmovecr" instructions w/ a #
-# non-zero <ea> field. These may get flagged as "Line F" but should #
-# really be flagged as "FPU Unimplemented". (This is a "feature" on #
-# the '060. #
-# #
-#########################################################################
-
- global _fpsp_fline
-_fpsp_fline:
-
-# check to see if this exception is a "FP Unimplemented Instruction"
-# exception. if so, branch directly to that handler's entry point.
- cmpi.w 0x6(%sp),&0x202c
- beq.l _fpsp_unimp
-
-# check to see if the FPU is disabled. if so, jump to the OS entry
-# point for that condition.
- cmpi.w 0x6(%sp),&0x402c
- beq.l _real_fpu_disabled
-
-# the exception was an "F-Line Illegal" exception. we check to see
-# if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if
-# so, convert the F-Line exception stack frame to an FP Unimplemented
-# Instruction exception stack frame else branch to the OS entry
-# point for the F-Line exception handler.
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
-
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch instruction words
-
- bfextu %d0{&0:&10},%d1 # is it an fmovecr?
- cmpi.w %d1,&0x03c8
- bne.b fline_fline # no
-
- bfextu %d0{&16:&6},%d1 # is it an fmovecr?
- cmpi.b %d1,&0x17
- bne.b fline_fline # no
-
-# it's an fmovecr w/ a non-zero <ea> that has entered through
-# the F-Line Illegal exception.
-# so, we need to convert the F-Line exception stack frame into an
-# FP Unimplemented Instruction stack frame and jump to that entry
-# point.
-#
-# but, if the FPU is disabled, then we need to jump to the FPU disabled
-# entry point.
- movc %pcr,%d0
- btst &0x1,%d0
- beq.b fline_fmovcr
-
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- sub.l &0x8,%sp # make room for "Next PC", <ea>
- mov.w 0x8(%sp),(%sp)
- mov.l 0xa(%sp),0x2(%sp) # move "Current PC"
- mov.w &0x402c,0x6(%sp)
- mov.l 0x2(%sp),0xc(%sp)
- addq.l &0x4,0x2(%sp) # set "Next PC"
-
- bra.l _real_fpu_disabled
-
-fline_fmovcr:
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- fmov.l 0x2(%sp),%fpiar # set current PC
- addq.l &0x4,0x2(%sp) # set Next PC
-
- mov.l (%sp),-(%sp)
- mov.l 0x8(%sp),0x4(%sp)
- mov.b &0x20,0x6(%sp)
-
- bra.l _fpsp_unimp
-
-fline_fline:
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- bra.l _real_fline
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented #
-# Instruction" exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Unimplemented Instruction exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_{word,long}() - read instruction word/longword #
-# load_fop() - load src/dst ops from memory and/or FP regfile #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# tbl_trans - addr of table of emulation routines for trnscndls #
-# _real_access() - "callout" for access error exception #
-# _fpsp_done() - "callout" for exit; work all done #
-# _real_trace() - "callout" for Trace enabled exception #
-# smovcr() - emulate "fmovecr" instruction #
-# funimp_skew() - adjust fsave src ops to "incorrect" value #
-# _ftrapcc() - emulate an "ftrapcc" instruction #
-# _fdbcc() - emulate an "fdbcc" instruction #
-# _fscc() - emulate an "fscc" instruction #
-# _real_trap() - "callout" for Trap exception #
-# _real_bsun() - "callout" for enabled Bsun exception #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the "Unimplemented Instr" stk frame #
-# #
-# OUTPUT ************************************************************** #
-# If access error: #
-# - The system stack is changed to an access error stack frame #
-# If Trace exception enabled: #
-# - The system stack is changed to a Trace exception stack frame #
-# Else: (normal case) #
-# - Correct result has been stored as appropriate #
-# #
-# ALGORITHM *********************************************************** #
-# There are two main cases of instructions that may enter here to #
-# be emulated: (1) the FPgen instructions, most of which were also #
-# unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc". #
-# For the first set, this handler calls the routine load_fop() #
-# to load the source and destination (for dyadic) operands to be used #
-# for instruction emulation. The correct emulation routine is then #
-# chosen by decoding the instruction type and indexing into an #
-# emulation subroutine index table. After emulation returns, this #
-# handler checks to see if an exception should occur as a result of the #
-# FP instruction emulation. If so, then an FP exception of the correct #
-# type is inserted into the FPU state frame using the "frestore" #
-# instruction before exiting through _fpsp_done(). In either the #
-# exceptional or non-exceptional cases, we must check to see if the #
-# Trace exception is enabled. If so, then we must create a Trace #
-# exception frame from the current exception frame and exit through #
-# _real_trace(). #
-# For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines #
-# _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three #
-# may flag that a BSUN exception should be taken. If so, then the #
-# current exception stack frame is converted into a BSUN exception #
-# stack frame and an exit is made through _real_bsun(). If the #
-# instruction was "ftrapcc" and a Trap exception should result, a Trap #
-# exception stack frame is created from the current frame and an exit #
-# is made through _real_trap(). If a Trace exception is pending, then #
-# a Trace exception frame is created from the current frame and a jump #
-# is made to _real_trace(). Finally, if none of these conditions exist, #
-# then the handler exits though the callout _fpsp_done(). #
-# #
-# In any of the above scenarios, if a _mem_read() or _mem_write() #
-# "callout" returns a failing value, then an access error stack frame #
-# is created from the current stack frame and an exit is made through #
-# _real_access(). #
-# #
-#########################################################################
-
-#
-# FP UNIMPLEMENTED INSTRUCTION STACK FRAME:
-#
-# *****************
-# * * => <ea> of fp unimp instr.
-# - EA -
-# * *
-# *****************
-# * 0x2 * 0x02c * => frame format and vector offset(vector #11)
-# *****************
-# * *
-# - Next PC - => PC of instr to execute after exc handling
-# * *
-# *****************
-# * SR * => SR at the time the exception was taken
-# *****************
-#
-# Note: the !NULL bit does not get set in the fsave frame when the
-# machine encounters an fp unimp exception. Therefore, it must be set
-# before leaving this handler.
-#
- global _fpsp_unimp
-_fpsp_unimp:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1
-
- btst &0x5,EXC_SR(%a6) # user mode exception?
- bne.b funimp_s # no; supervisor mode
-
-# save the value of the user stack pointer onto the stack frame
-funimp_u:
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # store in stack frame
- bra.b funimp_cont
-
-# store the value of the supervisor stack pointer BEFORE the exc occurred.
-# old_sp is address just above stacked effective address.
-funimp_s:
- lea 4+EXC_EA(%a6),%a0 # load old a7'
- mov.l %a0,EXC_A7(%a6) # store a7'
- mov.l %a0,OLD_A7(%a6) # make a copy
-
-funimp_cont:
-
-# the FPIAR holds the "current PC" of the faulting instruction.
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-############################################################################
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- clr.b SPCOND_FLG(%a6) # clear "special case" flag
-
-# Divide the fp instructions into 8 types based on the TYPE field in
-# bits 6-8 of the opword(classes 6,7 are undefined).
-# (for the '060, only two types can take this exception)
-# bftst %d0{&7:&3} # test TYPE
- btst &22,%d0 # type 0 or 1 ?
- bne.w funimp_misc # type 1
-
-#########################################
-# TYPE == 0: General instructions #
-#########################################
-funimp_gen:
-
- clr.b STORE_FLG(%a6) # clear "store result" flag
-
-# clear the ccode byte and exception status byte
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- bfextu %d0{&16:&6},%d1 # extract upper 6 of cmdreg
- cmpi.b %d1,&0x17 # is op an fmovecr?
- beq.w funimp_fmovcr # yes
-
-funimp_gen_op:
- bsr.l _load_fop # load
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x003f,%d1 # extract extension bits
- lsl.w &0x3,%d1 # shift right 3 bits
- or.b STAG(%a6),%d1 # insert src optag bits
-
- lea FP_DST(%a6),%a1 # pass dst ptr in a1
- lea FP_SRC(%a6),%a0 # pass src ptr in a0
-
- mov.w (tbl_trans.w,%pc,%d1.w*2),%d1
- jsr (tbl_trans.w,%pc,%d1.w*1) # emulate
-
-funimp_fsave:
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w funimp_ena # some are enabled
-
-funimp_store:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn
- bsr.l store_fpreg # store result to fp regfile
-
-funimp_gen_exit:
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
-funimp_gen_exit_cmp:
- cmpi.b SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ?
- beq.b funimp_gen_exit_a7 # yes
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ?
- beq.b funimp_gen_exit_a7 # yes
-
-funimp_gen_exit_cont:
- unlk %a6
-
-funimp_gen_exit_cont2:
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
-
-# this catches a problem with the case where an exception will be re-inserted
-# into the machine. the frestore has already been executed...so, the fmov.l
-# alone of the control register would trigger an unwanted exception.
-# until I feel like fixing this, we'll sidestep the exception.
- fsave -(%sp)
- fmov.l %fpiar,0x14(%sp) # "Current PC" is in FPIAR
- frestore (%sp)+
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x24
- bra.l _real_trace
-
-funimp_gen_exit_a7:
- btst &0x5,EXC_SR(%a6) # supervisor or user mode?
- bne.b funimp_gen_exit_a7_s # supervisor
-
- mov.l %a0,-(%sp)
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- mov.l (%sp)+,%a0
- bra.b funimp_gen_exit_cont
-
-# if the instruction was executed from supervisor mode and the addressing
-# mode was (a7)+, then the stack frame for the rte must be shifted "up"
-# "n" bytes where "n" is the size of the src operand type.
-# f<op>.{b,w,l,s,d,x,p}
-funimp_gen_exit_a7_s:
- mov.l %d0,-(%sp) # save d0
- mov.l EXC_A7(%a6),%d0 # load new a7'
- sub.l OLD_A7(%a6),%d0 # subtract old a7'
- mov.l 0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame
- mov.l EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame
- mov.w %d0,EXC_SR(%a6) # store incr number
- mov.l (%sp)+,%d0 # restore d0
-
- unlk %a6
-
- add.w (%sp),%sp # stack frame shifted
- bra.b funimp_gen_exit_cont2
-
-######################
-# fmovecr.x #ccc,fpn #
-######################
-funimp_fmovcr:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.l &0x0000007f,%d1 # pass rom offset in d1
- bsr.l smovcr
- bra.w funimp_fsave
-
-#########################################################################
-
-#
-# the user has enabled some exceptions. we figure not to see this too
-# often so that's why it gets lower priority.
-#
-funimp_ena:
-
-# was an exception set that was also enabled?
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled and set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b funimp_exc # at least one was set
-
-# no exception that was enabled was set BUT if we got an exact overflow
-# and overflow wasn't enabled but inexact was (yech!) then this is
-# an inexact exception; otherwise, return to normal non-exception flow.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- beq.w funimp_store # no; return to normal flow
-
-# the overflow w/ exact result happened but was inexact set in the FPCR?
-funimp_ovfl:
- btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
- beq.w funimp_store # no; return to normal flow
- bra.b funimp_exc_ovfl # yes
-
-# some exception happened that was actually enabled.
-# we'll insert this new exception into the FPU and then return.
-funimp_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX?
- bne.b funimp_exc_force # no
-
-# the enabled exception was inexact. so, if it occurs with an overflow
-# or underflow that was disabled, then we have to force an overflow or
-# underflow frame. the eventual overflow or underflow handler will see that
-# it's actually an inexact and act appropriately. this is the only easy
-# way to have the EXOP available for the enabled inexact handler when
-# a disabled overflow or underflow has also happened.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- bne.b funimp_exc_ovfl # yes
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
- bne.b funimp_exc_unfl # yes
-
-# force the fsave exception status bits to signal an exception of the
-# appropriate type. don't forget to "skew" the source operand in case we
-# "unskewed" the one the hardware initially gave us.
-funimp_exc_force:
- mov.l %d0,-(%sp) # save d0
- bsr.l funimp_skew # check for special case
- mov.l (%sp)+,%d0 # restore d0
- mov.w (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
- bra.b funimp_gen_exit2 # exit with frestore
-
-tbl_funimp_except:
- short 0xe002, 0xe006, 0xe004, 0xe005
- short 0xe003, 0xe002, 0xe001, 0xe001
-
-# insert an overflow frame
-funimp_exc_ovfl:
- bsr.l funimp_skew # check for special case
- mov.w &0xe005,2+FP_SRC(%a6)
- bra.b funimp_gen_exit2
-
-# insert an underflow frame
-funimp_exc_unfl:
- bsr.l funimp_skew # check for special case
- mov.w &0xe003,2+FP_SRC(%a6)
-
-# this is the general exit point for an enabled exception that will be
-# restored into the machine for the instruction just emulated.
-funimp_gen_exit2:
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # insert exceptional status
-
- bra.w funimp_gen_exit_cmp
-
-############################################################################
-
-#
-# TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc>
-#
-# These instructions were implemented on the '881/2 and '040 in hardware but
-# are emulated in software on the '060.
-#
-funimp_misc:
- bfextu %d0{&10:&3},%d1 # extract mode field
- cmpi.b %d1,&0x1 # is it an fdb<cc>?
- beq.w funimp_fdbcc # yes
- cmpi.b %d1,&0x7 # is it an fs<cc>?
- bne.w funimp_fscc # yes
- bfextu %d0{&13:&3},%d1
- cmpi.b %d1,&0x2 # is it an fs<cc>?
- blt.w funimp_fscc # yes
-
-#########################
-# ftrap<cc> #
-# ftrap<cc>.w #<data> #
-# ftrap<cc>.l #<data> #
-#########################
-funimp_ftrapcc:
-
- bsr.l _ftrapcc # FTRAP<cc>()
-
- cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
- beq.w funimp_bsun # yes
-
- cmpi.b SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur?
- bne.w funimp_done # no
-
-# FP UNIMP FRAME TRAP FRAME
-# ***************** *****************
-# ** <EA> ** ** Current PC **
-# ***************** *****************
-# * 0x2 * 0x02c * * 0x2 * 0x01c *
-# ***************** *****************
-# ** Next PC ** ** Next PC **
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-# (6 words) (6 words)
-#
-# the ftrapcc instruction should take a trap. so, here we must create a
-# trap stack frame from an unimplemented fp instruction stack frame and
-# jump to the user supplied entry point for the trap exception
-funimp_ftrapcc_tp:
- mov.l USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC
- mov.w &0x201c,EXC_VOFF(%a6) # Vector Offset = 0x01c
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
- bra.l _real_trap
-
-#########################
-# fdb<cc> Dn,<label> #
-#########################
-funimp_fdbcc:
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # read displacement
-
- tst.l %d1 # did ifetch fail?
- bne.w funimp_iacc # yes
-
- ext.l %d0 # sign extend displacement
-
- bsr.l _fdbcc # FDB<cc>()
-
- cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
- beq.w funimp_bsun
-
- bra.w funimp_done # branch to finish
-
-#################
-# fs<cc>.b <ea> #
-#################
-funimp_fscc:
-
- bsr.l _fscc # FS<cc>()
-
-# I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction
-# does not need to update "An" before taking a bsun exception.
- cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
- beq.w funimp_bsun
-
- btst &0x5,EXC_SR(%a6) # yes; is it a user mode exception?
- bne.b funimp_fscc_s # no
-
-funimp_fscc_u:
- mov.l EXC_A7(%a6),%a0 # yes; set new USP
- mov.l %a0,%usp
- bra.w funimp_done # branch to finish
-
-# remember, I'm assuming that post-increment is bogus...(it IS!!!)
-# so, the least significant WORD of the stacked effective address got
-# overwritten by the "fs<cc> -(An)". We must shift the stack frame "down"
-# so that the rte will work correctly without destroying the result.
-# even though the operation size is byte, the stack ptr is decr by 2.
-#
-# remember, also, this instruction may be traced.
-funimp_fscc_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # was a7 modified?
- bne.w funimp_done # no
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- btst &0x7,(%sp) # is trace enabled?
- bne.b funimp_fscc_s_trace # yes
-
- subq.l &0x2,%sp
- mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down"
- mov.l 0x6(%sp),0x4(%sp) # shift lo(PC),voff "down"
- bra.l _fpsp_done
-
-funimp_fscc_s_trace:
- subq.l &0x2,%sp
- mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down"
- mov.w 0x6(%sp),0x4(%sp) # shift lo(PC)
- mov.w &0x2024,0x6(%sp) # fmt/voff = $2024
- fmov.l %fpiar,0x8(%sp) # insert "current PC"
-
- bra.l _real_trace
-
-#
-# The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert
-# the fp unimplemented instruction exception stack frame into a bsun stack frame,
-# restore a bsun exception into the machine, and branch to the user
-# supplied bsun hook.
-#
-# FP UNIMP FRAME BSUN FRAME
-# ***************** *****************
-# ** <EA> ** * 0x0 * 0x0c0 *
-# ***************** *****************
-# * 0x2 * 0x02c * ** Current PC **
-# ***************** *****************
-# ** Next PC ** * SR *
-# ***************** *****************
-# * SR * (4 words)
-# *****************
-# (6 words)
-#
-funimp_bsun:
- mov.w &0x00c0,2+EXC_EA(%a6) # Fmt = 0x0; Vector Offset = 0x0c0
- mov.l USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC
- mov.w EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up"
-
- mov.w &0xe000,2+FP_SRC(%a6) # bsun exception enabled
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore bsun exception
-
- unlk %a6
-
- addq.l &0x4,%sp # erase sludge
-
- bra.l _real_bsun # branch to user bsun hook
-
-#
-# all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame
-# and return.
-#
-# as usual, we have to check for trace mode being on here. since instructions
-# modifying the supervisor stack frame don't pass through here, this is a
-# relatively easy task.
-#
-funimp_done:
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- btst &0x7,(%sp) # is trace enabled?
- bne.b funimp_trace # yes
-
- bra.l _fpsp_done
-
-# FP UNIMP FRAME TRACE FRAME
-# ***************** *****************
-# ** <EA> ** ** Current PC **
-# ***************** *****************
-# * 0x2 * 0x02c * * 0x2 * 0x024 *
-# ***************** *****************
-# ** Next PC ** ** Next PC **
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-# (6 words) (6 words)
-#
-# the fscc instruction should take a trace trap. so, here we must create a
-# trace stack frame from an unimplemented fp instruction stack frame and
-# jump to the user supplied entry point for the trace exception
-funimp_trace:
- fmov.l %fpiar,0x8(%sp) # current PC is in fpiar
- mov.b &0x24,0x7(%sp) # vector offset = 0x024
-
- bra.l _real_trace
-
-################################################################
-
- global tbl_trans
- swbeg &0x1c0
-tbl_trans:
- short tbl_trans - tbl_trans # $00-0 fmovecr all
- short tbl_trans - tbl_trans # $00-1 fmovecr all
- short tbl_trans - tbl_trans # $00-2 fmovecr all
- short tbl_trans - tbl_trans # $00-3 fmovecr all
- short tbl_trans - tbl_trans # $00-4 fmovecr all
- short tbl_trans - tbl_trans # $00-5 fmovecr all
- short tbl_trans - tbl_trans # $00-6 fmovecr all
- short tbl_trans - tbl_trans # $00-7 fmovecr all
-
- short tbl_trans - tbl_trans # $01-0 fint norm
- short tbl_trans - tbl_trans # $01-1 fint zero
- short tbl_trans - tbl_trans # $01-2 fint inf
- short tbl_trans - tbl_trans # $01-3 fint qnan
- short tbl_trans - tbl_trans # $01-5 fint denorm
- short tbl_trans - tbl_trans # $01-4 fint snan
- short tbl_trans - tbl_trans # $01-6 fint unnorm
- short tbl_trans - tbl_trans # $01-7 ERROR
-
- short ssinh - tbl_trans # $02-0 fsinh norm
- short src_zero - tbl_trans # $02-1 fsinh zero
- short src_inf - tbl_trans # $02-2 fsinh inf
- short src_qnan - tbl_trans # $02-3 fsinh qnan
- short ssinhd - tbl_trans # $02-5 fsinh denorm
- short src_snan - tbl_trans # $02-4 fsinh snan
- short tbl_trans - tbl_trans # $02-6 fsinh unnorm
- short tbl_trans - tbl_trans # $02-7 ERROR
-
- short tbl_trans - tbl_trans # $03-0 fintrz norm
- short tbl_trans - tbl_trans # $03-1 fintrz zero
- short tbl_trans - tbl_trans # $03-2 fintrz inf
- short tbl_trans - tbl_trans # $03-3 fintrz qnan
- short tbl_trans - tbl_trans # $03-5 fintrz denorm
- short tbl_trans - tbl_trans # $03-4 fintrz snan
- short tbl_trans - tbl_trans # $03-6 fintrz unnorm
- short tbl_trans - tbl_trans # $03-7 ERROR
-
- short tbl_trans - tbl_trans # $04-0 fsqrt norm
- short tbl_trans - tbl_trans # $04-1 fsqrt zero
- short tbl_trans - tbl_trans # $04-2 fsqrt inf
- short tbl_trans - tbl_trans # $04-3 fsqrt qnan
- short tbl_trans - tbl_trans # $04-5 fsqrt denorm
- short tbl_trans - tbl_trans # $04-4 fsqrt snan
- short tbl_trans - tbl_trans # $04-6 fsqrt unnorm
- short tbl_trans - tbl_trans # $04-7 ERROR
-
- short tbl_trans - tbl_trans # $05-0 ERROR
- short tbl_trans - tbl_trans # $05-1 ERROR
- short tbl_trans - tbl_trans # $05-2 ERROR
- short tbl_trans - tbl_trans # $05-3 ERROR
- short tbl_trans - tbl_trans # $05-4 ERROR
- short tbl_trans - tbl_trans # $05-5 ERROR
- short tbl_trans - tbl_trans # $05-6 ERROR
- short tbl_trans - tbl_trans # $05-7 ERROR
-
- short slognp1 - tbl_trans # $06-0 flognp1 norm
- short src_zero - tbl_trans # $06-1 flognp1 zero
- short sopr_inf - tbl_trans # $06-2 flognp1 inf
- short src_qnan - tbl_trans # $06-3 flognp1 qnan
- short slognp1d - tbl_trans # $06-5 flognp1 denorm
- short src_snan - tbl_trans # $06-4 flognp1 snan
- short tbl_trans - tbl_trans # $06-6 flognp1 unnorm
- short tbl_trans - tbl_trans # $06-7 ERROR
-
- short tbl_trans - tbl_trans # $07-0 ERROR
- short tbl_trans - tbl_trans # $07-1 ERROR
- short tbl_trans - tbl_trans # $07-2 ERROR
- short tbl_trans - tbl_trans # $07-3 ERROR
- short tbl_trans - tbl_trans # $07-4 ERROR
- short tbl_trans - tbl_trans # $07-5 ERROR
- short tbl_trans - tbl_trans # $07-6 ERROR
- short tbl_trans - tbl_trans # $07-7 ERROR
-
- short setoxm1 - tbl_trans # $08-0 fetoxm1 norm
- short src_zero - tbl_trans # $08-1 fetoxm1 zero
- short setoxm1i - tbl_trans # $08-2 fetoxm1 inf
- short src_qnan - tbl_trans # $08-3 fetoxm1 qnan
- short setoxm1d - tbl_trans # $08-5 fetoxm1 denorm
- short src_snan - tbl_trans # $08-4 fetoxm1 snan
- short tbl_trans - tbl_trans # $08-6 fetoxm1 unnorm
- short tbl_trans - tbl_trans # $08-7 ERROR
-
- short stanh - tbl_trans # $09-0 ftanh norm
- short src_zero - tbl_trans # $09-1 ftanh zero
- short src_one - tbl_trans # $09-2 ftanh inf
- short src_qnan - tbl_trans # $09-3 ftanh qnan
- short stanhd - tbl_trans # $09-5 ftanh denorm
- short src_snan - tbl_trans # $09-4 ftanh snan
- short tbl_trans - tbl_trans # $09-6 ftanh unnorm
- short tbl_trans - tbl_trans # $09-7 ERROR
-
- short satan - tbl_trans # $0a-0 fatan norm
- short src_zero - tbl_trans # $0a-1 fatan zero
- short spi_2 - tbl_trans # $0a-2 fatan inf
- short src_qnan - tbl_trans # $0a-3 fatan qnan
- short satand - tbl_trans # $0a-5 fatan denorm
- short src_snan - tbl_trans # $0a-4 fatan snan
- short tbl_trans - tbl_trans # $0a-6 fatan unnorm
- short tbl_trans - tbl_trans # $0a-7 ERROR
-
- short tbl_trans - tbl_trans # $0b-0 ERROR
- short tbl_trans - tbl_trans # $0b-1 ERROR
- short tbl_trans - tbl_trans # $0b-2 ERROR
- short tbl_trans - tbl_trans # $0b-3 ERROR
- short tbl_trans - tbl_trans # $0b-4 ERROR
- short tbl_trans - tbl_trans # $0b-5 ERROR
- short tbl_trans - tbl_trans # $0b-6 ERROR
- short tbl_trans - tbl_trans # $0b-7 ERROR
-
- short sasin - tbl_trans # $0c-0 fasin norm
- short src_zero - tbl_trans # $0c-1 fasin zero
- short t_operr - tbl_trans # $0c-2 fasin inf
- short src_qnan - tbl_trans # $0c-3 fasin qnan
- short sasind - tbl_trans # $0c-5 fasin denorm
- short src_snan - tbl_trans # $0c-4 fasin snan
- short tbl_trans - tbl_trans # $0c-6 fasin unnorm
- short tbl_trans - tbl_trans # $0c-7 ERROR
-
- short satanh - tbl_trans # $0d-0 fatanh norm
- short src_zero - tbl_trans # $0d-1 fatanh zero
- short t_operr - tbl_trans # $0d-2 fatanh inf
- short src_qnan - tbl_trans # $0d-3 fatanh qnan
- short satanhd - tbl_trans # $0d-5 fatanh denorm
- short src_snan - tbl_trans # $0d-4 fatanh snan
- short tbl_trans - tbl_trans # $0d-6 fatanh unnorm
- short tbl_trans - tbl_trans # $0d-7 ERROR
-
- short ssin - tbl_trans # $0e-0 fsin norm
- short src_zero - tbl_trans # $0e-1 fsin zero
- short t_operr - tbl_trans # $0e-2 fsin inf
- short src_qnan - tbl_trans # $0e-3 fsin qnan
- short ssind - tbl_trans # $0e-5 fsin denorm
- short src_snan - tbl_trans # $0e-4 fsin snan
- short tbl_trans - tbl_trans # $0e-6 fsin unnorm
- short tbl_trans - tbl_trans # $0e-7 ERROR
-
- short stan - tbl_trans # $0f-0 ftan norm
- short src_zero - tbl_trans # $0f-1 ftan zero
- short t_operr - tbl_trans # $0f-2 ftan inf
- short src_qnan - tbl_trans # $0f-3 ftan qnan
- short stand - tbl_trans # $0f-5 ftan denorm
- short src_snan - tbl_trans # $0f-4 ftan snan
- short tbl_trans - tbl_trans # $0f-6 ftan unnorm
- short tbl_trans - tbl_trans # $0f-7 ERROR
-
- short setox - tbl_trans # $10-0 fetox norm
- short ld_pone - tbl_trans # $10-1 fetox zero
- short szr_inf - tbl_trans # $10-2 fetox inf
- short src_qnan - tbl_trans # $10-3 fetox qnan
- short setoxd - tbl_trans # $10-5 fetox denorm
- short src_snan - tbl_trans # $10-4 fetox snan
- short tbl_trans - tbl_trans # $10-6 fetox unnorm
- short tbl_trans - tbl_trans # $10-7 ERROR
-
- short stwotox - tbl_trans # $11-0 ftwotox norm
- short ld_pone - tbl_trans # $11-1 ftwotox zero
- short szr_inf - tbl_trans # $11-2 ftwotox inf
- short src_qnan - tbl_trans # $11-3 ftwotox qnan
- short stwotoxd - tbl_trans # $11-5 ftwotox denorm
- short src_snan - tbl_trans # $11-4 ftwotox snan
- short tbl_trans - tbl_trans # $11-6 ftwotox unnorm
- short tbl_trans - tbl_trans # $11-7 ERROR
-
- short stentox - tbl_trans # $12-0 ftentox norm
- short ld_pone - tbl_trans # $12-1 ftentox zero
- short szr_inf - tbl_trans # $12-2 ftentox inf
- short src_qnan - tbl_trans # $12-3 ftentox qnan
- short stentoxd - tbl_trans # $12-5 ftentox denorm
- short src_snan - tbl_trans # $12-4 ftentox snan
- short tbl_trans - tbl_trans # $12-6 ftentox unnorm
- short tbl_trans - tbl_trans # $12-7 ERROR
-
- short tbl_trans - tbl_trans # $13-0 ERROR
- short tbl_trans - tbl_trans # $13-1 ERROR
- short tbl_trans - tbl_trans # $13-2 ERROR
- short tbl_trans - tbl_trans # $13-3 ERROR
- short tbl_trans - tbl_trans # $13-4 ERROR
- short tbl_trans - tbl_trans # $13-5 ERROR
- short tbl_trans - tbl_trans # $13-6 ERROR
- short tbl_trans - tbl_trans # $13-7 ERROR
-
- short slogn - tbl_trans # $14-0 flogn norm
- short t_dz2 - tbl_trans # $14-1 flogn zero
- short sopr_inf - tbl_trans # $14-2 flogn inf
- short src_qnan - tbl_trans # $14-3 flogn qnan
- short slognd - tbl_trans # $14-5 flogn denorm
- short src_snan - tbl_trans # $14-4 flogn snan
- short tbl_trans - tbl_trans # $14-6 flogn unnorm
- short tbl_trans - tbl_trans # $14-7 ERROR
-
- short slog10 - tbl_trans # $15-0 flog10 norm
- short t_dz2 - tbl_trans # $15-1 flog10 zero
- short sopr_inf - tbl_trans # $15-2 flog10 inf
- short src_qnan - tbl_trans # $15-3 flog10 qnan
- short slog10d - tbl_trans # $15-5 flog10 denorm
- short src_snan - tbl_trans # $15-4 flog10 snan
- short tbl_trans - tbl_trans # $15-6 flog10 unnorm
- short tbl_trans - tbl_trans # $15-7 ERROR
-
- short slog2 - tbl_trans # $16-0 flog2 norm
- short t_dz2 - tbl_trans # $16-1 flog2 zero
- short sopr_inf - tbl_trans # $16-2 flog2 inf
- short src_qnan - tbl_trans # $16-3 flog2 qnan
- short slog2d - tbl_trans # $16-5 flog2 denorm
- short src_snan - tbl_trans # $16-4 flog2 snan
- short tbl_trans - tbl_trans # $16-6 flog2 unnorm
- short tbl_trans - tbl_trans # $16-7 ERROR
-
- short tbl_trans - tbl_trans # $17-0 ERROR
- short tbl_trans - tbl_trans # $17-1 ERROR
- short tbl_trans - tbl_trans # $17-2 ERROR
- short tbl_trans - tbl_trans # $17-3 ERROR
- short tbl_trans - tbl_trans # $17-4 ERROR
- short tbl_trans - tbl_trans # $17-5 ERROR
- short tbl_trans - tbl_trans # $17-6 ERROR
- short tbl_trans - tbl_trans # $17-7 ERROR
-
- short tbl_trans - tbl_trans # $18-0 fabs norm
- short tbl_trans - tbl_trans # $18-1 fabs zero
- short tbl_trans - tbl_trans # $18-2 fabs inf
- short tbl_trans - tbl_trans # $18-3 fabs qnan
- short tbl_trans - tbl_trans # $18-5 fabs denorm
- short tbl_trans - tbl_trans # $18-4 fabs snan
- short tbl_trans - tbl_trans # $18-6 fabs unnorm
- short tbl_trans - tbl_trans # $18-7 ERROR
-
- short scosh - tbl_trans # $19-0 fcosh norm
- short ld_pone - tbl_trans # $19-1 fcosh zero
- short ld_pinf - tbl_trans # $19-2 fcosh inf
- short src_qnan - tbl_trans # $19-3 fcosh qnan
- short scoshd - tbl_trans # $19-5 fcosh denorm
- short src_snan - tbl_trans # $19-4 fcosh snan
- short tbl_trans - tbl_trans # $19-6 fcosh unnorm
- short tbl_trans - tbl_trans # $19-7 ERROR
-
- short tbl_trans - tbl_trans # $1a-0 fneg norm
- short tbl_trans - tbl_trans # $1a-1 fneg zero
- short tbl_trans - tbl_trans # $1a-2 fneg inf
- short tbl_trans - tbl_trans # $1a-3 fneg qnan
- short tbl_trans - tbl_trans # $1a-5 fneg denorm
- short tbl_trans - tbl_trans # $1a-4 fneg snan
- short tbl_trans - tbl_trans # $1a-6 fneg unnorm
- short tbl_trans - tbl_trans # $1a-7 ERROR
-
- short tbl_trans - tbl_trans # $1b-0 ERROR
- short tbl_trans - tbl_trans # $1b-1 ERROR
- short tbl_trans - tbl_trans # $1b-2 ERROR
- short tbl_trans - tbl_trans # $1b-3 ERROR
- short tbl_trans - tbl_trans # $1b-4 ERROR
- short tbl_trans - tbl_trans # $1b-5 ERROR
- short tbl_trans - tbl_trans # $1b-6 ERROR
- short tbl_trans - tbl_trans # $1b-7 ERROR
-
- short sacos - tbl_trans # $1c-0 facos norm
- short ld_ppi2 - tbl_trans # $1c-1 facos zero
- short t_operr - tbl_trans # $1c-2 facos inf
- short src_qnan - tbl_trans # $1c-3 facos qnan
- short sacosd - tbl_trans # $1c-5 facos denorm
- short src_snan - tbl_trans # $1c-4 facos snan
- short tbl_trans - tbl_trans # $1c-6 facos unnorm
- short tbl_trans - tbl_trans # $1c-7 ERROR
-
- short scos - tbl_trans # $1d-0 fcos norm
- short ld_pone - tbl_trans # $1d-1 fcos zero
- short t_operr - tbl_trans # $1d-2 fcos inf
- short src_qnan - tbl_trans # $1d-3 fcos qnan
- short scosd - tbl_trans # $1d-5 fcos denorm
- short src_snan - tbl_trans # $1d-4 fcos snan
- short tbl_trans - tbl_trans # $1d-6 fcos unnorm
- short tbl_trans - tbl_trans # $1d-7 ERROR
-
- short sgetexp - tbl_trans # $1e-0 fgetexp norm
- short src_zero - tbl_trans # $1e-1 fgetexp zero
- short t_operr - tbl_trans # $1e-2 fgetexp inf
- short src_qnan - tbl_trans # $1e-3 fgetexp qnan
- short sgetexpd - tbl_trans # $1e-5 fgetexp denorm
- short src_snan - tbl_trans # $1e-4 fgetexp snan
- short tbl_trans - tbl_trans # $1e-6 fgetexp unnorm
- short tbl_trans - tbl_trans # $1e-7 ERROR
-
- short sgetman - tbl_trans # $1f-0 fgetman norm
- short src_zero - tbl_trans # $1f-1 fgetman zero
- short t_operr - tbl_trans # $1f-2 fgetman inf
- short src_qnan - tbl_trans # $1f-3 fgetman qnan
- short sgetmand - tbl_trans # $1f-5 fgetman denorm
- short src_snan - tbl_trans # $1f-4 fgetman snan
- short tbl_trans - tbl_trans # $1f-6 fgetman unnorm
- short tbl_trans - tbl_trans # $1f-7 ERROR
-
- short tbl_trans - tbl_trans # $20-0 fdiv norm
- short tbl_trans - tbl_trans # $20-1 fdiv zero
- short tbl_trans - tbl_trans # $20-2 fdiv inf
- short tbl_trans - tbl_trans # $20-3 fdiv qnan
- short tbl_trans - tbl_trans # $20-5 fdiv denorm
- short tbl_trans - tbl_trans # $20-4 fdiv snan
- short tbl_trans - tbl_trans # $20-6 fdiv unnorm
- short tbl_trans - tbl_trans # $20-7 ERROR
-
- short smod_snorm - tbl_trans # $21-0 fmod norm
- short smod_szero - tbl_trans # $21-1 fmod zero
- short smod_sinf - tbl_trans # $21-2 fmod inf
- short sop_sqnan - tbl_trans # $21-3 fmod qnan
- short smod_sdnrm - tbl_trans # $21-5 fmod denorm
- short sop_ssnan - tbl_trans # $21-4 fmod snan
- short tbl_trans - tbl_trans # $21-6 fmod unnorm
- short tbl_trans - tbl_trans # $21-7 ERROR
-
- short tbl_trans - tbl_trans # $22-0 fadd norm
- short tbl_trans - tbl_trans # $22-1 fadd zero
- short tbl_trans - tbl_trans # $22-2 fadd inf
- short tbl_trans - tbl_trans # $22-3 fadd qnan
- short tbl_trans - tbl_trans # $22-5 fadd denorm
- short tbl_trans - tbl_trans # $22-4 fadd snan
- short tbl_trans - tbl_trans # $22-6 fadd unnorm
- short tbl_trans - tbl_trans # $22-7 ERROR
-
- short tbl_trans - tbl_trans # $23-0 fmul norm
- short tbl_trans - tbl_trans # $23-1 fmul zero
- short tbl_trans - tbl_trans # $23-2 fmul inf
- short tbl_trans - tbl_trans # $23-3 fmul qnan
- short tbl_trans - tbl_trans # $23-5 fmul denorm
- short tbl_trans - tbl_trans # $23-4 fmul snan
- short tbl_trans - tbl_trans # $23-6 fmul unnorm
- short tbl_trans - tbl_trans # $23-7 ERROR
-
- short tbl_trans - tbl_trans # $24-0 fsgldiv norm
- short tbl_trans - tbl_trans # $24-1 fsgldiv zero
- short tbl_trans - tbl_trans # $24-2 fsgldiv inf
- short tbl_trans - tbl_trans # $24-3 fsgldiv qnan
- short tbl_trans - tbl_trans # $24-5 fsgldiv denorm
- short tbl_trans - tbl_trans # $24-4 fsgldiv snan
- short tbl_trans - tbl_trans # $24-6 fsgldiv unnorm
- short tbl_trans - tbl_trans # $24-7 ERROR
-
- short srem_snorm - tbl_trans # $25-0 frem norm
- short srem_szero - tbl_trans # $25-1 frem zero
- short srem_sinf - tbl_trans # $25-2 frem inf
- short sop_sqnan - tbl_trans # $25-3 frem qnan
- short srem_sdnrm - tbl_trans # $25-5 frem denorm
- short sop_ssnan - tbl_trans # $25-4 frem snan
- short tbl_trans - tbl_trans # $25-6 frem unnorm
- short tbl_trans - tbl_trans # $25-7 ERROR
-
- short sscale_snorm - tbl_trans # $26-0 fscale norm
- short sscale_szero - tbl_trans # $26-1 fscale zero
- short sscale_sinf - tbl_trans # $26-2 fscale inf
- short sop_sqnan - tbl_trans # $26-3 fscale qnan
- short sscale_sdnrm - tbl_trans # $26-5 fscale denorm
- short sop_ssnan - tbl_trans # $26-4 fscale snan
- short tbl_trans - tbl_trans # $26-6 fscale unnorm
- short tbl_trans - tbl_trans # $26-7 ERROR
-
- short tbl_trans - tbl_trans # $27-0 fsglmul norm
- short tbl_trans - tbl_trans # $27-1 fsglmul zero
- short tbl_trans - tbl_trans # $27-2 fsglmul inf
- short tbl_trans - tbl_trans # $27-3 fsglmul qnan
- short tbl_trans - tbl_trans # $27-5 fsglmul denorm
- short tbl_trans - tbl_trans # $27-4 fsglmul snan
- short tbl_trans - tbl_trans # $27-6 fsglmul unnorm
- short tbl_trans - tbl_trans # $27-7 ERROR
-
- short tbl_trans - tbl_trans # $28-0 fsub norm
- short tbl_trans - tbl_trans # $28-1 fsub zero
- short tbl_trans - tbl_trans # $28-2 fsub inf
- short tbl_trans - tbl_trans # $28-3 fsub qnan
- short tbl_trans - tbl_trans # $28-5 fsub denorm
- short tbl_trans - tbl_trans # $28-4 fsub snan
- short tbl_trans - tbl_trans # $28-6 fsub unnorm
- short tbl_trans - tbl_trans # $28-7 ERROR
-
- short tbl_trans - tbl_trans # $29-0 ERROR
- short tbl_trans - tbl_trans # $29-1 ERROR
- short tbl_trans - tbl_trans # $29-2 ERROR
- short tbl_trans - tbl_trans # $29-3 ERROR
- short tbl_trans - tbl_trans # $29-4 ERROR
- short tbl_trans - tbl_trans # $29-5 ERROR
- short tbl_trans - tbl_trans # $29-6 ERROR
- short tbl_trans - tbl_trans # $29-7 ERROR
-
- short tbl_trans - tbl_trans # $2a-0 ERROR
- short tbl_trans - tbl_trans # $2a-1 ERROR
- short tbl_trans - tbl_trans # $2a-2 ERROR
- short tbl_trans - tbl_trans # $2a-3 ERROR
- short tbl_trans - tbl_trans # $2a-4 ERROR
- short tbl_trans - tbl_trans # $2a-5 ERROR
- short tbl_trans - tbl_trans # $2a-6 ERROR
- short tbl_trans - tbl_trans # $2a-7 ERROR
-
- short tbl_trans - tbl_trans # $2b-0 ERROR
- short tbl_trans - tbl_trans # $2b-1 ERROR
- short tbl_trans - tbl_trans # $2b-2 ERROR
- short tbl_trans - tbl_trans # $2b-3 ERROR
- short tbl_trans - tbl_trans # $2b-4 ERROR
- short tbl_trans - tbl_trans # $2b-5 ERROR
- short tbl_trans - tbl_trans # $2b-6 ERROR
- short tbl_trans - tbl_trans # $2b-7 ERROR
-
- short tbl_trans - tbl_trans # $2c-0 ERROR
- short tbl_trans - tbl_trans # $2c-1 ERROR
- short tbl_trans - tbl_trans # $2c-2 ERROR
- short tbl_trans - tbl_trans # $2c-3 ERROR
- short tbl_trans - tbl_trans # $2c-4 ERROR
- short tbl_trans - tbl_trans # $2c-5 ERROR
- short tbl_trans - tbl_trans # $2c-6 ERROR
- short tbl_trans - tbl_trans # $2c-7 ERROR
-
- short tbl_trans - tbl_trans # $2d-0 ERROR
- short tbl_trans - tbl_trans # $2d-1 ERROR
- short tbl_trans - tbl_trans # $2d-2 ERROR
- short tbl_trans - tbl_trans # $2d-3 ERROR
- short tbl_trans - tbl_trans # $2d-4 ERROR
- short tbl_trans - tbl_trans # $2d-5 ERROR
- short tbl_trans - tbl_trans # $2d-6 ERROR
- short tbl_trans - tbl_trans # $2d-7 ERROR
-
- short tbl_trans - tbl_trans # $2e-0 ERROR
- short tbl_trans - tbl_trans # $2e-1 ERROR
- short tbl_trans - tbl_trans # $2e-2 ERROR
- short tbl_trans - tbl_trans # $2e-3 ERROR
- short tbl_trans - tbl_trans # $2e-4 ERROR
- short tbl_trans - tbl_trans # $2e-5 ERROR
- short tbl_trans - tbl_trans # $2e-6 ERROR
- short tbl_trans - tbl_trans # $2e-7 ERROR
-
- short tbl_trans - tbl_trans # $2f-0 ERROR
- short tbl_trans - tbl_trans # $2f-1 ERROR
- short tbl_trans - tbl_trans # $2f-2 ERROR
- short tbl_trans - tbl_trans # $2f-3 ERROR
- short tbl_trans - tbl_trans # $2f-4 ERROR
- short tbl_trans - tbl_trans # $2f-5 ERROR
- short tbl_trans - tbl_trans # $2f-6 ERROR
- short tbl_trans - tbl_trans # $2f-7 ERROR
-
- short ssincos - tbl_trans # $30-0 fsincos norm
- short ssincosz - tbl_trans # $30-1 fsincos zero
- short ssincosi - tbl_trans # $30-2 fsincos inf
- short ssincosqnan - tbl_trans # $30-3 fsincos qnan
- short ssincosd - tbl_trans # $30-5 fsincos denorm
- short ssincossnan - tbl_trans # $30-4 fsincos snan
- short tbl_trans - tbl_trans # $30-6 fsincos unnorm
- short tbl_trans - tbl_trans # $30-7 ERROR
-
- short ssincos - tbl_trans # $31-0 fsincos norm
- short ssincosz - tbl_trans # $31-1 fsincos zero
- short ssincosi - tbl_trans # $31-2 fsincos inf
- short ssincosqnan - tbl_trans # $31-3 fsincos qnan
- short ssincosd - tbl_trans # $31-5 fsincos denorm
- short ssincossnan - tbl_trans # $31-4 fsincos snan
- short tbl_trans - tbl_trans # $31-6 fsincos unnorm
- short tbl_trans - tbl_trans # $31-7 ERROR
-
- short ssincos - tbl_trans # $32-0 fsincos norm
- short ssincosz - tbl_trans # $32-1 fsincos zero
- short ssincosi - tbl_trans # $32-2 fsincos inf
- short ssincosqnan - tbl_trans # $32-3 fsincos qnan
- short ssincosd - tbl_trans # $32-5 fsincos denorm
- short ssincossnan - tbl_trans # $32-4 fsincos snan
- short tbl_trans - tbl_trans # $32-6 fsincos unnorm
- short tbl_trans - tbl_trans # $32-7 ERROR
-
- short ssincos - tbl_trans # $33-0 fsincos norm
- short ssincosz - tbl_trans # $33-1 fsincos zero
- short ssincosi - tbl_trans # $33-2 fsincos inf
- short ssincosqnan - tbl_trans # $33-3 fsincos qnan
- short ssincosd - tbl_trans # $33-5 fsincos denorm
- short ssincossnan - tbl_trans # $33-4 fsincos snan
- short tbl_trans - tbl_trans # $33-6 fsincos unnorm
- short tbl_trans - tbl_trans # $33-7 ERROR
-
- short ssincos - tbl_trans # $34-0 fsincos norm
- short ssincosz - tbl_trans # $34-1 fsincos zero
- short ssincosi - tbl_trans # $34-2 fsincos inf
- short ssincosqnan - tbl_trans # $34-3 fsincos qnan
- short ssincosd - tbl_trans # $34-5 fsincos denorm
- short ssincossnan - tbl_trans # $34-4 fsincos snan
- short tbl_trans - tbl_trans # $34-6 fsincos unnorm
- short tbl_trans - tbl_trans # $34-7 ERROR
-
- short ssincos - tbl_trans # $35-0 fsincos norm
- short ssincosz - tbl_trans # $35-1 fsincos zero
- short ssincosi - tbl_trans # $35-2 fsincos inf
- short ssincosqnan - tbl_trans # $35-3 fsincos qnan
- short ssincosd - tbl_trans # $35-5 fsincos denorm
- short ssincossnan - tbl_trans # $35-4 fsincos snan
- short tbl_trans - tbl_trans # $35-6 fsincos unnorm
- short tbl_trans - tbl_trans # $35-7 ERROR
-
- short ssincos - tbl_trans # $36-0 fsincos norm
- short ssincosz - tbl_trans # $36-1 fsincos zero
- short ssincosi - tbl_trans # $36-2 fsincos inf
- short ssincosqnan - tbl_trans # $36-3 fsincos qnan
- short ssincosd - tbl_trans # $36-5 fsincos denorm
- short ssincossnan - tbl_trans # $36-4 fsincos snan
- short tbl_trans - tbl_trans # $36-6 fsincos unnorm
- short tbl_trans - tbl_trans # $36-7 ERROR
-
- short ssincos - tbl_trans # $37-0 fsincos norm
- short ssincosz - tbl_trans # $37-1 fsincos zero
- short ssincosi - tbl_trans # $37-2 fsincos inf
- short ssincosqnan - tbl_trans # $37-3 fsincos qnan
- short ssincosd - tbl_trans # $37-5 fsincos denorm
- short ssincossnan - tbl_trans # $37-4 fsincos snan
- short tbl_trans - tbl_trans # $37-6 fsincos unnorm
- short tbl_trans - tbl_trans # $37-7 ERROR
-
-##########
-
-# the instruction fetch access for the displacement word for the
-# fdbcc emulation failed. here, we create an access error frame
-# from the current frame and branch to _real_access().
-funimp_iacc:
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
-
- mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
-
- unlk %a6
-
- mov.l (%sp),-(%sp) # store SR,hi(PC)
- mov.w 0x8(%sp),0x4(%sp) # store lo(PC)
- mov.w &0x4008,0x6(%sp) # store voff
- mov.l 0x2(%sp),0x8(%sp) # store EA
- mov.l &0x09428001,0xc(%sp) # store FSLW
-
- btst &0x5,(%sp) # user or supervisor mode?
- beq.b funimp_iacc_end # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-
-funimp_iacc_end:
- bra.l _real_access
-
-#########################################################################
-# ssin(): computes the sine of a normalized input #
-# ssind(): computes the sine of a denormalized input #
-# scos(): computes the cosine of a normalized input #
-# scosd(): computes the cosine of a denormalized input #
-# ssincos(): computes the sine and cosine of a normalized input #
-# ssincosd(): computes the sine and cosine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = sin(X) or cos(X) #
-# #
-# For ssincos(X): #
-# fp0 = sin(X) #
-# fp1 = cos(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 1 ulp in 64 significant bit, i.e. #
-# within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# SIN and COS: #
-# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. #
-# #
-# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
-# #
-# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
-# k = N mod 4, so in particular, k = 0,1,2,or 3. #
-# Overwrite k by k := k + AdjN. #
-# #
-# 4. If k is even, go to 6. #
-# #
-# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. #
-# Return sgn*cos(r) where cos(r) is approximated by an #
-# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
-# s = r*r. #
-# Exit. #
-# #
-# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) #
-# where sin(r) is approximated by an odd polynomial in r #
-# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. #
-# Exit. #
-# #
-# 7. If |X| > 1, go to 9. #
-# #
-# 8. (|X|<2**(-40)) If SIN is invoked, return X; #
-# otherwise return 1. #
-# #
-# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
-# go back to 3. #
-# #
-# SINCOS: #
-# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
-# #
-# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
-# k = N mod 4, so in particular, k = 0,1,2,or 3. #
-# #
-# 3. If k is even, go to 5. #
-# #
-# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
-# j1 exclusive or with the l.s.b. of k. #
-# sgn1 := (-1)**j1, sgn2 := (-1)**j2. #
-# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where #
-# sin(r) and cos(r) are computed as odd and even #
-# polynomials in r, respectively. Exit #
-# #
-# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. #
-# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where #
-# sin(r) and cos(r) are computed as odd and even #
-# polynomials in r, respectively. Exit #
-# #
-# 6. If |X| > 1, go to 8. #
-# #
-# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. #
-# #
-# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
-# go back to 2. #
-# #
-#########################################################################
-
-SINA7: long 0xBD6AAA77,0xCCC994F5
-SINA6: long 0x3DE61209,0x7AAE8DA1
-SINA5: long 0xBE5AE645,0x2A118AE4
-SINA4: long 0x3EC71DE3,0xA5341531
-SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
-SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000
-SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
-
-COSB8: long 0x3D2AC4D0,0xD6011EE3
-COSB7: long 0xBDA9396F,0x9F45AC19
-COSB6: long 0x3E21EED9,0x0612C972
-COSB5: long 0xBE927E4F,0xB79D9FCF
-COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
-COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
-COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
-COSB1: long 0xBF000000
-
- set INARG,FP_SCR0
-
- set X,FP_SCR0
-# set XDCARE,X+2
- set XFRAC,X+4
-
- set RPRIME,FP_SCR0
- set SPRIME,FP_SCR1
-
- set POSNEG1,L_SCR1
- set TWOTO63,L_SCR1
-
- set ENDFLAG,L_SCR2
- set INT,L_SCR2
-
- set ADJN,L_SCR3
-
-############################################
- global ssin
-ssin:
- mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0
- bra.b SINBGN
-
-############################################
- global scos
-scos:
- mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1
-
-############################################
-SINBGN:
-#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
-
- fmov.x (%a0),%fp0 # LOAD INPUT
- fmov.x %fp0,X(%a6) # save input at X
-
-# "COMPACTIFY" X
- mov.l (%a0),%d1 # put exp in hi word
- mov.w 4(%a0),%d1 # fetch hi(man)
- and.l &0x7FFFFFFF,%d1 # strip sign
-
- cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)?
- bge.b SOK1 # no
- bra.w SINSM # yes; input is very small
-
-SOK1:
- cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
- blt.b SINMAIN # no
- bra.w SREDUCEX # yes; input is very large
-
-#--THIS IS THE USUAL CASE, |X| <= 15 PI.
-#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
-SINMAIN:
- fmov.x %fp0,%fp1
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
-
- mov.l INT(%a6),%d1 # make a copy of N
- asl.l &4,%d1 # N *= 16
- add.l %d1,%a1 # tbl_addr = a1 + (N*16)
-
-# A1 IS THE ADDRESS OF N*PIBY2
-# ...WHICH IS IN TWO PIECES Y1 & Y2
- fsub.x (%a1)+,%fp0 # X-Y1
- fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2
-
-SINCONT:
-#--continuation from REDUCEX
-
-#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
- mov.l INT(%a6),%d1
- add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN
- ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE
- cmp.l %d1,&0
- blt.w COSPOLY
-
-#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
-#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
-#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
-#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
-#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
-#--WHERE T=S*S.
-#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
-#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
-SINPOLY:
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.x %fp0,X(%a6) # X IS R
- fmul.x %fp0,%fp0 # FP0 IS S
-
- fmov.d SINA7(%pc),%fp3
- fmov.d SINA6(%pc),%fp2
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS T
-
- ror.l &1,%d1
- and.l &0x80000000,%d1
-# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
- eor.l %d1,X(%a6) # X IS NOW R'= SGN*R
-
- fmul.x %fp1,%fp3 # TA7
- fmul.x %fp1,%fp2 # TA6
-
- fadd.d SINA5(%pc),%fp3 # A5+TA7
- fadd.d SINA4(%pc),%fp2 # A4+TA6
-
- fmul.x %fp1,%fp3 # T(A5+TA7)
- fmul.x %fp1,%fp2 # T(A4+TA6)
-
- fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7)
- fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6)
-
- fmul.x %fp3,%fp1 # T(A3+T(A5+TA7))
-
- fmul.x %fp0,%fp2 # S(A2+T(A4+TA6))
- fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7))
- fmul.x X(%a6),%fp0 # R'*S
-
- fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
-
- fmul.x %fp1,%fp0 # SIN(R')-R'
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.x X(%a6),%fp0 # last inst - possible exception set
- bra t_inx2
-
-#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
-#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
-#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
-#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
-#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
-#--WHERE T=S*S.
-#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
-#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
-#--AND IS THEREFORE STORED AS SINGLE PRECISION.
-COSPOLY:
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.x %fp0,%fp0 # FP0 IS S
-
- fmov.d COSB8(%pc),%fp2
- fmov.d COSB7(%pc),%fp3
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS T
-
- fmov.x %fp0,X(%a6) # X IS S
- ror.l &1,%d1
- and.l &0x80000000,%d1
-# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
-
- fmul.x %fp1,%fp2 # TB8
-
- eor.l %d1,X(%a6) # X IS NOW S'= SGN*S
- and.l &0x80000000,%d1
-
- fmul.x %fp1,%fp3 # TB7
-
- or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE
- mov.l %d1,POSNEG1(%a6)
-
- fadd.d COSB6(%pc),%fp2 # B6+TB8
- fadd.d COSB5(%pc),%fp3 # B5+TB7
-
- fmul.x %fp1,%fp2 # T(B6+TB8)
- fmul.x %fp1,%fp3 # T(B5+TB7)
-
- fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8)
- fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7)
-
- fmul.x %fp1,%fp2 # T(B4+T(B6+TB8))
- fmul.x %fp3,%fp1 # T(B3+T(B5+TB7))
-
- fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8))
- fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7))
-
- fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8)))
-
- fadd.x %fp1,%fp0
-
- fmul.x X(%a6),%fp0
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set
- bra t_inx2
-
-##############################################
-
-# SINe: Big OR Small?
-#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
-#--IF |X| < 2**(-40), RETURN X OR 1.
-SINBORS:
- cmp.l %d1,&0x3FFF8000
- bgt.l SREDUCEX
-
-SINSM:
- mov.l ADJN(%a6),%d1
- cmp.l %d1,&0
- bgt.b COSTINY
-
-# here, the operation may underflow iff the precision is sgl or dbl.
-# extended denorms are handled through another entry point.
-SINTINY:
-# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
- bra t_catch
-
-COSTINY:
- fmov.s &0x3F800000,%fp0 # fp0 = 1.0
- fmov.l %d0,%fpcr # restore users round mode,prec
- fadd.s &0x80800000,%fp0 # last inst - possible exception set
- bra t_pinx2
-
-################################################
- global ssind
-#--SIN(X) = X FOR DENORMALIZED X
-ssind:
- bra t_extdnrm
-
-############################################
- global scosd
-#--COS(X) = 1 FOR DENORMALIZED X
-scosd:
- fmov.s &0x3F800000,%fp0 # fp0 = 1.0
- bra t_pinx2
-
-##################################################
-
- global ssincos
-ssincos:
-#--SET ADJN TO 4
- mov.l &4,ADJN(%a6)
-
- fmov.x (%a0),%fp0 # LOAD INPUT
- fmov.x %fp0,X(%a6)
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1 # COMPACTIFY X
-
- cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
- bge.b SCOK1
- bra.w SCSM
-
-SCOK1:
- cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
- blt.b SCMAIN
- bra.w SREDUCEX
-
-
-#--THIS IS THE USUAL CASE, |X| <= 15 PI.
-#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
-SCMAIN:
- fmov.x %fp0,%fp1
-
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
-
- mov.l INT(%a6),%d1
- asl.l &4,%d1
- add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2
-
- fsub.x (%a1)+,%fp0 # X-Y1
- fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
-
-SCCONT:
-#--continuation point from REDUCEX
-
- mov.l INT(%a6),%d1
- ror.l &1,%d1
- cmp.l %d1,&0 # D0 < 0 IFF N IS ODD
- bge.w NEVEN
-
-SNODD:
-#--REGISTERS SAVED SO FAR: D0, A0, FP2.
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,RPRIME(%a6)
- fmul.x %fp0,%fp0 # FP0 IS S = R*R
- fmov.d SINA7(%pc),%fp1 # A7
- fmov.d COSB8(%pc),%fp2 # B8
- fmul.x %fp0,%fp1 # SA7
- fmul.x %fp0,%fp2 # SB8
-
- mov.l %d2,-(%sp)
- mov.l %d1,%d2
- ror.l &1,%d2
- and.l &0x80000000,%d2
- eor.l %d1,%d2
- and.l &0x80000000,%d2
-
- fadd.d SINA6(%pc),%fp1 # A6+SA7
- fadd.d COSB7(%pc),%fp2 # B7+SB8
-
- fmul.x %fp0,%fp1 # S(A6+SA7)
- eor.l %d2,RPRIME(%a6)
- mov.l (%sp)+,%d2
- fmul.x %fp0,%fp2 # S(B7+SB8)
- ror.l &1,%d1
- and.l &0x80000000,%d1
- mov.l &0x3F800000,POSNEG1(%a6)
- eor.l %d1,POSNEG1(%a6)
-
- fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7)
- fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8)
-
- fmul.x %fp0,%fp1 # S(A5+S(A6+SA7))
- fmul.x %fp0,%fp2 # S(B6+S(B7+SB8))
- fmov.x %fp0,SPRIME(%a6)
-
- fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7))
- eor.l %d1,SPRIME(%a6)
- fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8))
-
- fmul.x %fp0,%fp1 # S(A4+...)
- fmul.x %fp0,%fp2 # S(B5+...)
-
- fadd.d SINA3(%pc),%fp1 # A3+S(A4+...)
- fadd.d COSB4(%pc),%fp2 # B4+S(B5+...)
-
- fmul.x %fp0,%fp1 # S(A3+...)
- fmul.x %fp0,%fp2 # S(B4+...)
-
- fadd.x SINA2(%pc),%fp1 # A2+S(A3+...)
- fadd.x COSB3(%pc),%fp2 # B3+S(B4+...)
-
- fmul.x %fp0,%fp1 # S(A2+...)
- fmul.x %fp0,%fp2 # S(B3+...)
-
- fadd.x SINA1(%pc),%fp1 # A1+S(A2+...)
- fadd.x COSB2(%pc),%fp2 # B2+S(B3+...)
-
- fmul.x %fp0,%fp1 # S(A1+...)
- fmul.x %fp2,%fp0 # S(B2+...)
-
- fmul.x RPRIME(%a6),%fp1 # R'S(A1+...)
- fadd.s COSB1(%pc),%fp0 # B1+S(B2...)
- fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...))
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr
- fadd.x RPRIME(%a6),%fp1 # COS(X)
- bsr sto_cos # store cosine result
- fadd.s POSNEG1(%a6),%fp0 # SIN(X)
- bra t_inx2
-
-NEVEN:
-#--REGISTERS SAVED SO FAR: FP2.
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,RPRIME(%a6)
- fmul.x %fp0,%fp0 # FP0 IS S = R*R
-
- fmov.d COSB8(%pc),%fp1 # B8
- fmov.d SINA7(%pc),%fp2 # A7
-
- fmul.x %fp0,%fp1 # SB8
- fmov.x %fp0,SPRIME(%a6)
- fmul.x %fp0,%fp2 # SA7
-
- ror.l &1,%d1
- and.l &0x80000000,%d1
-
- fadd.d COSB7(%pc),%fp1 # B7+SB8
- fadd.d SINA6(%pc),%fp2 # A6+SA7
-
- eor.l %d1,RPRIME(%a6)
- eor.l %d1,SPRIME(%a6)
-
- fmul.x %fp0,%fp1 # S(B7+SB8)
-
- or.l &0x3F800000,%d1
- mov.l %d1,POSNEG1(%a6)
-
- fmul.x %fp0,%fp2 # S(A6+SA7)
-
- fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8)
- fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7)
-
- fmul.x %fp0,%fp1 # S(B6+S(B7+SB8))
- fmul.x %fp0,%fp2 # S(A5+S(A6+SA7))
-
- fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8))
- fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7))
-
- fmul.x %fp0,%fp1 # S(B5+...)
- fmul.x %fp0,%fp2 # S(A4+...)
-
- fadd.d COSB4(%pc),%fp1 # B4+S(B5+...)
- fadd.d SINA3(%pc),%fp2 # A3+S(A4+...)
-
- fmul.x %fp0,%fp1 # S(B4+...)
- fmul.x %fp0,%fp2 # S(A3+...)
-
- fadd.x COSB3(%pc),%fp1 # B3+S(B4+...)
- fadd.x SINA2(%pc),%fp2 # A2+S(A3+...)
-
- fmul.x %fp0,%fp1 # S(B3+...)
- fmul.x %fp0,%fp2 # S(A2+...)
-
- fadd.x COSB2(%pc),%fp1 # B2+S(B3+...)
- fadd.x SINA1(%pc),%fp2 # A1+S(A2+...)
-
- fmul.x %fp0,%fp1 # S(B2+...)
- fmul.x %fp2,%fp0 # s(a1+...)
-
-
- fadd.s COSB1(%pc),%fp1 # B1+S(B2...)
- fmul.x RPRIME(%a6),%fp0 # R'S(A1+...)
- fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...))
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr
- fadd.s POSNEG1(%a6),%fp1 # COS(X)
- bsr sto_cos # store cosine result
- fadd.x RPRIME(%a6),%fp0 # SIN(X)
- bra t_inx2
-
-################################################
-
-SCBORS:
- cmp.l %d1,&0x3FFF8000
- bgt.w SREDUCEX
-
-################################################
-
-SCSM:
-# mov.w &0x0000,XDCARE(%a6)
- fmov.s &0x3F800000,%fp1
-
- fmov.l %d0,%fpcr
- fsub.s &0x00800000,%fp1
- bsr sto_cos # store cosine result
- fmov.l %fpcr,%d0 # d0 must have fpcr,too
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0
- bra t_catch
-
-##############################################
-
- global ssincosd
-#--SIN AND COS OF X FOR DENORMALIZED X
-ssincosd:
- mov.l %d0,-(%sp) # save d0
- fmov.s &0x3F800000,%fp1
- bsr sto_cos # store cosine result
- mov.l (%sp)+,%d0 # restore d0
- bra t_extdnrm
-
-############################################
-
-#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
-#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
-#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
-SREDUCEX:
- fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
- mov.l %d2,-(%sp) # save d2
- fmov.s &0x00000000,%fp1 # fp1 = 0
-
-#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
-#--there is a danger of unwanted overflow in first LOOP iteration. In this
-#--case, reduce argument by one remainder step to make subsequent reduction
-#--safe.
- cmp.l %d1,&0x7ffeffff # is arg dangerously large?
- bne.b SLOOP # no
-
-# yes; create 2**16383*PI/2
- mov.w &0x7ffe,FP_SCR0_EX(%a6)
- mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
-
-# create low half of 2**16383*PI/2 at FP_SCR1
- mov.w &0x7fdc,FP_SCR1_EX(%a6)
- mov.l &0x85a308d3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
-
- ftest.x %fp0 # test sign of argument
- fblt.w sred_neg
-
- or.b &0x80,FP_SCR0_EX(%a6) # positive arg
- or.b &0x80,FP_SCR1_EX(%a6)
-sred_neg:
- fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
- fmov.x %fp0,%fp1 # save high result in fp1
- fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
- fsub.x %fp0,%fp1 # determine low component of result
- fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
-
-#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
-#--integer quotient will be stored in N
-#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
-SLOOP:
- fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
- mov.w INARG(%a6),%d1
- mov.l %d1,%a1 # save a copy of D0
- and.l &0x00007FFF,%d1
- sub.l &0x00003FFF,%d1 # d0 = K
- cmp.l %d1,&28
- ble.b SLASTLOOP
-SCONTLOOP:
- sub.l &27,%d1 # d0 = L := K-27
- mov.b &0,ENDFLAG(%a6)
- bra.b SWORK
-SLASTLOOP:
- clr.l %d1 # d0 = L := 0
- mov.b &1,ENDFLAG(%a6)
-
-SWORK:
-#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
-#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
-#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
-#--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
- sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
-
- mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
- mov.l &0x4E44152A,FP_SCR0_LO(%a6)
- mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
-
- fmov.x %fp0,%fp2
- fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
-
-#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
-#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
-#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
-#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
-#--US THE DESIRED VALUE IN FLOATING POINT.
- mov.l %a1,%d2
- swap %d2
- and.l &0x80000000,%d2
- or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
- mov.l %d2,TWOTO63(%a6)
- fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
- fsub.s TWOTO63(%a6),%fp2 # fp2 = N
-# fint.x %fp2
-
-#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- mov.l %d1,%d2 # d2 = L
-
- add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
- mov.w %d2,FP_SCR0_EX(%a6)
- mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
-
- add.l &0x00003FDD,%d1
- mov.w %d1,FP_SCR1_EX(%a6)
- mov.l &0x85A308D3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
-
- mov.b ENDFLAG(%a6),%d1
-
-#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
-#--P2 = 2**(L) * Piby2_2
- fmov.x %fp2,%fp4 # fp4 = N
- fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
- fmov.x %fp2,%fp5 # fp5 = N
- fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
- fmov.x %fp4,%fp3 # fp3 = W = N*P1
-
-#--we want P+p = W+w but |p| <= half ulp of P
-#--Then, we need to compute A := R-P and a := r-p
- fadd.x %fp5,%fp3 # fp3 = P
- fsub.x %fp3,%fp4 # fp4 = W-P
-
- fsub.x %fp3,%fp0 # fp0 = A := R - P
- fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
-
- fmov.x %fp0,%fp3 # fp3 = A
- fsub.x %fp4,%fp1 # fp1 = a := r - p
-
-#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
-#--|r| <= half ulp of R.
- fadd.x %fp1,%fp0 # fp0 = R := A+a
-#--No need to calculate r if this is the last loop
- cmp.b %d1,&0
- bgt.w SRESTORE
-
-#--Need to calculate r
- fsub.x %fp0,%fp3 # fp3 = A-R
- fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
- bra.w SLOOP
-
-SRESTORE:
- fmov.l %fp2,INT(%a6)
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
-
- mov.l ADJN(%a6),%d1
- cmp.l %d1,&4
-
- blt.w SINCONT
- bra.w SCCONT
-
-#########################################################################
-# stan(): computes the tangent of a normalized input #
-# stand(): computes the tangent of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = tan(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulp in 64 significant bit, i.e. #
-# within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
-# #
-# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
-# k = N mod 2, so in particular, k = 0 or 1. #
-# #
-# 3. If k is odd, go to 5. #
-# #
-# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a #
-# rational function U/V where #
-# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
-# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. #
-# Exit. #
-# #
-# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by #
-# a rational function U/V where #
-# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
-# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, #
-# -Cot(r) = -V/U. Exit. #
-# #
-# 6. If |X| > 1, go to 8. #
-# #
-# 7. (|X|<2**(-40)) Tan(X) = X. Exit. #
-# #
-# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
-# to 2. #
-# #
-#########################################################################
-
-TANQ4:
- long 0x3EA0B759,0xF50F8688
-TANP3:
- long 0xBEF2BAA5,0xA8924F04
-
-TANQ3:
- long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
-
-TANP2:
- long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
-
-TANQ2:
- long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
-
-TANP1:
- long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
-
-TANQ1:
- long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
-
-INVTWOPI:
- long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
-
-TWOPI1:
- long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
-TWOPI2:
- long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
-
-#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
-#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
-#--MOST 69 BITS LONG.
-# global PITBL
-PITBL:
- long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
- long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
- long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
- long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
- long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
- long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
- long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
- long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
- long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
- long 0xC0040000,0x90836524,0x88034B96,0x20B00000
- long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
- long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
- long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
- long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
- long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
- long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
- long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
- long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
- long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
- long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
- long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
- long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
- long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
- long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
- long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
- long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
- long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
- long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
- long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
- long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
- long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
- long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
- long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
- long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
- long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
- long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
- long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
- long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
- long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
- long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
- long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
- long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
- long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
- long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
- long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
- long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
- long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
- long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
- long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
- long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
- long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
- long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
- long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
- long 0x40040000,0x90836524,0x88034B96,0xA0B00000
- long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
- long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
- long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
- long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
- long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
- long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
- long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
- long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
- long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
-
- set INARG,FP_SCR0
-
- set TWOTO63,L_SCR1
- set INT,L_SCR1
- set ENDFLAG,L_SCR2
-
- global stan
-stan:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
- bge.b TANOK1
- bra.w TANSM
-TANOK1:
- cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
- blt.b TANMAIN
- bra.w REDUCEX
-
-TANMAIN:
-#--THIS IS THE USUAL CASE, |X| <= 15 PI.
-#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmov.x %fp0,%fp1
- fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
-
- lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
-
- fmov.l %fp1,%d1 # CONVERT TO INTEGER
-
- asl.l &4,%d1
- add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2
-
- fsub.x (%a1)+,%fp0 # X-Y1
-
- fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
-
- ror.l &5,%d1
- and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0
-
-TANCONT:
- fmovm.x &0x0c,-(%sp) # save fp2,fp3
-
- cmp.l %d1,&0
- blt.w NODD
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # S = R*R
-
- fmov.d TANQ4(%pc),%fp3
- fmov.d TANP3(%pc),%fp2
-
- fmul.x %fp1,%fp3 # SQ4
- fmul.x %fp1,%fp2 # SP3
-
- fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
- fadd.x TANP2(%pc),%fp2 # P2+SP3
-
- fmul.x %fp1,%fp3 # S(Q3+SQ4)
- fmul.x %fp1,%fp2 # S(P2+SP3)
-
- fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
- fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
-
- fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4))
- fmul.x %fp1,%fp2 # S(P1+S(P2+SP3))
-
- fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
- fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3))
-
- fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4)))
-
- fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3))
-
- fadd.s &0x3F800000,%fp1 # 1+S(Q1+...)
-
- fmovm.x (%sp)+,&0x30 # restore fp2,fp3
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fdiv.x %fp1,%fp0 # last inst - possible exception set
- bra t_inx2
-
-NODD:
- fmov.x %fp0,%fp1
- fmul.x %fp0,%fp0 # S = R*R
-
- fmov.d TANQ4(%pc),%fp3
- fmov.d TANP3(%pc),%fp2
-
- fmul.x %fp0,%fp3 # SQ4
- fmul.x %fp0,%fp2 # SP3
-
- fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
- fadd.x TANP2(%pc),%fp2 # P2+SP3
-
- fmul.x %fp0,%fp3 # S(Q3+SQ4)
- fmul.x %fp0,%fp2 # S(P2+SP3)
-
- fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
- fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
-
- fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4))
- fmul.x %fp0,%fp2 # S(P1+S(P2+SP3))
-
- fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
- fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3))
-
- fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4)))
-
- fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3))
- fadd.s &0x3F800000,%fp0 # 1+S(Q1+...)
-
- fmovm.x (%sp)+,&0x30 # restore fp2,fp3
-
- fmov.x %fp1,-(%sp)
- eor.l &0x80000000,(%sp)
-
- fmov.l %d0,%fpcr # restore users round mode,prec
- fdiv.x (%sp)+,%fp0 # last inst - possible exception set
- bra t_inx2
-
-TANBORS:
-#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
-#--IF |X| < 2**(-40), RETURN X OR 1.
- cmp.l %d1,&0x3FFF8000
- bgt.b REDUCEX
-
-TANSM:
- fmov.x %fp0,-(%sp)
- fmov.l %d0,%fpcr # restore users round mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%sp)+,%fp0 # last inst - posibble exception set
- bra t_catch
-
- global stand
-#--TAN(X) = X FOR DENORMALIZED X
-stand:
- bra t_extdnrm
-
-#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
-#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
-#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
-REDUCEX:
- fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
- mov.l %d2,-(%sp) # save d2
- fmov.s &0x00000000,%fp1 # fp1 = 0
-
-#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
-#--there is a danger of unwanted overflow in first LOOP iteration. In this
-#--case, reduce argument by one remainder step to make subsequent reduction
-#--safe.
- cmp.l %d1,&0x7ffeffff # is arg dangerously large?
- bne.b LOOP # no
-
-# yes; create 2**16383*PI/2
- mov.w &0x7ffe,FP_SCR0_EX(%a6)
- mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
-
-# create low half of 2**16383*PI/2 at FP_SCR1
- mov.w &0x7fdc,FP_SCR1_EX(%a6)
- mov.l &0x85a308d3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
-
- ftest.x %fp0 # test sign of argument
- fblt.w red_neg
-
- or.b &0x80,FP_SCR0_EX(%a6) # positive arg
- or.b &0x80,FP_SCR1_EX(%a6)
-red_neg:
- fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
- fmov.x %fp0,%fp1 # save high result in fp1
- fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
- fsub.x %fp0,%fp1 # determine low component of result
- fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
-
-#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
-#--integer quotient will be stored in N
-#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
-LOOP:
- fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
- mov.w INARG(%a6),%d1
- mov.l %d1,%a1 # save a copy of D0
- and.l &0x00007FFF,%d1
- sub.l &0x00003FFF,%d1 # d0 = K
- cmp.l %d1,&28
- ble.b LASTLOOP
-CONTLOOP:
- sub.l &27,%d1 # d0 = L := K-27
- mov.b &0,ENDFLAG(%a6)
- bra.b WORK
-LASTLOOP:
- clr.l %d1 # d0 = L := 0
- mov.b &1,ENDFLAG(%a6)
-
-WORK:
-#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
-#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
-#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
-#--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
- sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
-
- mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
- mov.l &0x4E44152A,FP_SCR0_LO(%a6)
- mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
-
- fmov.x %fp0,%fp2
- fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
-
-#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
-#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
-#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
-#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
-#--US THE DESIRED VALUE IN FLOATING POINT.
- mov.l %a1,%d2
- swap %d2
- and.l &0x80000000,%d2
- or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
- mov.l %d2,TWOTO63(%a6)
- fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
- fsub.s TWOTO63(%a6),%fp2 # fp2 = N
-# fintrz.x %fp2,%fp2
-
-#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- mov.l %d1,%d2 # d2 = L
-
- add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
- mov.w %d2,FP_SCR0_EX(%a6)
- mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
-
- add.l &0x00003FDD,%d1
- mov.w %d1,FP_SCR1_EX(%a6)
- mov.l &0x85A308D3,FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
-
- mov.b ENDFLAG(%a6),%d1
-
-#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
-#--P2 = 2**(L) * Piby2_2
- fmov.x %fp2,%fp4 # fp4 = N
- fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
- fmov.x %fp2,%fp5 # fp5 = N
- fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
- fmov.x %fp4,%fp3 # fp3 = W = N*P1
-
-#--we want P+p = W+w but |p| <= half ulp of P
-#--Then, we need to compute A := R-P and a := r-p
- fadd.x %fp5,%fp3 # fp3 = P
- fsub.x %fp3,%fp4 # fp4 = W-P
-
- fsub.x %fp3,%fp0 # fp0 = A := R - P
- fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
-
- fmov.x %fp0,%fp3 # fp3 = A
- fsub.x %fp4,%fp1 # fp1 = a := r - p
-
-#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
-#--|r| <= half ulp of R.
- fadd.x %fp1,%fp0 # fp0 = R := A+a
-#--No need to calculate r if this is the last loop
- cmp.b %d1,&0
- bgt.w RESTORE
-
-#--Need to calculate r
- fsub.x %fp0,%fp3 # fp3 = A-R
- fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
- bra.w LOOP
-
-RESTORE:
- fmov.l %fp2,INT(%a6)
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
-
- mov.l INT(%a6),%d1
- ror.l &1,%d1
-
- bra.w TANCONT
-
-#########################################################################
-# satan(): computes the arctangent of a normalized number #
-# satand(): computes the arctangent of a denormalized number #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arctan(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 2 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
-# #
-# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
-# Note that k = -4, -3,..., or 3. #
-# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 #
-# significant bits of X with a bit-1 attached at the 6-th #
-# bit position. Define u to be u = (X-F) / (1 + X*F). #
-# #
-# Step 3. Approximate arctan(u) by a polynomial poly. #
-# #
-# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
-# table of values calculated beforehand. Exit. #
-# #
-# Step 5. If |X| >= 16, go to Step 7. #
-# #
-# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
-# #
-# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
-# polynomial in X'. #
-# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
-# #
-#########################################################################
-
-ATANA3: long 0xBFF6687E,0x314987D8
-ATANA2: long 0x4002AC69,0x34A26DB3
-ATANA1: long 0xBFC2476F,0x4E1DA28E
-
-ATANB6: long 0x3FB34444,0x7F876989
-ATANB5: long 0xBFB744EE,0x7FAF45DB
-ATANB4: long 0x3FBC71C6,0x46940220
-ATANB3: long 0xBFC24924,0x921872F9
-ATANB2: long 0x3FC99999,0x99998FA9
-ATANB1: long 0xBFD55555,0x55555555
-
-ATANC5: long 0xBFB70BF3,0x98539E6A
-ATANC4: long 0x3FBC7187,0x962D1D7D
-ATANC3: long 0xBFC24924,0x827107B8
-ATANC2: long 0x3FC99999,0x9996263E
-ATANC1: long 0xBFD55555,0x55555536
-
-PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
-NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
-PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000
-NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000
-
-ATANTBL:
- long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
- long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
- long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
- long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
- long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
- long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
- long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
- long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
- long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
- long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
- long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
- long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
- long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
- long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
- long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
- long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
- long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
- long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
- long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
- long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
- long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
- long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
- long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
- long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
- long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
- long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
- long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
- long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
- long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
- long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
- long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
- long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
- long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
- long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
- long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
- long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
- long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
- long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
- long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
- long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
- long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
- long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
- long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
- long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
- long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
- long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
- long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
- long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
- long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
- long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
- long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
- long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
- long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
- long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
- long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
- long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
- long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
- long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
- long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
- long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
- long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
- long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
- long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
- long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
- long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
- long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
- long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
- long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
- long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
- long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
- long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
- long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
- long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
- long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
- long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
- long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
- long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
- long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
- long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
- long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
- long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
- long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
- long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
- long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
- long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
- long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
- long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
- long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
- long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
- long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
- long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
- long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
- long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
- long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
- long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
- long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
- long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
- long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
- long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
- long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
- long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
- long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
- long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
- long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
- long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
- long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
- long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
- long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
- long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
- long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
- long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
- long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
- long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
- long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
- long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
- long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
- long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
- long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
- long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
- long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
- long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
- long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
- long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
- long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
- long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
- long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
- long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
- long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
- set XFRACLO,X+8
-
- set ATANF,FP_SCR1
- set ATANFHI,ATANF+4
- set ATANFLO,ATANF+8
-
- global satan
-#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
-satan:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FFB8000 # |X| >= 1/16?
- bge.b ATANOK1
- bra.w ATANSM
-
-ATANOK1:
- cmp.l %d1,&0x4002FFFF # |X| < 16 ?
- ble.b ATANMAIN
- bra.w ATANBIG
-
-#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
-#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
-#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
-#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
-#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
-#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
-#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
-#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
-#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
-#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
-#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
-#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
-#--WILL INVOLVE A VERY LONG POLYNOMIAL.
-
-#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
-#--WE CHOSE F TO BE +-2^K * 1.BBBB1
-#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
-#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
-#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
-#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
-
-ATANMAIN:
-
- and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS
- or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1
- mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F
-
- fmov.x %fp0,%fp1 # FP1 IS X
- fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0
- fsub.x X(%a6),%fp0 # FP0 IS X-F
- fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F
- fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F)
-
-#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
-#--CREATE ATAN(F) AND STORE IT IN ATANF, AND
-#--SAVE REGISTERS FP2.
-
- mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY
- mov.l %d1,%d2 # THE EXP AND 16 BITS OF X
- and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION
- and.l &0x7FFF0000,%d2 # EXPONENT OF F
- sub.l &0x3FFB0000,%d2 # K+4
- asr.l &1,%d2
- add.l %d2,%d1 # THE 7 BITS IDENTIFYING F
- asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|)
- lea ATANTBL(%pc),%a1
- add.l %d1,%a1 # ADDRESS OF ATAN(|F|)
- mov.l (%a1)+,ATANF(%a6)
- mov.l (%a1)+,ATANFHI(%a6)
- mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|)
- mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN
- and.l &0x80000000,%d1 # SIGN(F)
- or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|)
- mov.l (%sp)+,%d2 # RESTORE d2
-
-#--THAT'S ALL I HAVE TO DO FOR NOW,
-#--BUT ALAS, THE DIVIDE IS STILL CRANKING!
-
-#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
-#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
-#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
-#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
-#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
-#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
-#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
-
- fmovm.x &0x04,-(%sp) # save fp2
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1
- fmov.d ATANA3(%pc),%fp2
- fadd.x %fp1,%fp2 # A3+V
- fmul.x %fp1,%fp2 # V*(A3+V)
- fmul.x %fp0,%fp1 # U*V
- fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V)
- fmul.d ATANA1(%pc),%fp1 # A1*U*V
- fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V))
- fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED
-
- fmovm.x (%sp)+,&0x20 # restore fp2
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- fadd.x ATANF(%a6),%fp0 # ATAN(X)
- bra t_inx2
-
-ATANBORS:
-#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
-#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
- cmp.l %d1,&0x3FFF8000
- bgt.w ATANBIG # I.E. |X| >= 16
-
-ATANSM:
-#--|X| <= 1/16
-#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
-#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
-#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
-#--WHERE Y = X*X, AND Z = Y*Y.
-
- cmp.l %d1,&0x3FD78000
- blt.w ATANTINY
-
-#--COMPUTE POLYNOMIAL
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.x %fp0,%fp0 # FPO IS Y = X*X
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
-
- fmov.d ATANB6(%pc),%fp2
- fmov.d ATANB5(%pc),%fp3
-
- fmul.x %fp1,%fp2 # Z*B6
- fmul.x %fp1,%fp3 # Z*B5
-
- fadd.d ATANB4(%pc),%fp2 # B4+Z*B6
- fadd.d ATANB3(%pc),%fp3 # B3+Z*B5
-
- fmul.x %fp1,%fp2 # Z*(B4+Z*B6)
- fmul.x %fp3,%fp1 # Z*(B3+Z*B5)
-
- fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6)
- fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5)
-
- fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6))
- fmul.x X(%a6),%fp0 # X*Y
-
- fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
-
- fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- fadd.x X(%a6),%fp0
- bra t_inx2
-
-ATANTINY:
-#--|X| < 2^(-40), ATAN(X) = X
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
-
- bra t_catch
-
-ATANBIG:
-#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
-#--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
- cmp.l %d1,&0x40638000
- bgt.w ATANHUGE
-
-#--APPROXIMATE ATAN(-1/X) BY
-#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
-#--THIS CAN BE RE-WRITTEN AS
-#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
-
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.s &0xBF800000,%fp1 # LOAD -1
- fdiv.x %fp0,%fp1 # FP1 IS -1/X
-
-#--DIVIDE IS STILL CRANKING
-
- fmov.x %fp1,%fp0 # FP0 IS X'
- fmul.x %fp0,%fp0 # FP0 IS Y = X'*X'
- fmov.x %fp1,X(%a6) # X IS REALLY X'
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
-
- fmov.d ATANC5(%pc),%fp3
- fmov.d ATANC4(%pc),%fp2
-
- fmul.x %fp1,%fp3 # Z*C5
- fmul.x %fp1,%fp2 # Z*B4
-
- fadd.d ATANC3(%pc),%fp3 # C3+Z*C5
- fadd.d ATANC2(%pc),%fp2 # C2+Z*C4
-
- fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED
- fmul.x %fp0,%fp2 # Y*(C2+Z*C4)
-
- fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5)
- fmul.x X(%a6),%fp0 # X'*Y
-
- fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
-
- fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)]
-# ... +[Y*(B2+Z*(B4+Z*B6))])
- fadd.x X(%a6),%fp0
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- tst.b (%a0)
- bpl.b pos_big
-
-neg_big:
- fadd.x NPIBY2(%pc),%fp0
- bra t_minx2
-
-pos_big:
- fadd.x PPIBY2(%pc),%fp0
- bra t_pinx2
-
-ATANHUGE:
-#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
- tst.b (%a0)
- bpl.b pos_huge
-
-neg_huge:
- fmov.x NPIBY2(%pc),%fp0
- fmov.l %d0,%fpcr
- fadd.x PTINY(%pc),%fp0
- bra t_minx2
-
-pos_huge:
- fmov.x PPIBY2(%pc),%fp0
- fmov.l %d0,%fpcr
- fadd.x NTINY(%pc),%fp0
- bra t_pinx2
-
- global satand
-#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
-satand:
- bra t_extdnrm
-
-#########################################################################
-# sasin(): computes the inverse sine of a normalized input #
-# sasind(): computes the inverse sine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arcsin(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# ASIN #
-# 1. If |X| >= 1, go to 3. #
-# #
-# 2. (|X| < 1) Calculate asin(X) by #
-# z := sqrt( [1-X][1+X] ) #
-# asin(X) = atan( x / z ). #
-# Exit. #
-# #
-# 3. If |X| > 1, go to 5. #
-# #
-# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
-# #
-# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
-# Exit. #
-# #
-#########################################################################
-
- global sasin
-sasin:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ASINBIG
-
-# This catch is added here for the '060 QSP. Originally, the call to
-# satan() would handle this case by causing the exception which would
-# not be caught until gen_except(). Now, with the exceptions being
-# detected inside of satan(), the exception would have been handled there
-# instead of inside sasin() as expected.
- cmp.l %d1,&0x3FD78000
- blt.w ASINTINY
-
-#--THIS IS THE USUAL CASE, |X| < 1
-#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
-
-ASINMAIN:
- fmov.s &0x3F800000,%fp1
- fsub.x %fp0,%fp1 # 1-X
- fmovm.x &0x4,-(%sp) # {fp2}
- fmov.s &0x3F800000,%fp2
- fadd.x %fp0,%fp2 # 1+X
- fmul.x %fp2,%fp1 # (1+X)(1-X)
- fmovm.x (%sp)+,&0x20 # {fp2}
- fsqrt.x %fp1 # SQRT([1-X][1+X])
- fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X])
- fmovm.x &0x01,-(%sp) # save X/SQRT(...)
- lea (%sp),%a0 # pass ptr to X/SQRT(...)
- bsr satan
- add.l &0xc,%sp # clear X/SQRT(...) from stack
- bra t_inx2
-
-ASINBIG:
- fabs.x %fp0 # |X|
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr # cause an operr exception
-
-#--|X| = 1, ASIN(X) = +- PI/2.
-ASINONE:
- fmov.x PIBY2(%pc),%fp0
- mov.l (%a0),%d1
- and.l &0x80000000,%d1 # SIGN BIT OF X
- or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT
- mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT
- fmov.l %d0,%fpcr
- fmul.s (%sp)+,%fp0
- bra t_inx2
-
-#--|X| < 2^(-40), ATAN(X) = X
-ASINTINY:
- fmov.l %d0,%fpcr # restore users rnd mode,prec
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%a0),%fp0 # last inst - possible exception
- bra t_catch
-
- global sasind
-#--ASIN(X) = X FOR DENORMALIZED X
-sasind:
- bra t_extdnrm
-
-#########################################################################
-# sacos(): computes the inverse cosine of a normalized input #
-# sacosd(): computes the inverse cosine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arccos(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# ACOS #
-# 1. If |X| >= 1, go to 3. #
-# #
-# 2. (|X| < 1) Calculate acos(X) by #
-# z := (1-X) / (1+X) #
-# acos(X) = 2 * atan( sqrt(z) ). #
-# Exit. #
-# #
-# 3. If |X| > 1, go to 5. #
-# #
-# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
-# #
-# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
-# Exit. #
-# #
-#########################################################################
-
- global sacos
-sacos:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1 # pack exp w/ upper 16 fraction
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ACOSBIG
-
-#--THIS IS THE USUAL CASE, |X| < 1
-#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) )
-
-ACOSMAIN:
- fmov.s &0x3F800000,%fp1
- fadd.x %fp0,%fp1 # 1+X
- fneg.x %fp0 # -X
- fadd.s &0x3F800000,%fp0 # 1-X
- fdiv.x %fp1,%fp0 # (1-X)/(1+X)
- fsqrt.x %fp0 # SQRT((1-X)/(1+X))
- mov.l %d0,-(%sp) # save original users fpcr
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save SQRT(...) to stack
- lea (%sp),%a0 # pass ptr to sqrt
- bsr satan # ATAN(SQRT([1-X]/[1+X]))
- add.l &0xc,%sp # clear SQRT(...) from stack
-
- fmov.l (%sp)+,%fpcr # restore users round prec,mode
- fadd.x %fp0,%fp0 # 2 * ATAN( STUFF )
- bra t_pinx2
-
-ACOSBIG:
- fabs.x %fp0
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr # cause an operr exception
-
-#--|X| = 1, ACOS(X) = 0 OR PI
- tst.b (%a0) # is X positive or negative?
- bpl.b ACOSP1
-
-#--X = -1
-#Returns PI and inexact exception
-ACOSM1:
- fmov.x PI(%pc),%fp0 # load PI
- fmov.l %d0,%fpcr # load round mode,prec
- fadd.s &0x00800000,%fp0 # add a small value
- bra t_pinx2
-
-ACOSP1:
- bra ld_pzero # answer is positive zero
-
- global sacosd
-#--ACOS(X) = PI/2 FOR DENORMALIZED X
-sacosd:
- fmov.l %d0,%fpcr # load user's rnd mode/prec
- fmov.x PIBY2(%pc),%fp0
- bra t_pinx2
-
-#########################################################################
-# setox(): computes the exponential for a normalized input #
-# setoxd(): computes the exponential for a denormalized input #
-# setoxm1(): computes the exponential minus 1 for a normalized input #
-# setoxm1d(): computes the exponential minus 1 for a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = exp(X) or exp(X)-1 #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 0.85 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM and IMPLEMENTATION **************************************** #
-# #
-# setoxd #
-# ------ #
-# Step 1. Set ans := 1.0 #
-# #
-# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #
-# Notes: This will always generate one exception -- inexact. #
-# #
-# #
-# setox #
-# ----- #
-# #
-# Step 1. Filter out extreme cases of input argument. #
-# 1.1 If |X| >= 2^(-65), go to Step 1.3. #
-# 1.2 Go to Step 7. #
-# 1.3 If |X| < 16380 log(2), go to Step 2. #
-# 1.4 Go to Step 8. #
-# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
-# To avoid the use of floating-point comparisons, a #
-# compact representation of |X| is used. This format is a #
-# 32-bit integer, the upper (more significant) 16 bits #
-# are the sign and biased exponent field of |X|; the #
-# lower 16 bits are the 16 most significant fraction #
-# (including the explicit bit) bits of |X|. Consequently, #
-# the comparisons in Steps 1.1 and 1.3 can be performed #
-# by integer comparison. Note also that the constant #
-# 16380 log(2) used in Step 1.3 is also in the compact #
-# form. Thus taking the branch to Step 2 guarantees #
-# |X| < 16380 log(2). There is no harm to have a small #
-# number of cases where |X| is less than, but close to, #
-# 16380 log(2) and the branch to Step 9 is taken. #
-# #
-# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
-# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 #
-# was taken) #
-# 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
-# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
-# or 63. #
-# 2.4 Calculate M = (N - J)/64; so N = 64M + J. #
-# 2.5 Calculate the address of the stored value of #
-# 2^(J/64). #
-# 2.6 Create the value Scale = 2^M. #
-# Notes: The calculation in 2.2 is really performed by #
-# Z := X * constant #
-# N := round-to-nearest-integer(Z) #
-# where #
-# constant := single-precision( 64/log 2 ). #
-# #
-# Using a single-precision constant avoids memory #
-# access. Another effect of using a single-precision #
-# "constant" is that the calculated value Z is #
-# #
-# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
-# #
-# This error has to be considered later in Steps 3 and 4. #
-# #
-# Step 3. Calculate X - N*log2/64. #
-# 3.1 R := X + N*L1, #
-# where L1 := single-precision(-log2/64). #
-# 3.2 R := R + N*L2, #
-# L2 := extended-precision(-log2/64 - L1).#
-# Notes: a) The way L1 and L2 are chosen ensures L1+L2 #
-# approximate the value -log2/64 to 88 bits of accuracy. #
-# b) N*L1 is exact because N is no longer than 22 bits #
-# and L1 is no longer than 24 bits. #
-# c) The calculation X+N*L1 is also exact due to #
-# cancellation. Thus, R is practically X+N(L1+L2) to full #
-# 64 bits. #
-# d) It is important to estimate how large can |R| be #
-# after Step 3.2. #
-# #
-# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
-# X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
-# X*64/log2 - N = f - eps*X 64/log2 #
-# X - N*log2/64 = f*log2/64 - eps*X #
-# #
-# #
-# Now |X| <= 16446 log2, thus #
-# #
-# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
-# <= 0.57 log2/64. #
-# This bound will be used in Step 4. #
-# #
-# Step 4. Approximate exp(R)-1 by a polynomial #
-# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) #
-# Notes: a) In order to reduce memory access, the coefficients #
-# are made as "short" as possible: A1 (which is 1/2), A4 #
-# and A5 are single precision; A2 and A3 are double #
-# precision. #
-# b) Even with the restrictions above, #
-# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
-# Note that 0.0062 is slightly bigger than 0.57 log2/64. #
-# c) To fully utilize the pipeline, p is separated into #
-# two independent pieces of roughly equal complexities #
-# p = [ R + R*S*(A2 + S*A4) ] + #
-# [ S*(A1 + S*(A3 + S*A5)) ] #
-# where S = R*R. #
-# #
-# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
-# ans := T + ( T*p + t) #
-# where T and t are the stored values for 2^(J/64). #
-# Notes: 2^(J/64) is stored as T and t where T+t approximates #
-# 2^(J/64) to roughly 85 bits; T is in extended precision #
-# and t is in single precision. Note also that T is #
-# rounded to 62 bits so that the last two bits of T are #
-# zero. The reason for such a special form is that T-1, #
-# T-2, and T-8 will all be exact --- a property that will #
-# give much more accurate computation of the function #
-# EXPM1. #
-# #
-# Step 6. Reconstruction of exp(X) #
-# exp(X) = 2^M * 2^(J/64) * exp(R). #
-# 6.1 If AdjFlag = 0, go to 6.3 #
-# 6.2 ans := ans * AdjScale #
-# 6.3 Restore the user FPCR #
-# 6.4 Return ans := ans * Scale. Exit. #
-# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, #
-# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
-# neither overflow nor underflow. If AdjFlag = 1, that #
-# means that #
-# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
-# Hence, exp(X) may overflow or underflow or neither. #
-# When that is the case, AdjScale = 2^(M1) where M1 is #
-# approximately M. Thus 6.2 will never cause #
-# over/underflow. Possible exception in 6.4 is overflow #
-# or underflow. The inexact exception is not generated in #
-# 6.4. Although one can argue that the inexact flag #
-# should always be raised, to simulate that exception #
-# cost to much than the flag is worth in practical uses. #
-# #
-# Step 7. Return 1 + X. #
-# 7.1 ans := X #
-# 7.2 Restore user FPCR. #
-# 7.3 Return ans := 1 + ans. Exit #
-# Notes: For non-zero X, the inexact exception will always be #
-# raised by 7.3. That is the only exception raised by 7.3.#
-# Note also that we use the FMOVEM instruction to move X #
-# in Step 7.1 to avoid unnecessary trapping. (Although #
-# the FMOVEM may not seem relevant since X is normalized, #
-# the precaution will be useful in the library version of #
-# this code where the separate entry for denormalized #
-# inputs will be done away with.) #
-# #
-# Step 8. Handle exp(X) where |X| >= 16380log2. #
-# 8.1 If |X| > 16480 log2, go to Step 9. #
-# (mimic 2.2 - 2.6) #
-# 8.2 N := round-to-integer( X * 64/log2 ) #
-# 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
-# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, #
-# AdjFlag := 1. #
-# 8.5 Calculate the address of the stored value #
-# 2^(J/64). #
-# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. #
-# 8.7 Go to Step 3. #
-# Notes: Refer to notes for 2.2 - 2.6. #
-# #
-# Step 9. Handle exp(X), |X| > 16480 log2. #
-# 9.1 If X < 0, go to 9.3 #
-# 9.2 ans := Huge, go to 9.4 #
-# 9.3 ans := Tiny. #
-# 9.4 Restore user FPCR. #
-# 9.5 Return ans := ans * ans. Exit. #
-# Notes: Exp(X) will surely overflow or underflow, depending on #
-# X's sign. "Huge" and "Tiny" are respectively large/tiny #
-# extended-precision numbers whose square over/underflow #
-# with an inexact result. Thus, 9.5 always raises the #
-# inexact together with either overflow or underflow. #
-# #
-# setoxm1d #
-# -------- #
-# #
-# Step 1. Set ans := 0 #
-# #
-# Step 2. Return ans := X + ans. Exit. #
-# Notes: This will return X with the appropriate rounding #
-# precision prescribed by the user FPCR. #
-# #
-# setoxm1 #
-# ------- #
-# #
-# Step 1. Check |X| #
-# 1.1 If |X| >= 1/4, go to Step 1.3. #
-# 1.2 Go to Step 7. #
-# 1.3 If |X| < 70 log(2), go to Step 2. #
-# 1.4 Go to Step 10. #
-# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
-# However, it is conceivable |X| can be small very often #
-# because EXPM1 is intended to evaluate exp(X)-1 #
-# accurately when |X| is small. For further details on #
-# the comparisons, see the notes on Step 1 of setox. #
-# #
-# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
-# 2.1 N := round-to-nearest-integer( X * 64/log2 ). #
-# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
-# or 63. #
-# 2.3 Calculate M = (N - J)/64; so N = 64M + J. #
-# 2.4 Calculate the address of the stored value of #
-# 2^(J/64). #
-# 2.5 Create the values Sc = 2^M and #
-# OnebySc := -2^(-M). #
-# Notes: See the notes on Step 2 of setox. #
-# #
-# Step 3. Calculate X - N*log2/64. #
-# 3.1 R := X + N*L1, #
-# where L1 := single-precision(-log2/64). #
-# 3.2 R := R + N*L2, #
-# L2 := extended-precision(-log2/64 - L1).#
-# Notes: Applying the analysis of Step 3 of setox in this case #
-# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in #
-# this case). #
-# #
-# Step 4. Approximate exp(R)-1 by a polynomial #
-# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) #
-# Notes: a) In order to reduce memory access, the coefficients #
-# are made as "short" as possible: A1 (which is 1/2), A5 #
-# and A6 are single precision; A2, A3 and A4 are double #
-# precision. #
-# b) Even with the restriction above, #
-# |p - (exp(R)-1)| < |R| * 2^(-72.7) #
-# for all |R| <= 0.0055. #
-# c) To fully utilize the pipeline, p is separated into #
-# two independent pieces of roughly equal complexity #
-# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + #
-# [ R + S*(A1 + S*(A3 + S*A5)) ] #
-# where S = R*R. #
-# #
-# Step 5. Compute 2^(J/64)*p by #
-# p := T*p #
-# where T and t are the stored values for 2^(J/64). #
-# Notes: 2^(J/64) is stored as T and t where T+t approximates #
-# 2^(J/64) to roughly 85 bits; T is in extended precision #
-# and t is in single precision. Note also that T is #
-# rounded to 62 bits so that the last two bits of T are #
-# zero. The reason for such a special form is that T-1, #
-# T-2, and T-8 will all be exact --- a property that will #
-# be exploited in Step 6 below. The total relative error #
-# in p is no bigger than 2^(-67.7) compared to the final #
-# result. #
-# #
-# Step 6. Reconstruction of exp(X)-1 #
-# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). #
-# 6.1 If M <= 63, go to Step 6.3. #
-# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 #
-# 6.3 If M >= -3, go to 6.5. #
-# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 #
-# 6.5 ans := (T + OnebySc) + (p + t). #
-# 6.6 Restore user FPCR. #
-# 6.7 Return ans := Sc * ans. Exit. #
-# Notes: The various arrangements of the expressions give #
-# accurate evaluations. #
-# #
-# Step 7. exp(X)-1 for |X| < 1/4. #
-# 7.1 If |X| >= 2^(-65), go to Step 9. #
-# 7.2 Go to Step 8. #
-# #
-# Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
-# 8.1 If |X| < 2^(-16312), goto 8.3 #
-# 8.2 Restore FPCR; return ans := X - 2^(-16382). #
-# Exit. #
-# 8.3 X := X * 2^(140). #
-# 8.4 Restore FPCR; ans := ans - 2^(-16382). #
-# Return ans := ans*2^(140). Exit #
-# Notes: The idea is to return "X - tiny" under the user #
-# precision and rounding modes. To avoid unnecessary #
-# inefficiency, we stay away from denormalized numbers #
-# the best we can. For |X| >= 2^(-16312), the #
-# straightforward 8.2 generates the inexact exception as #
-# the case warrants. #
-# #
-# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
-# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) #
-# Notes: a) In order to reduce memory access, the coefficients #
-# are made as "short" as possible: B1 (which is 1/2), B9 #
-# to B12 are single precision; B3 to B8 are double #
-# precision; and B2 is double extended. #
-# b) Even with the restriction above, #
-# |p - (exp(X)-1)| < |X| 2^(-70.6) #
-# for all |X| <= 0.251. #
-# Note that 0.251 is slightly bigger than 1/4. #
-# c) To fully preserve accuracy, the polynomial is #
-# computed as #
-# X + ( S*B1 + Q ) where S = X*X and #
-# Q = X*S*(B2 + X*(B3 + ... + X*B12)) #
-# d) To fully utilize the pipeline, Q is separated into #
-# two independent pieces of roughly equal complexity #
-# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + #
-# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] #
-# #
-# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
-# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all #
-# practical purposes. Therefore, go to Step 1 of setox. #
-# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical #
-# purposes. #
-# ans := -1 #
-# Restore user FPCR #
-# Return ans := ans + 2^(-126). Exit. #
-# Notes: 10.2 will always create an inexact and return -1 + tiny #
-# in the user rounding precision and mode. #
-# #
-#########################################################################
-
-L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
-
-EEXPA3: long 0x3FA55555,0x55554CC1
-EEXPA2: long 0x3FC55555,0x55554A54
-
-EM1A4: long 0x3F811111,0x11174385
-EM1A3: long 0x3FA55555,0x55554F5A
-
-EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000
-
-EM1B8: long 0x3EC71DE3,0xA5774682
-EM1B7: long 0x3EFA01A0,0x19D7CB68
-
-EM1B6: long 0x3F2A01A0,0x1A019DF3
-EM1B5: long 0x3F56C16C,0x16C170E2
-
-EM1B4: long 0x3F811111,0x11111111
-EM1B3: long 0x3FA55555,0x55555555
-
-EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
- long 0x00000000
-
-TWO140: long 0x48B00000,0x00000000
-TWON140:
- long 0x37300000,0x00000000
-
-EEXPTBL:
- long 0x3FFF0000,0x80000000,0x00000000,0x00000000
- long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
- long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
- long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
- long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
- long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
- long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
- long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
- long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
- long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
- long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
- long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
- long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
- long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
- long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
- long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
- long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
- long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
- long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
- long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
- long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
- long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
- long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
- long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
- long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
- long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
- long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
- long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
- long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
- long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
- long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
- long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
- long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
- long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
- long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
- long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
- long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
- long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
- long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
- long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
- long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
- long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
- long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
- long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
- long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
- long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
- long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
- long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
- long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
- long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
- long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
- long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
- long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
- long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
- long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
- long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
- long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
- long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
- long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
- long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
- long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
- long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
- long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
- long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
-
- set ADJFLAG,L_SCR2
- set SCALE,FP_SCR0
- set ADJSCALE,FP_SCR1
- set SC,FP_SCR0
- set ONEBYSC,FP_SCR1
-
- global setox
-setox:
-#--entry point for EXP(X), here X is finite, non-zero, and not NaN's
-
-#--Step 1.
- mov.l (%a0),%d1 # load part of input X
- and.l &0x7FFF0000,%d1 # biased expo. of X
- cmp.l %d1,&0x3FBE0000 # 2^(-65)
- bge.b EXPC1 # normal case
- bra EXPSM
-
-EXPC1:
-#--The case |X| >= 2^(-65)
- mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
- cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits
- blt.b EXPMAIN # normal case
- bra EEXPBIG
-
-EXPMAIN:
-#--Step 2.
-#--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- mov.l &0,ADJFLAG(%a6)
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
-
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M)
- mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB
-
-EXPCONT1:
-#--Step 3.
-#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
-#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
- fmov.x %fp0,%fp2
- fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
- fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
- fadd.x %fp1,%fp0 # X + N*L1
- fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
-
-#--Step 4.
-#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
-#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
-#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
-#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # fp1 IS S = R*R
-
- fmov.s &0x3AB60B70,%fp2 # fp2 IS A5
-
- fmul.x %fp1,%fp2 # fp2 IS S*A5
- fmov.x %fp1,%fp3
- fmul.s &0x3C088895,%fp3 # fp3 IS S*A4
-
- fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5
- fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5)
- mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended
- mov.l &0x80000000,SCALE+4(%a6)
- clr.l SCALE+8(%a6)
-
- fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4)
-
- fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5)
- fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5))
- fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4),
-
- fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64)
- fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
-
-#--Step 5
-#--final reconstruction process
-#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
-
- fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1)
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
- fadd.s (%a1),%fp0 # accurate 2^(J/64)
-
- fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*...
- mov.l ADJFLAG(%a6),%d1
-
-#--Step 6
- tst.l %d1
- beq.b NORMAL
-ADJUST:
- fmul.x ADJSCALE(%a6),%fp0
-NORMAL:
- fmov.l %d0,%fpcr # restore user FPCR
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x SCALE(%a6),%fp0 # multiply 2^(M)
- bra t_catch
-
-EXPSM:
-#--Step 7
- fmovm.x (%a0),&0x80 # load X
- fmov.l %d0,%fpcr
- fadd.s &0x3F800000,%fp0 # 1+X in user mode
- bra t_pinx2
-
-EEXPBIG:
-#--Step 8
- cmp.l %d1,&0x400CB27C # 16480 log2
- bgt.b EXP2BIG
-#--Steps 8.2 -- 8.6
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- mov.l &1,ADJFLAG(%a6)
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is K
- mov.l %d1,L_SCR1(%a6) # save K temporarily
- asr.l &1,%d1 # D0 is M1
- sub.l %d1,L_SCR1(%a6) # a1 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M1)
- mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1)
- mov.l &0x80000000,ADJSCALE+4(%a6)
- clr.l ADJSCALE+8(%a6)
- mov.l L_SCR1(%a6),%d1 # D0 is M
- add.w &0x3FFF,%d1 # biased expo. of 2^(M)
- bra.w EXPCONT1 # go back to Step 3
-
-EXP2BIG:
-#--Step 9
- tst.b (%a0) # is X positive or negative?
- bmi t_unfl2
- bra t_ovfl2
-
- global setoxd
-setoxd:
-#--entry point for EXP(X), X is denormalized
- mov.l (%a0),-(%sp)
- andi.l &0x80000000,(%sp)
- ori.l &0x00800000,(%sp) # sign(X)*2^(-126)
-
- fmov.s &0x3F800000,%fp0
-
- fmov.l %d0,%fpcr
- fadd.s (%sp)+,%fp0
- bra t_pinx2
-
- global setoxm1
-setoxm1:
-#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
-
-#--Step 1.
-#--Step 1.1
- mov.l (%a0),%d1 # load part of input X
- and.l &0x7FFF0000,%d1 # biased expo. of X
- cmp.l %d1,&0x3FFD0000 # 1/4
- bge.b EM1CON1 # |X| >= 1/4
- bra EM1SM
-
-EM1CON1:
-#--Step 1.3
-#--The case |X| >= 1/4
- mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
- cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits
- ble.b EM1MAIN # 1/4 <= |X| <= 70log2
- bra EM1BIG
-
-EM1MAIN:
-#--Step 2.
-#--This is the case: 1/4 <= |X| <= 70 log2.
- fmov.x (%a0),%fp0 # load input from (a0)
-
- fmov.x %fp0,%fp1
- fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- fmov.l %fp0,%d1 # N = int( X * 64/log2 )
- lea EEXPTBL(%pc),%a1
- fmov.l %d1,%fp0 # convert to floating-format
-
- mov.l %d1,L_SCR1(%a6) # save N temporarily
- and.l &0x3F,%d1 # D0 is J = N mod 64
- lsl.l &4,%d1
- add.l %d1,%a1 # address of 2^(J/64)
- mov.l L_SCR1(%a6),%d1
- asr.l &6,%d1 # D0 is M
- mov.l %d1,L_SCR1(%a6) # save a copy of M
-
-#--Step 3.
-#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
-#--a0 points to 2^(J/64), D0 and a1 both contain M
- fmov.x %fp0,%fp2
- fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
- fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
- fadd.x %fp1,%fp0 # X + N*L1
- fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
- add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M
-
-#--Step 4.
-#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
-#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
-#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
-#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # fp1 IS S = R*R
-
- fmov.s &0x3950097B,%fp2 # fp2 IS a6
-
- fmul.x %fp1,%fp2 # fp2 IS S*A6
- fmov.x %fp1,%fp3
- fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5
-
- fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6
- fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5
- mov.w %d1,SC(%a6) # SC is 2^(M) in extended
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6)
- mov.l L_SCR1(%a6),%d1 # D0 is M
- neg.w %d1 # D0 is -M
- fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5)
- add.w &0x3FFF,%d1 # biased expo. of 2^(-M)
- fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6)
- fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5)
-
- fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6))
- or.w &0x8000,%d1 # signed/expo. of -2^(-M)
- mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M)
- mov.l &0x80000000,ONEBYSC+4(%a6)
- clr.l ONEBYSC+8(%a6)
- fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5))
-
- fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6))
- fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5))
-
- fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
-
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
-
-#--Step 5
-#--Compute 2^(J/64)*p
-
- fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1)
-
-#--Step 6
-#--Step 6.1
- mov.l L_SCR1(%a6),%d1 # retrieve M
- cmp.l %d1,&63
- ble.b MLE63
-#--Step 6.2 M >= 64
- fmov.s 12(%a1),%fp1 # fp1 is t
- fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc
- fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released
- fadd.x (%a1),%fp0 # T+(p+(t+OnebySc))
- bra EM1SCALE
-MLE63:
-#--Step 6.3 M <= 63
- cmp.l %d1,&-3
- bge.b MGEN3
-MLTN3:
-#--Step 6.4 M <= -4
- fadd.s 12(%a1),%fp0 # p+t
- fadd.x (%a1),%fp0 # T+(p+t)
- fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t))
- bra EM1SCALE
-MGEN3:
-#--Step 6.5 -3 <= M <= 63
- fmov.x (%a1)+,%fp1 # fp1 is T
- fadd.s (%a1),%fp0 # fp0 is p+t
- fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc
- fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t)
-
-EM1SCALE:
-#--Step 6.6
- fmov.l %d0,%fpcr
- fmul.x SC(%a6),%fp0
- bra t_inx2
-
-EM1SM:
-#--Step 7 |X| < 1/4.
- cmp.l %d1,&0x3FBE0000 # 2^(-65)
- bge.b EM1POLY
-
-EM1TINY:
-#--Step 8 |X| < 2^(-65)
- cmp.l %d1,&0x00330000 # 2^(-16312)
- blt.b EM12TINY
-#--Step 8.2
- mov.l &0x80010000,SC(%a6) # SC is -2^(-16382)
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
- fmov.x (%a0),%fp0
- fmov.l %d0,%fpcr
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x SC(%a6),%fp0
- bra t_catch
-
-EM12TINY:
-#--Step 8.3
- fmov.x (%a0),%fp0
- fmul.d TWO140(%pc),%fp0
- mov.l &0x80010000,SC(%a6)
- mov.l &0x80000000,SC+4(%a6)
- clr.l SC+8(%a6)
- fadd.x SC(%a6),%fp0
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.d TWON140(%pc),%fp0
- bra t_catch
-
-EM1POLY:
-#--Step 9 exp(X)-1 by a simple polynomial
- fmov.x (%a0),%fp0 # fp0 is X
- fmul.x %fp0,%fp0 # fp0 is S := X*X
- fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
- fmov.s &0x2F30CAA8,%fp1 # fp1 is B12
- fmul.x %fp0,%fp1 # fp1 is S*B12
- fmov.s &0x310F8290,%fp2 # fp2 is B11
- fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12
-
- fmul.x %fp0,%fp2 # fp2 is S*B11
- fmul.x %fp0,%fp1 # fp1 is S*(B10 + ...
-
- fadd.s &0x3493F281,%fp2 # fp2 is B9+S*...
- fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B9+...
- fmul.x %fp0,%fp1 # fp1 is S*(B8+...
-
- fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*...
- fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B7+...
- fmul.x %fp0,%fp1 # fp1 is S*(B6+...
-
- fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*...
- fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B5+...
- fmul.x %fp0,%fp1 # fp1 is S*(B4+...
-
- fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*...
- fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*...
-
- fmul.x %fp0,%fp2 # fp2 is S*(B3+...
- fmul.x %fp0,%fp1 # fp1 is S*(B2+...
-
- fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...)
- fmul.x (%a0),%fp1 # fp1 is X*S*(B2...
-
- fmul.s &0x3F000000,%fp0 # fp0 is S*B1
- fadd.x %fp2,%fp1 # fp1 is Q
-
- fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
-
- fadd.x %fp1,%fp0 # fp0 is S*B1+Q
-
- fmov.l %d0,%fpcr
- fadd.x (%a0),%fp0
- bra t_inx2
-
-EM1BIG:
-#--Step 10 |X| > 70 log2
- mov.l (%a0),%d1
- cmp.l %d1,&0
- bgt.w EXPC1
-#--Step 10.2
- fmov.s &0xBF800000,%fp0 # fp0 is -1
- fmov.l %d0,%fpcr
- fadd.s &0x00800000,%fp0 # -1 + 2^(-126)
- bra t_minx2
-
- global setoxm1d
-setoxm1d:
-#--entry point for EXPM1(X), here X is denormalized
-#--Step 0.
- bra t_extdnrm
-
-#########################################################################
-# sgetexp(): returns the exponent portion of the input argument. #
-# The exponent bias is removed and the exponent value is #
-# returned as an extended precision number in fp0. #
-# sgetexpd(): handles denormalized numbers. #
-# #
-# sgetman(): extracts the mantissa of the input argument. The #
-# mantissa is converted to an extended precision number w/ #
-# an exponent of $3fff and is returned in fp0. The range of #
-# the result is [1.0 - 2.0). #
-# sgetmand(): handles denormalized numbers. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = exponent(X) or mantissa(X) #
-# #
-#########################################################################
-
- global sgetexp
-sgetexp:
- mov.w SRC_EX(%a0),%d0 # get the exponent
- bclr &0xf,%d0 # clear the sign bit
- subi.w &0x3fff,%d0 # subtract off the bias
- fmov.w %d0,%fp0 # return exp in fp0
- blt.b sgetexpn # it's negative
- rts
-
-sgetexpn:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- global sgetexpd
-sgetexpd:
- bsr.l norm # normalize
- neg.w %d0 # new exp = -(shft amt)
- subi.w &0x3fff,%d0 # subtract off the bias
- fmov.w %d0,%fp0 # return exp in fp0
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
- global sgetman
-sgetman:
- mov.w SRC_EX(%a0),%d0 # get the exp
- ori.w &0x7fff,%d0 # clear old exp
- bclr &0xe,%d0 # make it the new exp +-3fff
-
-# here, we build the result in a tmp location so as not to disturb the input
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0
- bmi.b sgetmann # it's negative
- rts
-
-sgetmann:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-#
-# For denormalized numbers, shift the mantissa until the j-bit = 1,
-# then load the exponent with +/1 $3fff.
-#
- global sgetmand
-sgetmand:
- bsr.l norm # normalize exponent
- bra.b sgetman
-
-#########################################################################
-# scosh(): computes the hyperbolic cosine of a normalized input #
-# scoshd(): computes the hyperbolic cosine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = cosh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# COSH #
-# 1. If |X| > 16380 log2, go to 3. #
-# #
-# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae #
-# y = |X|, z = exp(Y), and #
-# cosh(X) = (1/2)*( z + 1/z ). #
-# Exit. #
-# #
-# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. #
-# #
-# 4. (16380 log2 < |X| <= 16480 log2) #
-# cosh(X) = sign(X) * exp(|X|)/2. #
-# However, invoking exp(|X|) may cause premature #
-# overflow. Thus, we calculate sinh(X) as follows: #
-# Y := |X| #
-# Fact := 2**(16380) #
-# Y' := Y - 16381 log2 #
-# cosh(X) := Fact * exp(Y'). #
-# Exit. #
-# #
-# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
-# Huge*Huge to generate overflow and an infinity with #
-# the appropriate sign. Huge is the largest finite number #
-# in extended format. Exit. #
-# #
-#########################################################################
-
-TWO16380:
- long 0x7FFB0000,0x80000000,0x00000000,0x00000000
-
- global scosh
-scosh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x400CB167
- bgt.b COSHBIG
-
-#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
-#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
-
- fabs.x %fp0 # |X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save |X| to stack
- lea (%sp),%a0 # pass ptr to |X|
- bsr setox # FP0 IS EXP(|X|)
- add.l &0xc,%sp # erase |X| from stack
- fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|)
- mov.l (%sp)+,%d0
-
- fmov.s &0x3E800000,%fp1 # (1/4)
- fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|))
-
- fmov.l %d0,%fpcr
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x %fp1,%fp0
- bra t_catch
-
-COSHBIG:
- cmp.l %d1,&0x400CB2B3
- bgt.b COSHHUGE
-
- fabs.x %fp0
- fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
- fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save fp0 to stack
- lea (%sp),%a0 # pass ptr to fp0
- bsr setox
- add.l &0xc,%sp # clear fp0 from stack
- mov.l (%sp)+,%d0
-
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x TWO16380(%pc),%fp0
- bra t_catch
-
-COSHHUGE:
- bra t_ovfl2
-
- global scoshd
-#--COSH(X) = 1 FOR DENORMALIZED X
-scoshd:
- fmov.s &0x3F800000,%fp0
-
- fmov.l %d0,%fpcr
- fadd.s &0x00800000,%fp0
- bra t_pinx2
-
-#########################################################################
-# ssinh(): computes the hyperbolic sine of a normalized input #
-# ssinhd(): computes the hyperbolic sine of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = sinh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# SINH #
-# 1. If |X| > 16380 log2, go to 3. #
-# #
-# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula #
-# y = |X|, sgn = sign(X), and z = expm1(Y), #
-# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). #
-# Exit. #
-# #
-# 3. If |X| > 16480 log2, go to 5. #
-# #
-# 4. (16380 log2 < |X| <= 16480 log2) #
-# sinh(X) = sign(X) * exp(|X|)/2. #
-# However, invoking exp(|X|) may cause premature overflow. #
-# Thus, we calculate sinh(X) as follows: #
-# Y := |X| #
-# sgn := sign(X) #
-# sgnFact := sgn * 2**(16380) #
-# Y' := Y - 16381 log2 #
-# sinh(X) := sgnFact * exp(Y'). #
-# Exit. #
-# #
-# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
-# sign(X)*Huge*Huge to generate overflow and an infinity with #
-# the appropriate sign. Huge is the largest finite number in #
-# extended format. Exit. #
-# #
-#########################################################################
-
- global ssinh
-ssinh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- mov.l %d1,%a1 # save (compacted) operand
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x400CB167
- bgt.b SINHBIG
-
-#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
-#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
-
- fabs.x %fp0 # Y = |X|
-
- movm.l &0x8040,-(%sp) # {a1/d0}
- fmovm.x &0x01,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- clr.l %d0
- bsr setoxm1 # FP0 IS Z = EXPM1(Y)
- add.l &0xc,%sp # clear Y from stack
- fmov.l &0,%fpcr
- movm.l (%sp)+,&0x0201 # {a1/d0}
-
- fmov.x %fp0,%fp1
- fadd.s &0x3F800000,%fp1 # 1+Z
- fmov.x %fp0,-(%sp)
- fdiv.x %fp1,%fp0 # Z/(1+Z)
- mov.l %a1,%d1
- and.l &0x80000000,%d1
- or.l &0x3F000000,%d1
- fadd.x (%sp)+,%fp0
- mov.l %d1,-(%sp)
-
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set
- bra t_catch
-
-SINHBIG:
- cmp.l %d1,&0x400CB2B3
- bgt t_ovfl
- fabs.x %fp0
- fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
- mov.l &0,-(%sp)
- mov.l &0x80000000,-(%sp)
- mov.l %a1,%d1
- and.l &0x80000000,%d1
- or.l &0x7FFB0000,%d1
- mov.l %d1,-(%sp) # EXTENDED FMT
- fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save fp0 on stack
- lea (%sp),%a0 # pass ptr to fp0
- bsr setox
- add.l &0xc,%sp # clear fp0 from stack
-
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x (%sp)+,%fp0 # possible exception
- bra t_catch
-
- global ssinhd
-#--SINH(X) = X FOR DENORMALIZED X
-ssinhd:
- bra t_extdnrm
-
-#########################################################################
-# stanh(): computes the hyperbolic tangent of a normalized input #
-# stanhd(): computes the hyperbolic tangent of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = tanh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# TANH #
-# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. #
-# #
-# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by #
-# sgn := sign(X), y := 2|X|, z := expm1(Y), and #
-# tanh(X) = sgn*( z/(2+z) ). #
-# Exit. #
-# #
-# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, #
-# go to 7. #
-# #
-# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. #
-# #
-# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by #
-# sgn := sign(X), y := 2|X|, z := exp(Y), #
-# tanh(X) = sgn - [ sgn*2/(1+z) ]. #
-# Exit. #
-# #
-# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we #
-# calculate Tanh(X) by #
-# sgn := sign(X), Tiny := 2**(-126), #
-# tanh(X) := sgn - sgn*Tiny. #
-# Exit. #
-# #
-# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. #
-# #
-#########################################################################
-
- set X,FP_SCR0
- set XFRAC,X+4
-
- set SGN,L_SCR3
-
- set V,FP_SCR0
-
- global stanh
-stanh:
- fmov.x (%a0),%fp0 # LOAD INPUT
-
- fmov.x %fp0,X(%a6)
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- mov.l %d1,X(%a6)
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)?
- blt.w TANHBORS # yes
- cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2?
- bgt.w TANHBORS # yes
-
-#--THIS IS THE USUAL CASE
-#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
-
- mov.l X(%a6),%d1
- mov.l %d1,SGN(%a6)
- and.l &0x7FFF0000,%d1
- add.l &0x00010000,%d1 # EXPONENT OF 2|X|
- mov.l %d1,X(%a6)
- and.l &0x80000000,SGN(%a6)
- fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x1,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- bsr setoxm1 # FP0 IS Z = EXPM1(Y)
- add.l &0xc,%sp # clear Y from stack
- mov.l (%sp)+,%d0
-
- fmov.x %fp0,%fp1
- fadd.s &0x40000000,%fp1 # Z+2
- mov.l SGN(%a6),%d1
- fmov.x %fp1,V(%a6)
- eor.l %d1,V(%a6)
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fdiv.x V(%a6),%fp0
- bra t_inx2
-
-TANHBORS:
- cmp.l %d1,&0x3FFF8000
- blt.w TANHSM
-
- cmp.l %d1,&0x40048AA1
- bgt.w TANHHUGE
-
-#-- (5/2) LOG2 < |X| < 50 LOG2,
-#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
-#--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
-
- mov.l X(%a6),%d1
- mov.l %d1,SGN(%a6)
- and.l &0x7FFF0000,%d1
- add.l &0x00010000,%d1 # EXPO OF 2|X|
- mov.l %d1,X(%a6) # Y = 2|X|
- and.l &0x80000000,SGN(%a6)
- mov.l SGN(%a6),%d1
- fmov.x X(%a6),%fp0 # Y = 2|X|
-
- mov.l %d0,-(%sp)
- clr.l %d0
- fmovm.x &0x01,-(%sp) # save Y on stack
- lea (%sp),%a0 # pass ptr to Y
- bsr setox # FP0 IS EXP(Y)
- add.l &0xc,%sp # clear Y from stack
- mov.l (%sp)+,%d0
- mov.l SGN(%a6),%d1
- fadd.s &0x3F800000,%fp0 # EXP(Y)+1
-
- eor.l &0xC0000000,%d1 # -SIGN(X)*2
- fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT
- fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ]
-
- mov.l SGN(%a6),%d1
- or.l &0x3F800000,%d1 # SGN
- fmov.s %d1,%fp0 # SGN IN SGL FMT
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.b &FADD_OP,%d1 # last inst is ADD
- fadd.x %fp1,%fp0
- bra t_inx2
-
-TANHSM:
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x X(%a6),%fp0 # last inst - possible exception set
- bra t_catch
-
-#---RETURN SGN(X) - SGN(X)EPS
-TANHHUGE:
- mov.l X(%a6),%d1
- and.l &0x80000000,%d1
- or.l &0x3F800000,%d1
- fmov.s %d1,%fp0
- and.l &0x80000000,%d1
- eor.l &0x80800000,%d1 # -SIGN(X)*EPS
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fadd.s %d1,%fp0
- bra t_inx2
-
- global stanhd
-#--TANH(X) = X FOR DENORMALIZED X
-stanhd:
- bra t_extdnrm
-
-#########################################################################
-# slogn(): computes the natural logarithm of a normalized input #
-# slognd(): computes the natural logarithm of a denormalized input #
-# slognp1(): computes the log(1+X) of a normalized input #
-# slognp1d(): computes the log(1+X) of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = log(X) or log(1+X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 2 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# LOGN: #
-# Step 1. If |X-1| < 1/16, approximate log(X) by an odd #
-# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, #
-# move on to Step 2. #
-# #
-# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
-# seven significant bits of Y plus 2**(-7), i.e. #
-# F = 1.xxxxxx1 in base 2 where the six "x" match those #
-# of Y. Note that |Y-F| <= 2**(-7). #
-# #
-# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a #
-# polynomial in u, log(1+u) = poly. #
-# #
-# Step 4. Reconstruct #
-# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) #
-# by k*log(2) + (log(F) + poly). The values of log(F) are #
-# calculated beforehand and stored in the program. #
-# #
-# lognp1: #
-# Step 1: If |X| < 1/16, approximate log(1+X) by an odd #
-# polynomial in u where u = 2X/(2+X). Otherwise, move on #
-# to Step 2. #
-# #
-# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done #
-# in Step 2 of the algorithm for LOGN and compute #
-# log(1+X) as k*log(2) + log(F) + poly where poly #
-# approximates log(1+u), u = (Y-F)/F. #
-# #
-# Implementation Notes: #
-# Note 1. There are 64 different possible values for F, thus 64 #
-# log(F)'s need to be tabulated. Moreover, the values of #
-# 1/F are also tabulated so that the division in (Y-F)/F #
-# can be performed by a multiplication. #
-# #
-# Note 2. In Step 2 of lognp1, in order to preserved accuracy, #
-# the value Y-F has to be calculated carefully when #
-# 1/2 <= X < 3/2. #
-# #
-# Note 3. To fully exploit the pipeline, polynomials are usually #
-# separated into two parts evaluated independently before #
-# being added up. #
-# #
-#########################################################################
-LOGOF2:
- long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
-
-one:
- long 0x3F800000
-zero:
- long 0x00000000
-infty:
- long 0x7F800000
-negone:
- long 0xBF800000
-
-LOGA6:
- long 0x3FC2499A,0xB5E4040B
-LOGA5:
- long 0xBFC555B5,0x848CB7DB
-
-LOGA4:
- long 0x3FC99999,0x987D8730
-LOGA3:
- long 0xBFCFFFFF,0xFF6F7E97
-
-LOGA2:
- long 0x3FD55555,0x555555A4
-LOGA1:
- long 0xBFE00000,0x00000008
-
-LOGB5:
- long 0x3F175496,0xADD7DAD6
-LOGB4:
- long 0x3F3C71C2,0xFE80C7E0
-
-LOGB3:
- long 0x3F624924,0x928BCCFF
-LOGB2:
- long 0x3F899999,0x999995EC
-
-LOGB1:
- long 0x3FB55555,0x55555555
-TWO:
- long 0x40000000,0x00000000
-
-LTHOLD:
- long 0x3f990000,0x80000000,0x00000000,0x00000000
-
-LOGTBL:
- long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
- long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
- long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
- long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
- long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
- long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
- long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
- long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
- long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
- long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
- long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
- long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
- long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
- long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
- long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
- long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
- long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
- long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
- long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
- long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
- long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
- long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
- long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
- long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
- long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
- long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
- long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
- long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
- long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
- long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
- long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
- long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
- long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
- long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
- long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
- long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
- long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
- long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
- long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
- long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
- long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
- long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
- long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
- long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
- long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
- long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
- long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
- long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
- long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
- long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
- long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
- long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
- long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
- long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
- long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
- long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
- long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
- long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
- long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
- long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
- long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
- long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
- long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
- long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
- long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
- long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
- long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
- long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
- long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
- long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
- long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
- long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
- long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
- long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
- long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
- long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
- long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
- long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
- long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
- long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
- long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
- long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
- long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
- long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
- long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
- long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
- long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
- long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
- long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
- long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
- long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
- long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
- long 0x3FFE0000,0x94458094,0x45809446,0x00000000
- long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
- long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
- long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
- long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
- long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
- long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
- long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
- long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
- long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
- long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
- long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
- long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
- long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
- long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
- long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
- long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
- long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
- long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
- long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
- long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
- long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
- long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
- long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
- long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
- long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
- long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
- long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
- long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
- long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
- long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
- long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
- long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
- long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
- long 0x3FFE0000,0x80808080,0x80808081,0x00000000
- long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
-
- set ADJK,L_SCR1
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
-
- set F,FP_SCR1
- set FFRAC,F+4
-
- set KLOG2,FP_SCR0
-
- set SAVEU,FP_SCR0
-
- global slogn
-#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
-slogn:
- fmov.x (%a0),%fp0 # LOAD INPUT
- mov.l &0x00000000,ADJK(%a6)
-
-LOGBGN:
-#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
-#--A FINITE, NON-ZERO, NORMALIZED NUMBER.
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
-
- mov.l (%a0),X(%a6)
- mov.l 4(%a0),X+4(%a6)
- mov.l 8(%a0),X+8(%a6)
-
- cmp.l %d1,&0 # CHECK IF X IS NEGATIVE
- blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID
-# X IS POSITIVE, CHECK IF X IS NEAR 1
- cmp.l %d1,&0x3ffef07d # IS X < 15/16?
- blt.b LOGMAIN # YES
- cmp.l %d1,&0x3fff8841 # IS X > 17/16?
- ble.w LOGNEAR1 # NO
-
-LOGMAIN:
-#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
-
-#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
-#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
-#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
-#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
-#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
-#--LOG(1+U) CAN BE VERY EFFICIENT.
-#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
-#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
-
-#--GET K, Y, F, AND ADDRESS OF 1/F.
- asr.l &8,%d1
- asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X
- sub.l &0x3FFF,%d1 # THIS IS K
- add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM.
- lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F)
- fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT
-
-#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
- mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X
- mov.l XFRAC(%a6),FFRAC(%a6)
- and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y
- or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT
- mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT
- add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F
-
- fmov.x X(%a6),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # Y-F
- fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY
-#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
-#--REGISTERS SAVED: FPCR, FP1, FP2
-
-LP1CONT1:
-#--AN RE-ENTRY POINT FOR LOGNP1
- fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F
- fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY
- fmov.x %fp0,%fp2
- fmul.x %fp2,%fp2 # FP2 IS V=U*U
- fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1
-
-#--LOG(1+U) IS APPROXIMATED BY
-#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
-#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
-
- fmov.x %fp2,%fp3
- fmov.x %fp2,%fp1
-
- fmul.d LOGA6(%pc),%fp1 # V*A6
- fmul.d LOGA5(%pc),%fp2 # V*A5
-
- fadd.d LOGA4(%pc),%fp1 # A4+V*A6
- fadd.d LOGA3(%pc),%fp2 # A3+V*A5
-
- fmul.x %fp3,%fp1 # V*(A4+V*A6)
- fmul.x %fp3,%fp2 # V*(A3+V*A5)
-
- fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6)
- fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5)
-
- fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6))
- add.l &16,%a0 # ADDRESS OF LOG(F)
- fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5))
-
- fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6))
- fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5))
-
- fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6))
- fmovm.x (%sp)+,&0x30 # RESTORE FP2-3
- fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U)
-
- fmov.l %d0,%fpcr
- fadd.x KLOG2(%a6),%fp0 # FINAL ADD
- bra t_inx2
-
-
-LOGNEAR1:
-
-# if the input is exactly equal to one, then exit through ld_pzero.
-# if these 2 lines weren't here, the correct answer would be returned
-# but the INEX2 bit would be set.
- fcmp.b %fp0,&0x1 # is it equal to one?
- fbeq.l ld_pzero # yes
-
-#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
- fmov.x %fp0,%fp1
- fsub.s one(%pc),%fp1 # FP1 IS X-1
- fadd.s one(%pc),%fp0 # FP0 IS X+1
- fadd.x %fp1,%fp1 # FP1 IS 2(X-1)
-#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
-#--IN U, U = 2(X-1)/(X+1) = FP1/FP0
-
-LP1CONT2:
-#--THIS IS AN RE-ENTRY POINT FOR LOGNP1
- fdiv.x %fp0,%fp1 # FP1 IS U
- fmovm.x &0xc,-(%sp) # SAVE FP2-3
-#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
-#--LET V=U*U, W=V*V, CALCULATE
-#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
-#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
- fmov.x %fp1,%fp0
- fmul.x %fp0,%fp0 # FP0 IS V
- fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS W
-
- fmov.d LOGB5(%pc),%fp3
- fmov.d LOGB4(%pc),%fp2
-
- fmul.x %fp1,%fp3 # W*B5
- fmul.x %fp1,%fp2 # W*B4
-
- fadd.d LOGB3(%pc),%fp3 # B3+W*B5
- fadd.d LOGB2(%pc),%fp2 # B2+W*B4
-
- fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED
-
- fmul.x %fp0,%fp2 # V*(B2+W*B4)
-
- fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5)
- fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V
-
- fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
- fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED
-
- fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
-
- fmov.l %d0,%fpcr
- fadd.x SAVEU(%a6),%fp0
- bra t_inx2
-
-#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
-LOGNEG:
- bra t_operr
-
- global slognd
-slognd:
-#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
-
- mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0
-
-#----normalize the input value by left shifting k bits (k to be determined
-#----below), adjusting exponent and storing -k to ADJK
-#----the value TWOTO100 is no longer needed.
-#----Note that this code assumes the denormalized input is NON-ZERO.
-
- movm.l &0x3f00,-(%sp) # save some registers {d2-d7}
- mov.l (%a0),%d3 # D3 is exponent of smallest norm. #
- mov.l 4(%a0),%d4
- mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X)
- clr.l %d2 # D2 used for holding K
-
- tst.l %d4
- bne.b Hi_not0
-
-Hi_0:
- mov.l %d5,%d4
- clr.l %d5
- mov.l &32,%d2
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- lsl.l %d6,%d4
- add.l %d6,%d2 # (D3,D4,D5) is normalized
-
- mov.l %d3,X(%a6)
- mov.l %d4,XFRAC(%a6)
- mov.l %d5,XFRAC+4(%a6)
- neg.l %d2
- mov.l %d2,ADJK(%a6)
- fmov.x X(%a6),%fp0
- movm.l (%sp)+,&0xfc # restore registers {d2-d7}
- lea X(%a6),%a0
- bra.w LOGBGN # begin regular log(X)
-
-Hi_not0:
- clr.l %d6
- bfffo %d4{&0:&32},%d6 # find first 1
- mov.l %d6,%d2 # get k
- lsl.l %d6,%d4
- mov.l %d5,%d7 # a copy of D5
- lsl.l %d6,%d5
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d4 # (D3,D4,D5) normalized
-
- mov.l %d3,X(%a6)
- mov.l %d4,XFRAC(%a6)
- mov.l %d5,XFRAC+4(%a6)
- neg.l %d2
- mov.l %d2,ADJK(%a6)
- fmov.x X(%a6),%fp0
- movm.l (%sp)+,&0xfc # restore registers {d2-d7}
- lea X(%a6),%a0
- bra.w LOGBGN # begin regular log(X)
-
- global slognp1
-#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
-slognp1:
- fmov.x (%a0),%fp0 # LOAD INPUT
- fabs.x %fp0 # test magnitude
- fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold
- fbgt.w LP1REAL # if greater, continue
- fmov.l %d0,%fpcr
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x (%a0),%fp0 # return signed argument
- bra t_catch
-
-LP1REAL:
- fmov.x (%a0),%fp0 # LOAD INPUT
- mov.l &0x00000000,ADJK(%a6)
- fmov.x %fp0,%fp1 # FP1 IS INPUT Z
- fadd.s one(%pc),%fp0 # X := ROUND(1+Z)
- fmov.x %fp0,X(%a6)
- mov.w XFRAC(%a6),XDCARE(%a6)
- mov.l X(%a6),%d1
- cmp.l %d1,&0
- ble.w LP1NEG0 # LOG OF ZERO OR -VE
- cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]?
- blt.w LOGMAIN
- cmp.l %d1,&0x3fffc000
- bgt.w LOGMAIN
-#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
-#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
-#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
-
-LP1NEAR1:
-#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
- cmp.l %d1,&0x3ffef07d
- blt.w LP1CARE
- cmp.l %d1,&0x3fff8841
- bgt.w LP1CARE
-
-LP1ONE16:
-#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
-#--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
- fadd.x %fp1,%fp1 # FP1 IS 2Z
- fadd.s one(%pc),%fp0 # FP0 IS 1+X
-#--U = FP1/FP0
- bra.w LP1CONT2
-
-LP1CARE:
-#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
-#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
-#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
-#--THERE ARE ONLY TWO CASES.
-#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
-#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
-#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
-#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
-
- mov.l XFRAC(%a6),FFRAC(%a6)
- and.l &0xFE000000,FFRAC(%a6)
- or.l &0x01000000,FFRAC(%a6) # F OBTAINED
- cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1
- bge.b KISZERO
-
-KISNEG1:
- fmov.s TWO(%pc),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # 2-F
- mov.l FFRAC(%a6),%d1
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F
- fadd.x %fp1,%fp1 # GET 2Z
- fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3}
- fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z
- lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F
- add.l %d1,%a0
- fmov.s negone(%pc),%fp1 # FP1 IS K = -1
- bra.w LP1CONT1
-
-KISZERO:
- fmov.s one(%pc),%fp0
- mov.l &0x3fff0000,F(%a6)
- clr.l F+8(%a6)
- fsub.x F(%a6),%fp0 # 1-F
- mov.l FFRAC(%a6),%d1
- and.l &0x7E000000,%d1
- asr.l &8,%d1
- asr.l &8,%d1
- asr.l &4,%d1
- fadd.x %fp1,%fp0 # FP0 IS Y-F
- fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3}
- lea LOGTBL(%pc),%a0
- add.l %d1,%a0 # A0 IS ADDRESS OF 1/F
- fmov.s zero(%pc),%fp1 # FP1 IS K = 0
- bra.w LP1CONT1
-
-LP1NEG0:
-#--FPCR SAVED. D0 IS X IN COMPACT FORM.
- cmp.l %d1,&0
- blt.b LP1NEG
-LP1ZERO:
- fmov.s negone(%pc),%fp0
-
- fmov.l %d0,%fpcr
- bra t_dz
-
-LP1NEG:
- fmov.s zero(%pc),%fp0
-
- fmov.l %d0,%fpcr
- bra t_operr
-
- global slognp1d
-#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
-# Simply return the denorm
-slognp1d:
- bra t_extdnrm
-
-#########################################################################
-# satanh(): computes the inverse hyperbolic tangent of a norm input #
-# satanhd(): computes the inverse hyperbolic tangent of a denorm input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = arctanh(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 3 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# ATANH #
-# 1. If |X| >= 1, go to 3. #
-# #
-# 2. (|X| < 1) Calculate atanh(X) by #
-# sgn := sign(X) #
-# y := |X| #
-# z := 2y/(1-y) #
-# atanh(X) := sgn * (1/2) * logp1(z) #
-# Exit. #
-# #
-# 3. If |X| > 1, go to 5. #
-# #
-# 4. (|X| = 1) Generate infinity with an appropriate sign and #
-# divide-by-zero by #
-# sgn := sign(X) #
-# atan(X) := sgn / (+0). #
-# Exit. #
-# #
-# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
-# Exit. #
-# #
-#########################################################################
-
- global satanh
-satanh:
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- cmp.l %d1,&0x3FFF8000
- bge.b ATANHBIG
-
-#--THIS IS THE USUAL CASE, |X| < 1
-#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
-
- fabs.x (%a0),%fp0 # Y = |X|
- fmov.x %fp0,%fp1
- fneg.x %fp1 # -Y
- fadd.x %fp0,%fp0 # 2Y
- fadd.s &0x3F800000,%fp1 # 1-Y
- fdiv.x %fp1,%fp0 # 2Y/(1-Y)
- mov.l (%a0),%d1
- and.l &0x80000000,%d1
- or.l &0x3F000000,%d1 # SIGN(X)*HALF
- mov.l %d1,-(%sp)
-
- mov.l %d0,-(%sp) # save rnd prec,mode
- clr.l %d0 # pass ext prec,RN
- fmovm.x &0x01,-(%sp) # save Z on stack
- lea (%sp),%a0 # pass ptr to Z
- bsr slognp1 # LOG1P(Z)
- add.l &0xc,%sp # clear Z from stack
-
- mov.l (%sp)+,%d0 # fetch old prec,mode
- fmov.l %d0,%fpcr # load it
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.s (%sp)+,%fp0
- bra t_catch
-
-ATANHBIG:
- fabs.x (%a0),%fp0 # |X|
- fcmp.s %fp0,&0x3F800000
- fbgt t_operr
- bra t_dz
-
- global satanhd
-#--ATANH(X) = X FOR DENORMALIZED X
-satanhd:
- bra t_extdnrm
-
-#########################################################################
-# slog10(): computes the base-10 logarithm of a normalized input #
-# slog10d(): computes the base-10 logarithm of a denormalized input #
-# slog2(): computes the base-2 logarithm of a normalized input #
-# slog2d(): computes the base-2 logarithm of a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = log_10(X) or log_2(X) #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 1.7 ulps in 64 significant bit, #
-# i.e. within 0.5003 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# slog10d: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
-# Notes: Even if X is denormalized, log(X) is always normalized. #
-# #
-# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
-# 2.1 Restore the user FPCR #
-# 2.2 Return ans := Y * INV_L10. #
-# #
-# slog10: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. #
-# #
-# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
-# 2.1 Restore the user FPCR #
-# 2.2 Return ans := Y * INV_L10. #
-# #
-# sLog2d: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
-# Notes: Even if X is denormalized, log(X) is always normalized. #
-# #
-# Step 2. Compute log_10(X) = log(X) * (1/log(2)). #
-# 2.1 Restore the user FPCR #
-# 2.2 Return ans := Y * INV_L2. #
-# #
-# sLog2: #
-# #
-# Step 0. If X < 0, create a NaN and raise the invalid operation #
-# flag. Otherwise, save FPCR in D1; set FpCR to default. #
-# Notes: Default means round-to-nearest mode, no floating-point #
-# traps, and precision control = double extended. #
-# #
-# Step 1. If X is not an integer power of two, i.e., X != 2^k, #
-# go to Step 3. #
-# #
-# Step 2. Return k. #
-# 2.1 Get integer k, X = 2^k. #
-# 2.2 Restore the user FPCR. #
-# 2.3 Return ans := convert-to-double-extended(k). #
-# #
-# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. #
-# #
-# Step 4. Compute log_2(X) = log(X) * (1/log(2)). #
-# 4.1 Restore the user FPCR #
-# 4.2 Return ans := Y * INV_L2. #
-# #
-#########################################################################
-
-INV_L10:
- long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
-
-INV_L2:
- long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
-
- global slog10
-#--entry point for Log10(X), X is normalized
-slog10:
- fmov.b &0x1,%fp0
- fcmp.x %fp0,(%a0) # if operand == 1,
- fbeq.l ld_pzero # return an EXACT zero
-
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slogn # log(X), X normal.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L10(%pc),%fp0
- bra t_inx2
-
- global slog10d
-#--entry point for Log10(X), X is denormalized
-slog10d:
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slognd # log(X), X denorm.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L10(%pc),%fp0
- bra t_minx2
-
- global slog2
-#--entry point for Log2(X), X is normalized
-slog2:
- mov.l (%a0),%d1
- blt.w invalid
-
- mov.l 8(%a0),%d1
- bne.b continue # X is not 2^k
-
- mov.l 4(%a0),%d1
- and.l &0x7FFFFFFF,%d1
- bne.b continue
-
-#--X = 2^k.
- mov.w (%a0),%d1
- and.l &0x00007FFF,%d1
- sub.l &0x3FFF,%d1
- beq.l ld_pzero
- fmov.l %d0,%fpcr
- fmov.l %d1,%fp0
- bra t_inx2
-
-continue:
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slogn # log(X), X normal.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L2(%pc),%fp0
- bra t_inx2
-
-invalid:
- bra t_operr
-
- global slog2d
-#--entry point for Log2(X), X is denormalized
-slog2d:
- mov.l (%a0),%d1
- blt.w invalid
- mov.l %d0,-(%sp)
- clr.l %d0
- bsr slognd # log(X), X denorm.
- fmov.l (%sp)+,%fpcr
- fmul.x INV_L2(%pc),%fp0
- bra t_minx2
-
-#########################################################################
-# stwotox(): computes 2**X for a normalized input #
-# stwotoxd(): computes 2**X for a denormalized input #
-# stentox(): computes 10**X for a normalized input #
-# stentoxd(): computes 10**X for a denormalized input #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input #
-# d0 = round precision,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = 2**X or 10**X #
-# #
-# ACCURACY and MONOTONICITY ******************************************* #
-# The returned result is within 2 ulps in 64 significant bit, #
-# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
-# rounded to double precision. The result is provably monotonic #
-# in double precision. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# twotox #
-# 1. If |X| > 16480, go to ExpBig. #
-# #
-# 2. If |X| < 2**(-70), go to ExpSm. #
-# #
-# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore #
-# decompose N as #
-# N = 64(M + M') + j, j = 0,1,2,...,63. #
-# #
-# 4. Overwrite r := r * log2. Then #
-# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
-# Go to expr to compute that expression. #
-# #
-# tentox #
-# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. #
-# #
-# 2. If |X| < 2**(-70), go to ExpSm. #
-# #
-# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set #
-# N := round-to-int(y). Decompose N as #
-# N = 64(M + M') + j, j = 0,1,2,...,63. #
-# #
-# 4. Define r as #
-# r := ((X - N*L1)-N*L2) * L10 #
-# where L1, L2 are the leading and trailing parts of #
-# log_10(2)/64 and L10 is the natural log of 10. Then #
-# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
-# Go to expr to compute that expression. #
-# #
-# expr #
-# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. #
-# #
-# 2. Overwrite Fact1 and Fact2 by #
-# Fact1 := 2**(M) * Fact1 #
-# Fact2 := 2**(M) * Fact2 #
-# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). #
-# #
-# 3. Calculate P where 1 + P approximates exp(r): #
-# P = r + r*r*(A1+r*(A2+...+r*A5)). #
-# #
-# 4. Let AdjFact := 2**(M'). Return #
-# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). #
-# Exit. #
-# #
-# ExpBig #
-# 1. Generate overflow by Huge * Huge if X > 0; otherwise, #
-# generate underflow by Tiny * Tiny. #
-# #
-# ExpSm #
-# 1. Return 1 + X. #
-# #
-#########################################################################
-
-L2TEN64:
- long 0x406A934F,0x0979A371 # 64LOG10/LOG2
-L10TWO1:
- long 0x3F734413,0x509F8000 # LOG2/64LOG10
-
-L10TWO2:
- long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000
-
-LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000
-
-LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
-
-EXPA5: long 0x3F56C16D,0x6F7BD0B2
-EXPA4: long 0x3F811112,0x302C712C
-EXPA3: long 0x3FA55555,0x55554CC1
-EXPA2: long 0x3FC55555,0x55554A54
-EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000
-
-TEXPTBL:
- long 0x3FFF0000,0x80000000,0x00000000,0x3F738000
- long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA
- long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9
- long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9
- long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA
- long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C
- long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1
- long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA
- long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373
- long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670
- long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700
- long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0
- long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D
- long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319
- long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B
- long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5
- long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A
- long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B
- long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF
- long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA
- long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD
- long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E
- long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B
- long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB
- long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB
- long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274
- long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C
- long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00
- long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301
- long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367
- long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F
- long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C
- long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB
- long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB
- long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C
- long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA
- long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD
- long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51
- long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A
- long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2
- long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB
- long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17
- long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C
- long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8
- long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53
- long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE
- long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124
- long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243
- long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A
- long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61
- long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610
- long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1
- long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12
- long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE
- long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4
- long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F
- long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A
- long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A
- long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC
- long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F
- long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A
- long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795
- long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B
- long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581
-
- set INT,L_SCR1
-
- set X,FP_SCR0
- set XDCARE,X+2
- set XFRAC,X+4
-
- set ADJFACT,FP_SCR0
-
- set FACT1,FP_SCR0
- set FACT1HI,FACT1+4
- set FACT1LOW,FACT1+8
-
- set FACT2,FP_SCR1
- set FACT2HI,FACT2+4
- set FACT2LOW,FACT2+8
-
- global stwotox
-#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
-stwotox:
- fmovm.x (%a0),&0x80 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
- bge.b TWOOK1
- bra.w EXPBORS
-
-TWOOK1:
- cmp.l %d1,&0x400D80C0 # |X| > 16480?
- ble.b TWOMAIN
- bra.w EXPBORS
-
-TWOMAIN:
-#--USUAL CASE, 2^(-70) <= |X| <= 16480
-
- fmov.x %fp0,%fp1
- fmul.s &0x42800000,%fp1 # 64 * X
- fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X)
- mov.l %d2,-(%sp)
- lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
- fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
- mov.l INT(%a6),%d1
- mov.l %d1,%d2
- and.l &0x3F,%d1 # D0 IS J
- asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
- add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
- asr.l &6,%d2 # d2 IS L, N = 64L + J
- mov.l %d2,%d1
- asr.l &1,%d1 # D0 IS M
- sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
- add.l &0x3FFF,%d2
-
-#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
-#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
-#--ADJFACT = 2^(M').
-#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
-
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmul.s &0x3C800000,%fp1 # (1/64)*N
- mov.l (%a1)+,FACT1(%a6)
- mov.l (%a1)+,FACT1HI(%a6)
- mov.l (%a1)+,FACT1LOW(%a6)
- mov.w (%a1)+,FACT2(%a6)
-
- fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X)
-
- mov.w (%a1)+,FACT2HI(%a6)
- clr.w FACT2HI+2(%a6)
- clr.l FACT2LOW(%a6)
- add.w %d1,FACT1(%a6)
- fmul.x LOG2(%pc),%fp0 # FP0 IS R
- add.w %d1,FACT2(%a6)
-
- bra.w expr
-
-EXPBORS:
-#--FPCR, D0 SAVED
- cmp.l %d1,&0x3FFF8000
- bgt.b TEXPBIG
-
-#--|X| IS SMALL, RETURN 1 + X
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- fadd.s &0x3F800000,%fp0 # RETURN 1 + X
- bra t_pinx2
-
-TEXPBIG:
-#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
-#--REGISTERS SAVE SO FAR ARE FPCR AND D0
- mov.l X(%a6),%d1
- cmp.l %d1,&0
- blt.b EXPNEG
-
- bra t_ovfl2 # t_ovfl expects positive value
-
-EXPNEG:
- bra t_unfl2 # t_unfl expects positive value
-
- global stwotoxd
-stwotoxd:
-#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
-
- fmov.l %d0,%fpcr # set user's rounding mode/precision
- fmov.s &0x3F800000,%fp0 # RETURN 1 + X
- mov.l (%a0),%d1
- or.l &0x00800001,%d1
- fadd.s %d1,%fp0
- bra t_pinx2
-
- global stentox
-#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
-stentox:
- fmovm.x (%a0),&0x80 # LOAD INPUT
-
- mov.l (%a0),%d1
- mov.w 4(%a0),%d1
- fmov.x %fp0,X(%a6)
- and.l &0x7FFFFFFF,%d1
-
- cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
- bge.b TENOK1
- bra.w EXPBORS
-
-TENOK1:
- cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ?
- ble.b TENMAIN
- bra.w EXPBORS
-
-TENMAIN:
-#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
-
- fmov.x %fp0,%fp1
- fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2
- fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2)
- mov.l %d2,-(%sp)
- lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
- fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
- mov.l INT(%a6),%d1
- mov.l %d1,%d2
- and.l &0x3F,%d1 # D0 IS J
- asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
- add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
- asr.l &6,%d2 # d2 IS L, N = 64L + J
- mov.l %d2,%d1
- asr.l &1,%d1 # D0 IS M
- sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
- add.l &0x3FFF,%d2
-
-#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
-#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
-#--ADJFACT = 2^(M').
-#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
- fmovm.x &0x0c,-(%sp) # save fp2/fp3
-
- fmov.x %fp1,%fp2
-
- fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD
- mov.l (%a1)+,FACT1(%a6)
-
- fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL
-
- mov.l (%a1)+,FACT1HI(%a6)
- mov.l (%a1)+,FACT1LOW(%a6)
- fsub.x %fp1,%fp0 # X - N L_LEAD
- mov.w (%a1)+,FACT2(%a6)
-
- fsub.x %fp2,%fp0 # X - N L_TRAIL
-
- mov.w (%a1)+,FACT2HI(%a6)
- clr.w FACT2HI+2(%a6)
- clr.l FACT2LOW(%a6)
-
- fmul.x LOG10(%pc),%fp0 # FP0 IS R
- add.w %d1,FACT1(%a6)
- add.w %d1,FACT2(%a6)
-
-expr:
-#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
-#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
-#--FP0 IS R. THE FOLLOWING CODE COMPUTES
-#-- 2**(M'+M) * 2**(J/64) * EXP(R)
-
- fmov.x %fp0,%fp1
- fmul.x %fp1,%fp1 # FP1 IS S = R*R
-
- fmov.d EXPA5(%pc),%fp2 # FP2 IS A5
- fmov.d EXPA4(%pc),%fp3 # FP3 IS A4
-
- fmul.x %fp1,%fp2 # FP2 IS S*A5
- fmul.x %fp1,%fp3 # FP3 IS S*A4
-
- fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5
- fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4
-
- fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5)
- fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4)
-
- fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5)
- fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4)
-
- fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5))
- fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4)
- fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
-
- fmovm.x (%sp)+,&0x30 # restore fp2/fp3
-
-#--FINAL RECONSTRUCTION PROCESS
-#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
-
- fmul.x FACT1(%a6),%fp0
- fadd.x FACT2(%a6),%fp0
- fadd.x FACT1(%a6),%fp0
-
- fmov.l %d0,%fpcr # restore users round prec,mode
- mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT
- mov.l (%sp)+,%d2
- mov.l &0x80000000,ADJFACT+4(%a6)
- clr.l ADJFACT+8(%a6)
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT
- bra t_catch
-
- global stentoxd
-stentoxd:
-#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
-
- fmov.l %d0,%fpcr # set user's rounding mode/precision
- fmov.s &0x3F800000,%fp0 # RETURN 1 + X
- mov.l (%a0),%d1
- or.l &0x00800001,%d1
- fadd.s %d1,%fp0
- bra t_pinx2
-
-#########################################################################
-# smovcr(): returns the ROM constant at the offset specified in d1 #
-# rounded to the mode and precision specified in d0. #
-# #
-# INPUT *************************************************************** #
-# d0 = rnd prec,mode #
-# d1 = ROM offset #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = the ROM constant rounded to the user's rounding mode,prec #
-# #
-#########################################################################
-
- global smovcr
-smovcr:
- mov.l %d1,-(%sp) # save rom offset for a sec
-
- lsr.b &0x4,%d0 # shift ctrl bits to lo
- mov.l %d0,%d1 # make a copy
- andi.w &0x3,%d1 # extract rnd mode
- andi.w &0xc,%d0 # extract rnd prec
- swap %d0 # put rnd prec in hi
- mov.w %d1,%d0 # put rnd mode in lo
-
- mov.l (%sp)+,%d1 # get rom offset
-
-#
-# check range of offset
-#
- tst.b %d1 # if zero, offset is to pi
- beq.b pi_tbl # it is pi
- cmpi.b %d1,&0x0a # check range $01 - $0a
- ble.b z_val # if in this range, return zero
- cmpi.b %d1,&0x0e # check range $0b - $0e
- ble.b sm_tbl # valid constants in this range
- cmpi.b %d1,&0x2f # check range $10 - $2f
- ble.b z_val # if in this range, return zero
- cmpi.b %d1,&0x3f # check range $30 - $3f
- ble.b bg_tbl # valid constants in this range
-
-z_val:
- bra.l ld_pzero # return a zero
-
-#
-# the answer is PI rounded to the proper precision.
-#
-# fetch a pointer to the answer table relating to the proper rounding
-# precision.
-#
-pi_tbl:
- tst.b %d0 # is rmode RN?
- bne.b pi_not_rn # no
-pi_rn:
- lea.l PIRN(%pc),%a0 # yes; load PI RN table addr
- bra.w set_finx
-pi_not_rn:
- cmpi.b %d0,&rp_mode # is rmode RP?
- beq.b pi_rp # yes
-pi_rzrm:
- lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr
- bra.b set_finx
-pi_rp:
- lea.l PIRP(%pc),%a0 # load PI RP table addr
- bra.b set_finx
-
-#
-# the answer is one of:
-# $0B log10(2) (inexact)
-# $0C e (inexact)
-# $0D log2(e) (inexact)
-# $0E log10(e) (exact)
-#
-# fetch a pointer to the answer table relating to the proper rounding
-# precision.
-#
-sm_tbl:
- subi.b &0xb,%d1 # make offset in 0-4 range
- tst.b %d0 # is rmode RN?
- bne.b sm_not_rn # no
-sm_rn:
- lea.l SMALRN(%pc),%a0 # yes; load RN table addr
-sm_tbl_cont:
- cmpi.b %d1,&0x2 # is result log10(e)?
- ble.b set_finx # no; answer is inexact
- bra.b no_finx # yes; answer is exact
-sm_not_rn:
- cmpi.b %d0,&rp_mode # is rmode RP?
- beq.b sm_rp # yes
-sm_rzrm:
- lea.l SMALRZRM(%pc),%a0 # no; load RZ,RM table addr
- bra.b sm_tbl_cont
-sm_rp:
- lea.l SMALRP(%pc),%a0 # load RP table addr
- bra.b sm_tbl_cont
-
-#
-# the answer is one of:
-# $30 ln(2) (inexact)
-# $31 ln(10) (inexact)
-# $32 10^0 (exact)
-# $33 10^1 (exact)
-# $34 10^2 (exact)
-# $35 10^4 (exact)
-# $36 10^8 (exact)
-# $37 10^16 (exact)
-# $38 10^32 (inexact)
-# $39 10^64 (inexact)
-# $3A 10^128 (inexact)
-# $3B 10^256 (inexact)
-# $3C 10^512 (inexact)
-# $3D 10^1024 (inexact)
-# $3E 10^2048 (inexact)
-# $3F 10^4096 (inexact)
-#
-# fetch a pointer to the answer table relating to the proper rounding
-# precision.
-#
-bg_tbl:
- subi.b &0x30,%d1 # make offset in 0-f range
- tst.b %d0 # is rmode RN?
- bne.b bg_not_rn # no
-bg_rn:
- lea.l BIGRN(%pc),%a0 # yes; load RN table addr
-bg_tbl_cont:
- cmpi.b %d1,&0x1 # is offset <= $31?
- ble.b set_finx # yes; answer is inexact
- cmpi.b %d1,&0x7 # is $32 <= offset <= $37?
- ble.b no_finx # yes; answer is exact
- bra.b set_finx # no; answer is inexact
-bg_not_rn:
- cmpi.b %d0,&rp_mode # is rmode RP?
- beq.b bg_rp # yes
-bg_rzrm:
- lea.l BIGRZRM(%pc),%a0 # no; load RZ,RM table addr
- bra.b bg_tbl_cont
-bg_rp:
- lea.l BIGRP(%pc),%a0 # load RP table addr
- bra.b bg_tbl_cont
-
-# answer is inexact, so set INEX2 and AINEX in the user's FPSR.
-set_finx:
- ori.l &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX
-no_finx:
- mulu.w &0xc,%d1 # offset points into tables
- swap %d0 # put rnd prec in lo word
- tst.b %d0 # is precision extended?
-
- bne.b not_ext # if xprec, do not call round
-
-# Precision is extended
- fmovm.x (%a0,%d1.w),&0x80 # return result in fp0
- rts
-
-# Precision is single or double
-not_ext:
- swap %d0 # rnd prec in upper word
-
-# call round() to round the answer to the proper precision.
-# exponents out of range for single or double DO NOT cause underflow
-# or overflow.
- mov.w 0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word
- mov.l 0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word
- mov.l 0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word
- mov.l %d0,%d1
- clr.l %d0 # clear g,r,s
- lea FP_SCR1(%a6),%a0 # pass ptr to answer
- clr.w LOCAL_SGN(%a0) # sign always positive
- bsr.l _round # round the mantissa
-
- fmovm.x (%a0),&0x80 # return rounded result in fp0
- rts
-
- align 0x4
-
-PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi
-PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi
-PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi
-
-SMALRN: long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2)
- long 0x40000000,0xadf85458,0xa2bb4a9a # e
- long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e)
- long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e)
- long 0x00000000,0x00000000,0x00000000 # 0.0
-
-SMALRZRM:
- long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2)
- long 0x40000000,0xadf85458,0xa2bb4a9a # e
- long 0x3fff0000,0xb8aa3b29,0x5c17f0bb # log2(e)
- long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e)
- long 0x00000000,0x00000000,0x00000000 # 0.0
-
-SMALRP: long 0x3ffd0000,0x9a209a84,0xfbcff799 # log10(2)
- long 0x40000000,0xadf85458,0xa2bb4a9b # e
- long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e)
- long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e)
- long 0x00000000,0x00000000,0x00000000 # 0.0
-
-BIGRN: long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2)
- long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10)
-
- long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
-
-BIGRZRM:
- long 0x3ffe0000,0xb17217f7,0xd1cf79ab # ln(2)
- long 0x40000000,0x935d8ddd,0xaaa8ac16 # ln(10)
-
- long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096
-
-BIGRP:
- long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2)
- long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10)
-
- long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
-
-#########################################################################
-# sscale(): computes the destination operand scaled by the source #
-# operand. If the absoulute value of the source operand is #
-# >= 2^14, an overflow or underflow is returned. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to double-extended source operand X #
-# a1 = pointer to double-extended destination operand Y #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = scale(X,Y) #
-# #
-#########################################################################
-
-set SIGN, L_SCR1
-
- global sscale
-sscale:
- mov.l %d0,-(%sp) # store off ctrl bits for now
-
- mov.w DST_EX(%a1),%d1 # get dst exponent
- smi.b SIGN(%a6) # use SIGN to hold dst sign
- andi.l &0x00007fff,%d1 # strip sign from dst exp
-
- mov.w SRC_EX(%a0),%d0 # check src bounds
- andi.w &0x7fff,%d0 # clr src sign bit
- cmpi.w %d0,&0x3fff # is src ~ ZERO?
- blt.w src_small # yes
- cmpi.w %d0,&0x400c # no; is src too big?
- bgt.w src_out # yes
-
-#
-# Source is within 2^14 range.
-#
-src_ok:
- fintrz.x SRC(%a0),%fp0 # calc int of src
- fmov.l %fp0,%d0 # int src to d0
-# don't want any accrued bits from the fintrz showing up later since
-# we may need to read the fpsr for the last fp op in t_catch2().
- fmov.l &0x0,%fpsr
-
- tst.b DST_HI(%a1) # is dst denormalized?
- bmi.b sok_norm
-
-# the dst is a DENORM. normalize the DENORM and add the adjustment to
-# the src value. then, jump to the norm part of the routine.
-sok_dnrm:
- mov.l %d0,-(%sp) # save src for now
-
- mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy
- mov.l DST_HI(%a1),FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
-
- lea FP_SCR0(%a6),%a0 # pass ptr to DENORM
- bsr.l norm # normalize the DENORM
- neg.l %d0
- add.l (%sp)+,%d0 # add adjustment to src
-
- fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM
-
- cmpi.w %d0,&-0x3fff # is the shft amt really low?
- bge.b sok_norm2 # thank goodness no
-
-# the multiply factor that we're trying to create should be a denorm
-# for the multiply to work. Therefore, we're going to actually do a
-# multiply with a denorm which will cause an unimplemented data type
-# exception to be put into the machine which will be caught and corrected
-# later. we don't do this with the DENORMs above because this method
-# is slower. but, don't fret, I don't see it being used much either.
- fmov.l (%sp)+,%fpcr # restore user fpcr
- mov.l &0x80000000,%d1 # load normalized mantissa
- subi.l &-0x3fff,%d0 # how many should we shift?
- neg.l %d0 # make it positive
- cmpi.b %d0,&0x20 # is it > 32?
- bge.b sok_dnrm_32 # yes
- lsr.l %d0,%d1 # no; bit stays in upper lw
- clr.l -(%sp) # insert zero low mantissa
- mov.l %d1,-(%sp) # insert new high mantissa
- clr.l -(%sp) # make zero exponent
- bra.b sok_norm_cont
-sok_dnrm_32:
- subi.b &0x20,%d0 # get shift count
- lsr.l %d0,%d1 # make low mantissa longword
- mov.l %d1,-(%sp) # insert new low mantissa
- clr.l -(%sp) # insert zero high mantissa
- clr.l -(%sp) # make zero exponent
- bra.b sok_norm_cont
-
-# the src will force the dst to a DENORM value or worse. so, let's
-# create an fp multiply that will create the result.
-sok_norm:
- fmovm.x DST(%a1),&0x80 # load fp0 with normalized src
-sok_norm2:
- fmov.l (%sp)+,%fpcr # restore user fpcr
-
- addi.w &0x3fff,%d0 # turn src amt into exp value
- swap %d0 # put exponent in high word
- clr.l -(%sp) # insert new exponent
- mov.l &0x80000000,-(%sp) # insert new high mantissa
- mov.l %d0,-(%sp) # insert new lo mantissa
-
-sok_norm_cont:
- fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x (%sp)+,%fp0 # do the multiply
- bra t_catch2 # catch any exceptions
-
-#
-# Source is outside of 2^14 range. Test the sign and branch
-# to the appropriate exception handler.
-#
-src_out:
- mov.l (%sp)+,%d0 # restore ctrl bits
- exg %a0,%a1 # swap src,dst ptrs
- tst.b SRC_EX(%a1) # is src negative?
- bmi t_unfl # yes; underflow
- bra t_ovfl_sc # no; overflow
-
-#
-# The source input is below 1, so we check for denormalized numbers
-# and set unfl.
-#
-src_small:
- tst.b DST_HI(%a1) # is dst denormalized?
- bpl.b ssmall_done # yes
-
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr # no; load control bits
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x DST(%a1),%fp0 # simply return dest
- bra t_catch2
-ssmall_done:
- mov.l (%sp)+,%d0 # load control bits into d1
- mov.l %a1,%a0 # pass ptr to dst
- bra t_resdnrm
-
-#########################################################################
-# smod(): computes the fp MOD of the input values X,Y. #
-# srem(): computes the fp (IEEE) REM of the input values X,Y. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision input X #
-# a1 = pointer to extended precision input Y #
-# d0 = round precision,mode #
-# #
-# The input operands X and Y can be either normalized or #
-# denormalized. #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = FREM(X,Y) or FMOD(X,Y) #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# Step 1. Save and strip signs of X and Y: signX := sign(X), #
-# signY := sign(Y), X := |X|, Y := |Y|, #
-# signQ := signX EOR signY. Record whether MOD or REM #
-# is requested. #
-# #
-# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. #
-# If (L < 0) then #
-# R := X, go to Step 4. #
-# else #
-# R := 2^(-L)X, j := L. #
-# endif #
-# #
-# Step 3. Perform MOD(X,Y) #
-# 3.1 If R = Y, go to Step 9. #
-# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} #
-# 3.3 If j = 0, go to Step 4. #
-# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to #
-# Step 3.1. #
-# #
-# Step 4. At this point, R = X - QY = MOD(X,Y). Set #
-# Last_Subtract := false (used in Step 7 below). If #
-# MOD is requested, go to Step 6. #
-# #
-# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
-# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
-# Step 6. #
-# 5.2 If R > Y/2, then { set Last_Subtract := true, #
-# Q := Q + 1, Y := signY*Y }. Go to Step 6. #
-# 5.3 This is the tricky case of R = Y/2. If Q is odd, #
-# then { Q := Q + 1, signX := -signX }. #
-# #
-# Step 6. R := signX*R. #
-# #
-# Step 7. If Last_Subtract = true, R := R - Y. #
-# #
-# Step 8. Return signQ, last 7 bits of Q, and R as required. #
-# #
-# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
-# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), #
-# R := 0. Return signQ, last 7 bits of Q, and R. #
-# #
-#########################################################################
-
- set Mod_Flag,L_SCR3
- set Sc_Flag,L_SCR3+1
-
- set SignY,L_SCR2
- set SignX,L_SCR2+2
- set SignQ,L_SCR3+2
-
- set Y,FP_SCR0
- set Y_Hi,Y+4
- set Y_Lo,Y+8
-
- set R,FP_SCR1
- set R_Hi,R+4
- set R_Lo,R+8
-
-Scale:
- long 0x00010000,0x80000000,0x00000000,0x00000000
-
- global smod
-smod:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp) # save ctrl bits
- clr.b Mod_Flag(%a6)
- bra.b Mod_Rem
-
- global srem
-srem:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp) # save ctrl bits
- mov.b &0x1,Mod_Flag(%a6)
-
-Mod_Rem:
-#..Save sign of X and Y
- movm.l &0x3f00,-(%sp) # save data registers
- mov.w SRC_EX(%a0),%d3
- mov.w %d3,SignY(%a6)
- and.l &0x00007FFF,%d3 # Y := |Y|
-
-#
- mov.l SRC_HI(%a0),%d4
- mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y|
-
- tst.l %d3
- bne.b Y_Normal
-
- mov.l &0x00003FFE,%d3 # $3FFD + 1
- tst.l %d4
- bne.b HiY_not0
-
-HiY_0:
- mov.l %d5,%d4
- clr.l %d5
- sub.l &32,%d3
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- lsl.l %d6,%d4
- sub.l %d6,%d3 # (D3,D4,D5) is normalized
-# ...with bias $7FFD
- bra.b Chk_X
-
-HiY_not0:
- clr.l %d6
- bfffo %d4{&0:&32},%d6
- sub.l %d6,%d3
- lsl.l %d6,%d4
- mov.l %d5,%d7 # a copy of D5
- lsl.l %d6,%d5
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d4 # (D3,D4,D5) normalized
-# ...with bias $7FFD
- bra.b Chk_X
-
-Y_Normal:
- add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized
-# ...with bias $7FFD
-
-Chk_X:
- mov.w DST_EX(%a1),%d0
- mov.w %d0,SignX(%a6)
- mov.w SignY(%a6),%d1
- eor.l %d0,%d1
- and.l &0x00008000,%d1
- mov.w %d1,SignQ(%a6) # sign(Q) obtained
- and.l &0x00007FFF,%d0
- mov.l DST_HI(%a1),%d1
- mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X|
- tst.l %d0
- bne.b X_Normal
- mov.l &0x00003FFE,%d0
- tst.l %d1
- bne.b HiX_not0
-
-HiX_0:
- mov.l %d2,%d1
- clr.l %d2
- sub.l &32,%d0
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- lsl.l %d6,%d1
- sub.l %d6,%d0 # (D0,D1,D2) is normalized
-# ...with bias $7FFD
- bra.b Init
-
-HiX_not0:
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- sub.l %d6,%d0
- lsl.l %d6,%d1
- mov.l %d2,%d7 # a copy of D2
- lsl.l %d6,%d2
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d1 # (D0,D1,D2) normalized
-# ...with bias $7FFD
- bra.b Init
-
-X_Normal:
- add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized
-# ...with bias $7FFD
-
-Init:
-#
- mov.l %d3,L_SCR1(%a6) # save biased exp(Y)
- mov.l %d0,-(%sp) # save biased exp(X)
- sub.l %d3,%d0 # L := expo(X)-expo(Y)
-
- clr.l %d6 # D6 := carry <- 0
- clr.l %d3 # D3 is Q
- mov.l &0,%a1 # A1 is k; j+k=L, Q=0
-
-#..(Carry,D1,D2) is R
- tst.l %d0
- bge.b Mod_Loop_pre
-
-#..expo(X) < expo(Y). Thus X = mod(X,Y)
-#
- mov.l (%sp)+,%d0 # restore d0
- bra.w Get_Mod
-
-Mod_Loop_pre:
- addq.l &0x4,%sp # erase exp(X)
-#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
-Mod_Loop:
- tst.l %d6 # test carry bit
- bgt.b R_GT_Y
-
-#..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
- cmp.l %d1,%d4 # compare hi(R) and hi(Y)
- bne.b R_NE_Y
- cmp.l %d2,%d5 # compare lo(R) and lo(Y)
- bne.b R_NE_Y
-
-#..At this point, R = Y
- bra.w Rem_is_0
-
-R_NE_Y:
-#..use the borrow of the previous compare
- bcs.b R_LT_Y # borrow is set iff R < Y
-
-R_GT_Y:
-#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
-#..and Y < (D1,D2) < 2Y. Either way, perform R - Y
- sub.l %d5,%d2 # lo(R) - lo(Y)
- subx.l %d4,%d1 # hi(R) - hi(Y)
- clr.l %d6 # clear carry
- addq.l &1,%d3 # Q := Q + 1
-
-R_LT_Y:
-#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
- tst.l %d0 # see if j = 0.
- beq.b PostLoop
-
- add.l %d3,%d3 # Q := 2Q
- add.l %d2,%d2 # lo(R) = 2lo(R)
- roxl.l &1,%d1 # hi(R) = 2hi(R) + carry
- scs %d6 # set Carry if 2(R) overflows
- addq.l &1,%a1 # k := k+1
- subq.l &1,%d0 # j := j - 1
-#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
-
- bra.b Mod_Loop
-
-PostLoop:
-#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
-
-#..normalize R.
- mov.l L_SCR1(%a6),%d0 # new biased expo of R
- tst.l %d1
- bne.b HiR_not0
-
-HiR_0:
- mov.l %d2,%d1
- clr.l %d2
- sub.l &32,%d0
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- lsl.l %d6,%d1
- sub.l %d6,%d0 # (D0,D1,D2) is normalized
-# ...with bias $7FFD
- bra.b Get_Mod
-
-HiR_not0:
- clr.l %d6
- bfffo %d1{&0:&32},%d6
- bmi.b Get_Mod # already normalized
- sub.l %d6,%d0
- lsl.l %d6,%d1
- mov.l %d2,%d7 # a copy of D2
- lsl.l %d6,%d2
- neg.l %d6
- add.l &32,%d6
- lsr.l %d6,%d7
- or.l %d7,%d1 # (D0,D1,D2) normalized
-
-#
-Get_Mod:
- cmp.l %d0,&0x000041FE
- bge.b No_Scale
-Do_Scale:
- mov.w %d0,R(%a6)
- mov.l %d1,R_Hi(%a6)
- mov.l %d2,R_Lo(%a6)
- mov.l L_SCR1(%a6),%d6
- mov.w %d6,Y(%a6)
- mov.l %d4,Y_Hi(%a6)
- mov.l %d5,Y_Lo(%a6)
- fmov.x R(%a6),%fp0 # no exception
- mov.b &1,Sc_Flag(%a6)
- bra.b ModOrRem
-No_Scale:
- mov.l %d1,R_Hi(%a6)
- mov.l %d2,R_Lo(%a6)
- sub.l &0x3FFE,%d0
- mov.w %d0,R(%a6)
- mov.l L_SCR1(%a6),%d6
- sub.l &0x3FFE,%d6
- mov.l %d6,L_SCR1(%a6)
- fmov.x R(%a6),%fp0
- mov.w %d6,Y(%a6)
- mov.l %d4,Y_Hi(%a6)
- mov.l %d5,Y_Lo(%a6)
- clr.b Sc_Flag(%a6)
-
-#
-ModOrRem:
- tst.b Mod_Flag(%a6)
- beq.b Fix_Sign
-
- mov.l L_SCR1(%a6),%d6 # new biased expo(Y)
- subq.l &1,%d6 # biased expo(Y/2)
- cmp.l %d0,%d6
- blt.b Fix_Sign
- bgt.b Last_Sub
-
- cmp.l %d1,%d4
- bne.b Not_EQ
- cmp.l %d2,%d5
- bne.b Not_EQ
- bra.w Tie_Case
-
-Not_EQ:
- bcs.b Fix_Sign
-
-Last_Sub:
-#
- fsub.x Y(%a6),%fp0 # no exceptions
- addq.l &1,%d3 # Q := Q + 1
-
-#
-Fix_Sign:
-#..Get sign of X
- mov.w SignX(%a6),%d6
- bge.b Get_Q
- fneg.x %fp0
-
-#..Get Q
-#
-Get_Q:
- clr.l %d6
- mov.w SignQ(%a6),%d6 # D6 is sign(Q)
- mov.l &8,%d7
- lsr.l %d7,%d6
- and.l &0x0000007F,%d3 # 7 bits of Q
- or.l %d6,%d3 # sign and bits of Q
-# swap %d3
-# fmov.l %fpsr,%d6
-# and.l &0xFF00FFFF,%d6
-# or.l %d3,%d6
-# fmov.l %d6,%fpsr # put Q in fpsr
- mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr
-
-#
-Restore:
- movm.l (%sp)+,&0xfc # {%d2-%d7}
- mov.l (%sp)+,%d0
- fmov.l %d0,%fpcr
- tst.b Sc_Flag(%a6)
- beq.b Finish
- mov.b &FMUL_OP,%d1 # last inst is MUL
- fmul.x Scale(%pc),%fp0 # may cause underflow
- bra t_catch2
-# the '040 package did this apparently to see if the dst operand for the
-# preceding fmul was a denorm. but, it better not have been since the
-# algorithm just got done playing with fp0 and expected no exceptions
-# as a result. trust me...
-# bra t_avoid_unsupp # check for denorm as a
-# ;result of the scaling
-
-Finish:
- mov.b &FMOV_OP,%d1 # last inst is MOVE
- fmov.x %fp0,%fp0 # capture exceptions & round
- bra t_catch2
-
-Rem_is_0:
-#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
- addq.l &1,%d3
- cmp.l %d0,&8 # D0 is j
- bge.b Q_Big
-
- lsl.l %d0,%d3
- bra.b Set_R_0
-
-Q_Big:
- clr.l %d3
-
-Set_R_0:
- fmov.s &0x00000000,%fp0
- clr.b Sc_Flag(%a6)
- bra.w Fix_Sign
-
-Tie_Case:
-#..Check parity of Q
- mov.l %d3,%d6
- and.l &0x00000001,%d6
- tst.l %d6
- beq.w Fix_Sign # Q is even
-
-#..Q is odd, Q := Q + 1, signX := -signX
- addq.l &1,%d3
- mov.w SignX(%a6),%d6
- eor.l &0x00008000,%d6
- mov.w %d6,SignX(%a6)
- bra.w Fix_Sign
-
-qnan: long 0x7fff0000, 0xffffffff, 0xffffffff
-
-#########################################################################
-# XDEF **************************************************************** #
-# t_dz(): Handle DZ exception during transcendental emulation. #
-# Sets N bit according to sign of source operand. #
-# t_dz2(): Handle DZ exception during transcendental emulation. #
-# Sets N bit always. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to source operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# #
-# ALGORITHM *********************************************************** #
-# - Store properly signed INF into fp0. #
-# - Set FPSR exception status dz bit, ccode inf bit, and #
-# accrued dz bit. #
-# #
-#########################################################################
-
- global t_dz
-t_dz:
- tst.b SRC_EX(%a0) # no; is src negative?
- bmi.b t_dz2 # yes
-
-dz_pinf:
- fmov.s &0x7f800000,%fp0 # return +INF in fp0
- ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ
- rts
-
- global t_dz2
-t_dz2:
- fmov.s &0xff800000,%fp0 # return -INF in fp0
- ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ
- rts
-
-#################################################################
-# OPERR exception: #
-# - set FPSR exception status operr bit, condition code #
-# nan bit; Store default NAN into fp0 #
-#################################################################
- global t_operr
-t_operr:
- ori.l &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP
- fmovm.x qnan(%pc),&0x80 # return default NAN in fp0
- rts
-
-#################################################################
-# Extended DENORM: #
-# - For all functions that have a denormalized input and #
-# that f(x)=x, this is the entry point. #
-# - we only return the EXOP here if either underflow or #
-# inexact is enabled. #
-#################################################################
-
-# Entry point for scale w/ extended denorm. The function does
-# NOT set INEX2/AUNFL/AINEX.
- global t_resdnrm
-t_resdnrm:
- ori.l &unfl_mask,USER_FPSR(%a6) # set UNFL
- bra.b xdnrm_con
-
- global t_extdnrm
-t_extdnrm:
- ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
-
-xdnrm_con:
- mov.l %a0,%a1 # make copy of src ptr
- mov.l %d0,%d1 # make copy of rnd prec,mode
- andi.b &0xc0,%d1 # extended precision?
- bne.b xdnrm_sd # no
-
-# result precision is extended.
- tst.b LOCAL_EX(%a0) # is denorm negative?
- bpl.b xdnrm_exit # no
-
- bset &neg_bit,FPSR_CC(%a6) # yes; set 'N' ccode bit
- bra.b xdnrm_exit
-
-# result precision is single or double
-xdnrm_sd:
- mov.l %a1,-(%sp)
- tst.b LOCAL_EX(%a0) # is denorm pos or neg?
- smi.b %d1 # set d0 accodingly
- bsr.l unf_sub
- mov.l (%sp)+,%a1
-xdnrm_exit:
- fmovm.x (%a0),&0x80 # return default result in fp0
-
- mov.b FPCR_ENABLE(%a6),%d0
- andi.b &0x0a,%d0 # is UNFL or INEX enabled?
- bne.b xdnrm_ena # yes
- rts
-
-################
-# unfl enabled #
-################
-# we have a DENORM that needs to be converted into an EXOP.
-# so, normalize the mantissa, add 0x6000 to the new exponent,
-# and return the result in fp1.
-xdnrm_ena:
- mov.w LOCAL_EX(%a1),FP_SCR0_EX(%a6)
- mov.l LOCAL_HI(%a1),FP_SCR0_HI(%a6)
- mov.l LOCAL_LO(%a1),FP_SCR0_LO(%a6)
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize mantissa
- addi.l &0x6000,%d0 # add extra bias
- andi.w &0x8000,FP_SCR0_EX(%a6) # keep old sign
- or.w %d0,FP_SCR0_EX(%a6) # insert new exponent
-
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#################################################################
-# UNFL exception: #
-# - This routine is for cases where even an EXOP isn't #
-# large enough to hold the range of this result. #
-# In such a case, the EXOP equals zero. #
-# - Return the default result to the proper precision #
-# with the sign of this result being the same as that #
-# of the src operand. #
-# - t_unfl2() is provided to force the result sign to #
-# positive which is the desired result for fetox(). #
-#################################################################
- global t_unfl
-t_unfl:
- ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
-
- tst.b (%a0) # is result pos or neg?
- smi.b %d1 # set d1 accordingly
- bsr.l unf_sub # calc default unfl result
- fmovm.x (%a0),&0x80 # return default result in fp0
-
- fmov.s &0x00000000,%fp1 # return EXOP in fp1
- rts
-
-# t_unfl2 ALWAYS tells unf_sub to create a positive result
- global t_unfl2
-t_unfl2:
- ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
-
- sf.b %d1 # set d0 to represent positive
- bsr.l unf_sub # calc default unfl result
- fmovm.x (%a0),&0x80 # return default result in fp0
-
- fmov.s &0x0000000,%fp1 # return EXOP in fp1
- rts
-
-#################################################################
-# OVFL exception: #
-# - This routine is for cases where even an EXOP isn't #
-# large enough to hold the range of this result. #
-# - Return the default result to the proper precision #
-# with the sign of this result being the same as that #
-# of the src operand. #
-# - t_ovfl2() is provided to force the result sign to #
-# positive which is the desired result for fcosh(). #
-# - t_ovfl_sc() is provided for scale() which only sets #
-# the inexact bits if the number is inexact for the #
-# precision indicated. #
-#################################################################
-
- global t_ovfl_sc
-t_ovfl_sc:
- ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX
-
- mov.b %d0,%d1 # fetch rnd mode/prec
- andi.b &0xc0,%d1 # extract rnd prec
- beq.b ovfl_work # prec is extended
-
- tst.b LOCAL_HI(%a0) # is dst a DENORM?
- bmi.b ovfl_sc_norm # no
-
-# dst op is a DENORM. we have to normalize the mantissa to see if the
-# result would be inexact for the given precision. make a copy of the
-# dst so we don't screw up the version passed to us.
- mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6)
- mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6)
- mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0
- movm.l &0xc080,-(%sp) # save d0-d1/a0
- bsr.l norm # normalize mantissa
- movm.l (%sp)+,&0x0103 # restore d0-d1/a0
-
-ovfl_sc_norm:
- cmpi.b %d1,&0x40 # is prec dbl?
- bne.b ovfl_sc_dbl # no; sgl
-ovfl_sc_sgl:
- tst.l LOCAL_LO(%a0) # is lo lw of sgl set?
- bne.b ovfl_sc_inx # yes
- tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set?
- bne.b ovfl_sc_inx # yes
- bra.b ovfl_work # don't set INEX2
-ovfl_sc_dbl:
- mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of
- andi.l &0x7ff,%d1 # dbl mantissa set?
- beq.b ovfl_work # no; don't set INEX2
-ovfl_sc_inx:
- ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2
- bra.b ovfl_work # continue
-
- global t_ovfl
-t_ovfl:
- ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX
-
-ovfl_work:
- tst.b LOCAL_EX(%a0) # what is the sign?
- smi.b %d1 # set d1 accordingly
- bsr.l ovf_res # calc default ovfl result
- mov.b %d0,FPSR_CC(%a6) # insert new ccodes
- fmovm.x (%a0),&0x80 # return default result in fp0
-
- fmov.s &0x00000000,%fp1 # return EXOP in fp1
- rts
-
-# t_ovfl2 ALWAYS tells ovf_res to create a positive result
- global t_ovfl2
-t_ovfl2:
- ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX
-
- sf.b %d1 # clear sign flag for positive
- bsr.l ovf_res # calc default ovfl result
- mov.b %d0,FPSR_CC(%a6) # insert new ccodes
- fmovm.x (%a0),&0x80 # return default result in fp0
-
- fmov.s &0x00000000,%fp1 # return EXOP in fp1
- rts
-
-#################################################################
-# t_catch(): #
-# - the last operation of a transcendental emulation #
-# routine may have caused an underflow or overflow. #
-# we find out if this occurred by doing an fsave and #
-# checking the exception bit. if one did occur, then we #
-# jump to fgen_except() which creates the default #
-# result and EXOP for us. #
-#################################################################
- global t_catch
-t_catch:
-
- fsave -(%sp)
- tst.b 0x2(%sp)
- bmi.b catch
- add.l &0xc,%sp
-
-#################################################################
-# INEX2 exception: #
-# - The inex2 and ainex bits are set. #
-#################################################################
- global t_inx2
-t_inx2:
- fblt.w t_minx2
- fbeq.w inx2_zero
-
- global t_pinx2
-t_pinx2:
- ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX
- rts
-
- global t_minx2
-t_minx2:
- ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX
- rts
-
-inx2_zero:
- mov.b &z_bmask,FPSR_CC(%a6)
- ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX
- rts
-
-# an underflow or overflow exception occurred.
-# we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not!
-catch:
- ori.w &inx2a_mask,FPSR_EXCEPT(%a6)
-catch2:
- bsr.l fgen_except
- add.l &0xc,%sp
- rts
-
- global t_catch2
-t_catch2:
-
- fsave -(%sp)
-
- tst.b 0x2(%sp)
- bmi.b catch2
- add.l &0xc,%sp
-
- fmov.l %fpsr,%d0
- or.l %d0,USER_FPSR(%a6)
-
- rts
-
-#########################################################################
-
-#########################################################################
-# unf_res(): underflow default result calculation for transcendentals #
-# #
-# INPUT: #
-# d0 : rnd mode,precision #
-# d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+)) #
-# OUTPUT: #
-# a0 : points to result (in instruction memory) #
-#########################################################################
-unf_sub:
- ori.l &unfinx_mask,USER_FPSR(%a6)
-
- andi.w &0x10,%d1 # keep sign bit in 4th spot
-
- lsr.b &0x4,%d0 # shift rnd prec,mode to lo bits
- andi.b &0xf,%d0 # strip hi rnd mode bit
- or.b %d1,%d0 # concat {sgn,mode,prec}
-
- mov.l %d0,%d1 # make a copy
- lsl.b &0x1,%d1 # mult index 2 by 2
-
- mov.b (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits
- lea (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr
- rts
-
-tbl_unf_cc:
- byte 0x4, 0x4, 0x4, 0x0
- byte 0x4, 0x4, 0x4, 0x0
- byte 0x4, 0x4, 0x4, 0x0
- byte 0x0, 0x0, 0x0, 0x0
- byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
- byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
- byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
-
-tbl_unf_result:
- long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
- long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
- long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
- long 0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext
-
- long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
- long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
- long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
- long 0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl
-
- long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
- long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl
- long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
- long 0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl
-
- long 0x0,0x0,0x0,0x0
- long 0x0,0x0,0x0,0x0
- long 0x0,0x0,0x0,0x0
- long 0x0,0x0,0x0,0x0
-
- long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
- long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
- long 0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext
- long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
-
- long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
- long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
- long 0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl
- long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
-
- long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
- long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
- long 0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl
- long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
-
-############################################################
-
-#########################################################################
-# src_zero(): Return signed zero according to sign of src operand. #
-#########################################################################
- global src_zero
-src_zero:
- tst.b SRC_EX(%a0) # get sign of src operand
- bmi.b ld_mzero # if neg, load neg zero
-
-#
-# ld_pzero(): return a positive zero.
-#
- global ld_pzero
-ld_pzero:
- fmov.s &0x00000000,%fp0 # load +0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
-# ld_mzero(): return a negative zero.
- global ld_mzero
-ld_mzero:
- fmov.s &0x80000000,%fp0 # load -0
- mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits
- rts
-
-#########################################################################
-# dst_zero(): Return signed zero according to sign of dst operand. #
-#########################################################################
- global dst_zero
-dst_zero:
- tst.b DST_EX(%a1) # get sign of dst operand
- bmi.b ld_mzero # if neg, load neg zero
- bra.b ld_pzero # load positive zero
-
-#########################################################################
-# src_inf(): Return signed inf according to sign of src operand. #
-#########################################################################
- global src_inf
-src_inf:
- tst.b SRC_EX(%a0) # get sign of src operand
- bmi.b ld_minf # if negative branch
-
-#
-# ld_pinf(): return a positive infinity.
-#
- global ld_pinf
-ld_pinf:
- fmov.s &0x7f800000,%fp0 # load +INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit
- rts
-
-#
-# ld_minf():return a negative infinity.
-#
- global ld_minf
-ld_minf:
- fmov.s &0xff800000,%fp0 # load -INF
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
-#########################################################################
-# dst_inf(): Return signed inf according to sign of dst operand. #
-#########################################################################
- global dst_inf
-dst_inf:
- tst.b DST_EX(%a1) # get sign of dst operand
- bmi.b ld_minf # if negative branch
- bra.b ld_pinf
-
- global szr_inf
-#################################################################
-# szr_inf(): Return +ZERO for a negative src operand or #
-# +INF for a positive src operand. #
-# Routine used for fetox, ftwotox, and ftentox. #
-#################################################################
-szr_inf:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_pzero
- bra.b ld_pinf
-
-#########################################################################
-# sopr_inf(): Return +INF for a positive src operand or #
-# jump to operand error routine for a negative src operand. #
-# Routine used for flogn, flognp1, flog10, and flog2. #
-#########################################################################
- global sopr_inf
-sopr_inf:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.w t_operr
- bra.b ld_pinf
-
-#################################################################
-# setoxm1i(): Return minus one for a negative src operand or #
-# positive infinity for a positive src operand. #
-# Routine used for fetoxm1. #
-#################################################################
- global setoxm1i
-setoxm1i:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mone
- bra.b ld_pinf
-
-#########################################################################
-# src_one(): Return signed one according to sign of src operand. #
-#########################################################################
- global src_one
-src_one:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mone
-
-#
-# ld_pone(): return positive one.
-#
- global ld_pone
-ld_pone:
- fmov.s &0x3f800000,%fp0 # load +1
- clr.b FPSR_CC(%a6)
- rts
-
-#
-# ld_mone(): return negative one.
-#
- global ld_mone
-ld_mone:
- fmov.s &0xbf800000,%fp0 # load -1
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235
-mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235
-
-#################################################################
-# spi_2(): Return signed PI/2 according to sign of src operand. #
-#################################################################
- global spi_2
-spi_2:
- tst.b SRC_EX(%a0) # check sign of source
- bmi.b ld_mpi2
-
-#
-# ld_ppi2(): return positive PI/2.
-#
- global ld_ppi2
-ld_ppi2:
- fmov.l %d0,%fpcr
- fmov.x ppiby2(%pc),%fp0 # load +pi/2
- bra.w t_pinx2 # set INEX2
-
-#
-# ld_mpi2(): return negative PI/2.
-#
- global ld_mpi2
-ld_mpi2:
- fmov.l %d0,%fpcr
- fmov.x mpiby2(%pc),%fp0 # load -pi/2
- bra.w t_minx2 # set INEX2
-
-####################################################
-# The following routines give support for fsincos. #
-####################################################
-
-#
-# ssincosz(): When the src operand is ZERO, store a one in the
-# cosine register and return a ZERO in fp0 w/ the same sign
-# as the src operand.
-#
- global ssincosz
-ssincosz:
- fmov.s &0x3f800000,%fp1
- tst.b SRC_EX(%a0) # test sign
- bpl.b sincoszp
- fmov.s &0x80000000,%fp0 # return sin result in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6)
- bra.b sto_cos # store cosine result
-sincoszp:
- fmov.s &0x00000000,%fp0 # return sin result in fp0
- mov.b &z_bmask,FPSR_CC(%a6)
- bra.b sto_cos # store cosine result
-
-#
-# ssincosi(): When the src operand is INF, store a QNAN in the cosine
-# register and jump to the operand error routine for negative
-# src operands.
-#
- global ssincosi
-ssincosi:
- fmov.x qnan(%pc),%fp1 # load NAN
- bsr.l sto_cos # store cosine result
- bra.w t_operr
-
-#
-# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine
-# register and branch to the src QNAN routine.
-#
- global ssincosqnan
-ssincosqnan:
- fmov.x LOCAL_EX(%a0),%fp1
- bsr.l sto_cos
- bra.w src_qnan
-
-#
-# ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set
-# in the cosine register and branch to the src SNAN routine.
-#
- global ssincossnan
-ssincossnan:
- fmov.x LOCAL_EX(%a0),%fp1
- bsr.l sto_cos
- bra.w src_snan
-
-########################################################################
-
-#########################################################################
-# sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. #
-# fp1 holds the result of the cosine portion of ssincos(). #
-# the value in fp1 will not take any exceptions when moved. #
-# INPUT: #
-# fp1 : fp value to store #
-# MODIFIED: #
-# d0 #
-#########################################################################
- global sto_cos
-sto_cos:
- mov.b 1+EXC_CMDREG(%a6),%d0
- andi.w &0x7,%d0
- mov.w (tbl_sto_cos.b,%pc,%d0.w*2),%d0
- jmp (tbl_sto_cos.b,%pc,%d0.w*1)
-
-tbl_sto_cos:
- short sto_cos_0 - tbl_sto_cos
- short sto_cos_1 - tbl_sto_cos
- short sto_cos_2 - tbl_sto_cos
- short sto_cos_3 - tbl_sto_cos
- short sto_cos_4 - tbl_sto_cos
- short sto_cos_5 - tbl_sto_cos
- short sto_cos_6 - tbl_sto_cos
- short sto_cos_7 - tbl_sto_cos
-
-sto_cos_0:
- fmovm.x &0x40,EXC_FP0(%a6)
- rts
-sto_cos_1:
- fmovm.x &0x40,EXC_FP1(%a6)
- rts
-sto_cos_2:
- fmov.x %fp1,%fp2
- rts
-sto_cos_3:
- fmov.x %fp1,%fp3
- rts
-sto_cos_4:
- fmov.x %fp1,%fp4
- rts
-sto_cos_5:
- fmov.x %fp1,%fp5
- rts
-sto_cos_6:
- fmov.x %fp1,%fp6
- rts
-sto_cos_7:
- fmov.x %fp1,%fp7
- rts
-
-##################################################################
- global smod_sdnrm
- global smod_snorm
-smod_sdnrm:
-smod_snorm:
- mov.b DTAG(%a6),%d1
- beq.l smod
- cmpi.b %d1,&ZERO
- beq.w smod_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l smod
- cmpi.b %d1,&SNAN
- beq.l dst_snan
- bra.l dst_qnan
-
- global smod_szero
-smod_szero:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&ZERO
- beq.l t_operr
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l t_operr
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
- global smod_sinf
-smod_sinf:
- mov.b DTAG(%a6),%d1
- beq.l smod_fpn
- cmpi.b %d1,&ZERO
- beq.l smod_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l smod_fpn
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
-smod_zro:
-srem_zro:
- mov.b SRC_EX(%a0),%d1 # get src sign
- mov.b DST_EX(%a1),%d0 # get dst sign
- eor.b %d0,%d1 # get qbyte sign
- andi.b &0x80,%d1
- mov.b %d1,FPSR_QBYTE(%a6)
- tst.b %d0
- bpl.w ld_pzero
- bra.w ld_mzero
-
-smod_fpn:
-srem_fpn:
- clr.b FPSR_QBYTE(%a6)
- mov.l %d0,-(%sp)
- mov.b SRC_EX(%a0),%d1 # get src sign
- mov.b DST_EX(%a1),%d0 # get dst sign
- eor.b %d0,%d1 # get qbyte sign
- andi.b &0x80,%d1
- mov.b %d1,FPSR_QBYTE(%a6)
- cmpi.b DTAG(%a6),&DENORM
- bne.b smod_nrm
- lea DST(%a1),%a0
- mov.l (%sp)+,%d0
- bra t_resdnrm
-smod_nrm:
- fmov.l (%sp)+,%fpcr
- fmov.x DST(%a1),%fp0
- tst.b DST_EX(%a1)
- bmi.b smod_nrm_neg
- rts
-
-smod_nrm_neg:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode
- rts
-
-#########################################################################
- global srem_snorm
- global srem_sdnrm
-srem_sdnrm:
-srem_snorm:
- mov.b DTAG(%a6),%d1
- beq.l srem
- cmpi.b %d1,&ZERO
- beq.w srem_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l srem
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
- global srem_szero
-srem_szero:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&ZERO
- beq.l t_operr
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l t_operr
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
- global srem_sinf
-srem_sinf:
- mov.b DTAG(%a6),%d1
- beq.w srem_fpn
- cmpi.b %d1,&ZERO
- beq.w srem_zro
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l srem_fpn
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
-#########################################################################
- global sscale_snorm
- global sscale_sdnrm
-sscale_snorm:
-sscale_sdnrm:
- mov.b DTAG(%a6),%d1
- beq.l sscale
- cmpi.b %d1,&ZERO
- beq.l dst_zero
- cmpi.b %d1,&INF
- beq.l dst_inf
- cmpi.b %d1,&DENORM
- beq.l sscale
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
- global sscale_szero
-sscale_szero:
- mov.b DTAG(%a6),%d1
- beq.l sscale
- cmpi.b %d1,&ZERO
- beq.l dst_zero
- cmpi.b %d1,&INF
- beq.l dst_inf
- cmpi.b %d1,&DENORM
- beq.l sscale
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- bra.l dst_snan
-
- global sscale_sinf
-sscale_sinf:
- mov.b DTAG(%a6),%d1
- beq.l t_operr
- cmpi.b %d1,&QNAN
- beq.l dst_qnan
- cmpi.b %d1,&SNAN
- beq.l dst_snan
- bra.l t_operr
-
-########################################################################
-
-#
-# sop_sqnan(): The src op for frem/fmod/fscale was a QNAN.
-#
- global sop_sqnan
-sop_sqnan:
- mov.b DTAG(%a6),%d1
- cmpi.b %d1,&QNAN
- beq.b dst_qnan
- cmpi.b %d1,&SNAN
- beq.b dst_snan
- bra.b src_qnan
-
-#
-# sop_ssnan(): The src op for frem/fmod/fscale was an SNAN.
-#
- global sop_ssnan
-sop_ssnan:
- mov.b DTAG(%a6),%d1
- cmpi.b %d1,&QNAN
- beq.b dst_qnan_src_snan
- cmpi.b %d1,&SNAN
- beq.b dst_snan
- bra.b src_snan
-
-dst_qnan_src_snan:
- ori.l &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP
- bra.b dst_qnan
-
-#
-# dst_qnan(): Return the dst SNAN w/ the SNAN bit set.
-#
- global dst_snan
-dst_snan:
- fmov.x DST(%a1),%fp0 # the fmove sets the SNAN bit
- fmov.l %fpsr,%d0 # catch resulting status
- or.l %d0,USER_FPSR(%a6) # store status
- rts
-
-#
-# dst_qnan(): Return the dst QNAN.
-#
- global dst_qnan
-dst_qnan:
- fmov.x DST(%a1),%fp0 # return the non-signalling nan
- tst.b DST_EX(%a1) # set ccodes according to QNAN sign
- bmi.b dst_qnan_m
-dst_qnan_p:
- mov.b &nan_bmask,FPSR_CC(%a6)
- rts
-dst_qnan_m:
- mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6)
- rts
-
-#
-# src_snan(): Return the src SNAN w/ the SNAN bit set.
-#
- global src_snan
-src_snan:
- fmov.x SRC(%a0),%fp0 # the fmove sets the SNAN bit
- fmov.l %fpsr,%d0 # catch resulting status
- or.l %d0,USER_FPSR(%a6) # store status
- rts
-
-#
-# src_qnan(): Return the src QNAN.
-#
- global src_qnan
-src_qnan:
- fmov.x SRC(%a0),%fp0 # return the non-signalling nan
- tst.b SRC_EX(%a0) # set ccodes according to QNAN sign
- bmi.b dst_qnan_m
-src_qnan_p:
- mov.b &nan_bmask,FPSR_CC(%a6)
- rts
-src_qnan_m:
- mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6)
- rts
-
-#
-# fkern2.s:
-# These entry points are used by the exception handler
-# routines where an instruction is selected by an index into
-# a large jump table corresponding to a given instruction which
-# has been decoded. Flow continues here where we now decode
-# further accoding to the source operand type.
-#
-
- global fsinh
-fsinh:
- mov.b STAG(%a6),%d1
- beq.l ssinh
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l src_inf
- cmpi.b %d1,&DENORM
- beq.l ssinhd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global flognp1
-flognp1:
- mov.b STAG(%a6),%d1
- beq.l slognp1
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l sopr_inf
- cmpi.b %d1,&DENORM
- beq.l slognp1d
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fetoxm1
-fetoxm1:
- mov.b STAG(%a6),%d1
- beq.l setoxm1
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l setoxm1i
- cmpi.b %d1,&DENORM
- beq.l setoxm1d
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global ftanh
-ftanh:
- mov.b STAG(%a6),%d1
- beq.l stanh
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l src_one
- cmpi.b %d1,&DENORM
- beq.l stanhd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fatan
-fatan:
- mov.b STAG(%a6),%d1
- beq.l satan
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l spi_2
- cmpi.b %d1,&DENORM
- beq.l satand
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fasin
-fasin:
- mov.b STAG(%a6),%d1
- beq.l sasin
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l sasind
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fatanh
-fatanh:
- mov.b STAG(%a6),%d1
- beq.l satanh
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l satanhd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fsine
-fsine:
- mov.b STAG(%a6),%d1
- beq.l ssin
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l ssind
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global ftan
-ftan:
- mov.b STAG(%a6),%d1
- beq.l stan
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l stand
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fetox
-fetox:
- mov.b STAG(%a6),%d1
- beq.l setox
- cmpi.b %d1,&ZERO
- beq.l ld_pone
- cmpi.b %d1,&INF
- beq.l szr_inf
- cmpi.b %d1,&DENORM
- beq.l setoxd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global ftwotox
-ftwotox:
- mov.b STAG(%a6),%d1
- beq.l stwotox
- cmpi.b %d1,&ZERO
- beq.l ld_pone
- cmpi.b %d1,&INF
- beq.l szr_inf
- cmpi.b %d1,&DENORM
- beq.l stwotoxd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global ftentox
-ftentox:
- mov.b STAG(%a6),%d1
- beq.l stentox
- cmpi.b %d1,&ZERO
- beq.l ld_pone
- cmpi.b %d1,&INF
- beq.l szr_inf
- cmpi.b %d1,&DENORM
- beq.l stentoxd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global flogn
-flogn:
- mov.b STAG(%a6),%d1
- beq.l slogn
- cmpi.b %d1,&ZERO
- beq.l t_dz2
- cmpi.b %d1,&INF
- beq.l sopr_inf
- cmpi.b %d1,&DENORM
- beq.l slognd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global flog10
-flog10:
- mov.b STAG(%a6),%d1
- beq.l slog10
- cmpi.b %d1,&ZERO
- beq.l t_dz2
- cmpi.b %d1,&INF
- beq.l sopr_inf
- cmpi.b %d1,&DENORM
- beq.l slog10d
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global flog2
-flog2:
- mov.b STAG(%a6),%d1
- beq.l slog2
- cmpi.b %d1,&ZERO
- beq.l t_dz2
- cmpi.b %d1,&INF
- beq.l sopr_inf
- cmpi.b %d1,&DENORM
- beq.l slog2d
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fcosh
-fcosh:
- mov.b STAG(%a6),%d1
- beq.l scosh
- cmpi.b %d1,&ZERO
- beq.l ld_pone
- cmpi.b %d1,&INF
- beq.l ld_pinf
- cmpi.b %d1,&DENORM
- beq.l scoshd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global facos
-facos:
- mov.b STAG(%a6),%d1
- beq.l sacos
- cmpi.b %d1,&ZERO
- beq.l ld_ppi2
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l sacosd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fcos
-fcos:
- mov.b STAG(%a6),%d1
- beq.l scos
- cmpi.b %d1,&ZERO
- beq.l ld_pone
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l scosd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fgetexp
-fgetexp:
- mov.b STAG(%a6),%d1
- beq.l sgetexp
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l sgetexpd
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fgetman
-fgetman:
- mov.b STAG(%a6),%d1
- beq.l sgetman
- cmpi.b %d1,&ZERO
- beq.l src_zero
- cmpi.b %d1,&INF
- beq.l t_operr
- cmpi.b %d1,&DENORM
- beq.l sgetmand
- cmpi.b %d1,&QNAN
- beq.l src_qnan
- bra.l src_snan
-
- global fsincos
-fsincos:
- mov.b STAG(%a6),%d1
- beq.l ssincos
- cmpi.b %d1,&ZERO
- beq.l ssincosz
- cmpi.b %d1,&INF
- beq.l ssincosi
- cmpi.b %d1,&DENORM
- beq.l ssincosd
- cmpi.b %d1,&QNAN
- beq.l ssincosqnan
- bra.l ssincossnan
-
- global fmod
-fmod:
- mov.b STAG(%a6),%d1
- beq.l smod_snorm
- cmpi.b %d1,&ZERO
- beq.l smod_szero
- cmpi.b %d1,&INF
- beq.l smod_sinf
- cmpi.b %d1,&DENORM
- beq.l smod_sdnrm
- cmpi.b %d1,&QNAN
- beq.l sop_sqnan
- bra.l sop_ssnan
-
- global frem
-frem:
- mov.b STAG(%a6),%d1
- beq.l srem_snorm
- cmpi.b %d1,&ZERO
- beq.l srem_szero
- cmpi.b %d1,&INF
- beq.l srem_sinf
- cmpi.b %d1,&DENORM
- beq.l srem_sdnrm
- cmpi.b %d1,&QNAN
- beq.l sop_sqnan
- bra.l sop_ssnan
-
- global fscale
-fscale:
- mov.b STAG(%a6),%d1
- beq.l sscale_snorm
- cmpi.b %d1,&ZERO
- beq.l sscale_szero
- cmpi.b %d1,&INF
- beq.l sscale_sinf
- cmpi.b %d1,&DENORM
- beq.l sscale_sdnrm
- cmpi.b %d1,&QNAN
- beq.l sop_sqnan
- bra.l sop_ssnan
-
-#########################################################################
-# XDEF **************************************************************** #
-# fgen_except(): catch an exception during transcendental #
-# emulation #
-# #
-# XREF **************************************************************** #
-# fmul() - emulate a multiply instruction #
-# fadd() - emulate an add instruction #
-# fin() - emulate an fmove instruction #
-# #
-# INPUT *************************************************************** #
-# fp0 = destination operand #
-# d0 = type of instruction that took exception #
-# fsave frame = source operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP #
-# #
-# ALGORITHM *********************************************************** #
-# An exception occurred on the last instruction of the #
-# transcendental emulation. hopefully, this won't be happening much #
-# because it will be VERY slow. #
-# The only exceptions capable of passing through here are #
-# Overflow, Underflow, and Unsupported Data Type. #
-# #
-#########################################################################
-
- global fgen_except
-fgen_except:
- cmpi.b 0x3(%sp),&0x7 # is exception UNSUPP?
- beq.b fge_unsupp # yes
-
- mov.b &NORM,STAG(%a6)
-
-fge_cont:
- mov.b &NORM,DTAG(%a6)
-
-# ok, I have a problem with putting the dst op at FP_DST. the emulation
-# routines aren't supposed to alter the operands but we've just squashed
-# FP_DST here...
-
-# 8/17/93 - this turns out to be more of a "cleanliness" standpoint
-# then a potential bug. to begin with, only the dyadic functions
-# frem,fmod, and fscale would get the dst trashed here. But, for
-# the 060SP, the FP_DST is never used again anyways.
- fmovm.x &0x80,FP_DST(%a6) # dst op is in fp0
-
- lea 0x4(%sp),%a0 # pass: ptr to src op
- lea FP_DST(%a6),%a1 # pass: ptr to dst op
-
- cmpi.b %d1,&FMOV_OP
- beq.b fge_fin # it was an "fmov"
- cmpi.b %d1,&FADD_OP
- beq.b fge_fadd # it was an "fadd"
-fge_fmul:
- bsr.l fmul
- rts
-fge_fadd:
- bsr.l fadd
- rts
-fge_fin:
- bsr.l fin
- rts
-
-fge_unsupp:
- mov.b &DENORM,STAG(%a6)
- bra.b fge_cont
-
-#
-# This table holds the offsets of the emulation routines for each individual
-# math operation relative to the address of this table. Included are
-# routines like fadd/fmul/fabs as well as the transcendentals.
-# The location within the table is determined by the extension bits of the
-# operation longword.
-#
-
- swbeg &109
-tbl_unsupp:
- long fin - tbl_unsupp # 00: fmove
- long fint - tbl_unsupp # 01: fint
- long fsinh - tbl_unsupp # 02: fsinh
- long fintrz - tbl_unsupp # 03: fintrz
- long fsqrt - tbl_unsupp # 04: fsqrt
- long tbl_unsupp - tbl_unsupp
- long flognp1 - tbl_unsupp # 06: flognp1
- long tbl_unsupp - tbl_unsupp
- long fetoxm1 - tbl_unsupp # 08: fetoxm1
- long ftanh - tbl_unsupp # 09: ftanh
- long fatan - tbl_unsupp # 0a: fatan
- long tbl_unsupp - tbl_unsupp
- long fasin - tbl_unsupp # 0c: fasin
- long fatanh - tbl_unsupp # 0d: fatanh
- long fsine - tbl_unsupp # 0e: fsin
- long ftan - tbl_unsupp # 0f: ftan
- long fetox - tbl_unsupp # 10: fetox
- long ftwotox - tbl_unsupp # 11: ftwotox
- long ftentox - tbl_unsupp # 12: ftentox
- long tbl_unsupp - tbl_unsupp
- long flogn - tbl_unsupp # 14: flogn
- long flog10 - tbl_unsupp # 15: flog10
- long flog2 - tbl_unsupp # 16: flog2
- long tbl_unsupp - tbl_unsupp
- long fabs - tbl_unsupp # 18: fabs
- long fcosh - tbl_unsupp # 19: fcosh
- long fneg - tbl_unsupp # 1a: fneg
- long tbl_unsupp - tbl_unsupp
- long facos - tbl_unsupp # 1c: facos
- long fcos - tbl_unsupp # 1d: fcos
- long fgetexp - tbl_unsupp # 1e: fgetexp
- long fgetman - tbl_unsupp # 1f: fgetman
- long fdiv - tbl_unsupp # 20: fdiv
- long fmod - tbl_unsupp # 21: fmod
- long fadd - tbl_unsupp # 22: fadd
- long fmul - tbl_unsupp # 23: fmul
- long fsgldiv - tbl_unsupp # 24: fsgldiv
- long frem - tbl_unsupp # 25: frem
- long fscale - tbl_unsupp # 26: fscale
- long fsglmul - tbl_unsupp # 27: fsglmul
- long fsub - tbl_unsupp # 28: fsub
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsincos - tbl_unsupp # 30: fsincos
- long fsincos - tbl_unsupp # 31: fsincos
- long fsincos - tbl_unsupp # 32: fsincos
- long fsincos - tbl_unsupp # 33: fsincos
- long fsincos - tbl_unsupp # 34: fsincos
- long fsincos - tbl_unsupp # 35: fsincos
- long fsincos - tbl_unsupp # 36: fsincos
- long fsincos - tbl_unsupp # 37: fsincos
- long fcmp - tbl_unsupp # 38: fcmp
- long tbl_unsupp - tbl_unsupp
- long ftst - tbl_unsupp # 3a: ftst
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsin - tbl_unsupp # 40: fsmove
- long fssqrt - tbl_unsupp # 41: fssqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fdin - tbl_unsupp # 44: fdmove
- long fdsqrt - tbl_unsupp # 45: fdsqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsabs - tbl_unsupp # 58: fsabs
- long tbl_unsupp - tbl_unsupp
- long fsneg - tbl_unsupp # 5a: fsneg
- long tbl_unsupp - tbl_unsupp
- long fdabs - tbl_unsupp # 5c: fdabs
- long tbl_unsupp - tbl_unsupp
- long fdneg - tbl_unsupp # 5e: fdneg
- long tbl_unsupp - tbl_unsupp
- long fsdiv - tbl_unsupp # 60: fsdiv
- long tbl_unsupp - tbl_unsupp
- long fsadd - tbl_unsupp # 62: fsadd
- long fsmul - tbl_unsupp # 63: fsmul
- long fddiv - tbl_unsupp # 64: fddiv
- long tbl_unsupp - tbl_unsupp
- long fdadd - tbl_unsupp # 66: fdadd
- long fdmul - tbl_unsupp # 67: fdmul
- long fssub - tbl_unsupp # 68: fssub
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fdsub - tbl_unsupp # 6c: fdsub
-
-#########################################################################
-# XDEF **************************************************************** #
-# fmul(): emulates the fmul instruction #
-# fsmul(): emulates the fsmul instruction #
-# fdmul(): emulates the fdmul instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res() - return default underflow result #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a multiply #
-# instruction won't cause an exception. Use the regular fmul to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- align 0x10
-tbl_fmul_ovfl:
- long 0x3fff - 0x7ffe # ext_max
- long 0x3fff - 0x407e # sgl_max
- long 0x3fff - 0x43fe # dbl_max
-tbl_fmul_unfl:
- long 0x3fff + 0x0001 # ext_unfl
- long 0x3fff - 0x3f80 # sgl_unfl
- long 0x3fff - 0x3c00 # dbl_unfl
-
- global fsmul
-fsmul:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fmul
-
- global fdmul
-fdmul:
- andi.b &0x30,%d0
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fmul
-fmul:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fmul_not_norm # optimize on non-norm input
-
-fmul_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # scale src exponent
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # scale dst exponent
-
- add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2
-
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision
- lsr.b &0x6,%d1 # shift to lo bits
- mov.l (%sp)+,%d0 # load S.F.
- cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl?
- beq.w fmul_may_ovfl # result may rnd to overflow
- blt.w fmul_ovfl # result will overflow
-
- cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl?
- beq.w fmul_may_unfl # result may rnd to no unfl
- bgt.w fmul_unfl # result will underflow
-
-#
-# NORMAL:
-# - the result of the multiply operation will neither overflow nor underflow.
-# - do the multiply to the proper precision and rounding mode.
-# - scale the result exponent using the scale factor. if both operands were
-# normalized then we really don't need to go through this scaling. but for now,
-# this will do.
-#
-fmul_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fmul_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# OVERFLOW:
-# - the result of the multiply operation is an overflow.
-# - do the multiply to the proper precision and rounding mode in order to
-# set the inexact bits.
-# - calculate the default result and return it in fp0.
-# - if overflow or inexact is enabled, we need a multiply result rounded to
-# extended precision. if the original operation was extended, then we have this
-# result. if the original operation was single or double, we have to do another
-# multiply using extended precision and the correct rounding mode. the result
-# of this operation then has its exponent scaled by -0x6000 to create the
-# exceptional operand.
-#
-fmul_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-# save setting this until now because this is where fmul_may_ovfl may jump in
-fmul_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fmul_ovfl_ena # yes
-
-# calculate the default result
-fmul_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled; Create EXOP:
-# - if precision is extended, then we have the EXOP. simply bias the exponent
-# with an extra -0x6000. if the precision is single or double, we need to
-# calculate a result rounded to extended precision.
-#
-fmul_ovfl_ena:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # test the rnd prec
- bne.b fmul_ovfl_ena_sd # it's sgl or dbl
-
-fmul_ovfl_ena_cont:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1 # clear sign bit
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fmul_ovfl_dis
-
-fmul_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode only
- fmov.l %d1,%fpcr # set FPCR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
- bra.b fmul_ovfl_ena_cont
-
-#
-# may OVERFLOW:
-# - the result of the multiply operation MAY overflow.
-# - do the multiply to the proper precision and rounding mode in order to
-# set the inexact bits.
-# - calculate the default result and return it in fp0.
-#
-fmul_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fmul_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fmul_normal_exit
-
-#
-# UNDERFLOW:
-# - the result of the multiply operation is an underflow.
-# - do the multiply to the proper precision and rounding mode in order to
-# set the inexact bits.
-# - calculate the default result and return it in fp0.
-# - if overflow or inexact is enabled, we need a multiply result rounded to
-# extended precision. if the original operation was extended, then we have this
-# result. if the original operation was single or double, we have to do another
-# multiply using extended precision and the correct rounding mode. the result
-# of this operation then has its exponent scaled by -0x6000 to create the
-# exceptional operand.
-#
-fmul_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
-# for fun, let's use only extended precision, round to zero. then, let
-# the unf_res() routine figure out all the rest.
-# will we get the correct answer.
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fmul_unfl_ena # yes
-
-fmul_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fmul_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fmul_unfl_ena_sd # no, sgl or dbl
-
-# if the rnd mode is anything but RZ, then we have to re-do the above
-# multiplication because we used RZ for all.
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fmul_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp1 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fmul_unfl_dis
-
-fmul_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fmul_unfl_ena_cont
-
-# MAY UNDERFLOW:
-# -use the correct rounding mode and precision. this code favors operations
-# that do not underflow.
-fmul_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| > 2.b?
- fbgt.w fmul_normal_exit # no; no underflow occurred
- fblt.w fmul_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 2. but,
-# we don't know if the result was an underflow that rounded up to a 2 or
-# a normalized number that rounded down to a 2. so, redo the entire operation
-# using RZ as the rounding mode to see what the pre-rounded result is.
-# this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst operand
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp1 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x2 # is |result| < 2.b?
- fbge.w fmul_normal_exit # no; no underflow occurred
- bra.w fmul_unfl # yes, underflow occurred
-
-################################################################################
-
-#
-# Multiply: inputs are not both normalized; what are they?
-#
-fmul_not_norm:
- mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fmul_op.b,%pc,%d1.w)
-
- swbeg &48
-tbl_fmul_op:
- short fmul_norm - tbl_fmul_op # NORM x NORM
- short fmul_zero - tbl_fmul_op # NORM x ZERO
- short fmul_inf_src - tbl_fmul_op # NORM x INF
- short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
- short fmul_norm - tbl_fmul_op # NORM x DENORM
- short fmul_res_snan - tbl_fmul_op # NORM x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_zero - tbl_fmul_op # ZERO x NORM
- short fmul_zero - tbl_fmul_op # ZERO x ZERO
- short fmul_res_operr - tbl_fmul_op # ZERO x INF
- short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN
- short fmul_zero - tbl_fmul_op # ZERO x DENORM
- short fmul_res_snan - tbl_fmul_op # ZERO x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_inf_dst - tbl_fmul_op # INF x NORM
- short fmul_res_operr - tbl_fmul_op # INF x ZERO
- short fmul_inf_dst - tbl_fmul_op # INF x INF
- short fmul_res_qnan - tbl_fmul_op # INF x QNAN
- short fmul_inf_dst - tbl_fmul_op # INF x DENORM
- short fmul_res_snan - tbl_fmul_op # INF x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_res_qnan - tbl_fmul_op # QNAN x NORM
- short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO
- short fmul_res_qnan - tbl_fmul_op # QNAN x INF
- short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN
- short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM
- short fmul_res_snan - tbl_fmul_op # QNAN x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_norm - tbl_fmul_op # NORM x NORM
- short fmul_zero - tbl_fmul_op # NORM x ZERO
- short fmul_inf_src - tbl_fmul_op # NORM x INF
- short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
- short fmul_norm - tbl_fmul_op # NORM x DENORM
- short fmul_res_snan - tbl_fmul_op # NORM x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_res_snan - tbl_fmul_op # SNAN x NORM
- short fmul_res_snan - tbl_fmul_op # SNAN x ZERO
- short fmul_res_snan - tbl_fmul_op # SNAN x INF
- short fmul_res_snan - tbl_fmul_op # SNAN x QNAN
- short fmul_res_snan - tbl_fmul_op # SNAN x DENORM
- short fmul_res_snan - tbl_fmul_op # SNAN x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
-fmul_res_operr:
- bra.l res_operr
-fmul_res_snan:
- bra.l res_snan
-fmul_res_qnan:
- bra.l res_qnan
-
-#
-# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm)
-#
- global fmul_zero # global for fsglmul
-fmul_zero:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_zero_p # result ZERO is pos.
-fmul_zero_n:
- fmov.s &0x80000000,%fp0 # load -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
- rts
-fmul_zero_p:
- fmov.s &0x00000000,%fp0 # load +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# Multiply: (inf x inf) || (inf x norm) || (inf x denorm)
-#
-# Note: The j-bit for an infinity is a don't-care. However, to be
-# strictly compatible w/ the 68881/882, we make sure to return an
-# INF w/ the j-bit set if the input INF j-bit was set. Destination
-# INFs take priority.
-#
- global fmul_inf_dst # global for fsglmul
-fmul_inf_dst:
- fmovm.x DST(%a1),&0x80 # return INF result in fp0
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_inf_dst_p # result INF is pos.
-fmul_inf_dst_n:
- fabs.x %fp0 # clear result sign
- fneg.x %fp0 # set result sign
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
- rts
-fmul_inf_dst_p:
- fabs.x %fp0 # clear result sign
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
- global fmul_inf_src # global for fsglmul
-fmul_inf_src:
- fmovm.x SRC(%a0),&0x80 # return INF result in fp0
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_inf_dst_p # result INF is pos.
- bra.b fmul_inf_dst_n
-
-#########################################################################
-# XDEF **************************************************************** #
-# fin(): emulates the fmove instruction #
-# fsin(): emulates the fsmove instruction #
-# fdin(): emulates the fdmove instruction #
-# #
-# XREF **************************************************************** #
-# norm() - normalize mantissa for EXOP on denorm #
-# scale_to_zero_src() - scale src exponent to zero #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan_1op() - return QNAN result #
-# res_snan_1op() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round prec/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Norms can be emulated w/ a regular fmove instruction. For #
-# sgl/dbl, must scale exponent and perform an "fmove". Check to see #
-# if the result would have overflowed/underflowed. If so, use unf_res() #
-# or ovf_res() to return the default result. Also return EXOP if #
-# exception is enabled. If no exception, return the default result. #
-# Unnorms don't pass through here. #
-# #
-#########################################################################
-
- global fsin
-fsin:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fin
-
- global fdin
-fdin:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
-
- global fin
-fin:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- mov.b STAG(%a6),%d1 # fetch src optype tag
- bne.w fin_not_norm # optimize on non-norm input
-
-#
-# FP MOVE IN: NORMs and DENORMs ONLY!
-#
-fin_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fin_not_ext # no, so go handle dbl or sgl
-
-#
-# precision selected is extended. so...we cannot get an underflow
-# or overflow because of rounding to the correct precision. so...
-# skip the scaling and unscaling...
-#
- tst.b SRC_EX(%a0) # is the operand negative?
- bpl.b fin_norm_done # no
- bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
-fin_norm_done:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- rts
-
-#
-# for an extended precision DENORM, the UNFL exception bit is set
-# the accrued bit is NOT set in this instance(no inexactness!)
-#
-fin_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fin_not_ext # no, so go handle dbl or sgl
-
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- tst.b SRC_EX(%a0) # is the operand negative?
- bpl.b fin_denorm_done # no
- bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
-fin_denorm_done:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fin_denorm_unfl_ena # yes
- rts
-
-#
-# the input is an extended DENORM and underflow is enabled in the FPCR.
-# normalize the mantissa and add the bias of 0x6000 to the resulting negative
-# exponent and insert back into the operand.
-#
-fin_denorm_unfl_ena:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat new exo,old sign
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#
-# operand is to be rounded to single or double precision
-#
-fin_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fin_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fin_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fin_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fin_sd_may_ovfl # maybe; go check
- blt.w fin_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved into the fp reg file
-#
-fin_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # perform move
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fin_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exponent
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fin_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.w fin_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fin_sd_may_ovfl # maybe; go check
- blt.w fin_sd_ovfl # yes; go handle overflow
- bra.w fin_sd_normal # no; ho handle normalized op
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fin_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- tst.b FP_SCR0_EX(%a6) # is operand negative?
- bpl.b fin_sd_unfl_tst
- bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
-
-# if underflow or inexact is enabled, then go calculate the EXOP first.
-fin_sd_unfl_tst:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fin_sd_unfl_ena # yes
-
-fin_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow or inexact is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fin_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # subtract scale factor
- andi.w &0x8000,%d2 # extract old sign
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fin_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fin_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # perform move
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fin_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fin_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fin_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fin_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- sub.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fin_sd_ovfl_dis
-
-#
-# the move in MAY overflow. so...
-#
-fin_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # perform the move
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fin_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fin_sd_normal_exit
-
-##########################################################################
-
-#
-# operand is not a NORM: check its optype and branch accordingly
-#
-fin_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fin_denorm
- cmpi.b %d1,&SNAN # weed out SNANs
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNANs
- beq.l res_qnan_1op
-
-#
-# do the fmove in; at this point, only possible ops are ZERO and INF.
-# use fmov to determine ccodes.
-# prec:mode should be zero at this point but it won't affect answer anyways.
-#
- fmov.x SRC(%a0),%fp0 # do fmove in
- fmov.l %fpsr,%d0 # no exceptions possible
- rol.l &0x8,%d0 # put ccodes in lo byte
- mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fdiv(): emulates the fdiv instruction #
-# fsdiv(): emulates the fsdiv instruction #
-# fddiv(): emulates the fddiv instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res() - return default underflow result #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a divide #
-# instruction won't cause an exception. Use the regular fdiv to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- align 0x10
-tbl_fdiv_unfl:
- long 0x3fff - 0x0000 # ext_unfl
- long 0x3fff - 0x3f81 # sgl_unfl
- long 0x3fff - 0x3c01 # dbl_unfl
-
-tbl_fdiv_ovfl:
- long 0x3fff - 0x7ffe # ext overflow exponent
- long 0x3fff - 0x407e # sgl overflow exponent
- long 0x3fff - 0x43fe # dbl overflow exponent
-
- global fsdiv
-fsdiv:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fdiv
-
- global fddiv
-fddiv:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fdiv
-fdiv:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fdiv_not_norm # optimize on non-norm input
-
-#
-# DIVIDE: NORMs and DENORMs ONLY!
-#
-fdiv_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # scale src exponent
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # scale dst exponent
-
- neg.l (%sp) # SCALE FACTOR = scale1 - scale2
- add.l %d0,(%sp)
-
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision
- lsr.b &0x6,%d1 # shift to lo bits
- mov.l (%sp)+,%d0 # load S.F.
- cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow?
- ble.w fdiv_may_ovfl # result will overflow
-
- cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow?
- beq.w fdiv_may_unfl # maybe
- bgt.w fdiv_unfl # yes; go handle underflow
-
-fdiv_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # save FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # perform divide
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fdiv_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
- mov.l %d2,-(%sp) # store d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-tbl_fdiv_ovfl2:
- long 0x7fff
- long 0x407f
- long 0x43ff
-
-fdiv_no_ovfl:
- mov.l (%sp)+,%d0 # restore scale factor
- bra.b fdiv_normal_exit
-
-fdiv_may_ovfl:
- mov.l %d0,-(%sp) # save scale factor
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # set FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d0
- fmov.l &0x0,%fpcr
-
- or.l %d0,USER_FPSR(%a6) # save INEX,N
-
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w (%sp),%d0 # fetch new exponent
- add.l &0xc,%sp # clear result from stack
- andi.l &0x7fff,%d0 # strip sign
- sub.l (%sp),%d0 # add scale factor
- cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4)
- blt.b fdiv_no_ovfl
- mov.l (%sp)+,%d0
-
-fdiv_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fdiv_ovfl_ena # yes
-
-fdiv_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-fdiv_ovfl_ena:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl
-
-fdiv_ovfl_ena_cont:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1 # clear sign bit
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fdiv_ovfl_dis
-
-fdiv_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l &0x0,%fpcr # clear FPCR
- bra.b fdiv_ovfl_ena_cont
-
-fdiv_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fdiv_unfl_ena # yes
-
-fdiv_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fdiv_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fdiv_unfl_ena_sd # no, sgl or dbl
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fdiv_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp1 # execute divide
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factoer
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exp
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fdiv_unfl_dis
-
-fdiv_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fdiv_unfl_ena_cont
-
-#
-# the divide operation MAY underflow:
-#
-fdiv_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| > 1.b?
- fbgt.w fdiv_normal_exit # no; no underflow occurred
- fblt.w fdiv_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 1. but,
-# we don't know if the result was an underflow that rounded up to a 1
-# or a normalized number that rounded down to a 1. so, redo the entire
-# operation using RZ as the rounding mode to see what the pre-rounded
-# result is. this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp1 # execute divide
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x1 # is |result| < 1.b?
- fbge.w fdiv_normal_exit # no; no underflow occurred
- bra.w fdiv_unfl # yes; underflow occurred
-
-############################################################################
-
-#
-# Divide: inputs are not both normalized; what are they?
-#
-fdiv_not_norm:
- mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fdiv_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fdiv_op:
- short fdiv_norm - tbl_fdiv_op # NORM / NORM
- short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO
- short fdiv_zero_load - tbl_fdiv_op # NORM / INF
- short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN
- short fdiv_norm - tbl_fdiv_op # NORM / DENORM
- short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM
- short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO
- short fdiv_zero_load - tbl_fdiv_op # ZERO / INF
- short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN
- short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM
- short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_inf_dst - tbl_fdiv_op # INF / NORM
- short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO
- short fdiv_res_operr - tbl_fdiv_op # INF / INF
- short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN
- short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM
- short fdiv_res_snan - tbl_fdiv_op # INF / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM
- short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_norm - tbl_fdiv_op # DENORM / NORM
- short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO
- short fdiv_zero_load - tbl_fdiv_op # DENORM / INF
- short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN
- short fdiv_norm - tbl_fdiv_op # DENORM / DENORM
- short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM
- short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO
- short fdiv_res_snan - tbl_fdiv_op # SNAN / INF
- short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN
- short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM
- short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
-fdiv_res_qnan:
- bra.l res_qnan
-fdiv_res_snan:
- bra.l res_snan
-fdiv_res_operr:
- bra.l res_operr
-
- global fdiv_zero_load # global for fsgldiv
-fdiv_zero_load:
- mov.b SRC_EX(%a0),%d0 # result sign is exclusive
- mov.b DST_EX(%a1),%d1 # or of input signs.
- eor.b %d0,%d1
- bpl.b fdiv_zero_load_p # result is positive
- fmov.s &0x80000000,%fp0 # load a -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
- rts
-fdiv_zero_load_p:
- fmov.s &0x00000000,%fp0 # load a +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# The destination was In Range and the source was a ZERO. The result,
-# Therefore, is an INF w/ the proper sign.
-# So, determine the sign and return a new INF (w/ the j-bit cleared).
-#
- global fdiv_inf_load # global for fsgldiv
-fdiv_inf_load:
- ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ
- mov.b SRC_EX(%a0),%d0 # load both signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fdiv_inf_load_p # result is positive
- fmov.s &0xff800000,%fp0 # make result -INF
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
- rts
-fdiv_inf_load_p:
- fmov.s &0x7f800000,%fp0 # make result +INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#
-# The destination was an INF w/ an In Range or ZERO source, the result is
-# an INF w/ the proper sign.
-# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the
-# dst INF is set, then then j-bit of the result INF is also set).
-#
- global fdiv_inf_dst # global for fsgldiv
-fdiv_inf_dst:
- mov.b DST_EX(%a1),%d0 # load both signs
- mov.b SRC_EX(%a0),%d1
- eor.b %d0,%d1
- bpl.b fdiv_inf_dst_p # result is positive
-
- fmovm.x DST(%a1),&0x80 # return result in fp0
- fabs.x %fp0 # clear sign bit
- fneg.x %fp0 # set sign bit
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fdiv_inf_dst_p:
- fmovm.x DST(%a1),&0x80 # return result in fp0
- fabs.x %fp0 # return positive INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fneg(): emulates the fneg instruction #
-# fsneg(): emulates the fsneg instruction #
-# fdneg(): emulates the fdneg instruction #
-# #
-# XREF **************************************************************** #
-# norm() - normalize a denorm to provide EXOP #
-# scale_to_zero_src() - scale sgl/dbl source exponent #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan_1op() - return QNAN result #
-# res_snan_1op() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, zeroes, and infinities as special cases. Separate #
-# norms/denorms into ext/sgl/dbl precisions. Extended precision can be #
-# emulated by simply setting sign bit. Sgl/dbl operands must be scaled #
-# and an actual fneg performed to see if overflow/underflow would have #
-# occurred. If so, return default underflow/overflow result. Else, #
-# scale the result exponent and return result. FPSR gets set based on #
-# the result value. #
-# #
-#########################################################################
-
- global fsneg
-fsneg:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fneg
-
- global fdneg
-fdneg:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fneg
-fneg:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1
- bne.w fneg_not_norm # optimize on non-norm input
-
-#
-# NEGATE SIGN : norms and denorms ONLY!
-#
-fneg_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fneg_not_ext # no; go handle sgl or dbl
-
-#
-# precision selected is extended. so...we can not get an underflow
-# or overflow because of rounding to the correct precision. so...
-# skip the scaling and unscaling...
-#
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- eori.w &0x8000,%d0 # negate sign
- bpl.b fneg_norm_load # sign is positive
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
-fneg_norm_load:
- mov.w %d0,FP_SCR0_EX(%a6)
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# for an extended precision DENORM, the UNFL exception bit is set
-# the accrued bit is NOT set in this instance(no inexactness!)
-#
-fneg_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fneg_not_ext # no; go handle sgl or dbl
-
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- eori.w &0x8000,%d0 # negate sign
- bpl.b fneg_denorm_done # no
- mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit
-fneg_denorm_done:
- mov.w %d0,FP_SCR0_EX(%a6)
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
-
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fneg_ext_unfl_ena # yes
- rts
-
-#
-# the input is an extended DENORM and underflow is enabled in the FPCR.
-# normalize the mantissa and add the bias of 0x6000 to the resulting negative
-# exponent and insert back into the operand.
-#
-fneg_ext_unfl_ena:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat old sign, new exponent
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#
-# operand is either single or double
-#
-fneg_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fneg_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fneg_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fneg_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fneg_sd_may_ovfl # maybe; go check
- blt.w fneg_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved in to the fp reg file
-#
-fneg_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fneg_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fneg_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.b fneg_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fneg_sd_may_ovfl # maybe; go check
- blt.w fneg_sd_ovfl # yes; go handle overflow
- bra.w fneg_sd_normal # no; ho handle normalized op
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fneg_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- eori.b &0x80,FP_SCR0_EX(%a6) # negate sign
- bpl.b fneg_sd_unfl_tst
- bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
-
-# if underflow or inexact is enabled, go calculate EXOP first.
-fneg_sd_unfl_tst:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fneg_sd_unfl_ena # yes
-
-fneg_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fneg_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fneg_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fneg_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fneg_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fneg_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fneg_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fneg_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fneg_sd_ovfl_dis
-
-#
-# the move in MAY underflow. so...
-#
-fneg_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fneg_sd_normal_exit
-
-##########################################################################
-
-#
-# input is not normalized; what is it?
-#
-fneg_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fneg_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
-
-#
-# do the fneg; at this point, only possible ops are ZERO and INF.
-# use fneg to determine ccodes.
-# prec:mode should be zero at this point but it won't affect answer anyways.
-#
- fneg.x SRC_EX(%a0),%fp0 # do fneg
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0 # put ccodes in lo byte
- mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# ftst(): emulates the ftest instruction #
-# #
-# XREF **************************************************************** #
-# res{s,q}nan_1op() - set NAN result for monadic instruction #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# #
-# OUTPUT ************************************************************** #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# Check the source operand tag (STAG) and set the FPCR according #
-# to the operand type and sign. #
-# #
-#########################################################################
-
- global ftst
-ftst:
- mov.b STAG(%a6),%d1
- bne.b ftst_not_norm # optimize on non-norm input
-
-#
-# Norm:
-#
-ftst_norm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_norm_m # yes
- rts
-ftst_norm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-#
-# input is not normalized; what is it?
-#
-ftst_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b ftst_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b ftst_inf
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
-
-#
-# Denorm:
-#
-ftst_denorm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_denorm_m # yes
- rts
-ftst_denorm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-#
-# Infinity:
-#
-ftst_inf:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_inf_m # yes
-ftst_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-ftst_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits
- rts
-
-#
-# Zero:
-#
-ftst_zero:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_zero_m # yes
-ftst_zero_p:
- mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-ftst_zero_m:
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fint(): emulates the fint instruction #
-# #
-# XREF **************************************************************** #
-# res_{s,q}nan_1op() - set NAN result for monadic operation #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# #
-# ALGORITHM *********************************************************** #
-# Separate according to operand type. Unnorms don't pass through #
-# here. For norms, load the rounding mode/prec, execute a "fint", then #
-# store the resulting FPSR bits. #
-# For denorms, force the j-bit to a one and do the same as for #
-# norms. Denorms are so low that the answer will either be a zero or a #
-# one. #
-# For zeroes/infs/NANs, return the same while setting the FPSR #
-# as appropriate. #
-# #
-#########################################################################
-
- global fint
-fint:
- mov.b STAG(%a6),%d1
- bne.b fint_not_norm # optimize on non-norm input
-
-#
-# Norm:
-#
-fint_norm:
- andi.b &0x30,%d0 # set prec = ext
-
- fmov.l %d0,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fint.x SRC(%a0),%fp0 # execute fint
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d0 # save FPSR
- or.l %d0,USER_FPSR(%a6) # set exception bits
-
- rts
-
-#
-# input is not normalized; what is it?
-#
-fint_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fint_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fint_inf
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.b fint_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op # weed out QNAN
-
-#
-# Denorm:
-#
-# for DENORMs, the result will be either (+/-)ZERO or (+/-)1.
-# also, the INEX2 and AINEX exception bits will be set.
-# so, we could either set these manually or force the DENORM
-# to a very small NORM and ship it to the NORM routine.
-# I do the latter.
-#
-fint_denorm:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
- mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
- lea FP_SCR0(%a6),%a0
- bra.b fint_norm
-
-#
-# Zero:
-#
-fint_zero:
- tst.b SRC_EX(%a0) # is ZERO negative?
- bmi.b fint_zero_m # yes
-fint_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO in fp0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fint_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-#
-# Infinity:
-#
-fint_inf:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- tst.b SRC_EX(%a0) # is INF negative?
- bmi.b fint_inf_m # yes
-fint_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-fint_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fintrz(): emulates the fintrz instruction #
-# #
-# XREF **************************************************************** #
-# res_{s,q}nan_1op() - set NAN result for monadic operation #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# #
-# ALGORITHM *********************************************************** #
-# Separate according to operand type. Unnorms don't pass through #
-# here. For norms, load the rounding mode/prec, execute a "fintrz", #
-# then store the resulting FPSR bits. #
-# For denorms, force the j-bit to a one and do the same as for #
-# norms. Denorms are so low that the answer will either be a zero or a #
-# one. #
-# For zeroes/infs/NANs, return the same while setting the FPSR #
-# as appropriate. #
-# #
-#########################################################################
-
- global fintrz
-fintrz:
- mov.b STAG(%a6),%d1
- bne.b fintrz_not_norm # optimize on non-norm input
-
-#
-# Norm:
-#
-fintrz_norm:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fintrz.x SRC(%a0),%fp0 # execute fintrz
-
- fmov.l %fpsr,%d0 # save FPSR
- or.l %d0,USER_FPSR(%a6) # set exception bits
-
- rts
-
-#
-# input is not normalized; what is it?
-#
-fintrz_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fintrz_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fintrz_inf
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.b fintrz_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op # weed out QNAN
-
-#
-# Denorm:
-#
-# for DENORMs, the result will be (+/-)ZERO.
-# also, the INEX2 and AINEX exception bits will be set.
-# so, we could either set these manually or force the DENORM
-# to a very small NORM and ship it to the NORM routine.
-# I do the latter.
-#
-fintrz_denorm:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
- mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
- lea FP_SCR0(%a6),%a0
- bra.b fintrz_norm
-
-#
-# Zero:
-#
-fintrz_zero:
- tst.b SRC_EX(%a0) # is ZERO negative?
- bmi.b fintrz_zero_m # yes
-fintrz_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO in fp0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fintrz_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-#
-# Infinity:
-#
-fintrz_inf:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- tst.b SRC_EX(%a0) # is INF negative?
- bmi.b fintrz_inf_m # yes
-fintrz_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-fintrz_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fabs(): emulates the fabs instruction #
-# fsabs(): emulates the fsabs instruction #
-# fdabs(): emulates the fdabs instruction #
-# #
-# XREF **************************************************************** #
-# norm() - normalize denorm mantissa to provide EXOP #
-# scale_to_zero_src() - make exponent. = 0; get scale factor #
-# unf_res() - calculate underflow result #
-# ovf_res() - calculate overflow result #
-# res_{s,q}nan_1op() - set NAN result for monadic operation #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = rnd precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Simply clear sign for extended precision norm. Ext prec denorm #
-# gets an EXOP created for it since it's an underflow. #
-# Double and single precision can overflow and underflow. First, #
-# scale the operand such that the exponent is zero. Perform an "fabs" #
-# using the correct rnd mode/prec. Check to see if the original #
-# exponent would take an exception. If so, use unf_res() or ovf_res() #
-# to calculate the default result. Also, create the EXOP for the #
-# exceptional case. If no exception should occur, insert the correct #
-# result exponent and return. #
-# Unnorms don't pass through here. #
-# #
-#########################################################################
-
- global fsabs
-fsabs:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fabs
-
- global fdabs
-fdabs:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
-
- global fabs
-fabs:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1
- bne.w fabs_not_norm # optimize on non-norm input
-
-#
-# ABSOLUTE VALUE: norms and denorms ONLY!
-#
-fabs_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fabs_not_ext # no; go handle sgl or dbl
-
-#
-# precision selected is extended. so...we can not get an underflow
-# or overflow because of rounding to the correct precision. so...
-# skip the scaling and unscaling...
-#
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d1
- bclr &15,%d1 # force absolute value
- mov.w %d1,FP_SCR0_EX(%a6) # insert exponent
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# for an extended precision DENORM, the UNFL exception bit is set
-# the accrued bit is NOT set in this instance(no inexactness!)
-#
-fabs_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fabs_not_ext # no
-
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- bclr &15,%d0 # clear sign
- mov.w %d0,FP_SCR0_EX(%a6) # insert exponent
-
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
-
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fabs_ext_unfl_ena
- rts
-
-#
-# the input is an extended DENORM and underflow is enabled in the FPCR.
-# normalize the mantissa and add the bias of 0x6000 to the resulting negative
-# exponent and insert back into the operand.
-#
-fabs_ext_unfl_ena:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat old sign, new exponent
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#
-# operand is either single or double
-#
-fabs_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fabs_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fabs_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fabs_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fabs_sd_may_ovfl # maybe; go check
- blt.w fabs_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved in to the fp reg file
-#
-fabs_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fabs_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fabs_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.b fabs_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fabs_sd_may_ovfl # maybe; go check
- blt.w fabs_sd_ovfl # yes; go handle overflow
- bra.w fabs_sd_normal # no; ho handle normalized op
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fabs_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- bclr &0x7,FP_SCR0_EX(%a6) # force absolute value
-
-# if underflow or inexact is enabled, go calculate EXOP first.
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fabs_sd_unfl_ena # yes
-
-fabs_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fabs_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fabs_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fabs_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fabs_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fabs_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fabs_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fabs_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fabs_sd_ovfl_dis
-
-#
-# the move in MAY underflow. so...
-#
-fabs_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fabs_sd_normal_exit
-
-##########################################################################
-
-#
-# input is not normalized; what is it?
-#
-fabs_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fabs_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
-
- fabs.x SRC(%a0),%fp0 # force absolute value
-
- cmpi.b %d1,&INF # weed out INF
- beq.b fabs_inf
-fabs_zero:
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fabs_inf:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fcmp(): fp compare op routine #
-# #
-# XREF **************************************************************** #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 = round prec/mode #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs and denorms as special cases. For everything else, #
-# just use the actual fcmp instruction to produce the correct condition #
-# codes. #
-# #
-#########################################################################
-
- global fcmp
-fcmp:
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1
- bne.b fcmp_not_norm # optimize on non-norm input
-
-#
-# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs
-#
-fcmp_norm:
- fmovm.x DST(%a1),&0x80 # load dst op
-
- fcmp.x %fp0,SRC(%a0) # do compare
-
- fmov.l %fpsr,%d0 # save FPSR
- rol.l &0x8,%d0 # extract ccode bits
- mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set)
-
- rts
-
-#
-# fcmp: inputs are not both normalized; what are they?
-#
-fcmp_not_norm:
- mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fcmp_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fcmp_op:
- short fcmp_norm - tbl_fcmp_op # NORM - NORM
- short fcmp_norm - tbl_fcmp_op # NORM - ZERO
- short fcmp_norm - tbl_fcmp_op # NORM - INF
- short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN
- short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM
- short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_norm - tbl_fcmp_op # ZERO - NORM
- short fcmp_norm - tbl_fcmp_op # ZERO - ZERO
- short fcmp_norm - tbl_fcmp_op # ZERO - INF
- short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN
- short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM
- short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_norm - tbl_fcmp_op # INF - NORM
- short fcmp_norm - tbl_fcmp_op # INF - ZERO
- short fcmp_norm - tbl_fcmp_op # INF - INF
- short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN
- short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM
- short fcmp_res_snan - tbl_fcmp_op # INF - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM
- short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM
- short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO
- short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF
- short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN
- short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM
- short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM
- short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO
- short fcmp_res_snan - tbl_fcmp_op # SNAN - INF
- short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN
- short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM
- short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
-# unlike all other functions for QNAN and SNAN, fcmp does NOT set the
-# 'N' bit for a negative QNAN or SNAN input so we must squelch it here.
-fcmp_res_qnan:
- bsr.l res_qnan
- andi.b &0xf7,FPSR_CC(%a6)
- rts
-fcmp_res_snan:
- bsr.l res_snan
- andi.b &0xf7,FPSR_CC(%a6)
- rts
-
-#
-# DENORMs are a little more difficult.
-# If you have a 2 DENORMs, then you can just force the j-bit to a one
-# and use the fcmp_norm routine.
-# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one
-# and use the fcmp_norm routine.
-# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also.
-# But with a DENORM and a NORM of the same sign, the neg bit is set if the
-# (1) signs are (+) and the DENORM is the dst or
-# (2) signs are (-) and the DENORM is the src
-#
-
-fcmp_dnrm_s:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),%d0
- bset &31,%d0 # DENORM src; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0
- bra.w fcmp_norm
-
-fcmp_dnrm_d:
- mov.l DST_EX(%a1),FP_SCR0_EX(%a6)
- mov.l DST_HI(%a1),%d0
- bset &31,%d0 # DENORM src; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a1
- bra.w fcmp_norm
-
-fcmp_dnrm_sd:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l DST_HI(%a1),%d0
- bset &31,%d0 # DENORM dst; make into small norm
- mov.l %d0,FP_SCR1_HI(%a6)
- mov.l SRC_HI(%a0),%d0
- bset &31,%d0 # DENORM dst; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR1(%a6),%a1
- lea FP_SCR0(%a6),%a0
- bra.w fcmp_norm
-
-fcmp_nrm_dnrm:
- mov.b SRC_EX(%a0),%d0 # determine if like signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fcmp_dnrm_s
-
-# signs are the same, so must determine the answer ourselves.
- tst.b %d0 # is src op negative?
- bmi.b fcmp_nrm_dnrm_m # yes
- rts
-fcmp_nrm_dnrm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
-fcmp_dnrm_nrm:
- mov.b SRC_EX(%a0),%d0 # determine if like signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fcmp_dnrm_d
-
-# signs are the same, so must determine the answer ourselves.
- tst.b %d0 # is src op negative?
- bpl.b fcmp_dnrm_nrm_m # no
- rts
-fcmp_dnrm_nrm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsglmul(): emulates the fsglmul instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res4() - return default underflow result for sglop #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a multiply #
-# instruction won't cause an exception. Use the regular fsglmul to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- global fsglmul
-fsglmul:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1
-
- bne.w fsglmul_not_norm # optimize on non-norm input
-
-fsglmul_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # scale exponent
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # scale dst exponent
-
- add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2
-
- cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl?
- beq.w fsglmul_may_ovfl # result may rnd to overflow
- blt.w fsglmul_ovfl # result will overflow
-
- cmpi.l %d0,&0x3fff+0x0001 # would result unfl?
- beq.w fsglmul_may_unfl # result may rnd to no unfl
- bgt.w fsglmul_unfl # result will underflow
-
-fsglmul_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsglmul_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-fsglmul_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsglmul_ovfl_tst:
-
-# save setting this until now because this is where fsglmul_may_ovfl may jump in
- or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsglmul_ovfl_ena # yes
-
-fsglmul_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- andi.b &0x30,%d0 # force prec = ext
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-fsglmul_ovfl_ena:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsglmul_ovfl_dis
-
-fsglmul_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fsglmul_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fsglmul_normal_exit
-
-fsglmul_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsglmul_unfl_ena # yes
-
-fsglmul_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res4 # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fsglmul_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fsglmul_unfl_dis
-
-fsglmul_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| > 2.b?
- fbgt.w fsglmul_normal_exit # no; no underflow occurred
- fblt.w fsglmul_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 2. but,
-# we don't know if the result was an underflow that rounded up to a 2 or
-# a normalized number that rounded down to a 2. so, redo the entire operation
-# using RZ as the rounding mode to see what the pre-rounded result is.
-# this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x2 # is |result| < 2.b?
- fbge.w fsglmul_normal_exit # no; no underflow occurred
- bra.w fsglmul_unfl # yes, underflow occurred
-
-##############################################################################
-
-#
-# Single Precision Multiply: inputs are not both normalized; what are they?
-#
-fsglmul_not_norm:
- mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsglmul_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fsglmul_op:
- short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
- short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
- short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
- short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM
- short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO
- short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN
- short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM
- short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
- short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
- short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
- short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
-fsglmul_res_operr:
- bra.l res_operr
-fsglmul_res_snan:
- bra.l res_snan
-fsglmul_res_qnan:
- bra.l res_qnan
-fsglmul_zero:
- bra.l fmul_zero
-fsglmul_inf_src:
- bra.l fmul_inf_src
-fsglmul_inf_dst:
- bra.l fmul_inf_dst
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsgldiv(): emulates the fsgldiv instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res4() - return default underflow result for sglop #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a divide #
-# instruction won't cause an exception. Use the regular fsgldiv to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- global fsgldiv
-fsgldiv:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fsgldiv_not_norm # optimize on non-norm input
-
-#
-# DIVIDE: NORMs and DENORMs ONLY!
-#
-fsgldiv_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # calculate scale factor 1
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # calculate scale factor 2
-
- neg.l (%sp) # S.F. = scale1 - scale2
- add.l %d0,(%sp)
-
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode
- lsr.b &0x6,%d1
- mov.l (%sp)+,%d0
- cmpi.l %d0,&0x3fff-0x7ffe
- ble.w fsgldiv_may_ovfl
-
- cmpi.l %d0,&0x3fff-0x0000 # will result underflow?
- beq.w fsgldiv_may_unfl # maybe
- bgt.w fsgldiv_unfl # yes; go handle underflow
-
-fsgldiv_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # save FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsgldiv_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-fsgldiv_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # set FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d1
- fmov.l &0x0,%fpcr
-
- or.l %d1,USER_FPSR(%a6) # save INEX,N
-
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w (%sp),%d1 # fetch new exponent
- add.l &0xc,%sp # clear result
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- cmp.l %d1,&0x7fff # did divide overflow?
- blt.b fsgldiv_normal_exit
-
-fsgldiv_ovfl_tst:
- or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsgldiv_ovfl_ena # yes
-
-fsgldiv_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- andi.b &0x30,%d0 # kill precision
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-fsgldiv_ovfl_ena:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract new bias
- andi.w &0x7fff,%d1 # clear ms bit
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsgldiv_ovfl_dis
-
-fsgldiv_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsgldiv_unfl_ena # yes
-
-fsgldiv_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res4 # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fsgldiv_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat old sign, new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsgldiv_unfl_dis
-
-#
-# the divide operation MAY underflow:
-#
-fsgldiv_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| > 1.b?
- fbgt.w fsgldiv_normal_exit # no; no underflow occurred
- fblt.w fsgldiv_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 1. but,
-# we don't know if the result was an underflow that rounded up to a 1
-# or a normalized number that rounded down to a 1. so, redo the entire
-# operation using RZ as the rounding mode to see what the pre-rounded
-# result is. this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1
-
- clr.l %d1 # clear scratch register
- ori.b &rz_mode*0x10,%d1 # force RZ rnd mode
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x1 # is |result| < 1.b?
- fbge.w fsgldiv_normal_exit # no; no underflow occurred
- bra.w fsgldiv_unfl # yes; underflow occurred
-
-############################################################################
-
-#
-# Divide: inputs are not both normalized; what are they?
-#
-fsgldiv_not_norm:
- mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fsgldiv_op:
- short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM
- short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN
- short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM
- short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO
- short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM
- short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN
- short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
-fsgldiv_res_qnan:
- bra.l res_qnan
-fsgldiv_res_snan:
- bra.l res_snan
-fsgldiv_res_operr:
- bra.l res_operr
-fsgldiv_inf_load:
- bra.l fdiv_inf_load
-fsgldiv_zero_load:
- bra.l fdiv_zero_load
-fsgldiv_inf_dst:
- bra.l fdiv_inf_dst
-
-#########################################################################
-# XDEF **************************************************************** #
-# fadd(): emulates the fadd instruction #
-# fsadd(): emulates the fadd instruction #
-# fdadd(): emulates the fdadd instruction #
-# #
-# XREF **************************************************************** #
-# addsub_scaler2() - scale the operands so they won't take exc #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan() - set QNAN result #
-# res_snan() - set SNAN result #
-# res_operr() - set OPERR result #
-# scale_to_zero_src() - set src operand exponent equal to zero #
-# scale_to_zero_dst() - set dst operand exponent equal to zero #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Do addition after scaling exponents such that exception won't #
-# occur. Then, check result exponent to see if exception would have #
-# occurred. If so, return default result and maybe EXOP. Else, insert #
-# the correct result exponent and return. Set FPSR bits as appropriate. #
-# #
-#########################################################################
-
- global fsadd
-fsadd:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fadd
-
- global fdadd
-fdadd:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fadd
-fadd:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fadd_not_norm # optimize on non-norm input
-
-#
-# ADD: norms and denorms
-#
-fadd_norm:
- bsr.l addsub_scaler2 # scale exponents
-
-fadd_zero_entry:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fadd.x FP_SCR0(%a6),%fp0 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch INEX2,N,Z
-
- or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
-
- fbeq.w fadd_zero_exit # if result is zero, end now
-
- mov.l %d2,-(%sp) # save d2
-
- fmovm.x &0x01,-(%sp) # save result to stack
-
- mov.w 2+L_SCR3(%a6),%d1
- lsr.b &0x6,%d1
-
- mov.w (%sp),%d2 # fetch new sign, exp
- andi.l &0x7fff,%d2 # strip sign
- sub.l %d0,%d2 # add scale factor
-
- cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow?
- bge.b fadd_ovfl # yes
-
- cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow?
- blt.w fadd_unfl # yes
- beq.w fadd_may_unfl # maybe; go find out
-
-fadd_normal:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x80 # return result in fp0
-
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fadd_zero_exit:
-# fmov.s &0x00000000,%fp0 # return zero in fp0
- rts
-
-tbl_fadd_ovfl:
- long 0x7fff # ext ovfl
- long 0x407f # sgl ovfl
- long 0x43ff # dbl ovfl
-
-tbl_fadd_unfl:
- long 0x0000 # ext unfl
- long 0x3f81 # sgl unfl
- long 0x3c01 # dbl unfl
-
-fadd_ovfl:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fadd_ovfl_ena # yes
-
- add.l &0xc,%sp
-fadd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fadd_ovfl_ena:
- mov.b L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl
-
-fadd_ovfl_ena_cont:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- subi.l &0x6000,%d2 # add extra bias
- andi.w &0x7fff,%d2
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x40 # return EXOP in fp1
- bra.b fadd_ovfl_dis
-
-fadd_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- fadd.x FP_SCR0(%a6),%fp0 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- add.l &0xc,%sp
- fmovm.x &0x01,-(%sp)
- bra.b fadd_ovfl_ena_cont
-
-fadd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- add.l &0xc,%sp
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fadd.x FP_SCR0(%a6),%fp0 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save status
-
- or.l %d1,USER_FPSR(%a6) # save INEX,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fadd_unfl_ena # yes
-
-fadd_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fadd_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fadd_unfl_ena_sd # no; sgl or dbl
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fadd_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fadd.x FP_SCR0(%a6),%fp1 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fadd_unfl_dis
-
-fadd_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fadd_unfl_ena_cont
-
-#
-# result is equal to the smallest normalized number in the selected precision
-# if the precision is extended, this result could not have come from an
-# underflow that rounded up.
-#
-fadd_may_unfl:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1
- beq.w fadd_normal # yes; no underflow occurred
-
- mov.l 0x4(%sp),%d1 # extract hi(man)
- cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
- bne.w fadd_normal # no; no underflow occurred
-
- tst.l 0x8(%sp) # is lo(man) = 0x0?
- bne.w fadd_normal # no; no underflow occurred
-
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.w fadd_normal # no; no underflow occurred
-
-#
-# ok, so now the result has a exponent equal to the smallest normalized
-# exponent for the selected precision. also, the mantissa is equal to
-# 0x8000000000000000 and this mantissa is the result of rounding non-zero
-# g,r,s.
-# now, we must determine whether the pre-rounded result was an underflow
-# rounded "up" or a normalized number rounded "down".
-# so, we do this be re-executing the add using RZ as the rounding mode and
-# seeing if the new result is smaller or equal to the current result.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fadd.x FP_SCR0(%a6),%fp1 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # compare absolute values
- fabs.x %fp1
- fcmp.x %fp0,%fp1 # is first result > second?
-
- fbgt.w fadd_unfl # yes; it's an underflow
- bra.w fadd_normal # no; it's not an underflow
-
-##########################################################################
-
-#
-# Add: inputs are not both normalized; what are they?
-#
-fadd_not_norm:
- mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fadd_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fadd_op:
- short fadd_norm - tbl_fadd_op # NORM + NORM
- short fadd_zero_src - tbl_fadd_op # NORM + ZERO
- short fadd_inf_src - tbl_fadd_op # NORM + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_norm - tbl_fadd_op # NORM + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_zero_dst - tbl_fadd_op # ZERO + NORM
- short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO
- short fadd_inf_src - tbl_fadd_op # ZERO + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_inf_dst - tbl_fadd_op # INF + NORM
- short fadd_inf_dst - tbl_fadd_op # INF + ZERO
- short fadd_inf_2 - tbl_fadd_op # INF + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_inf_dst - tbl_fadd_op # INF + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_res_qnan - tbl_fadd_op # QNAN + NORM
- short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO
- short fadd_res_qnan - tbl_fadd_op # QNAN + INF
- short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN
- short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM
- short fadd_res_snan - tbl_fadd_op # QNAN + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_norm - tbl_fadd_op # DENORM + NORM
- short fadd_zero_src - tbl_fadd_op # DENORM + ZERO
- short fadd_inf_src - tbl_fadd_op # DENORM + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_norm - tbl_fadd_op # DENORM + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_res_snan - tbl_fadd_op # SNAN + NORM
- short fadd_res_snan - tbl_fadd_op # SNAN + ZERO
- short fadd_res_snan - tbl_fadd_op # SNAN + INF
- short fadd_res_snan - tbl_fadd_op # SNAN + QNAN
- short fadd_res_snan - tbl_fadd_op # SNAN + DENORM
- short fadd_res_snan - tbl_fadd_op # SNAN + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
-fadd_res_qnan:
- bra.l res_qnan
-fadd_res_snan:
- bra.l res_snan
-
-#
-# both operands are ZEROes
-#
-fadd_zero_2:
- mov.b SRC_EX(%a0),%d0 # are the signs opposite
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO)
-
-# the signs are the same. so determine whether they are positive or negative
-# and return the appropriately signed zero.
- tst.b %d0 # are ZEROes positive or negative?
- bmi.b fadd_zero_rm # negative
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# the ZEROes have opposite signs:
-# - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP.
-# - -ZERO is returned in the case of RM.
-#
-fadd_zero_2_chk_rm:
- mov.b 3+L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # extract rnd mode
- cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM?
- beq.b fadd_zero_rm # yes
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-fadd_zero_rm:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z
- rts
-
-#
-# one operand is a ZERO and the other is a DENORM or NORM. scale
-# the DENORM or NORM and jump to the regular fadd routine.
-#
-fadd_zero_dst:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale the operand
- clr.w FP_SCR1_EX(%a6)
- clr.l FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
- bra.w fadd_zero_entry # go execute fadd
-
-fadd_zero_src:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- bsr.l scale_to_zero_dst # scale the operand
- clr.w FP_SCR0_EX(%a6)
- clr.l FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
- bra.w fadd_zero_entry # go execute fadd
-
-#
-# both operands are INFs. an OPERR will result if the INFs have
-# different signs. else, an INF of the same sign is returned
-#
-fadd_inf_2:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bmi.l res_operr # weed out (-INF)+(+INF)
-
-# ok, so it's not an OPERR. but, we do have to remember to return the
-# src INF since that's where the 881/882 gets the j-bit from...
-
-#
-# operands are INF and one of {ZERO, INF, DENORM, NORM}
-#
-fadd_inf_src:
- fmovm.x SRC(%a0),&0x80 # return src INF
- tst.b SRC_EX(%a0) # is INF positive?
- bpl.b fadd_inf_done # yes; we're done
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-#
-# operands are INF and one of {ZERO, INF, DENORM, NORM}
-#
-fadd_inf_dst:
- fmovm.x DST(%a1),&0x80 # return dst INF
- tst.b DST_EX(%a1) # is INF positive?
- bpl.b fadd_inf_done # yes; we're done
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fadd_inf_done:
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsub(): emulates the fsub instruction #
-# fssub(): emulates the fssub instruction #
-# fdsub(): emulates the fdsub instruction #
-# #
-# XREF **************************************************************** #
-# addsub_scaler2() - scale the operands so they won't take exc #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan() - set QNAN result #
-# res_snan() - set SNAN result #
-# res_operr() - set OPERR result #
-# scale_to_zero_src() - set src operand exponent equal to zero #
-# scale_to_zero_dst() - set dst operand exponent equal to zero #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Do subtraction after scaling exponents such that exception won't#
-# occur. Then, check result exponent to see if exception would have #
-# occurred. If so, return default result and maybe EXOP. Else, insert #
-# the correct result exponent and return. Set FPSR bits as appropriate. #
-# #
-#########################################################################
-
- global fssub
-fssub:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fsub
-
- global fdsub
-fdsub:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fsub
-fsub:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fsub_not_norm # optimize on non-norm input
-
-#
-# SUB: norms and denorms
-#
-fsub_norm:
- bsr.l addsub_scaler2 # scale exponents
-
-fsub_zero_entry:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch INEX2, N, Z
-
- or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
-
- fbeq.w fsub_zero_exit # if result zero, end now
-
- mov.l %d2,-(%sp) # save d2
-
- fmovm.x &0x01,-(%sp) # save result to stack
-
- mov.w 2+L_SCR3(%a6),%d1
- lsr.b &0x6,%d1
-
- mov.w (%sp),%d2 # fetch new exponent
- andi.l &0x7fff,%d2 # strip sign
- sub.l %d0,%d2 # add scale factor
-
- cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow?
- bge.b fsub_ovfl # yes
-
- cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow?
- blt.w fsub_unfl # yes
- beq.w fsub_may_unfl # maybe; go find out
-
-fsub_normal:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- or.w %d2,%d1 # insert new exponent
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x80 # return result in fp0
-
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fsub_zero_exit:
-# fmov.s &0x00000000,%fp0 # return zero in fp0
- rts
-
-tbl_fsub_ovfl:
- long 0x7fff # ext ovfl
- long 0x407f # sgl ovfl
- long 0x43ff # dbl ovfl
-
-tbl_fsub_unfl:
- long 0x0000 # ext unfl
- long 0x3f81 # sgl unfl
- long 0x3c01 # dbl unfl
-
-fsub_ovfl:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsub_ovfl_ena # yes
-
- add.l &0xc,%sp
-fsub_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fsub_ovfl_ena:
- mov.b L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fsub_ovfl_ena_sd # no
-
-fsub_ovfl_ena_cont:
- mov.w (%sp),%d1 # fetch {sgn,exp}
- andi.w &0x8000,%d1 # keep sign
- subi.l &0x6000,%d2 # subtract new bias
- andi.w &0x7fff,%d2 # clear top bit
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x40 # return EXOP in fp1
- bra.b fsub_ovfl_dis
-
-fsub_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # clear rnd prec
- fmov.l %d1,%fpcr # set FPCR
-
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- add.l &0xc,%sp
- fmovm.x &0x01,-(%sp)
- bra.b fsub_ovfl_ena_cont
-
-fsub_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- add.l &0xc,%sp
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save status
-
- or.l %d1,USER_FPSR(%a6)
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsub_unfl_ena # yes
-
-fsub_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fsub_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fsub_unfl_ena_sd # no
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fsub_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsub.x FP_SCR0(%a6),%fp1 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # store result to stack
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # subtract new bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat sgn,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fsub_unfl_dis
-
-fsub_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # clear rnd prec
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fsub_unfl_ena_cont
-
-#
-# result is equal to the smallest normalized number in the selected precision
-# if the precision is extended, this result could not have come from an
-# underflow that rounded up.
-#
-fsub_may_unfl:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # fetch rnd prec
- beq.w fsub_normal # yes; no underflow occurred
-
- mov.l 0x4(%sp),%d1
- cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
- bne.w fsub_normal # no; no underflow occurred
-
- tst.l 0x8(%sp) # is lo(man) = 0x0?
- bne.w fsub_normal # no; no underflow occurred
-
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.w fsub_normal # no; no underflow occurred
-
-#
-# ok, so now the result has a exponent equal to the smallest normalized
-# exponent for the selected precision. also, the mantissa is equal to
-# 0x8000000000000000 and this mantissa is the result of rounding non-zero
-# g,r,s.
-# now, we must determine whether the pre-rounded result was an underflow
-# rounded "up" or a normalized number rounded "down".
-# so, we do this be re-executing the add using RZ as the rounding mode and
-# seeing if the new result is smaller or equal to the current result.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsub.x FP_SCR0(%a6),%fp1 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # compare absolute values
- fabs.x %fp1
- fcmp.x %fp0,%fp1 # is first result > second?
-
- fbgt.w fsub_unfl # yes; it's an underflow
- bra.w fsub_normal # no; it's not an underflow
-
-##########################################################################
-
-#
-# Sub: inputs are not both normalized; what are they?
-#
-fsub_not_norm:
- mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsub_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fsub_op:
- short fsub_norm - tbl_fsub_op # NORM - NORM
- short fsub_zero_src - tbl_fsub_op # NORM - ZERO
- short fsub_inf_src - tbl_fsub_op # NORM - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_norm - tbl_fsub_op # NORM - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_zero_dst - tbl_fsub_op # ZERO - NORM
- short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO
- short fsub_inf_src - tbl_fsub_op # ZERO - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_inf_dst - tbl_fsub_op # INF - NORM
- short fsub_inf_dst - tbl_fsub_op # INF - ZERO
- short fsub_inf_2 - tbl_fsub_op # INF - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_inf_dst - tbl_fsub_op # INF - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_res_qnan - tbl_fsub_op # QNAN - NORM
- short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO
- short fsub_res_qnan - tbl_fsub_op # QNAN - INF
- short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN
- short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM
- short fsub_res_snan - tbl_fsub_op # QNAN - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_norm - tbl_fsub_op # DENORM - NORM
- short fsub_zero_src - tbl_fsub_op # DENORM - ZERO
- short fsub_inf_src - tbl_fsub_op # DENORM - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_norm - tbl_fsub_op # DENORM - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_res_snan - tbl_fsub_op # SNAN - NORM
- short fsub_res_snan - tbl_fsub_op # SNAN - ZERO
- short fsub_res_snan - tbl_fsub_op # SNAN - INF
- short fsub_res_snan - tbl_fsub_op # SNAN - QNAN
- short fsub_res_snan - tbl_fsub_op # SNAN - DENORM
- short fsub_res_snan - tbl_fsub_op # SNAN - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
-fsub_res_qnan:
- bra.l res_qnan
-fsub_res_snan:
- bra.l res_snan
-
-#
-# both operands are ZEROes
-#
-fsub_zero_2:
- mov.b SRC_EX(%a0),%d0
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bpl.b fsub_zero_2_chk_rm
-
-# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO
- tst.b %d0 # is dst negative?
- bmi.b fsub_zero_2_rm # yes
- fmov.s &0x00000000,%fp0 # no; return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# the ZEROes have the same signs:
-# - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP
-# - -ZERO is returned in the case of RM.
-#
-fsub_zero_2_chk_rm:
- mov.b 3+L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # extract rnd mode
- cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM?
- beq.b fsub_zero_2_rm # yes
- fmov.s &0x00000000,%fp0 # no; return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-fsub_zero_2_rm:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG
- rts
-
-#
-# one operand is a ZERO and the other is a DENORM or a NORM.
-# scale the DENORM or NORM and jump to the regular fsub routine.
-#
-fsub_zero_dst:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale the operand
- clr.w FP_SCR1_EX(%a6)
- clr.l FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
- bra.w fsub_zero_entry # go execute fsub
-
-fsub_zero_src:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- bsr.l scale_to_zero_dst # scale the operand
- clr.w FP_SCR0_EX(%a6)
- clr.l FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
- bra.w fsub_zero_entry # go execute fsub
-
-#
-# both operands are INFs. an OPERR will result if the INFs have the
-# same signs. else,
-#
-fsub_inf_2:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bpl.l res_operr # weed out (-INF)+(+INF)
-
-# ok, so it's not an OPERR. but we do have to remember to return
-# the src INF since that's where the 881/882 gets the j-bit.
-
-fsub_inf_src:
- fmovm.x SRC(%a0),&0x80 # return src INF
- fneg.x %fp0 # invert sign
- fbge.w fsub_inf_done # sign is now positive
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fsub_inf_dst:
- fmovm.x DST(%a1),&0x80 # return dst INF
- tst.b DST_EX(%a1) # is INF negative?
- bpl.b fsub_inf_done # no
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fsub_inf_done:
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsqrt(): emulates the fsqrt instruction #
-# fssqrt(): emulates the fssqrt instruction #
-# fdsqrt(): emulates the fdsqrt instruction #
-# #
-# XREF **************************************************************** #
-# scale_sqrt() - scale the source operand #
-# unf_res() - return default underflow result #
-# ovf_res() - return default overflow result #
-# res_qnan_1op() - return QNAN result #
-# res_snan_1op() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a sqrt #
-# instruction won't cause an exception. Use the regular fsqrt to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- global fssqrt
-fssqrt:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fsqrt
-
- global fdsqrt
-fdsqrt:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
-
- global fsqrt
-fsqrt:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b STAG(%a6),%d1
- bne.w fsqrt_not_norm # optimize on non-norm input
-
-#
-# SQUARE ROOT: norms and denorms ONLY!
-#
-fsqrt_norm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.l res_operr # yes
-
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fsqrt_not_ext # no; go handle sgl or dbl
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsqrt.x (%a0),%fp0 # execute square root
-
- fmov.l %fpsr,%d1
- or.l %d1,USER_FPSR(%a6) # set N,INEX
-
- rts
-
-fsqrt_denorm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.l res_operr # yes
-
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fsqrt_not_ext # no; go handle sgl or dbl
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_sqrt # calculate scale factor
-
- bra.w fsqrt_sd_normal
-
-#
-# operand is either single or double
-#
-fsqrt_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.w fsqrt_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fsqrt_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_sqrt # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow?
- beq.w fsqrt_sd_may_unfl
- bgt.w fsqrt_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407f # will move in overflow?
- beq.w fsqrt_sd_may_ovfl # maybe; go check
- blt.w fsqrt_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved in to the fp reg file
-#
-fsqrt_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsqrt_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fsqrt_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_sqrt # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow?
- beq.w fsqrt_sd_may_unfl
- bgt.b fsqrt_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43ff # will move in overflow?
- beq.w fsqrt_sd_may_ovfl # maybe; go check
- blt.w fsqrt_sd_ovfl # yes; go handle overflow
- bra.w fsqrt_sd_normal # no; ho handle normalized op
-
-# we're on the line here and the distinguising characteristic is whether
-# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number
-# elsewise fall through to underflow.
-fsqrt_sd_may_unfl:
- btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
- bne.w fsqrt_sd_normal # yes, so no underflow
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fsqrt_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # execute square root
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-# if underflow or inexact is enabled, go calculate EXOP first.
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsqrt_sd_unfl_ena # yes
-
-fsqrt_sd_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fsqrt_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fsqrt_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fsqrt_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # perform square root
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsqrt_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsqrt_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fsqrt_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fsqrt_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fsqrt_sd_ovfl_dis
-
-#
-# the move in MAY underflow. so...
-#
-fsqrt_sd_may_ovfl:
- btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
- bne.w fsqrt_sd_ovfl # yes, so overflow
-
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fmov.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| >= 1.b?
- fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fsqrt_sd_normal_exit
-
-##########################################################################
-
-#
-# input is not normalized; what is it?
-#
-fsqrt_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fsqrt_denorm
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fsqrt_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fsqrt_inf
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op
-
-#
-# fsqrt(+0) = +0
-# fsqrt(-0) = -0
-# fsqrt(+INF) = +INF
-# fsqrt(-INF) = OPERR
-#
-fsqrt_zero:
- tst.b SRC_EX(%a0) # is ZERO positive or negative?
- bmi.b fsqrt_zero_m # negative
-fsqrt_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fsqrt_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-fsqrt_inf:
- tst.b SRC_EX(%a0) # is INF positive or negative?
- bmi.l res_operr # negative
-fsqrt_inf_p:
- fmovm.x SRC(%a0),&0x80 # return +INF in fp0
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-
-##########################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# addsub_scaler2(): scale inputs to fadd/fsub such that no #
-# OVFL/UNFL exceptions will result #
-# #
-# XREF **************************************************************** #
-# norm() - normalize mantissa after adjusting exponent #
-# #
-# INPUT *************************************************************** #
-# FP_SRC(a6) = fp op1(src) #
-# FP_DST(a6) = fp op2(dst) #
-# #
-# OUTPUT ************************************************************** #
-# FP_SRC(a6) = fp op1 scaled(src) #
-# FP_DST(a6) = fp op2 scaled(dst) #
-# d0 = scale amount #
-# #
-# ALGORITHM *********************************************************** #
-# If the DST exponent is > the SRC exponent, set the DST exponent #
-# equal to 0x3fff and scale the SRC exponent by the value that the #
-# DST exponent was scaled by. If the SRC exponent is greater or equal, #
-# do the opposite. Return this scale factor in d0. #
-# If the two exponents differ by > the number of mantissa bits #
-# plus two, then set the smallest exponent to a very small value as a #
-# quick shortcut. #
-# #
-#########################################################################
-
- global addsub_scaler2
-addsub_scaler2:
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- mov.w DST_EX(%a1),%d1
- mov.w %d0,FP_SCR0_EX(%a6)
- mov.w %d1,FP_SCR1_EX(%a6)
-
- andi.w &0x7fff,%d0
- andi.w &0x7fff,%d1
- mov.w %d0,L_SCR1(%a6) # store src exponent
- mov.w %d1,2+L_SCR1(%a6) # store dst exponent
-
- cmp.w %d0, %d1 # is src exp >= dst exp?
- bge.l src_exp_ge2
-
-# dst exp is > src exp; scale dst to exp = 0x3fff
-dst_exp_gt2:
- bsr.l scale_to_zero_dst
- mov.l %d0,-(%sp) # save scale factor
-
- cmpi.b STAG(%a6),&DENORM # is dst denormalized?
- bne.b cmpexp12
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the denorm; result is new exp
- neg.w %d0 # new exp = -(shft val)
- mov.w %d0,L_SCR1(%a6) # inset new exp
-
-cmpexp12:
- mov.w 2+L_SCR1(%a6),%d0
- subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
-
- cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2?
- bge.b quick_scale12
-
- mov.w L_SCR1(%a6),%d0
- add.w 0x2(%sp),%d0 # scale src exponent by scale factor
- mov.w FP_SCR0_EX(%a6),%d1
- and.w &0x8000,%d1
- or.w %d1,%d0 # concat {sgn,new exp}
- mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-quick_scale12:
- andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent
- bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-# src exp is >= dst exp; scale src to exp = 0x3fff
-src_exp_ge2:
- bsr.l scale_to_zero_src
- mov.l %d0,-(%sp) # save scale factor
-
- cmpi.b DTAG(%a6),&DENORM # is dst denormalized?
- bne.b cmpexp22
- lea FP_SCR1(%a6),%a0
- bsr.l norm # normalize the denorm; result is new exp
- neg.w %d0 # new exp = -(shft val)
- mov.w %d0,2+L_SCR1(%a6) # inset new exp
-
-cmpexp22:
- mov.w L_SCR1(%a6),%d0
- subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
-
- cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2?
- bge.b quick_scale22
-
- mov.w 2+L_SCR1(%a6),%d0
- add.w 0x2(%sp),%d0 # scale dst exponent by scale factor
- mov.w FP_SCR1_EX(%a6),%d1
- andi.w &0x8000,%d1
- or.w %d1,%d0 # concat {sgn,new exp}
- mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-quick_scale22:
- andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent
- bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-##########################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# scale_to_zero_src(): scale the exponent of extended precision #
-# value at FP_SCR0(a6). #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa if the operand was a DENORM #
-# #
-# INPUT *************************************************************** #
-# FP_SCR0(a6) = extended precision operand to be scaled #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR0(a6) = scaled extended precision operand #
-# d0 = scale value #
-# #
-# ALGORITHM *********************************************************** #
-# Set the exponent of the input operand to 0x3fff. Save the value #
-# of the difference between the original and new exponent. Then, #
-# normalize the operand if it was a DENORM. Add this normalization #
-# value to the previous value. Return the result. #
-# #
-#########################################################################
-
- global scale_to_zero_src
-scale_to_zero_src:
- mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
- mov.w %d1,%d0 # make a copy
-
- andi.l &0x7fff,%d1 # extract operand's exponent
-
- andi.w &0x8000,%d0 # extract operand's sgn
- or.w &0x3fff,%d0 # insert new operand's exponent(=0)
-
- mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent
-
- cmpi.b STAG(%a6),&DENORM # is operand normalized?
- beq.b stzs_denorm # normalize the DENORM
-
-stzs_norm:
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
-
- rts
-
-stzs_denorm:
- lea FP_SCR0(%a6),%a0 # pass ptr to src op
- bsr.l norm # normalize denorm
- neg.l %d0 # new exponent = -(shft val)
- mov.l %d0,%d1 # prepare for op_norm call
- bra.b stzs_norm # finish scaling
-
-###
-
-#########################################################################
-# XDEF **************************************************************** #
-# scale_sqrt(): scale the input operand exponent so a subsequent #
-# fsqrt operation won't take an exception. #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa if the operand was a DENORM #
-# #
-# INPUT *************************************************************** #
-# FP_SCR0(a6) = extended precision operand to be scaled #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR0(a6) = scaled extended precision operand #
-# d0 = scale value #
-# #
-# ALGORITHM *********************************************************** #
-# If the input operand is a DENORM, normalize it. #
-# If the exponent of the input operand is even, set the exponent #
-# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the #
-# exponent of the input operand is off, set the exponent to ox3fff and #
-# return a scale factor of "(exp-0x3fff)/2". #
-# #
-#########################################################################
-
- global scale_sqrt
-scale_sqrt:
- cmpi.b STAG(%a6),&DENORM # is operand normalized?
- beq.b ss_denorm # normalize the DENORM
-
- mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
- andi.l &0x7fff,%d1 # extract operand's exponent
-
- andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn
-
- btst &0x0,%d1 # is exp even or odd?
- beq.b ss_norm_even
-
- ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-ss_norm_even:
- ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- mov.l &0x3ffe,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-ss_denorm:
- lea FP_SCR0(%a6),%a0 # pass ptr to src op
- bsr.l norm # normalize denorm
-
- btst &0x0,%d0 # is exp even or odd?
- beq.b ss_denorm_even
-
- ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- add.l &0x3fff,%d0
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-ss_denorm_even:
- ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- add.l &0x3ffe,%d0
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-###
-
-#########################################################################
-# XDEF **************************************************************** #
-# scale_to_zero_dst(): scale the exponent of extended precision #
-# value at FP_SCR1(a6). #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa if the operand was a DENORM #
-# #
-# INPUT *************************************************************** #
-# FP_SCR1(a6) = extended precision operand to be scaled #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR1(a6) = scaled extended precision operand #
-# d0 = scale value #
-# #
-# ALGORITHM *********************************************************** #
-# Set the exponent of the input operand to 0x3fff. Save the value #
-# of the difference between the original and new exponent. Then, #
-# normalize the operand if it was a DENORM. Add this normalization #
-# value to the previous value. Return the result. #
-# #
-#########################################################################
-
- global scale_to_zero_dst
-scale_to_zero_dst:
- mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp}
- mov.w %d1,%d0 # make a copy
-
- andi.l &0x7fff,%d1 # extract operand's exponent
-
- andi.w &0x8000,%d0 # extract operand's sgn
- or.w &0x3fff,%d0 # insert new operand's exponent(=0)
-
- mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent
-
- cmpi.b DTAG(%a6),&DENORM # is operand normalized?
- beq.b stzd_denorm # normalize the DENORM
-
-stzd_norm:
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- rts
-
-stzd_denorm:
- lea FP_SCR1(%a6),%a0 # pass ptr to dst op
- bsr.l norm # normalize denorm
- neg.l %d0 # new exponent = -(shft val)
- mov.l %d0,%d1 # prepare for op_norm call
- bra.b stzd_norm # finish scaling
-
-##########################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# res_qnan(): return default result w/ QNAN operand for dyadic #
-# res_snan(): return default result w/ SNAN operand for dyadic #
-# res_qnan_1op(): return dflt result w/ QNAN operand for monadic #
-# res_snan_1op(): return dflt result w/ SNAN operand for monadic #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# FP_SRC(a6) = pointer to extended precision src operand #
-# FP_DST(a6) = pointer to extended precision dst operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# #
-# ALGORITHM *********************************************************** #
-# If either operand (but not both operands) of an operation is a #
-# nonsignalling NAN, then that NAN is returned as the result. If both #
-# operands are nonsignalling NANs, then the destination operand #
-# nonsignalling NAN is returned as the result. #
-# If either operand to an operation is a signalling NAN (SNAN), #
-# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap #
-# enable bit is set in the FPCR, then the trap is taken and the #
-# destination is not modified. If the SNAN trap enable bit is not set, #
-# then the SNAN is converted to a nonsignalling NAN (by setting the #
-# SNAN bit in the operand to one), and the operation continues as #
-# described in the preceding paragraph, for nonsignalling NANs. #
-# Make sure the appropriate FPSR bits are set before exiting. #
-# #
-#########################################################################
-
- global res_qnan
- global res_snan
-res_qnan:
-res_snan:
- cmp.b DTAG(%a6), &SNAN # is the dst an SNAN?
- beq.b dst_snan2
- cmp.b DTAG(%a6), &QNAN # is the dst a QNAN?
- beq.b dst_qnan2
-src_nan:
- cmp.b STAG(%a6), &QNAN
- beq.b src_qnan2
- global res_snan_1op
-res_snan_1op:
-src_snan2:
- bset &0x6, FP_SRC_HI(%a6) # set SNAN bit
- or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
- lea FP_SRC(%a6), %a0
- bra.b nan_comp
- global res_qnan_1op
-res_qnan_1op:
-src_qnan2:
- or.l &nan_mask, USER_FPSR(%a6)
- lea FP_SRC(%a6), %a0
- bra.b nan_comp
-dst_snan2:
- or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
- bset &0x6, FP_DST_HI(%a6) # set SNAN bit
- lea FP_DST(%a6), %a0
- bra.b nan_comp
-dst_qnan2:
- lea FP_DST(%a6), %a0
- cmp.b STAG(%a6), &SNAN
- bne nan_done
- or.l &aiop_mask+snan_mask, USER_FPSR(%a6)
-nan_done:
- or.l &nan_mask, USER_FPSR(%a6)
-nan_comp:
- btst &0x7, FTEMP_EX(%a0) # is NAN neg?
- beq.b nan_not_neg
- or.l &neg_mask, USER_FPSR(%a6)
-nan_not_neg:
- fmovm.x (%a0), &0x80
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# res_operr(): return default result during operand error #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default operand error result #
-# #
-# ALGORITHM *********************************************************** #
-# An nonsignalling NAN is returned as the default result when #
-# an operand error occurs for the following cases: #
-# #
-# Multiply: (Infinity x Zero) #
-# Divide : (Zero / Zero) || (Infinity / Infinity) #
-# #
-#########################################################################
-
- global res_operr
-res_operr:
- or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6)
- fmovm.x nan_return(%pc), &0x80
- rts
-
-nan_return:
- long 0x7fff0000, 0xffffffff, 0xffffffff
-
-#########################################################################
-# fdbcc(): routine to emulate the fdbcc instruction #
-# #
-# XDEF **************************************************************** #
-# _fdbcc() #
-# #
-# XREF **************************************************************** #
-# fetch_dreg() - fetch Dn value #
-# store_dreg_l() - store updated Dn value #
-# #
-# INPUT *************************************************************** #
-# d0 = displacement #
-# #
-# OUTPUT ************************************************************** #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# This routine checks which conditional predicate is specified by #
-# the stacked fdbcc instruction opcode and then branches to a routine #
-# for that predicate. The corresponding fbcc instruction is then used #
-# to see whether the condition (specified by the stacked FPSR) is true #
-# or false. #
-# If a BSUN exception should be indicated, the BSUN and ABSUN #
-# bits are set in the stacked FPSR. If the BSUN exception is enabled, #
-# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an #
-# enabled BSUN should not be flagged and the predicate is true, then #
-# Dn is fetched and decremented by one. If Dn is not equal to -1, add #
-# the displacement value to the stacked PC so that when an "rte" is #
-# finally executed, the branch occurs. #
-# #
-#########################################################################
- global _fdbcc
-_fdbcc:
- mov.l %d0,L_SCR1(%a6) # save displacement
-
- mov.w EXC_CMDREG(%a6),%d0 # fetch predicate
-
- clr.l %d1 # clear scratch reg
- mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes
- ror.l &0x8,%d1 # rotate to top byte
- fmov.l %d1,%fpsr # insert into FPSR
-
- mov.w (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table
- jmp (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine
-
-tbl_fdbcc:
- short fdbcc_f - tbl_fdbcc # 00
- short fdbcc_eq - tbl_fdbcc # 01
- short fdbcc_ogt - tbl_fdbcc # 02
- short fdbcc_oge - tbl_fdbcc # 03
- short fdbcc_olt - tbl_fdbcc # 04
- short fdbcc_ole - tbl_fdbcc # 05
- short fdbcc_ogl - tbl_fdbcc # 06
- short fdbcc_or - tbl_fdbcc # 07
- short fdbcc_un - tbl_fdbcc # 08
- short fdbcc_ueq - tbl_fdbcc # 09
- short fdbcc_ugt - tbl_fdbcc # 10
- short fdbcc_uge - tbl_fdbcc # 11
- short fdbcc_ult - tbl_fdbcc # 12
- short fdbcc_ule - tbl_fdbcc # 13
- short fdbcc_neq - tbl_fdbcc # 14
- short fdbcc_t - tbl_fdbcc # 15
- short fdbcc_sf - tbl_fdbcc # 16
- short fdbcc_seq - tbl_fdbcc # 17
- short fdbcc_gt - tbl_fdbcc # 18
- short fdbcc_ge - tbl_fdbcc # 19
- short fdbcc_lt - tbl_fdbcc # 20
- short fdbcc_le - tbl_fdbcc # 21
- short fdbcc_gl - tbl_fdbcc # 22
- short fdbcc_gle - tbl_fdbcc # 23
- short fdbcc_ngle - tbl_fdbcc # 24
- short fdbcc_ngl - tbl_fdbcc # 25
- short fdbcc_nle - tbl_fdbcc # 26
- short fdbcc_nlt - tbl_fdbcc # 27
- short fdbcc_nge - tbl_fdbcc # 28
- short fdbcc_ngt - tbl_fdbcc # 29
- short fdbcc_sneq - tbl_fdbcc # 30
- short fdbcc_st - tbl_fdbcc # 31
-
-#########################################################################
-# #
-# IEEE Nonaware tests #
-# #
-# For the IEEE nonaware tests, only the false branch changes the #
-# counter. However, the true branch may set bsun so we check to see #
-# if the NAN bit is set, in which case BSUN and AIOP will be set. #
-# #
-# The cases EQ and NE are shared by the Aware and Nonaware groups #
-# and are incapable of setting the BSUN exception bit. #
-# #
-# Typically, only one of the two possible branch directions could #
-# have the NAN bit set. #
-# (This is assuming the mutual exclusiveness of FPSR cc bit groupings #
-# is preserved.) #
-# #
-#########################################################################
-
-#
-# equal:
-#
-# Z
-#
-fdbcc_eq:
- fbeq.w fdbcc_eq_yes # equal?
-fdbcc_eq_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_eq_yes:
- rts
-
-#
-# not equal:
-# _
-# Z
-#
-fdbcc_neq:
- fbneq.w fdbcc_neq_yes # not equal?
-fdbcc_neq_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_neq_yes:
- rts
-
-#
-# greater than:
-# _______
-# NANvZvN
-#
-fdbcc_gt:
- fbgt.w fdbcc_gt_yes # greater than?
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fdbcc_false # no;go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # no; go handle counter
-fdbcc_gt_yes:
- rts # do nothing
-
-#
-# not greater than:
-#
-# NANvZvN
-#
-fdbcc_ngt:
- fbngt.w fdbcc_ngt_yes # not greater than?
-fdbcc_ngt_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ngt_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b fdbcc_ngt_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_ngt_done:
- rts # no; do nothing
-
-#
-# greater than or equal:
-# _____
-# Zv(NANvN)
-#
-fdbcc_ge:
- fbge.w fdbcc_ge_yes # greater than or equal?
-fdbcc_ge_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fdbcc_false # no;go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ge_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b fdbcc_ge_yes_done # no;go do nothing
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_ge_yes_done:
- rts # do nothing
-
-#
-# not (greater than or equal):
-# _
-# NANv(N^Z)
-#
-fdbcc_nge:
- fbnge.w fdbcc_nge_yes # not (greater than or equal)?
-fdbcc_nge_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_nge_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b fdbcc_nge_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_nge_done:
- rts # no; do nothing
-
-#
-# less than:
-# _____
-# N^(NANvZ)
-#
-fdbcc_lt:
- fblt.w fdbcc_lt_yes # less than?
-fdbcc_lt_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fdbcc_false # no; go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # no; go handle counter
-fdbcc_lt_yes:
- rts # do nothing
-
-#
-# not less than:
-# _
-# NANv(ZvN)
-#
-fdbcc_nlt:
- fbnlt.w fdbcc_nlt_yes # not less than?
-fdbcc_nlt_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_nlt_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b fdbcc_nlt_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_nlt_done:
- rts # no; do nothing
-
-#
-# less than or equal:
-# ___
-# Zv(N^NAN)
-#
-fdbcc_le:
- fble.w fdbcc_le_yes # less than or equal?
-fdbcc_le_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fdbcc_false # no; go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # no; go handle counter
-fdbcc_le_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b fdbcc_le_yes_done # no; go do nothing
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_le_yes_done:
- rts # do nothing
-
-#
-# not (less than or equal):
-# ___
-# NANv(NvZ)
-#
-fdbcc_nle:
- fbnle.w fdbcc_nle_yes # not (less than or equal)?
-fdbcc_nle_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_nle_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fdbcc_nle_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_nle_done:
- rts # no; do nothing
-
-#
-# greater or less than:
-# _____
-# NANvZ
-#
-fdbcc_gl:
- fbgl.w fdbcc_gl_yes # greater or less than?
-fdbcc_gl_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fdbcc_false # no; handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # no; go handle counter
-fdbcc_gl_yes:
- rts # do nothing
-
-#
-# not (greater or less than):
-#
-# NANvZ
-#
-fdbcc_ngl:
- fbngl.w fdbcc_ngl_yes # not (greater or less than)?
-fdbcc_ngl_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ngl_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b fdbcc_ngl_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_ngl_done:
- rts # no; do nothing
-
-#
-# greater, less, or equal:
-# ___
-# NAN
-#
-fdbcc_gle:
- fbgle.w fdbcc_gle_yes # greater, less, or equal?
-fdbcc_gle_no:
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # no; go handle counter
-fdbcc_gle_yes:
- rts # do nothing
-
-#
-# not (greater, less, or equal):
-#
-# NAN
-#
-fdbcc_ngle:
- fbngle.w fdbcc_ngle_yes # not (greater, less, or equal)?
-fdbcc_ngle_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ngle_yes:
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- rts # no; do nothing
-
-#########################################################################
-# #
-# Miscellaneous tests #
-# #
-# For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. #
-# #
-#########################################################################
-
-#
-# false:
-#
-# False
-#
-fdbcc_f: # no bsun possible
- bra.w fdbcc_false # go handle counter
-
-#
-# true:
-#
-# True
-#
-fdbcc_t: # no bsun possible
- rts # do nothing
-
-#
-# signalling false:
-#
-# False
-#
-fdbcc_sf:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set?
- beq.w fdbcc_false # no;go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # go handle counter
-
-#
-# signalling true:
-#
-# True
-#
-fdbcc_st:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set?
- beq.b fdbcc_st_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_st_done:
- rts
-
-#
-# signalling equal:
-#
-# Z
-#
-fdbcc_seq:
- fbseq.w fdbcc_seq_yes # signalling equal?
-fdbcc_seq_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set?
- beq.w fdbcc_false # no;go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # go handle counter
-fdbcc_seq_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set?
- beq.b fdbcc_seq_yes_done # no;go do nothing
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_seq_yes_done:
- rts # yes; do nothing
-
-#
-# signalling not equal:
-# _
-# Z
-#
-fdbcc_sneq:
- fbsneq.w fdbcc_sneq_yes # signalling not equal?
-fdbcc_sneq_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set?
- beq.w fdbcc_false # no;go handle counter
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
- bra.w fdbcc_false # go handle counter
-fdbcc_sneq_yes:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fdbcc_sneq_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
- bne.w fdbcc_bsun # yes; we have an exception
-fdbcc_sneq_done:
- rts
-
-#########################################################################
-# #
-# IEEE Aware tests #
-# #
-# For the IEEE aware tests, action is only taken if the result is false.#
-# Therefore, the opposite branch type is used to jump to the decrement #
-# routine. #
-# The BSUN exception will not be set for any of these tests. #
-# #
-#########################################################################
-
-#
-# ordered greater than:
-# _______
-# NANvZvN
-#
-fdbcc_ogt:
- fbogt.w fdbcc_ogt_yes # ordered greater than?
-fdbcc_ogt_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ogt_yes:
- rts # yes; do nothing
-
-#
-# unordered or less or equal:
-# _______
-# NANvZvN
-#
-fdbcc_ule:
- fbule.w fdbcc_ule_yes # unordered or less or equal?
-fdbcc_ule_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ule_yes:
- rts # yes; do nothing
-
-#
-# ordered greater than or equal:
-# _____
-# Zv(NANvN)
-#
-fdbcc_oge:
- fboge.w fdbcc_oge_yes # ordered greater than or equal?
-fdbcc_oge_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_oge_yes:
- rts # yes; do nothing
-
-#
-# unordered or less than:
-# _
-# NANv(N^Z)
-#
-fdbcc_ult:
- fbult.w fdbcc_ult_yes # unordered or less than?
-fdbcc_ult_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ult_yes:
- rts # yes; do nothing
-
-#
-# ordered less than:
-# _____
-# N^(NANvZ)
-#
-fdbcc_olt:
- fbolt.w fdbcc_olt_yes # ordered less than?
-fdbcc_olt_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_olt_yes:
- rts # yes; do nothing
-
-#
-# unordered or greater or equal:
-#
-# NANvZvN
-#
-fdbcc_uge:
- fbuge.w fdbcc_uge_yes # unordered or greater than?
-fdbcc_uge_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_uge_yes:
- rts # yes; do nothing
-
-#
-# ordered less than or equal:
-# ___
-# Zv(N^NAN)
-#
-fdbcc_ole:
- fbole.w fdbcc_ole_yes # ordered greater or less than?
-fdbcc_ole_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ole_yes:
- rts # yes; do nothing
-
-#
-# unordered or greater than:
-# ___
-# NANv(NvZ)
-#
-fdbcc_ugt:
- fbugt.w fdbcc_ugt_yes # unordered or greater than?
-fdbcc_ugt_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ugt_yes:
- rts # yes; do nothing
-
-#
-# ordered greater or less than:
-# _____
-# NANvZ
-#
-fdbcc_ogl:
- fbogl.w fdbcc_ogl_yes # ordered greater or less than?
-fdbcc_ogl_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ogl_yes:
- rts # yes; do nothing
-
-#
-# unordered or equal:
-#
-# NANvZ
-#
-fdbcc_ueq:
- fbueq.w fdbcc_ueq_yes # unordered or equal?
-fdbcc_ueq_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_ueq_yes:
- rts # yes; do nothing
-
-#
-# ordered:
-# ___
-# NAN
-#
-fdbcc_or:
- fbor.w fdbcc_or_yes # ordered?
-fdbcc_or_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_or_yes:
- rts # yes; do nothing
-
-#
-# unordered:
-#
-# NAN
-#
-fdbcc_un:
- fbun.w fdbcc_un_yes # unordered?
-fdbcc_un_no:
- bra.w fdbcc_false # no; go handle counter
-fdbcc_un_yes:
- rts # yes; do nothing
-
-#######################################################################
-
-#
-# the bsun exception bit was not set.
-#
-# (1) subtract 1 from the count register
-# (2) if (cr == -1) then
-# pc = pc of next instruction
-# else
-# pc += sign_ext(16-bit displacement)
-#
-fdbcc_false:
- mov.b 1+EXC_OPWORD(%a6), %d1 # fetch lo opword
- andi.w &0x7, %d1 # extract count register
-
- bsr.l fetch_dreg # fetch count value
-# make sure that d0 isn't corrupted between calls...
-
- subq.w &0x1, %d0 # Dn - 1 -> Dn
-
- bsr.l store_dreg_l # store new count value
-
- cmpi.w %d0, &-0x1 # is (Dn == -1)?
- bne.b fdbcc_false_cont # no;
- rts
-
-fdbcc_false_cont:
- mov.l L_SCR1(%a6),%d0 # fetch displacement
- add.l USER_FPIAR(%a6),%d0 # add instruction PC
- addq.l &0x4,%d0 # add instruction length
- mov.l %d0,EXC_PC(%a6) # set new PC
- rts
-
-# the emulation routine set bsun and BSUN was enabled. have to
-# fix stack and jump to the bsun handler.
-# let the caller of this routine shift the stack frame up to
-# eliminate the effective address field.
-fdbcc_bsun:
- mov.b &fbsun_flg,SPCOND_FLG(%a6)
- rts
-
-#########################################################################
-# ftrapcc(): routine to emulate the ftrapcc instruction #
-# #
-# XDEF **************************************************************** #
-# _ftrapcc() #
-# #
-# XREF **************************************************************** #
-# none #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# This routine checks which conditional predicate is specified by #
-# the stacked ftrapcc instruction opcode and then branches to a routine #
-# for that predicate. The corresponding fbcc instruction is then used #
-# to see whether the condition (specified by the stacked FPSR) is true #
-# or false. #
-# If a BSUN exception should be indicated, the BSUN and ABSUN #
-# bits are set in the stacked FPSR. If the BSUN exception is enabled, #
-# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an #
-# enabled BSUN should not be flagged and the predicate is true, then #
-# the ftrapcc_flg is set in the SPCOND_FLG location. These special #
-# flags indicate to the calling routine to emulate the exceptional #
-# condition. #
-# #
-#########################################################################
-
- global _ftrapcc
-_ftrapcc:
- mov.w EXC_CMDREG(%a6),%d0 # fetch predicate
-
- clr.l %d1 # clear scratch reg
- mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes
- ror.l &0x8,%d1 # rotate to top byte
- fmov.l %d1,%fpsr # insert into FPSR
-
- mov.w (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table
- jmp (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine
-
-tbl_ftrapcc:
- short ftrapcc_f - tbl_ftrapcc # 00
- short ftrapcc_eq - tbl_ftrapcc # 01
- short ftrapcc_ogt - tbl_ftrapcc # 02
- short ftrapcc_oge - tbl_ftrapcc # 03
- short ftrapcc_olt - tbl_ftrapcc # 04
- short ftrapcc_ole - tbl_ftrapcc # 05
- short ftrapcc_ogl - tbl_ftrapcc # 06
- short ftrapcc_or - tbl_ftrapcc # 07
- short ftrapcc_un - tbl_ftrapcc # 08
- short ftrapcc_ueq - tbl_ftrapcc # 09
- short ftrapcc_ugt - tbl_ftrapcc # 10
- short ftrapcc_uge - tbl_ftrapcc # 11
- short ftrapcc_ult - tbl_ftrapcc # 12
- short ftrapcc_ule - tbl_ftrapcc # 13
- short ftrapcc_neq - tbl_ftrapcc # 14
- short ftrapcc_t - tbl_ftrapcc # 15
- short ftrapcc_sf - tbl_ftrapcc # 16
- short ftrapcc_seq - tbl_ftrapcc # 17
- short ftrapcc_gt - tbl_ftrapcc # 18
- short ftrapcc_ge - tbl_ftrapcc # 19
- short ftrapcc_lt - tbl_ftrapcc # 20
- short ftrapcc_le - tbl_ftrapcc # 21
- short ftrapcc_gl - tbl_ftrapcc # 22
- short ftrapcc_gle - tbl_ftrapcc # 23
- short ftrapcc_ngle - tbl_ftrapcc # 24
- short ftrapcc_ngl - tbl_ftrapcc # 25
- short ftrapcc_nle - tbl_ftrapcc # 26
- short ftrapcc_nlt - tbl_ftrapcc # 27
- short ftrapcc_nge - tbl_ftrapcc # 28
- short ftrapcc_ngt - tbl_ftrapcc # 29
- short ftrapcc_sneq - tbl_ftrapcc # 30
- short ftrapcc_st - tbl_ftrapcc # 31
-
-#########################################################################
-# #
-# IEEE Nonaware tests #
-# #
-# For the IEEE nonaware tests, we set the result based on the #
-# floating point condition codes. In addition, we check to see #
-# if the NAN bit is set, in which case BSUN and AIOP will be set. #
-# #
-# The cases EQ and NE are shared by the Aware and Nonaware groups #
-# and are incapable of setting the BSUN exception bit. #
-# #
-# Typically, only one of the two possible branch directions could #
-# have the NAN bit set. #
-# #
-#########################################################################
-
-#
-# equal:
-#
-# Z
-#
-ftrapcc_eq:
- fbeq.w ftrapcc_trap # equal?
-ftrapcc_eq_no:
- rts # do nothing
-
-#
-# not equal:
-# _
-# Z
-#
-ftrapcc_neq:
- fbneq.w ftrapcc_trap # not equal?
-ftrapcc_neq_no:
- rts # do nothing
-
-#
-# greater than:
-# _______
-# NANvZvN
-#
-ftrapcc_gt:
- fbgt.w ftrapcc_trap # greater than?
-ftrapcc_gt_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b ftrapcc_gt_done # no
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_gt_done:
- rts # no; do nothing
-
-#
-# not greater than:
-#
-# NANvZvN
-#
-ftrapcc_ngt:
- fbngt.w ftrapcc_ngt_yes # not greater than?
-ftrapcc_ngt_no:
- rts # do nothing
-ftrapcc_ngt_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# greater than or equal:
-# _____
-# Zv(NANvN)
-#
-ftrapcc_ge:
- fbge.w ftrapcc_ge_yes # greater than or equal?
-ftrapcc_ge_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b ftrapcc_ge_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_ge_done:
- rts # no; do nothing
-ftrapcc_ge_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# not (greater than or equal):
-# _
-# NANv(N^Z)
-#
-ftrapcc_nge:
- fbnge.w ftrapcc_nge_yes # not (greater than or equal)?
-ftrapcc_nge_no:
- rts # do nothing
-ftrapcc_nge_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# less than:
-# _____
-# N^(NANvZ)
-#
-ftrapcc_lt:
- fblt.w ftrapcc_trap # less than?
-ftrapcc_lt_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b ftrapcc_lt_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_lt_done:
- rts # no; do nothing
-
-#
-# not less than:
-# _
-# NANv(ZvN)
-#
-ftrapcc_nlt:
- fbnlt.w ftrapcc_nlt_yes # not less than?
-ftrapcc_nlt_no:
- rts # do nothing
-ftrapcc_nlt_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# less than or equal:
-# ___
-# Zv(N^NAN)
-#
-ftrapcc_le:
- fble.w ftrapcc_le_yes # less than or equal?
-ftrapcc_le_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b ftrapcc_le_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_le_done:
- rts # no; do nothing
-ftrapcc_le_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# not (less than or equal):
-# ___
-# NANv(NvZ)
-#
-ftrapcc_nle:
- fbnle.w ftrapcc_nle_yes # not (less than or equal)?
-ftrapcc_nle_no:
- rts # do nothing
-ftrapcc_nle_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# greater or less than:
-# _____
-# NANvZ
-#
-ftrapcc_gl:
- fbgl.w ftrapcc_trap # greater or less than?
-ftrapcc_gl_no:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.b ftrapcc_gl_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_gl_done:
- rts # no; do nothing
-
-#
-# not (greater or less than):
-#
-# NANvZ
-#
-ftrapcc_ngl:
- fbngl.w ftrapcc_ngl_yes # not (greater or less than)?
-ftrapcc_ngl_no:
- rts # do nothing
-ftrapcc_ngl_yes:
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# greater, less, or equal:
-# ___
-# NAN
-#
-ftrapcc_gle:
- fbgle.w ftrapcc_trap # greater, less, or equal?
-ftrapcc_gle_no:
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- rts # no; do nothing
-
-#
-# not (greater, less, or equal):
-#
-# NAN
-#
-ftrapcc_ngle:
- fbngle.w ftrapcc_ngle_yes # not (greater, less, or equal)?
-ftrapcc_ngle_no:
- rts # do nothing
-ftrapcc_ngle_yes:
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#########################################################################
-# #
-# Miscellaneous tests #
-# #
-# For the IEEE aware tests, we only have to set the result based on the #
-# floating point condition codes. The BSUN exception will not be #
-# set for any of these tests. #
-# #
-#########################################################################
-
-#
-# false:
-#
-# False
-#
-ftrapcc_f:
- rts # do nothing
-
-#
-# true:
-#
-# True
-#
-ftrapcc_t:
- bra.w ftrapcc_trap # go take trap
-
-#
-# signalling false:
-#
-# False
-#
-ftrapcc_sf:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.b ftrapcc_sf_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_sf_done:
- rts # no; do nothing
-
-#
-# signalling true:
-#
-# True
-#
-ftrapcc_st:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# signalling equal:
-#
-# Z
-#
-ftrapcc_seq:
- fbseq.w ftrapcc_seq_yes # signalling equal?
-ftrapcc_seq_no:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w ftrapcc_seq_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_seq_done:
- rts # no; do nothing
-ftrapcc_seq_yes:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#
-# signalling not equal:
-# _
-# Z
-#
-ftrapcc_sneq:
- fbsneq.w ftrapcc_sneq_yes # signalling equal?
-ftrapcc_sneq_no:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w ftrapcc_sneq_no_done # no; go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
-ftrapcc_sneq_no_done:
- rts # do nothing
-ftrapcc_sneq_yes:
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w ftrapcc_trap # no; go take trap
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
- bne.w ftrapcc_bsun # yes
- bra.w ftrapcc_trap # no; go take trap
-
-#########################################################################
-# #
-# IEEE Aware tests #
-# #
-# For the IEEE aware tests, we only have to set the result based on the #
-# floating point condition codes. The BSUN exception will not be #
-# set for any of these tests. #
-# #
-#########################################################################
-
-#
-# ordered greater than:
-# _______
-# NANvZvN
-#
-ftrapcc_ogt:
- fbogt.w ftrapcc_trap # ordered greater than?
-ftrapcc_ogt_no:
- rts # do nothing
-
-#
-# unordered or less or equal:
-# _______
-# NANvZvN
-#
-ftrapcc_ule:
- fbule.w ftrapcc_trap # unordered or less or equal?
-ftrapcc_ule_no:
- rts # do nothing
-
-#
-# ordered greater than or equal:
-# _____
-# Zv(NANvN)
-#
-ftrapcc_oge:
- fboge.w ftrapcc_trap # ordered greater than or equal?
-ftrapcc_oge_no:
- rts # do nothing
-
-#
-# unordered or less than:
-# _
-# NANv(N^Z)
-#
-ftrapcc_ult:
- fbult.w ftrapcc_trap # unordered or less than?
-ftrapcc_ult_no:
- rts # do nothing
-
-#
-# ordered less than:
-# _____
-# N^(NANvZ)
-#
-ftrapcc_olt:
- fbolt.w ftrapcc_trap # ordered less than?
-ftrapcc_olt_no:
- rts # do nothing
-
-#
-# unordered or greater or equal:
-#
-# NANvZvN
-#
-ftrapcc_uge:
- fbuge.w ftrapcc_trap # unordered or greater than?
-ftrapcc_uge_no:
- rts # do nothing
-
-#
-# ordered less than or equal:
-# ___
-# Zv(N^NAN)
-#
-ftrapcc_ole:
- fbole.w ftrapcc_trap # ordered greater or less than?
-ftrapcc_ole_no:
- rts # do nothing
-
-#
-# unordered or greater than:
-# ___
-# NANv(NvZ)
-#
-ftrapcc_ugt:
- fbugt.w ftrapcc_trap # unordered or greater than?
-ftrapcc_ugt_no:
- rts # do nothing
-
-#
-# ordered greater or less than:
-# _____
-# NANvZ
-#
-ftrapcc_ogl:
- fbogl.w ftrapcc_trap # ordered greater or less than?
-ftrapcc_ogl_no:
- rts # do nothing
-
-#
-# unordered or equal:
-#
-# NANvZ
-#
-ftrapcc_ueq:
- fbueq.w ftrapcc_trap # unordered or equal?
-ftrapcc_ueq_no:
- rts # do nothing
-
-#
-# ordered:
-# ___
-# NAN
-#
-ftrapcc_or:
- fbor.w ftrapcc_trap # ordered?
-ftrapcc_or_no:
- rts # do nothing
-
-#
-# unordered:
-#
-# NAN
-#
-ftrapcc_un:
- fbun.w ftrapcc_trap # unordered?
-ftrapcc_un_no:
- rts # do nothing
-
-#######################################################################
-
-# the bsun exception bit was not set.
-# we will need to jump to the ftrapcc vector. the stack frame
-# is the same size as that of the fp unimp instruction. the
-# only difference is that the <ea> field should hold the PC
-# of the ftrapcc instruction and the vector offset field
-# should denote the ftrapcc trap.
-ftrapcc_trap:
- mov.b &ftrapcc_flg,SPCOND_FLG(%a6)
- rts
-
-# the emulation routine set bsun and BSUN was enabled. have to
-# fix stack and jump to the bsun handler.
-# let the caller of this routine shift the stack frame up to
-# eliminate the effective address field.
-ftrapcc_bsun:
- mov.b &fbsun_flg,SPCOND_FLG(%a6)
- rts
-
-#########################################################################
-# fscc(): routine to emulate the fscc instruction #
-# #
-# XDEF **************************************************************** #
-# _fscc() #
-# #
-# XREF **************************************************************** #
-# store_dreg_b() - store result to data register file #
-# dec_areg() - decrement an areg for -(an) mode #
-# inc_areg() - increment an areg for (an)+ mode #
-# _dmem_write_byte() - store result to memory #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# This routine checks which conditional predicate is specified by #
-# the stacked fscc instruction opcode and then branches to a routine #
-# for that predicate. The corresponding fbcc instruction is then used #
-# to see whether the condition (specified by the stacked FPSR) is true #
-# or false. #
-# If a BSUN exception should be indicated, the BSUN and ABSUN #
-# bits are set in the stacked FPSR. If the BSUN exception is enabled, #
-# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an #
-# enabled BSUN should not be flagged and the predicate is true, then #
-# the result is stored to the data register file or memory #
-# #
-#########################################################################
-
- global _fscc
-_fscc:
- mov.w EXC_CMDREG(%a6),%d0 # fetch predicate
-
- clr.l %d1 # clear scratch reg
- mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes
- ror.l &0x8,%d1 # rotate to top byte
- fmov.l %d1,%fpsr # insert into FPSR
-
- mov.w (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table
- jmp (tbl_fscc.b,%pc,%d1.w) # jump to fscc routine
-
-tbl_fscc:
- short fscc_f - tbl_fscc # 00
- short fscc_eq - tbl_fscc # 01
- short fscc_ogt - tbl_fscc # 02
- short fscc_oge - tbl_fscc # 03
- short fscc_olt - tbl_fscc # 04
- short fscc_ole - tbl_fscc # 05
- short fscc_ogl - tbl_fscc # 06
- short fscc_or - tbl_fscc # 07
- short fscc_un - tbl_fscc # 08
- short fscc_ueq - tbl_fscc # 09
- short fscc_ugt - tbl_fscc # 10
- short fscc_uge - tbl_fscc # 11
- short fscc_ult - tbl_fscc # 12
- short fscc_ule - tbl_fscc # 13
- short fscc_neq - tbl_fscc # 14
- short fscc_t - tbl_fscc # 15
- short fscc_sf - tbl_fscc # 16
- short fscc_seq - tbl_fscc # 17
- short fscc_gt - tbl_fscc # 18
- short fscc_ge - tbl_fscc # 19
- short fscc_lt - tbl_fscc # 20
- short fscc_le - tbl_fscc # 21
- short fscc_gl - tbl_fscc # 22
- short fscc_gle - tbl_fscc # 23
- short fscc_ngle - tbl_fscc # 24
- short fscc_ngl - tbl_fscc # 25
- short fscc_nle - tbl_fscc # 26
- short fscc_nlt - tbl_fscc # 27
- short fscc_nge - tbl_fscc # 28
- short fscc_ngt - tbl_fscc # 29
- short fscc_sneq - tbl_fscc # 30
- short fscc_st - tbl_fscc # 31
-
-#########################################################################
-# #
-# IEEE Nonaware tests #
-# #
-# For the IEEE nonaware tests, we set the result based on the #
-# floating point condition codes. In addition, we check to see #
-# if the NAN bit is set, in which case BSUN and AIOP will be set. #
-# #
-# The cases EQ and NE are shared by the Aware and Nonaware groups #
-# and are incapable of setting the BSUN exception bit. #
-# #
-# Typically, only one of the two possible branch directions could #
-# have the NAN bit set. #
-# #
-#########################################################################
-
-#
-# equal:
-#
-# Z
-#
-fscc_eq:
- fbeq.w fscc_eq_yes # equal?
-fscc_eq_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_eq_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# not equal:
-# _
-# Z
-#
-fscc_neq:
- fbneq.w fscc_neq_yes # not equal?
-fscc_neq_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_neq_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# greater than:
-# _______
-# NANvZvN
-#
-fscc_gt:
- fbgt.w fscc_gt_yes # greater than?
-fscc_gt_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_gt_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# not greater than:
-#
-# NANvZvN
-#
-fscc_ngt:
- fbngt.w fscc_ngt_yes # not greater than?
-fscc_ngt_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ngt_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# greater than or equal:
-# _____
-# Zv(NANvN)
-#
-fscc_ge:
- fbge.w fscc_ge_yes # greater than or equal?
-fscc_ge_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_ge_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# not (greater than or equal):
-# _
-# NANv(N^Z)
-#
-fscc_nge:
- fbnge.w fscc_nge_yes # not (greater than or equal)?
-fscc_nge_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_nge_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# less than:
-# _____
-# N^(NANvZ)
-#
-fscc_lt:
- fblt.w fscc_lt_yes # less than?
-fscc_lt_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_lt_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# not less than:
-# _
-# NANv(ZvN)
-#
-fscc_nlt:
- fbnlt.w fscc_nlt_yes # not less than?
-fscc_nlt_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_nlt_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# less than or equal:
-# ___
-# Zv(N^NAN)
-#
-fscc_le:
- fble.w fscc_le_yes # less than or equal?
-fscc_le_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_le_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# not (less than or equal):
-# ___
-# NANv(NvZ)
-#
-fscc_nle:
- fbnle.w fscc_nle_yes # not (less than or equal)?
-fscc_nle_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_nle_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# greater or less than:
-# _____
-# NANvZ
-#
-fscc_gl:
- fbgl.w fscc_gl_yes # greater or less than?
-fscc_gl_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_gl_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# not (greater or less than):
-#
-# NANvZ
-#
-fscc_ngl:
- fbngl.w fscc_ngl_yes # not (greater or less than)?
-fscc_ngl_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ngl_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# greater, less, or equal:
-# ___
-# NAN
-#
-fscc_gle:
- fbgle.w fscc_gle_yes # greater, less, or equal?
-fscc_gle_no:
- clr.b %d0 # set false
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_gle_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# not (greater, less, or equal):
-#
-# NAN
-#
-fscc_ngle:
- fbngle.w fscc_ngle_yes # not (greater, less, or equal)?
-fscc_ngle_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ngle_yes:
- st %d0 # set true
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#########################################################################
-# #
-# Miscellaneous tests #
-# #
-# For the IEEE aware tests, we only have to set the result based on the #
-# floating point condition codes. The BSUN exception will not be #
-# set for any of these tests. #
-# #
-#########################################################################
-
-#
-# false:
-#
-# False
-#
-fscc_f:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-
-#
-# true:
-#
-# True
-#
-fscc_t:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# signalling false:
-#
-# False
-#
-fscc_sf:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# signalling true:
-#
-# True
-#
-fscc_st:
- st %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# signalling equal:
-#
-# Z
-#
-fscc_seq:
- fbseq.w fscc_seq_yes # signalling equal?
-fscc_seq_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_seq_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#
-# signalling not equal:
-# _
-# Z
-#
-fscc_sneq:
- fbsneq.w fscc_sneq_yes # signalling equal?
-fscc_sneq_no:
- clr.b %d0 # set false
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-fscc_sneq_yes:
- st %d0 # set true
- btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
- beq.w fscc_done # no;go finish
- ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
- bra.w fscc_chk_bsun # go finish
-
-#########################################################################
-# #
-# IEEE Aware tests #
-# #
-# For the IEEE aware tests, we only have to set the result based on the #
-# floating point condition codes. The BSUN exception will not be #
-# set for any of these tests. #
-# #
-#########################################################################
-
-#
-# ordered greater than:
-# _______
-# NANvZvN
-#
-fscc_ogt:
- fbogt.w fscc_ogt_yes # ordered greater than?
-fscc_ogt_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ogt_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# unordered or less or equal:
-# _______
-# NANvZvN
-#
-fscc_ule:
- fbule.w fscc_ule_yes # unordered or less or equal?
-fscc_ule_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ule_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# ordered greater than or equal:
-# _____
-# Zv(NANvN)
-#
-fscc_oge:
- fboge.w fscc_oge_yes # ordered greater than or equal?
-fscc_oge_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_oge_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# unordered or less than:
-# _
-# NANv(N^Z)
-#
-fscc_ult:
- fbult.w fscc_ult_yes # unordered or less than?
-fscc_ult_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ult_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# ordered less than:
-# _____
-# N^(NANvZ)
-#
-fscc_olt:
- fbolt.w fscc_olt_yes # ordered less than?
-fscc_olt_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_olt_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# unordered or greater or equal:
-#
-# NANvZvN
-#
-fscc_uge:
- fbuge.w fscc_uge_yes # unordered or greater than?
-fscc_uge_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_uge_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# ordered less than or equal:
-# ___
-# Zv(N^NAN)
-#
-fscc_ole:
- fbole.w fscc_ole_yes # ordered greater or less than?
-fscc_ole_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ole_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# unordered or greater than:
-# ___
-# NANv(NvZ)
-#
-fscc_ugt:
- fbugt.w fscc_ugt_yes # unordered or greater than?
-fscc_ugt_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ugt_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# ordered greater or less than:
-# _____
-# NANvZ
-#
-fscc_ogl:
- fbogl.w fscc_ogl_yes # ordered greater or less than?
-fscc_ogl_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ogl_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# unordered or equal:
-#
-# NANvZ
-#
-fscc_ueq:
- fbueq.w fscc_ueq_yes # unordered or equal?
-fscc_ueq_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_ueq_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# ordered:
-# ___
-# NAN
-#
-fscc_or:
- fbor.w fscc_or_yes # ordered?
-fscc_or_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_or_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#
-# unordered:
-#
-# NAN
-#
-fscc_un:
- fbun.w fscc_un_yes # unordered?
-fscc_un_no:
- clr.b %d0 # set false
- bra.w fscc_done # go finish
-fscc_un_yes:
- st %d0 # set true
- bra.w fscc_done # go finish
-
-#######################################################################
-
-#
-# the bsun exception bit was set. now, check to see is BSUN
-# is enabled. if so, don't store result and correct stack frame
-# for a bsun exception.
-#
-fscc_chk_bsun:
- btst &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set?
- bne.w fscc_bsun
-
-#
-# the bsun exception bit was not set.
-# the result has been selected.
-# now, check to see if the result is to be stored in the data register
-# file or in memory.
-#
-fscc_done:
- mov.l %d0,%a0 # save result for a moment
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # fetch lo opword
- mov.l %d1,%d0 # make a copy
- andi.b &0x38,%d1 # extract src mode
-
- bne.b fscc_mem_op # it's a memory operation
-
- mov.l %d0,%d1
- andi.w &0x7,%d1 # pass index in d1
- mov.l %a0,%d0 # pass result in d0
- bsr.l store_dreg_b # save result in regfile
- rts
-
-#
-# the stacked <ea> is correct with the exception of:
-# -> Dn : <ea> is garbage
-#
-# if the addressing mode is post-increment or pre-decrement,
-# then the address registers have not been updated.
-#
-fscc_mem_op:
- cmpi.b %d1,&0x18 # is <ea> (An)+ ?
- beq.b fscc_mem_inc # yes
- cmpi.b %d1,&0x20 # is <ea> -(An) ?
- beq.b fscc_mem_dec # yes
-
- mov.l %a0,%d0 # pass result in d0
- mov.l EXC_EA(%a6),%a0 # fetch <ea>
- bsr.l _dmem_write_byte # write result byte
-
- tst.l %d1 # did dstore fail?
- bne.w fscc_err # yes
-
- rts
-
-# addressing mode is post-increment. write the result byte. if the write
-# fails then don't update the address register. if write passes then
-# call inc_areg() to update the address register.
-fscc_mem_inc:
- mov.l %a0,%d0 # pass result in d0
- mov.l EXC_EA(%a6),%a0 # fetch <ea>
- bsr.l _dmem_write_byte # write result byte
-
- tst.l %d1 # did dstore fail?
- bne.w fscc_err # yes
-
- mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword
- andi.w &0x7,%d1 # pass index in d1
- movq.l &0x1,%d0 # pass amt to inc by
- bsr.l inc_areg # increment address register
-
- rts
-
-# addressing mode is pre-decrement. write the result byte. if the write
-# fails then don't update the address register. if the write passes then
-# call dec_areg() to update the address register.
-fscc_mem_dec:
- mov.l %a0,%d0 # pass result in d0
- mov.l EXC_EA(%a6),%a0 # fetch <ea>
- bsr.l _dmem_write_byte # write result byte
-
- tst.l %d1 # did dstore fail?
- bne.w fscc_err # yes
-
- mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword
- andi.w &0x7,%d1 # pass index in d1
- movq.l &0x1,%d0 # pass amt to dec by
- bsr.l dec_areg # decrement address register
-
- rts
-
-# the emulation routine set bsun and BSUN was enabled. have to
-# fix stack and jump to the bsun handler.
-# let the caller of this routine shift the stack frame up to
-# eliminate the effective address field.
-fscc_bsun:
- mov.b &fbsun_flg,SPCOND_FLG(%a6)
- rts
-
-# the byte write to memory has failed. pass the failing effective address
-# and a FSLW to funimp_dacc().
-fscc_err:
- mov.w &0x00a1,EXC_VOFF(%a6)
- bra.l facc_finish
-
-#########################################################################
-# XDEF **************************************************************** #
-# fmovm_dynamic(): emulate "fmovm" dynamic instruction #
-# #
-# XREF **************************************************************** #
-# fetch_dreg() - fetch data register #
-# {i,d,}mem_read() - fetch data from memory #
-# _mem_write() - write data to memory #
-# iea_iacc() - instruction memory access error occurred #
-# iea_dacc() - data memory access error occurred #
-# restore() - restore An index regs if access error occurred #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If instr is "fmovm Dn,-(A7)" from supervisor mode, #
-# d0 = size of dump #
-# d1 = Dn #
-# Else if instruction access error, #
-# d0 = FSLW #
-# Else if data access error, #
-# d0 = FSLW #
-# a0 = address of fault #
-# Else #
-# none. #
-# #
-# ALGORITHM *********************************************************** #
-# The effective address must be calculated since this is entered #
-# from an "Unimplemented Effective Address" exception handler. So, we #
-# have our own fcalc_ea() routine here. If an access error is flagged #
-# by a _{i,d,}mem_read() call, we must exit through the special #
-# handler. #
-# The data register is determined and its value loaded to get the #
-# string of FP registers affected. This value is used as an index into #
-# a lookup table such that we can determine the number of bytes #
-# involved. #
-# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used #
-# to read in all FP values. Again, _mem_read() may fail and require a #
-# special exit. #
-# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used #
-# to write all FP values. _mem_write() may also fail. #
-# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, #
-# then we return the size of the dump and the string to the caller #
-# so that the move can occur outside of this routine. This special #
-# case is required so that moves to the system stack are handled #
-# correctly. #
-# #
-# DYNAMIC: #
-# fmovm.x dn, <ea> #
-# fmovm.x <ea>, dn #
-# #
-# <WORD 1> <WORD2> #
-# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 #
-# #
-# & = (0): predecrement addressing mode #
-# (1): postincrement or control addressing mode #
-# @ = (0): move listed regs from memory to the FPU #
-# (1): move listed regs from the FPU to memory #
-# $$$ : index of data register holding reg select mask #
-# #
-# NOTES: #
-# If the data register holds a zero, then the #
-# instruction is a nop. #
-# #
-#########################################################################
-
- global fmovm_dynamic
-fmovm_dynamic:
-
-# extract the data register in which the bit string resides...
- mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword
- andi.w &0x70,%d1 # extract reg bits
- lsr.b &0x4,%d1 # shift into lo bits
-
-# fetch the bit string into d0...
- bsr.l fetch_dreg # fetch reg string
-
- andi.l &0x000000ff,%d0 # keep only lo byte
-
- mov.l %d0,-(%sp) # save strg
- mov.b (tbl_fmovm_size.w,%pc,%d0),%d0
- mov.l %d0,-(%sp) # save size
- bsr.l fmovm_calc_ea # calculate <ea>
- mov.l (%sp)+,%d0 # restore size
- mov.l (%sp)+,%d1 # restore strg
-
-# if the bit string is a zero, then the operation is a no-op
-# but, make sure that we've calculated ea and advanced the opword pointer
- beq.w fmovm_data_done
-
-# separate move ins from move outs...
- btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out?
- beq.w fmovm_data_in # it's a move out
-
-#############
-# MOVE OUT: #
-#############
-fmovm_data_out:
- btst &0x4,EXC_EXTWORD(%a6) # control or predecrement?
- bne.w fmovm_out_ctrl # control
-
-############################
-fmovm_out_predec:
-# for predecrement mode, the bit string is the opposite of both control
-# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0)
-# here, we convert it to be just like the others...
- mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1
-
- btst &0x5,EXC_SR(%a6) # user or supervisor mode?
- beq.b fmovm_out_ctrl # user
-
-fmovm_out_predec_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
- bne.b fmovm_out_ctrl
-
-# the operation was unfortunately an: fmovm.x dn,-(sp)
-# called from supervisor mode.
-# we're also passing "size" and "strg" back to the calling routine
- rts
-
-############################
-fmovm_out_ctrl:
- mov.l %a0,%a1 # move <ea> to a1
-
- sub.l %d0,%sp # subtract size of dump
- lea (%sp),%a0
-
- tst.b %d1 # should FP0 be moved?
- bpl.b fmovm_out_ctrl_fp1 # no
-
- mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes
- mov.l 0x4+EXC_FP0(%a6),(%a0)+
- mov.l 0x8+EXC_FP0(%a6),(%a0)+
-
-fmovm_out_ctrl_fp1:
- lsl.b &0x1,%d1 # should FP1 be moved?
- bpl.b fmovm_out_ctrl_fp2 # no
-
- mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes
- mov.l 0x4+EXC_FP1(%a6),(%a0)+
- mov.l 0x8+EXC_FP1(%a6),(%a0)+
-
-fmovm_out_ctrl_fp2:
- lsl.b &0x1,%d1 # should FP2 be moved?
- bpl.b fmovm_out_ctrl_fp3 # no
-
- fmovm.x &0x20,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp3:
- lsl.b &0x1,%d1 # should FP3 be moved?
- bpl.b fmovm_out_ctrl_fp4 # no
-
- fmovm.x &0x10,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp4:
- lsl.b &0x1,%d1 # should FP4 be moved?
- bpl.b fmovm_out_ctrl_fp5 # no
-
- fmovm.x &0x08,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp5:
- lsl.b &0x1,%d1 # should FP5 be moved?
- bpl.b fmovm_out_ctrl_fp6 # no
-
- fmovm.x &0x04,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp6:
- lsl.b &0x1,%d1 # should FP6 be moved?
- bpl.b fmovm_out_ctrl_fp7 # no
-
- fmovm.x &0x02,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp7:
- lsl.b &0x1,%d1 # should FP7 be moved?
- bpl.b fmovm_out_ctrl_done # no
-
- fmovm.x &0x01,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_done:
- mov.l %a1,L_SCR1(%a6)
-
- lea (%sp),%a0 # pass: supervisor src
- mov.l %d0,-(%sp) # save size
- bsr.l _dmem_write # copy data to user mem
-
- mov.l (%sp)+,%d0
- add.l %d0,%sp # clear fpreg data from stack
-
- tst.l %d1 # did dstore err?
- bne.w fmovm_out_err # yes
-
- rts
-
-############
-# MOVE IN: #
-############
-fmovm_data_in:
- mov.l %a0,L_SCR1(%a6)
-
- sub.l %d0,%sp # make room for fpregs
- lea (%sp),%a1
-
- mov.l %d1,-(%sp) # save bit string for later
- mov.l %d0,-(%sp) # save # of bytes
-
- bsr.l _dmem_read # copy data from user mem
-
- mov.l (%sp)+,%d0 # retrieve # of bytes
-
- tst.l %d1 # did dfetch fail?
- bne.w fmovm_in_err # yes
-
- mov.l (%sp)+,%d1 # load bit string
-
- lea (%sp),%a0 # addr of stack
-
- tst.b %d1 # should FP0 be moved?
- bpl.b fmovm_data_in_fp1 # no
-
- mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes
- mov.l (%a0)+,0x4+EXC_FP0(%a6)
- mov.l (%a0)+,0x8+EXC_FP0(%a6)
-
-fmovm_data_in_fp1:
- lsl.b &0x1,%d1 # should FP1 be moved?
- bpl.b fmovm_data_in_fp2 # no
-
- mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes
- mov.l (%a0)+,0x4+EXC_FP1(%a6)
- mov.l (%a0)+,0x8+EXC_FP1(%a6)
-
-fmovm_data_in_fp2:
- lsl.b &0x1,%d1 # should FP2 be moved?
- bpl.b fmovm_data_in_fp3 # no
-
- fmovm.x (%a0)+,&0x20 # yes
-
-fmovm_data_in_fp3:
- lsl.b &0x1,%d1 # should FP3 be moved?
- bpl.b fmovm_data_in_fp4 # no
-
- fmovm.x (%a0)+,&0x10 # yes
-
-fmovm_data_in_fp4:
- lsl.b &0x1,%d1 # should FP4 be moved?
- bpl.b fmovm_data_in_fp5 # no
-
- fmovm.x (%a0)+,&0x08 # yes
-
-fmovm_data_in_fp5:
- lsl.b &0x1,%d1 # should FP5 be moved?
- bpl.b fmovm_data_in_fp6 # no
-
- fmovm.x (%a0)+,&0x04 # yes
-
-fmovm_data_in_fp6:
- lsl.b &0x1,%d1 # should FP6 be moved?
- bpl.b fmovm_data_in_fp7 # no
-
- fmovm.x (%a0)+,&0x02 # yes
-
-fmovm_data_in_fp7:
- lsl.b &0x1,%d1 # should FP7 be moved?
- bpl.b fmovm_data_in_done # no
-
- fmovm.x (%a0)+,&0x01 # yes
-
-fmovm_data_in_done:
- add.l %d0,%sp # remove fpregs from stack
- rts
-
-#####################################
-
-fmovm_data_done:
- rts
-
-##############################################################################
-
-#
-# table indexed by the operation's bit string that gives the number
-# of bytes that will be moved.
-#
-# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg)
-#
-tbl_fmovm_size:
- byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60
-
-#
-# table to convert a pre-decrement bit string into a post-increment
-# or control bit string.
-# ex: 0x00 ==> 0x00
-# 0x01 ==> 0x80
-# 0x02 ==> 0x40
-# .
-# .
-# 0xfd ==> 0xbf
-# 0xfe ==> 0x7f
-# 0xff ==> 0xff
-#
-tbl_fmovm_convert:
- byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0
- byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
- byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8
- byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8
- byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4
- byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4
- byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec
- byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc
- byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2
- byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2
- byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea
- byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa
- byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6
- byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6
- byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee
- byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe
- byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1
- byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1
- byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9
- byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9
- byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5
- byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5
- byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed
- byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd
- byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3
- byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3
- byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb
- byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb
- byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7
- byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7
- byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef
- byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
-
- global fmovm_calc_ea
-###############################################
-# _fmovm_calc_ea: calculate effective address #
-###############################################
-fmovm_calc_ea:
- mov.l %d0,%a0 # move # bytes to a0
-
-# currently, MODE and REG are taken from the EXC_OPWORD. this could be
-# easily changed if they were inputs passed in registers.
- mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.w %d0,%d1 # make a copy
-
- andi.w &0x3f,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
-
-# jump to the corresponding function for each {MODE,REG} pair.
- mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance
- jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
-
- swbeg &64
-tbl_fea_mode:
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
-
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
-
- short faddr_ind_a0 - tbl_fea_mode
- short faddr_ind_a1 - tbl_fea_mode
- short faddr_ind_a2 - tbl_fea_mode
- short faddr_ind_a3 - tbl_fea_mode
- short faddr_ind_a4 - tbl_fea_mode
- short faddr_ind_a5 - tbl_fea_mode
- short faddr_ind_a6 - tbl_fea_mode
- short faddr_ind_a7 - tbl_fea_mode
-
- short faddr_ind_p_a0 - tbl_fea_mode
- short faddr_ind_p_a1 - tbl_fea_mode
- short faddr_ind_p_a2 - tbl_fea_mode
- short faddr_ind_p_a3 - tbl_fea_mode
- short faddr_ind_p_a4 - tbl_fea_mode
- short faddr_ind_p_a5 - tbl_fea_mode
- short faddr_ind_p_a6 - tbl_fea_mode
- short faddr_ind_p_a7 - tbl_fea_mode
-
- short faddr_ind_m_a0 - tbl_fea_mode
- short faddr_ind_m_a1 - tbl_fea_mode
- short faddr_ind_m_a2 - tbl_fea_mode
- short faddr_ind_m_a3 - tbl_fea_mode
- short faddr_ind_m_a4 - tbl_fea_mode
- short faddr_ind_m_a5 - tbl_fea_mode
- short faddr_ind_m_a6 - tbl_fea_mode
- short faddr_ind_m_a7 - tbl_fea_mode
-
- short faddr_ind_disp_a0 - tbl_fea_mode
- short faddr_ind_disp_a1 - tbl_fea_mode
- short faddr_ind_disp_a2 - tbl_fea_mode
- short faddr_ind_disp_a3 - tbl_fea_mode
- short faddr_ind_disp_a4 - tbl_fea_mode
- short faddr_ind_disp_a5 - tbl_fea_mode
- short faddr_ind_disp_a6 - tbl_fea_mode
- short faddr_ind_disp_a7 - tbl_fea_mode
-
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
-
- short fabs_short - tbl_fea_mode
- short fabs_long - tbl_fea_mode
- short fpc_ind - tbl_fea_mode
- short fpc_ind_ext - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
-
-###################################
-# Address register indirect: (An) #
-###################################
-faddr_ind_a0:
- mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0
- rts
-
-faddr_ind_a1:
- mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1
- rts
-
-faddr_ind_a2:
- mov.l %a2,%a0 # Get current a2
- rts
-
-faddr_ind_a3:
- mov.l %a3,%a0 # Get current a3
- rts
-
-faddr_ind_a4:
- mov.l %a4,%a0 # Get current a4
- rts
-
-faddr_ind_a5:
- mov.l %a5,%a0 # Get current a5
- rts
-
-faddr_ind_a6:
- mov.l (%a6),%a0 # Get current a6
- rts
-
-faddr_ind_a7:
- mov.l EXC_A7(%a6),%a0 # Get current a7
- rts
-
-#####################################################
-# Address register indirect w/ postincrement: (An)+ #
-#####################################################
-faddr_ind_p_a0:
- mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a1:
- mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a2:
- mov.l %a2,%d0 # Get current a2
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a2 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a3:
- mov.l %a3,%d0 # Get current a3
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a3 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a4:
- mov.l %a4,%d0 # Get current a4
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a4 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a5:
- mov.l %a5,%d0 # Get current a5
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a5 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a6:
- mov.l (%a6),%d0 # Get current a6
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a7:
- mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l EXC_A7(%a6),%d0 # Get current a7
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_A7(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-####################################################
-# Address register indirect w/ predecrement: -(An) #
-####################################################
-faddr_ind_m_a0:
- mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a1:
- mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a2:
- mov.l %a2,%d0 # Get current a2
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a2 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a3:
- mov.l %a3,%d0 # Get current a3
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a3 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a4:
- mov.l %a4,%d0 # Get current a4
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a4 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a5:
- mov.l %a5,%d0 # Get current a5
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a5 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a6:
- mov.l (%a6),%d0 # Get current a6
- sub.l %a0,%d0 # Decrement
- mov.l %d0,(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a7:
- mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l EXC_A7(%a6),%d0 # Get current a7
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A7(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-########################################################
-# Address register indirect w/ displacement: (d16, An) #
-########################################################
-faddr_ind_disp_a0:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16
- rts
-
-faddr_ind_disp_a1:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16
- rts
-
-faddr_ind_disp_a2:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a2,%a0 # a2 + d16
- rts
-
-faddr_ind_disp_a3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a3,%a0 # a3 + d16
- rts
-
-faddr_ind_disp_a4:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a4,%a0 # a4 + d16
- rts
-
-faddr_ind_disp_a5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a5,%a0 # a5 + d16
- rts
-
-faddr_ind_disp_a6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l (%a6),%a0 # a6 + d16
- rts
-
-faddr_ind_disp_a7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_A7(%a6),%a0 # a7 + d16
- rts
-
-########################################################################
-# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) #
-# " " " w/ " (base displacement): (bd, An, Xn) #
-# Memory indirect postindexed: ([bd, An], Xn, od) #
-# Memory indirect preindexed: ([bd, An, Xn], od) #
-########################################################################
-faddr_ind_ext:
- addq.l &0x8,%d1
- bsr.l fetch_dreg # fetch base areg
- mov.l %d0,-(%sp)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch extword in d0
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l (%sp)+,%a0
-
- btst &0x8,%d0
- bne.w fcalc_mem_ind
-
- mov.l %d0,L_SCR1(%a6) # hold opword
-
- mov.l %d0,%d1
- rol.w &0x4,%d1
- andi.w &0xf,%d1 # extract index regno
-
-# count on fetch_dreg() not to alter a0...
- bsr.l fetch_dreg # fetch index
-
- mov.l %d2,-(%sp) # save d2
- mov.l L_SCR1(%a6),%d2 # fetch opword
-
- btst &0xb,%d2 # is it word or long?
- bne.b faii8_long
- ext.l %d0 # sign extend word index
-faii8_long:
- mov.l %d2,%d1
- rol.w &0x7,%d1
- andi.l &0x3,%d1 # extract scale value
-
- lsl.l %d1,%d0 # shift index by scale
-
- extb.l %d2 # sign extend displacement
- add.l %d2,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore old d2
- rts
-
-###########################
-# Absolute short: (XXX).W #
-###########################
-fabs_short:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch short address
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # return <ea> in a0
- rts
-
-##########################
-# Absolute long: (XXX).L #
-##########################
-fabs_long:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch long address
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,%a0 # return <ea> in a0
- rts
-
-#######################################################
-# Program counter indirect w/ displacement: (d16, PC) #
-#######################################################
-fpc_ind:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch word displacement
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_EXTWPTR(%a6),%a0 # pc + d16
-
-# _imem_read_word() increased the extwptr by 2. need to adjust here.
- subq.l &0x2,%a0 # adjust <ea>
- rts
-
-##########################################################
-# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
-# " " w/ " (base displacement): (bd, PC, An) #
-# PC memory indirect postindexed: ([bd, PC], Xn, od) #
-# PC memory indirect preindexed: ([bd, PC, Xn], od) #
-##########################################################
-fpc_ind_ext:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch ext word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0
- subq.l &0x2,%a0 # adjust base
-
- btst &0x8,%d0 # is disp only 8 bits?
- bne.w fcalc_mem_ind # calc memory indirect
-
- mov.l %d0,L_SCR1(%a6) # store opword
-
- mov.l %d0,%d1 # make extword copy
- rol.w &0x4,%d1 # rotate reg num into place
- andi.w &0xf,%d1 # extract register number
-
-# count on fetch_dreg() not to alter a0...
- bsr.l fetch_dreg # fetch index
-
- mov.l %d2,-(%sp) # save d2
- mov.l L_SCR1(%a6),%d2 # fetch opword
-
- btst &0xb,%d2 # is index word or long?
- bne.b fpii8_long # long
- ext.l %d0 # sign extend word index
-fpii8_long:
- mov.l %d2,%d1
- rol.w &0x7,%d1 # rotate scale value into place
- andi.l &0x3,%d1 # extract scale value
-
- lsl.l %d1,%d0 # shift index by scale
-
- extb.l %d2 # sign extend displacement
- add.l %d2,%d0 # disp + index
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore temp register
- rts
-
-# d2 = index
-# d3 = base
-# d4 = od
-# d5 = extword
-fcalc_mem_ind:
- btst &0x6,%d0 # is the index suppressed?
- beq.b fcalc_index
-
- movm.l &0x3c00,-(%sp) # save d2-d5
-
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
-
- clr.l %d2 # yes, so index = 0
- bra.b fbase_supp_ck
-
-# index:
-fcalc_index:
- mov.l %d0,L_SCR1(%a6) # save d0 (opword)
- bfextu %d0{&16:&4},%d1 # fetch dreg index
- bsr.l fetch_dreg
-
- movm.l &0x3c00,-(%sp) # save d2-d5
- mov.l %d0,%d2 # put index in d2
- mov.l L_SCR1(%a6),%d5
- mov.l %a0,%d3
-
- btst &0xb,%d5 # is index word or long?
- bne.b fno_ext
- ext.l %d2
-
-fno_ext:
- bfextu %d5{&21:&2},%d0
- lsl.l %d0,%d2
-
-# base address (passed as parameter in d3):
-# we clear the value here if it should actually be suppressed.
-fbase_supp_ck:
- btst &0x7,%d5 # is the bd suppressed?
- beq.b fno_base_sup
- clr.l %d3
-
-# base displacement:
-fno_base_sup:
- bfextu %d5{&26:&2},%d0 # get bd size
-# beq.l fmovm_error # if (size == 0) it's reserved
-
- cmpi.b %d0,&0x2
- blt.b fno_bd
- beq.b fget_word_bd
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- bra.b fchk_ind
-
-fget_word_bd:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- ext.l %d0 # sign extend bd
-
-fchk_ind:
- add.l %d0,%d3 # base += bd
-
-# outer displacement:
-fno_bd:
- bfextu %d5{&30:&2},%d0 # is od suppressed?
- beq.w faii_bd
-
- cmpi.b %d0,&0x2
- blt.b fnull_od
- beq.b fword_od
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- bra.b fadd_them
-
-fword_od:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- ext.l %d0 # sign extend od
- bra.b fadd_them
-
-fnull_od:
- clr.l %d0
-
-fadd_them:
- mov.l %d0,%d4
-
- btst &0x2,%d5 # pre or post indexing?
- beq.b fpre_indexed
-
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # did dfetch fail?
- bne.w fcea_err # yes
-
- add.l %d2,%d0 # <ea> += index
- add.l %d4,%d0 # <ea> += od
- bra.b fdone_ea
-
-fpre_indexed:
- add.l %d2,%d3 # preindexing
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # did dfetch fail?
- bne.w fcea_err # yes
-
- add.l %d4,%d0 # ea += od
- bra.b fdone_ea
-
-faii_bd:
- add.l %d2,%d3 # ea = (base + bd) + index
- mov.l %d3,%d0
-fdone_ea:
- mov.l %d0,%a0
-
- movm.l (%sp)+,&0x003c # restore d2-d5
- rts
-
-#########################################################
-fcea_err:
- mov.l %d3,%a0
-
- movm.l (%sp)+,&0x003c # restore d2-d5
- mov.w &0x0101,%d0
- bra.l iea_dacc
-
-fcea_iacc:
- movm.l (%sp)+,&0x003c # restore d2-d5
- bra.l iea_iacc
-
-fmovm_out_err:
- bsr.l restore
- mov.w &0x00e1,%d0
- bra.b fmovm_err
-
-fmovm_in_err:
- bsr.l restore
- mov.w &0x0161,%d0
-
-fmovm_err:
- mov.l L_SCR1(%a6),%a0
- bra.l iea_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# fmovm_ctrl(): emulate fmovm.l of control registers instr #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read longword from memory #
-# iea_iacc() - _imem_read_long() failed; error recovery #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If _imem_read_long() doesn't fail: #
-# USER_FPCR(a6) = new FPCR value #
-# USER_FPSR(a6) = new FPSR value #
-# USER_FPIAR(a6) = new FPIAR value #
-# #
-# ALGORITHM *********************************************************** #
-# Decode the instruction type by looking at the extension word #
-# in order to see how many control registers to fetch from memory. #
-# Fetch them using _imem_read_long(). If this fetch fails, exit through #
-# the special access error exit handler iea_iacc(). #
-# #
-# Instruction word decoding: #
-# #
-# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} #
-# #
-# WORD1 WORD2 #
-# 1111 0010 00 111100 100$ $$00 0000 0000 #
-# #
-# $$$ (100): FPCR #
-# (010): FPSR #
-# (001): FPIAR #
-# (000): FPIAR #
-# #
-#########################################################################
-
- global fmovm_ctrl
-fmovm_ctrl:
- mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits
- cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ?
- beq.w fctrl_in_7 # yes
- cmpi.b %d0,&0x98 # fpcr & fpsr ?
- beq.w fctrl_in_6 # yes
- cmpi.b %d0,&0x94 # fpcr & fpiar ?
- beq.b fctrl_in_5 # yes
-
-# fmovem.l #<data>, fpsr/fpiar
-fctrl_in_3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
- rts
-
-# fmovem.l #<data>, fpcr/fpiar
-fctrl_in_5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
- rts
-
-# fmovem.l #<data>, fpcr/fpsr
-fctrl_in_6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
- rts
-
-# fmovem.l #<data>, fpcr/fpsr/fpiar
-fctrl_in_7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception #
-# #
-# XREF **************************************************************** #
-# inc_areg() - increment an address register #
-# dec_areg() - decrement an address register #
-# #
-# INPUT *************************************************************** #
-# d0 = number of bytes to adjust <ea> by #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# "Dummy" CALCulate Effective Address: #
-# The stacked <ea> for FP unimplemented instructions and opclass #
-# two packed instructions is correct with the exception of... #
-# #
-# 1) -(An) : The register is not updated regardless of size. #
-# Also, for extended precision and packed, the #
-# stacked <ea> value is 8 bytes too big #
-# 2) (An)+ : The register is not updated. #
-# 3) #<data> : The upper longword of the immediate operand is #
-# stacked b,w,l and s sizes are completely stacked. #
-# d,x, and p are not. #
-# #
-#########################################################################
-
- global _dcalc_ea
-_dcalc_ea:
- mov.l %d0, %a0 # move # bytes to %a0
-
- mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word
- mov.l %d0, %d1 # make a copy
-
- andi.w &0x38, %d0 # extract mode field
- andi.l &0x7, %d1 # extract reg field
-
- cmpi.b %d0,&0x18 # is mode (An)+ ?
- beq.b dcea_pi # yes
-
- cmpi.b %d0,&0x20 # is mode -(An) ?
- beq.b dcea_pd # yes
-
- or.w %d1,%d0 # concat mode,reg
- cmpi.b %d0,&0x3c # is mode #<data>?
-
- beq.b dcea_imm # yes
-
- mov.l EXC_EA(%a6),%a0 # return <ea>
- rts
-
-# need to set immediate data flag here since we'll need to do
-# an imem_read to fetch this later.
-dcea_imm:
- mov.b &immed_flg,SPCOND_FLG(%a6)
- lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea>
- rts
-
-# here, the <ea> is stacked correctly. however, we must update the
-# address register...
-dcea_pi:
- mov.l %a0,%d0 # pass amt to inc by
- bsr.l inc_areg # inc addr register
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- rts
-
-# the <ea> is stacked correctly for all but extended and packed which
-# the <ea>s are 8 bytes too large.
-# it would make no sense to have a pre-decrement to a7 in supervisor
-# mode so we don't even worry about this tricky case here : )
-dcea_pd:
- mov.l %a0,%d0 # pass amt to dec by
- bsr.l dec_areg # dec addr register
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
-
- cmpi.b %d0,&0xc # is opsize ext or packed?
- beq.b dcea_pd2 # yes
- rts
-dcea_pd2:
- sub.l &0x8,%a0 # correct <ea>
- mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _calc_ea_fout(): calculate correct stacked <ea> for extended #
-# and packed data opclass 3 operations. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# a0 = return correct effective address #
-# #
-# ALGORITHM *********************************************************** #
-# For opclass 3 extended and packed data operations, the <ea> #
-# stacked for the exception is incorrect for -(an) and (an)+ addressing #
-# modes. Also, while we're at it, the index register itself must get #
-# updated. #
-# So, for -(an), we must subtract 8 off of the stacked <ea> value #
-# and return that value as the correct <ea> and store that value in An. #
-# For (an)+, the stacked <ea> is correct but we must adjust An by +12. #
-# #
-#########################################################################
-
-# This calc_ea is currently used to retrieve the correct <ea>
-# for fmove outs of type extended and packed.
- global _calc_ea_fout
-_calc_ea_fout:
- mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.l %d0,%d1 # make a copy
-
- andi.w &0x38,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
-
- cmpi.b %d0,&0x18 # is mode (An)+ ?
- beq.b ceaf_pi # yes
-
- cmpi.b %d0,&0x20 # is mode -(An) ?
- beq.w ceaf_pd # yes
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- rts
-
-# (An)+ : extended and packed fmove out
-# : stacked <ea> is correct
-# : "An" not updated
-ceaf_pi:
- mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1
- mov.l EXC_EA(%a6),%a0
- jmp (tbl_ceaf_pi.b,%pc,%d1.w*1)
-
- swbeg &0x8
-tbl_ceaf_pi:
- short ceaf_pi0 - tbl_ceaf_pi
- short ceaf_pi1 - tbl_ceaf_pi
- short ceaf_pi2 - tbl_ceaf_pi
- short ceaf_pi3 - tbl_ceaf_pi
- short ceaf_pi4 - tbl_ceaf_pi
- short ceaf_pi5 - tbl_ceaf_pi
- short ceaf_pi6 - tbl_ceaf_pi
- short ceaf_pi7 - tbl_ceaf_pi
-
-ceaf_pi0:
- addi.l &0xc,EXC_DREGS+0x8(%a6)
- rts
-ceaf_pi1:
- addi.l &0xc,EXC_DREGS+0xc(%a6)
- rts
-ceaf_pi2:
- add.l &0xc,%a2
- rts
-ceaf_pi3:
- add.l &0xc,%a3
- rts
-ceaf_pi4:
- add.l &0xc,%a4
- rts
-ceaf_pi5:
- add.l &0xc,%a5
- rts
-ceaf_pi6:
- addi.l &0xc,EXC_A6(%a6)
- rts
-ceaf_pi7:
- mov.b &mia7_flg,SPCOND_FLG(%a6)
- addi.l &0xc,EXC_A7(%a6)
- rts
-
-# -(An) : extended and packed fmove out
-# : stacked <ea> = actual <ea> + 8
-# : "An" not updated
-ceaf_pd:
- mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1
- mov.l EXC_EA(%a6),%a0
- sub.l &0x8,%a0
- sub.l &0x8,EXC_EA(%a6)
- jmp (tbl_ceaf_pd.b,%pc,%d1.w*1)
-
- swbeg &0x8
-tbl_ceaf_pd:
- short ceaf_pd0 - tbl_ceaf_pd
- short ceaf_pd1 - tbl_ceaf_pd
- short ceaf_pd2 - tbl_ceaf_pd
- short ceaf_pd3 - tbl_ceaf_pd
- short ceaf_pd4 - tbl_ceaf_pd
- short ceaf_pd5 - tbl_ceaf_pd
- short ceaf_pd6 - tbl_ceaf_pd
- short ceaf_pd7 - tbl_ceaf_pd
-
-ceaf_pd0:
- mov.l %a0,EXC_DREGS+0x8(%a6)
- rts
-ceaf_pd1:
- mov.l %a0,EXC_DREGS+0xc(%a6)
- rts
-ceaf_pd2:
- mov.l %a0,%a2
- rts
-ceaf_pd3:
- mov.l %a0,%a3
- rts
-ceaf_pd4:
- mov.l %a0,%a4
- rts
-ceaf_pd5:
- mov.l %a0,%a5
- rts
-ceaf_pd6:
- mov.l %a0,EXC_A6(%a6)
- rts
-ceaf_pd7:
- mov.l %a0,EXC_A7(%a6)
- mov.b &mda7_flg,SPCOND_FLG(%a6)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _load_fop(): load operand for unimplemented FP exception #
-# #
-# XREF **************************************************************** #
-# set_tag_x() - determine ext prec optype tag #
-# set_tag_s() - determine sgl prec optype tag #
-# set_tag_d() - determine dbl prec optype tag #
-# unnorm_fix() - convert normalized number to denorm or zero #
-# norm() - normalize a denormalized number #
-# get_packed() - fetch a packed operand from memory #
-# _dcalc_ea() - calculate <ea>, fixing An in process #
-# #
-# _imem_read_{word,long}() - read from instruction memory #
-# _dmem_read() - read from data memory #
-# _dmem_read_{byte,word,long}() - read from data memory #
-# #
-# facc_in_{b,w,l,d,x}() - mem read failed; special exit point #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If memory access doesn't fail: #
-# FP_SRC(a6) = source operand in extended precision #
-# FP_DST(a6) = destination operand in extended precision #
-# #
-# ALGORITHM *********************************************************** #
-# This is called from the Unimplemented FP exception handler in #
-# order to load the source and maybe destination operand into #
-# FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load #
-# the source and destination from the FP register file. Set the optype #
-# tags for both if dyadic, one for monadic. If a number is an UNNORM, #
-# convert it to a DENORM or a ZERO. #
-# If the instruction is opclass two (memory->reg), then fetch #
-# the destination from the register file and the source operand from #
-# memory. Tag and fix both as above w/ opclass zero instructions. #
-# If the source operand is byte,word,long, or single, it may be #
-# in the data register file. If it's actually out in memory, use one of #
-# the mem_read() routines to fetch it. If the mem_read() access returns #
-# a failing value, exit through the special facc_in() routine which #
-# will create an access error exception frame from the current exception #
-# frame. #
-# Immediate data and regular data accesses are separated because #
-# if an immediate data access fails, the resulting fault status #
-# longword stacked for the access error exception must have the #
-# instruction bit set. #
-# #
-#########################################################################
-
- global _load_fop
-_load_fop:
-
-# 15 13 12 10 9 7 6 0
-# / \ / \ / \ / \
-# ---------------------------------
-# | opclass | RX | RY | EXTENSION | (2nd word of general FP instruction)
-# ---------------------------------
-#
-
-# bfextu EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass
-# cmpi.b %d0, &0x2 # which class is it? ('000,'010,'011)
-# beq.w op010 # handle <ea> -> fpn
-# bgt.w op011 # handle fpn -> <ea>
-
-# we're not using op011 for now...
- btst &0x6,EXC_CMDREG(%a6)
- bne.b op010
-
-############################
-# OPCLASS '000: reg -> reg #
-############################
-op000:
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension word lo
- btst &0x5,%d0 # testing extension bits
- beq.b op000_src # (bit 5 == 0) => monadic
- btst &0x4,%d0 # (bit 5 == 1)
- beq.b op000_dst # (bit 4 == 0) => dyadic
- and.w &0x007f,%d0 # extract extension bits {6:0}
- cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ?
- bne.b op000_src # it's an fcmp
-
-op000_dst:
- bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field
- bsr.l load_fpn2 # fetch dst fpreg into FP_DST
-
- bsr.l set_tag_x # get dst optype tag
-
- cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM?
- beq.b op000_dst_unnorm # yes
-op000_dst_cont:
- mov.b %d0, DTAG(%a6) # store the dst optype tag
-
-op000_src:
- bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field
- bsr.l load_fpn1 # fetch src fpreg into FP_SRC
-
- bsr.l set_tag_x # get src optype tag
-
- cmpi.b %d0, &UNNORM # is src fpreg an UNNORM?
- beq.b op000_src_unnorm # yes
-op000_src_cont:
- mov.b %d0, STAG(%a6) # store the src optype tag
- rts
-
-op000_dst_unnorm:
- bsr.l unnorm_fix # fix the dst UNNORM
- bra.b op000_dst_cont
-op000_src_unnorm:
- bsr.l unnorm_fix # fix the src UNNORM
- bra.b op000_src_cont
-
-#############################
-# OPCLASS '010: <ea> -> reg #
-#############################
-op010:
- mov.w EXC_CMDREG(%a6),%d0 # fetch extension word
- btst &0x5,%d0 # testing extension bits
- beq.b op010_src # (bit 5 == 0) => monadic
- btst &0x4,%d0 # (bit 5 == 1)
- beq.b op010_dst # (bit 4 == 0) => dyadic
- and.w &0x007f,%d0 # extract extension bits {6:0}
- cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ?
- bne.b op010_src # it's an fcmp
-
-op010_dst:
- bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field
- bsr.l load_fpn2 # fetch dst fpreg ptr
-
- bsr.l set_tag_x # get dst type tag
-
- cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM?
- beq.b op010_dst_unnorm # yes
-op010_dst_cont:
- mov.b %d0, DTAG(%a6) # store the dst optype tag
-
-op010_src:
- bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field
-
- bfextu EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field
- bne.w fetch_from_mem # src op is in memory
-
-op010_dreg:
- clr.b STAG(%a6) # either NORM or ZERO
- bfextu EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field
-
- mov.w (tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype
- jmp (tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg
-
-op010_dst_unnorm:
- bsr.l unnorm_fix # fix the dst UNNORM
- bra.b op010_dst_cont
-
- swbeg &0x8
-tbl_op010_dreg:
- short opd_long - tbl_op010_dreg
- short opd_sgl - tbl_op010_dreg
- short tbl_op010_dreg - tbl_op010_dreg
- short tbl_op010_dreg - tbl_op010_dreg
- short opd_word - tbl_op010_dreg
- short tbl_op010_dreg - tbl_op010_dreg
- short opd_byte - tbl_op010_dreg
- short tbl_op010_dreg - tbl_op010_dreg
-
-#
-# LONG: can be either NORM or ZERO...
-#
-opd_long:
- bsr.l fetch_dreg # fetch long in d0
- fmov.l %d0, %fp0 # load a long
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
- fbeq.w opd_long_zero # long is a ZERO
- rts
-opd_long_zero:
- mov.b &ZERO, STAG(%a6) # set ZERO optype flag
- rts
-
-#
-# WORD: can be either NORM or ZERO...
-#
-opd_word:
- bsr.l fetch_dreg # fetch word in d0
- fmov.w %d0, %fp0 # load a word
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
- fbeq.w opd_word_zero # WORD is a ZERO
- rts
-opd_word_zero:
- mov.b &ZERO, STAG(%a6) # set ZERO optype flag
- rts
-
-#
-# BYTE: can be either NORM or ZERO...
-#
-opd_byte:
- bsr.l fetch_dreg # fetch word in d0
- fmov.b %d0, %fp0 # load a byte
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
- fbeq.w opd_byte_zero # byte is a ZERO
- rts
-opd_byte_zero:
- mov.b &ZERO, STAG(%a6) # set ZERO optype flag
- rts
-
-#
-# SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM
-#
-# separate SNANs and DENORMs so they can be loaded w/ special care.
-# all others can simply be moved "in" using fmove.
-#
-opd_sgl:
- bsr.l fetch_dreg # fetch sgl in d0
- mov.l %d0,L_SCR1(%a6)
-
- lea L_SCR1(%a6), %a0 # pass: ptr to the sgl
- bsr.l set_tag_s # determine sgl type
- mov.b %d0, STAG(%a6) # save the src tag
-
- cmpi.b %d0, &SNAN # is it an SNAN?
- beq.w get_sgl_snan # yes
-
- cmpi.b %d0, &DENORM # is it a DENORM?
- beq.w get_sgl_denorm # yes
-
- fmov.s (%a0), %fp0 # no, so can load it regular
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
- rts
-
-##############################################################################
-
-#########################################################################
-# fetch_from_mem(): #
-# - src is out in memory. must: #
-# (1) calc ea - must read AFTER you know the src type since #
-# if the ea is -() or ()+, need to know # of bytes. #
-# (2) read it in from either user or supervisor space #
-# (3) if (b || w || l) then simply read in #
-# if (s || d || x) then check for SNAN,UNNORM,DENORM #
-# if (packed) then punt for now #
-# INPUT: #
-# %d0 : src type field #
-#########################################################################
-fetch_from_mem:
- clr.b STAG(%a6) # either NORM or ZERO
-
- mov.w (tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field
- jmp (tbl_fp_type.b,%pc,%d0.w*1)
-
- swbeg &0x8
-tbl_fp_type:
- short load_long - tbl_fp_type
- short load_sgl - tbl_fp_type
- short load_ext - tbl_fp_type
- short load_packed - tbl_fp_type
- short load_word - tbl_fp_type
- short load_dbl - tbl_fp_type
- short load_byte - tbl_fp_type
- short tbl_fp_type - tbl_fp_type
-
-#########################################
-# load a LONG into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 4 bytes into L_SCR1 #
-# (3) fmov.l into %fp0 #
-#########################################
-load_long:
- movq.l &0x4, %d0 # pass: 4 (bytes)
- bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg
- beq.b load_long_immed
-
- bsr.l _dmem_read_long # fetch src operand from memory
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_l # yes
-
-load_long_cont:
- fmov.l %d0, %fp0 # read into %fp0;convert to xprec
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
-
- fbeq.w load_long_zero # src op is a ZERO
- rts
-load_long_zero:
- mov.b &ZERO, STAG(%a6) # set optype tag to ZERO
- rts
-
-load_long_immed:
- bsr.l _imem_read_long # fetch src operand immed data
-
- tst.l %d1 # did ifetch fail?
- bne.l funimp_iacc # yes
- bra.b load_long_cont
-
-#########################################
-# load a WORD into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 2 bytes into L_SCR1 #
-# (3) fmov.w into %fp0 #
-#########################################
-load_word:
- movq.l &0x2, %d0 # pass: 2 (bytes)
- bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg
- beq.b load_word_immed
-
- bsr.l _dmem_read_word # fetch src operand from memory
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_w # yes
-
-load_word_cont:
- fmov.w %d0, %fp0 # read into %fp0;convert to xprec
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
-
- fbeq.w load_word_zero # src op is a ZERO
- rts
-load_word_zero:
- mov.b &ZERO, STAG(%a6) # set optype tag to ZERO
- rts
-
-load_word_immed:
- bsr.l _imem_read_word # fetch src operand immed data
-
- tst.l %d1 # did ifetch fail?
- bne.l funimp_iacc # yes
- bra.b load_word_cont
-
-#########################################
-# load a BYTE into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 1 byte into L_SCR1 #
-# (3) fmov.b into %fp0 #
-#########################################
-load_byte:
- movq.l &0x1, %d0 # pass: 1 (byte)
- bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg
- beq.b load_byte_immed
-
- bsr.l _dmem_read_byte # fetch src operand from memory
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_b # yes
-
-load_byte_cont:
- fmov.b %d0, %fp0 # read into %fp0;convert to xprec
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
-
- fbeq.w load_byte_zero # src op is a ZERO
- rts
-load_byte_zero:
- mov.b &ZERO, STAG(%a6) # set optype tag to ZERO
- rts
-
-load_byte_immed:
- bsr.l _imem_read_word # fetch src operand immed data
-
- tst.l %d1 # did ifetch fail?
- bne.l funimp_iacc # yes
- bra.b load_byte_cont
-
-#########################################
-# load a SGL into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 4 bytes into L_SCR1 #
-# (3) fmov.s into %fp0 #
-#########################################
-load_sgl:
- movq.l &0x4, %d0 # pass: 4 (bytes)
- bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg
- beq.b load_sgl_immed
-
- bsr.l _dmem_read_long # fetch src operand from memory
- mov.l %d0, L_SCR1(%a6) # store src op on stack
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_l # yes
-
-load_sgl_cont:
- lea L_SCR1(%a6), %a0 # pass: ptr to sgl src op
- bsr.l set_tag_s # determine src type tag
- mov.b %d0, STAG(%a6) # save src optype tag on stack
-
- cmpi.b %d0, &DENORM # is it a sgl DENORM?
- beq.w get_sgl_denorm # yes
-
- cmpi.b %d0, &SNAN # is it a sgl SNAN?
- beq.w get_sgl_snan # yes
-
- fmov.s L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
- rts
-
-load_sgl_immed:
- bsr.l _imem_read_long # fetch src operand immed data
-
- tst.l %d1 # did ifetch fail?
- bne.l funimp_iacc # yes
- bra.b load_sgl_cont
-
-# must convert sgl denorm format to an Xprec denorm fmt suitable for
-# normalization...
-# %a0 : points to sgl denorm
-get_sgl_denorm:
- clr.w FP_SRC_EX(%a6)
- bfextu (%a0){&9:&23}, %d0 # fetch sgl hi(_mantissa)
- lsl.l &0x8, %d0
- mov.l %d0, FP_SRC_HI(%a6) # set ext hi(_mantissa)
- clr.l FP_SRC_LO(%a6) # set ext lo(_mantissa)
-
- clr.w FP_SRC_EX(%a6)
- btst &0x7, (%a0) # is sgn bit set?
- beq.b sgl_dnrm_norm
- bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value
-
-sgl_dnrm_norm:
- lea FP_SRC(%a6), %a0
- bsr.l norm # normalize number
- mov.w &0x3f81, %d1 # xprec exp = 0x3f81
- sub.w %d0, %d1 # exp = 0x3f81 - shft amt.
- or.w %d1, FP_SRC_EX(%a6) # {sgn,exp}
-
- mov.b &NORM, STAG(%a6) # fix src type tag
- rts
-
-# convert sgl to ext SNAN
-# %a0 : points to sgl SNAN
-get_sgl_snan:
- mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN
- bfextu (%a0){&9:&23}, %d0
- lsl.l &0x8, %d0 # extract and insert hi(man)
- mov.l %d0, FP_SRC_HI(%a6)
- clr.l FP_SRC_LO(%a6)
-
- btst &0x7, (%a0) # see if sign of SNAN is set
- beq.b no_sgl_snan_sgn
- bset &0x7, FP_SRC_EX(%a6)
-no_sgl_snan_sgn:
- rts
-
-#########################################
-# load a DBL into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 8 bytes into L_SCR(1,2)#
-# (3) fmov.d into %fp0 #
-#########################################
-load_dbl:
- movq.l &0x8, %d0 # pass: 8 (bytes)
- bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg
- beq.b load_dbl_immed
-
- lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space
- movq.l &0x8, %d0 # pass: # bytes to read
- bsr.l _dmem_read # fetch src operand from memory
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_d # yes
-
-load_dbl_cont:
- lea L_SCR1(%a6), %a0 # pass: ptr to input dbl
- bsr.l set_tag_d # determine src type tag
- mov.b %d0, STAG(%a6) # set src optype tag
-
- cmpi.b %d0, &DENORM # is it a dbl DENORM?
- beq.w get_dbl_denorm # yes
-
- cmpi.b %d0, &SNAN # is it a dbl SNAN?
- beq.w get_dbl_snan # yes
-
- fmov.d L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec
- fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
- rts
-
-load_dbl_immed:
- lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space
- movq.l &0x8, %d0 # pass: # bytes to read
- bsr.l _imem_read # fetch src operand from memory
-
- tst.l %d1 # did ifetch fail?
- bne.l funimp_iacc # yes
- bra.b load_dbl_cont
-
-# must convert dbl denorm format to an Xprec denorm fmt suitable for
-# normalization...
-# %a0 : loc. of dbl denorm
-get_dbl_denorm:
- clr.w FP_SRC_EX(%a6)
- bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa)
- mov.l %d0, FP_SRC_HI(%a6)
- bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa)
- mov.l &0xb, %d1
- lsl.l %d1, %d0
- mov.l %d0, FP_SRC_LO(%a6)
-
- btst &0x7, (%a0) # is sgn bit set?
- beq.b dbl_dnrm_norm
- bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value
-
-dbl_dnrm_norm:
- lea FP_SRC(%a6), %a0
- bsr.l norm # normalize number
- mov.w &0x3c01, %d1 # xprec exp = 0x3c01
- sub.w %d0, %d1 # exp = 0x3c01 - shft amt.
- or.w %d1, FP_SRC_EX(%a6) # {sgn,exp}
-
- mov.b &NORM, STAG(%a6) # fix src type tag
- rts
-
-# convert dbl to ext SNAN
-# %a0 : points to dbl SNAN
-get_dbl_snan:
- mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN
-
- bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa)
- mov.l %d0, FP_SRC_HI(%a6)
- bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa)
- mov.l &0xb, %d1
- lsl.l %d1, %d0
- mov.l %d0, FP_SRC_LO(%a6)
-
- btst &0x7, (%a0) # see if sign of SNAN is set
- beq.b no_dbl_snan_sgn
- bset &0x7, FP_SRC_EX(%a6)
-no_dbl_snan_sgn:
- rts
-
-#################################################
-# load a Xprec into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 12 bytes into L_SCR(1,2) #
-# (3) fmov.x into %fp0 #
-#################################################
-load_ext:
- mov.l &0xc, %d0 # pass: 12 (bytes)
- bsr.l _dcalc_ea # calc <ea>
-
- lea FP_SRC(%a6), %a1 # pass: ptr to input ext tmp space
- mov.l &0xc, %d0 # pass: # of bytes to read
- bsr.l _dmem_read # fetch src operand from memory
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_x # yes
-
- lea FP_SRC(%a6), %a0 # pass: ptr to src op
- bsr.l set_tag_x # determine src type tag
-
- cmpi.b %d0, &UNNORM # is the src op an UNNORM?
- beq.b load_ext_unnorm # yes
-
- mov.b %d0, STAG(%a6) # store the src optype tag
- rts
-
-load_ext_unnorm:
- bsr.l unnorm_fix # fix the src UNNORM
- mov.b %d0, STAG(%a6) # store the src optype tag
- rts
-
-#################################################
-# load a packed into %fp0: #
-# -number can't fault #
-# (1) calc ea #
-# (2) read 12 bytes into L_SCR(1,2,3) #
-# (3) fmov.x into %fp0 #
-#################################################
-load_packed:
- bsr.l get_packed
-
- lea FP_SRC(%a6),%a0 # pass ptr to src op
- bsr.l set_tag_x # determine src type tag
- cmpi.b %d0,&UNNORM # is the src op an UNNORM ZERO?
- beq.b load_packed_unnorm # yes
-
- mov.b %d0,STAG(%a6) # store the src optype tag
- rts
-
-load_packed_unnorm:
- bsr.l unnorm_fix # fix the UNNORM ZERO
- mov.b %d0,STAG(%a6) # store the src optype tag
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fout(): move from fp register to memory or data register #
-# #
-# XREF **************************************************************** #
-# _round() - needed to create EXOP for sgl/dbl precision #
-# norm() - needed to create EXOP for extended precision #
-# ovf_res() - create default overflow result for sgl/dbl precision#
-# unf_res() - create default underflow result for sgl/dbl prec. #
-# dst_dbl() - create rounded dbl precision result. #
-# dst_sgl() - create rounded sgl precision result. #
-# fetch_dreg() - fetch dynamic k-factor reg for packed. #
-# bindec() - convert FP binary number to packed number. #
-# _mem_write() - write data to memory. #
-# _mem_write2() - write data to memory unless supv mode -(a7) exc.#
-# _dmem_write_{byte,word,long}() - write data to memory. #
-# store_dreg_{b,w,l}() - store data to data register file. #
-# facc_out_{b,w,l,d,x}() - data access error occurred. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 : intermediate underflow or overflow result if #
-# OVFL/UNFL occurred for a sgl or dbl operand #
-# #
-# ALGORITHM *********************************************************** #
-# This routine is accessed by many handlers that need to do an #
-# opclass three move of an operand out to memory. #
-# Decode an fmove out (opclass 3) instruction to determine if #
-# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data #
-# register or memory. The algorithm uses a standard "fmove" to create #
-# the rounded result. Also, since exceptions are disabled, this also #
-# create the correct OPERR default result if appropriate. #
-# For sgl or dbl precision, overflow or underflow can occur. If #
-# either occurs and is enabled, the EXOP. #
-# For extended precision, the stacked <ea> must be fixed along #
-# w/ the address index register as appropriate w/ _calc_ea_fout(). If #
-# the source is a denorm and if underflow is enabled, an EXOP must be #
-# created. #
-# For packed, the k-factor must be fetched from the instruction #
-# word or a data register. The <ea> must be fixed as w/ extended #
-# precision. Then, bindec() is called to create the appropriate #
-# packed result. #
-# If at any time an access error is flagged by one of the move- #
-# to-memory routines, then a special exit must be made so that the #
-# access error can be handled properly. #
-# #
-#########################################################################
-
- global fout
-fout:
- bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt
- mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index
- jmp (tbl_fout.b,%pc,%a1) # jump to routine
-
- swbeg &0x8
-tbl_fout:
- short fout_long - tbl_fout
- short fout_sgl - tbl_fout
- short fout_ext - tbl_fout
- short fout_pack - tbl_fout
- short fout_word - tbl_fout
- short fout_dbl - tbl_fout
- short fout_byte - tbl_fout
- short fout_pack - tbl_fout
-
-#################################################################
-# fmove.b out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-fout_byte:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_byte_denorm # no
-
- fmovm.x SRC(%a0),&0x80 # load value
-
-fout_byte_norm:
- fmov.l %d0,%fpcr # insert rnd prec,mode
-
- fmov.b %fp0,%d0 # exec move out w/ correct rnd mode
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_byte_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_byte # write byte
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
-
- rts
-
-fout_byte_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_b
- rts
-
-fout_byte_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_byte_norm
-
-#################################################################
-# fmove.w out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-fout_word:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_word_denorm # no
-
- fmovm.x SRC(%a0),&0x80 # load value
-
-fout_word_norm:
- fmov.l %d0,%fpcr # insert rnd prec:mode
-
- fmov.w %fp0,%d0 # exec move out w/ correct rnd mode
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_word_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_word # write word
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
-
- rts
-
-fout_word_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_w
- rts
-
-fout_word_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_word_norm
-
-#################################################################
-# fmove.l out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-fout_long:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_long_denorm # no
-
- fmovm.x SRC(%a0),&0x80 # load value
-
-fout_long_norm:
- fmov.l %d0,%fpcr # insert rnd prec:mode
-
- fmov.l %fp0,%d0 # exec move out w/ correct rnd mode
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
-
-fout_long_write:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_long_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- rts
-
-fout_long_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- rts
-
-fout_long_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_long_norm
-
-#################################################################
-# fmove.x out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-# The DENORM causes an Underflow exception.
-fout_ext:
-
-# we copy the extended precision result to FP_SCR0 so that the reserved
-# 16-bit field gets zeroed. we do this since we promise not to disturb
-# what's at SRC(a0).
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- clr.w 2+FP_SCR0_EX(%a6) # clear reserved field
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- fmovm.x SRC(%a0),&0x80 # return result
-
- bsr.l _calc_ea_fout # fix stacked <ea>
-
- mov.l %a0,%a1 # pass: dst addr
- lea FP_SCR0(%a6),%a0 # pass: src addr
- mov.l &0xc,%d0 # pass: opsize is 12 bytes
-
-# we must not yet write the extended precision data to the stack
-# in the pre-decrement case from supervisor mode or else we'll corrupt
-# the stack frame. so, leave it in FP_SRC for now and deal with it later...
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.b fout_ext_a7
-
- bsr.l _dmem_write # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_ext_denorm # no
- rts
-
-# the number is a DENORM. must set the underflow exception bit
-fout_ext_denorm:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit
-
- mov.b FPCR_ENABLE(%a6),%d0
- andi.b &0x0a,%d0 # is UNFL or INEX enabled?
- bne.b fout_ext_exc # yes
- rts
-
-# we don't want to do the write if the exception occurred in supervisor mode
-# so _mem_write2() handles this for us.
-fout_ext_a7:
- bsr.l _mem_write2 # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_ext_denorm # no
- rts
-
-fout_ext_exc:
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the mantissa
- neg.w %d0 # new exp = -(shft amt)
- andi.w &0x7fff,%d0
- andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign
- or.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-fout_ext_err:
- mov.l EXC_A6(%a6),(%a6) # fix stacked a6
- bra.l facc_out_x
-
-#########################################################################
-# fmove.s out ###########################################################
-#########################################################################
-fout_sgl:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
-
-#
-# operand is a normalized number. first, we check to see if the move out
-# would cause either an underflow or overflow. these cases are handled
-# separately. otherwise, set the FPCR to the proper rounding mode and
-# execute the move.
-#
- mov.w SRC_EX(%a0),%d0 # extract exponent
- andi.w &0x7fff,%d0 # strip sign
-
- cmpi.w %d0,&SGL_HI # will operand overflow?
- bgt.w fout_sgl_ovfl # yes; go handle OVFL
- beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL
- cmpi.w %d0,&SGL_LO # will operand underflow?
- blt.w fout_sgl_unfl # yes; go handle underflow
-
-#
-# NORMs(in range) can be stored out by a simple "fmov.s"
-# Unnormalized inputs can come through this point.
-#
-fout_sgl_exg:
- fmovm.x SRC(%a0),&0x80 # fetch fop from stack
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmov.s %fp0,%d0 # store does convert and round
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex
-
-fout_sgl_exg_write:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_exg_write_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- rts
-
-fout_sgl_exg_write_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- rts
-
-#
-# here, we know that the operand would UNFL if moved out to single prec,
-# so, denorm and round and then use generic store single routine to
-# write the value to memory.
-#
-fout_sgl_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l %a0,-(%sp)
-
- clr.l %d0 # pass: S.F. = 0
-
- cmpi.b STAG(%a6),&DENORM # fetch src optype tag
- bne.b fout_sgl_unfl_cont # let DENORMs fall through
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the DENORM
-
-fout_sgl_unfl_cont:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calc default underflow result
-
- lea FP_SCR0(%a6),%a0 # pass: ptr to fop
- bsr.l dst_sgl # convert to single prec
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_unfl_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.b fout_sgl_unfl_chkexc
-
-fout_sgl_unfl_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
-
-fout_sgl_unfl_chkexc:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_unfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# it's definitely an overflow so call ovf_res to get the correct answer
-#
-fout_sgl_ovfl:
- tst.b 3+SRC_HI(%a0) # is result inexact?
- bne.b fout_sgl_ovfl_inex2
- tst.l SRC_LO(%a0) # is result inexact?
- bne.b fout_sgl_ovfl_inex2
- ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- bra.b fout_sgl_ovfl_cont
-fout_sgl_ovfl_inex2:
- ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
-
-fout_sgl_ovfl_cont:
- mov.l %a0,-(%sp)
-
-# call ovf_res() w/ sgl prec and the correct rnd mode to create the default
-# overflow result. DON'T save the returned ccodes from ovf_res() since
-# fmove out doesn't alter them.
- tst.b SRC_EX(%a0) # is operand negative?
- smi %d1 # set if so
- mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode
- bsr.l ovf_res # calc OVFL result
- fmovm.x (%a0),&0x80 # load default overflow result
- fmov.s %fp0,%d0 # store to single
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_ovfl_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.b fout_sgl_ovfl_chkexc
-
-fout_sgl_ovfl_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
-
-fout_sgl_ovfl_chkexc:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_ovfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# move out MAY overflow:
-# (1) force the exp to 0x3fff
-# (2) do a move w/ appropriate rnd mode
-# (3) if exp still equals zero, then insert original exponent
-# for the correct result.
-# if exp now equals one, then it overflowed so call ovf_res.
-#
-fout_sgl_may_ovfl:
- mov.w SRC_EX(%a0),%d1 # fetch current sign
- andi.w &0x8000,%d1 # keep it,clear exp
- ori.w &0x3fff,%d1 # insert exp = 0
- mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # need absolute value
- fcmp.b %fp0,&0x2 # did exponent increase?
- fblt.w fout_sgl_exg # no; go finish NORM
- bra.w fout_sgl_ovfl # yes; go handle overflow
-
-################
-
-fout_sd_exc_unfl:
- mov.l (%sp)+,%a0
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- cmpi.b STAG(%a6),&DENORM # was src a DENORM?
- bne.b fout_sd_exc_cont # no
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm
- neg.l %d0
- andi.w &0x7fff,%d0
- bfins %d0,FP_SCR0_EX(%a6){&1:&15}
- bra.b fout_sd_exc_cont
-
-fout_sd_exc:
-fout_sd_exc_ovfl:
- mov.l (%sp)+,%a0 # restore a0
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
-fout_sd_exc_cont:
- bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit
- sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit
- lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM
-
- mov.b 3+L_SCR3(%a6),%d1
- lsr.b &0x4,%d1
- andi.w &0x0c,%d1
- swap %d1
- mov.b 3+L_SCR3(%a6),%d1
- lsr.b &0x4,%d1
- andi.w &0x03,%d1
- clr.l %d0 # pass: zero g,r,s
- bsr.l _round # round the DENORM
-
- tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative?
- beq.b fout_sd_exc_done # no
- bset &0x7,FP_SCR0_EX(%a6) # yes
-
-fout_sd_exc_done:
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#################################################################
-# fmove.d out ###################################################
-#################################################################
-fout_dbl:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
-
-#
-# operand is a normalized number. first, we check to see if the move out
-# would cause either an underflow or overflow. these cases are handled
-# separately. otherwise, set the FPCR to the proper rounding mode and
-# execute the move.
-#
- mov.w SRC_EX(%a0),%d0 # extract exponent
- andi.w &0x7fff,%d0 # strip sign
-
- cmpi.w %d0,&DBL_HI # will operand overflow?
- bgt.w fout_dbl_ovfl # yes; go handle OVFL
- beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL
- cmpi.w %d0,&DBL_LO # will operand underflow?
- blt.w fout_dbl_unfl # yes; go handle underflow
-
-#
-# NORMs(in range) can be stored out by a simple "fmov.d"
-# Unnormalized inputs can come through this point.
-#
-fout_dbl_exg:
- fmovm.x SRC(%a0),&0x80 # fetch fop from stack
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmov.d %fp0,L_SCR1(%a6) # store does convert and round
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d0 # save FPSR
-
- or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex
-
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- rts # no; so we're finished
-
-#
-# here, we know that the operand would UNFL if moved out to double prec,
-# so, denorm and round and then use generic store double routine to
-# write the value to memory.
-#
-fout_dbl_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l %a0,-(%sp)
-
- clr.l %d0 # pass: S.F. = 0
-
- cmpi.b STAG(%a6),&DENORM # fetch src optype tag
- bne.b fout_dbl_unfl_cont # let DENORMs fall through
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the DENORM
-
-fout_dbl_unfl_cont:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calc default underflow result
-
- lea FP_SCR0(%a6),%a0 # pass: ptr to fop
- bsr.l dst_dbl # convert to single prec
- mov.l %d0,L_SCR1(%a6)
- mov.l %d1,L_SCR2(%a6)
-
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_unfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# it's definitely an overflow so call ovf_res to get the correct answer
-#
-fout_dbl_ovfl:
- mov.w 2+SRC_LO(%a0),%d0
- andi.w &0x7ff,%d0
- bne.b fout_dbl_ovfl_inex2
-
- ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- bra.b fout_dbl_ovfl_cont
-fout_dbl_ovfl_inex2:
- ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
-
-fout_dbl_ovfl_cont:
- mov.l %a0,-(%sp)
-
-# call ovf_res() w/ dbl prec and the correct rnd mode to create the default
-# overflow result. DON'T save the returned ccodes from ovf_res() since
-# fmove out doesn't alter them.
- tst.b SRC_EX(%a0) # is operand negative?
- smi %d1 # set if so
- mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode
- bsr.l ovf_res # calc OVFL result
- fmovm.x (%a0),&0x80 # load default overflow result
- fmov.d %fp0,L_SCR1(%a6) # store to double
-
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_ovfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# move out MAY overflow:
-# (1) force the exp to 0x3fff
-# (2) do a move w/ appropriate rnd mode
-# (3) if exp still equals zero, then insert original exponent
-# for the correct result.
-# if exp now equals one, then it overflowed so call ovf_res.
-#
-fout_dbl_may_ovfl:
- mov.w SRC_EX(%a0),%d1 # fetch current sign
- andi.w &0x8000,%d1 # keep it,clear exp
- ori.w &0x3fff,%d1 # insert exp = 0
- mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # need absolute value
- fcmp.b %fp0,&0x2 # did exponent increase?
- fblt.w fout_dbl_exg # no; go finish NORM
- bra.w fout_dbl_ovfl # yes; go handle overflow
-
-#########################################################################
-# XDEF **************************************************************** #
-# dst_dbl(): create double precision value from extended prec. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to source operand in extended precision #
-# #
-# OUTPUT ************************************************************** #
-# d0 = hi(double precision result) #
-# d1 = lo(double precision result) #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# Changes extended precision to double precision. #
-# Note: no attempt is made to round the extended value to double. #
-# dbl_sign = ext_sign #
-# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) #
-# get rid of ext integer bit #
-# dbl_mant = ext_mant{62:12} #
-# #
-# --------------- --------------- --------------- #
-# extended -> |s| exp | |1| ms mant | | ls mant | #
-# --------------- --------------- --------------- #
-# 95 64 63 62 32 31 11 0 #
-# | | #
-# | | #
-# | | #
-# v v #
-# --------------- --------------- #
-# double -> |s|exp| mant | | mant | #
-# --------------- --------------- #
-# 63 51 32 31 0 #
-# #
-#########################################################################
-
-dst_dbl:
- clr.l %d0 # clear d0
- mov.w FTEMP_EX(%a0),%d0 # get exponent
- subi.w &EXT_BIAS,%d0 # subtract extended precision bias
- addi.w &DBL_BIAS,%d0 # add double precision bias
- tst.b FTEMP_HI(%a0) # is number a denorm?
- bmi.b dst_get_dupper # no
- subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1
-dst_get_dupper:
- swap %d0 # d0 now in upper word
- lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp
- tst.b FTEMP_EX(%a0) # test sign
- bpl.b dst_get_dman # if positive, go process mantissa
- bset &0x1f,%d0 # if negative, set sign
-dst_get_dman:
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms
- or.l %d1,%d0 # put these bits in ms word of double
- mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- mov.l &21,%d0 # load shift count
- lsl.l %d0,%d1 # put lower 11 bits in upper bits
- mov.l %d1,L_SCR2(%a6) # build lower lword in memory
- mov.l FTEMP_LO(%a0),%d1 # get ls mantissa
- bfextu %d1{&0:&21},%d0 # get ls 21 bits of double
- mov.l L_SCR2(%a6),%d1
- or.l %d0,%d1 # put them in double result
- mov.l L_SCR1(%a6),%d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# dst_sgl(): create single precision value from extended prec #
-# #
-# XREF **************************************************************** #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to source operand in extended precision #
-# #
-# OUTPUT ************************************************************** #
-# d0 = single precision result #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# Changes extended precision to single precision. #
-# sgl_sign = ext_sign #
-# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) #
-# get rid of ext integer bit #
-# sgl_mant = ext_mant{62:12} #
-# #
-# --------------- --------------- --------------- #
-# extended -> |s| exp | |1| ms mant | | ls mant | #
-# --------------- --------------- --------------- #
-# 95 64 63 62 40 32 31 12 0 #
-# | | #
-# | | #
-# | | #
-# v v #
-# --------------- #
-# single -> |s|exp| mant | #
-# --------------- #
-# 31 22 0 #
-# #
-#########################################################################
-
-dst_sgl:
- clr.l %d0
- mov.w FTEMP_EX(%a0),%d0 # get exponent
- subi.w &EXT_BIAS,%d0 # subtract extended precision bias
- addi.w &SGL_BIAS,%d0 # add single precision bias
- tst.b FTEMP_HI(%a0) # is number a denorm?
- bmi.b dst_get_supper # no
- subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1
-dst_get_supper:
- swap %d0 # put exp in upper word of d0
- lsl.l &0x7,%d0 # shift it into single exp bits
- tst.b FTEMP_EX(%a0) # test sign
- bpl.b dst_get_sman # if positive, continue
- bset &0x1f,%d0 # if negative, put in sign first
-dst_get_sman:
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- andi.l &0x7fffff00,%d1 # get upper 23 bits of ms
- lsr.l &0x8,%d1 # and put them flush right
- or.l %d1,%d0 # put these bits in ms word of single
- rts
-
-##############################################################################
-fout_pack:
- bsr.l _calc_ea_fout # fetch the <ea>
- mov.l %a0,-(%sp)
-
- mov.b STAG(%a6),%d0 # fetch input type
- bne.w fout_pack_not_norm # input is not NORM
-
-fout_pack_norm:
- btst &0x4,EXC_CMDREG(%a6) # static or dynamic?
- beq.b fout_pack_s # static
-
-fout_pack_d:
- mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg
- lsr.b &0x4,%d1
- andi.w &0x7,%d1
-
- bsr.l fetch_dreg # fetch Dn w/ k-factor
-
- bra.b fout_pack_type
-fout_pack_s:
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field
-
-fout_pack_type:
- bfexts %d0{&25:&7},%d0 # extract k-factor
- mov.l %d0,-(%sp)
-
- lea FP_SRC(%a6),%a0 # pass: ptr to input
-
-# bindec is currently scrambling FP_SRC for denorm inputs.
-# we'll have to change this, but for now, tough luck!!!
- bsr.l bindec # convert xprec to packed
-
-# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields
- andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields
-
- mov.l (%sp)+,%d0
-
- tst.b 3+FP_SCR0_EX(%a6)
- bne.b fout_pack_set
- tst.l FP_SCR0_HI(%a6)
- bne.b fout_pack_set
- tst.l FP_SCR0_LO(%a6)
- bne.b fout_pack_set
-
-# add the extra condition that only if the k-factor was zero, too, should
-# we zero the exponent
- tst.l %d0
- bne.b fout_pack_set
-# "mantissa" is all zero which means that the answer is zero. but, the '040
-# algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore,
-# if the mantissa is zero, I will zero the exponent, too.
-# the question now is whether the exponents sign bit is allowed to be non-zero
-# for a zero, also...
- andi.w &0xf000,FP_SCR0(%a6)
-
-fout_pack_set:
-
- lea FP_SCR0(%a6),%a0 # pass: src addr
-
-fout_pack_write:
- mov.l (%sp)+,%a1 # pass: dst addr
- mov.l &0xc,%d0 # pass: opsize is 12 bytes
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.b fout_pack_a7
-
- bsr.l _dmem_write # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- rts
-
-# we don't want to do the write if the exception occurred in supervisor mode
-# so _mem_write2() handles this for us.
-fout_pack_a7:
- bsr.l _mem_write2 # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- rts
-
-fout_pack_not_norm:
- cmpi.b %d0,&DENORM # is it a DENORM?
- beq.w fout_pack_norm # yes
- lea FP_SRC(%a6),%a0
- clr.w 2+FP_SRC_EX(%a6)
- cmpi.b %d0,&SNAN # is it an SNAN?
- beq.b fout_pack_snan # yes
- bra.b fout_pack_write # no
-
-fout_pack_snan:
- ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP
- bset &0x6,FP_SRC_HI(%a6) # set snan bit
- bra.b fout_pack_write
-
-#########################################################################
-# XDEF **************************************************************** #
-# fetch_dreg(): fetch register according to index in d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of register fetched #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1 which can range from zero #
-# to fifteen, load the corresponding register file value (where #
-# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the #
-# stack. The rest should still be in their original places. #
-# #
-#########################################################################
-
-# this routine leaves d1 intact for subsequent store_dreg calls.
- global fetch_dreg
-fetch_dreg:
- mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0
- jmp (tbl_fdreg.b,%pc,%d0.w*1)
-
-tbl_fdreg:
- short fdreg0 - tbl_fdreg
- short fdreg1 - tbl_fdreg
- short fdreg2 - tbl_fdreg
- short fdreg3 - tbl_fdreg
- short fdreg4 - tbl_fdreg
- short fdreg5 - tbl_fdreg
- short fdreg6 - tbl_fdreg
- short fdreg7 - tbl_fdreg
- short fdreg8 - tbl_fdreg
- short fdreg9 - tbl_fdreg
- short fdrega - tbl_fdreg
- short fdregb - tbl_fdreg
- short fdregc - tbl_fdreg
- short fdregd - tbl_fdreg
- short fdrege - tbl_fdreg
- short fdregf - tbl_fdreg
-
-fdreg0:
- mov.l EXC_DREGS+0x0(%a6),%d0
- rts
-fdreg1:
- mov.l EXC_DREGS+0x4(%a6),%d0
- rts
-fdreg2:
- mov.l %d2,%d0
- rts
-fdreg3:
- mov.l %d3,%d0
- rts
-fdreg4:
- mov.l %d4,%d0
- rts
-fdreg5:
- mov.l %d5,%d0
- rts
-fdreg6:
- mov.l %d6,%d0
- rts
-fdreg7:
- mov.l %d7,%d0
- rts
-fdreg8:
- mov.l EXC_DREGS+0x8(%a6),%d0
- rts
-fdreg9:
- mov.l EXC_DREGS+0xc(%a6),%d0
- rts
-fdrega:
- mov.l %a2,%d0
- rts
-fdregb:
- mov.l %a3,%d0
- rts
-fdregc:
- mov.l %a4,%d0
- rts
-fdregd:
- mov.l %a5,%d0
- rts
-fdrege:
- mov.l (%a6),%d0
- rts
-fdregf:
- mov.l EXC_A7(%a6),%d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_dreg_l(): store longword to data register specified by d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = longowrd value to store #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# (data register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1, store the longword value #
-# in d0 to the corresponding data register. D0/D1 are on the stack #
-# while the rest are in their initial places. #
-# #
-#########################################################################
-
- global store_dreg_l
-store_dreg_l:
- mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregl.b,%pc,%d1.w*1)
-
-tbl_sdregl:
- short sdregl0 - tbl_sdregl
- short sdregl1 - tbl_sdregl
- short sdregl2 - tbl_sdregl
- short sdregl3 - tbl_sdregl
- short sdregl4 - tbl_sdregl
- short sdregl5 - tbl_sdregl
- short sdregl6 - tbl_sdregl
- short sdregl7 - tbl_sdregl
-
-sdregl0:
- mov.l %d0,EXC_DREGS+0x0(%a6)
- rts
-sdregl1:
- mov.l %d0,EXC_DREGS+0x4(%a6)
- rts
-sdregl2:
- mov.l %d0,%d2
- rts
-sdregl3:
- mov.l %d0,%d3
- rts
-sdregl4:
- mov.l %d0,%d4
- rts
-sdregl5:
- mov.l %d0,%d5
- rts
-sdregl6:
- mov.l %d0,%d6
- rts
-sdregl7:
- mov.l %d0,%d7
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_dreg_w(): store word to data register specified by d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = word value to store #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# (data register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1, store the word value #
-# in d0 to the corresponding data register. D0/D1 are on the stack #
-# while the rest are in their initial places. #
-# #
-#########################################################################
-
- global store_dreg_w
-store_dreg_w:
- mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregw.b,%pc,%d1.w*1)
-
-tbl_sdregw:
- short sdregw0 - tbl_sdregw
- short sdregw1 - tbl_sdregw
- short sdregw2 - tbl_sdregw
- short sdregw3 - tbl_sdregw
- short sdregw4 - tbl_sdregw
- short sdregw5 - tbl_sdregw
- short sdregw6 - tbl_sdregw
- short sdregw7 - tbl_sdregw
-
-sdregw0:
- mov.w %d0,2+EXC_DREGS+0x0(%a6)
- rts
-sdregw1:
- mov.w %d0,2+EXC_DREGS+0x4(%a6)
- rts
-sdregw2:
- mov.w %d0,%d2
- rts
-sdregw3:
- mov.w %d0,%d3
- rts
-sdregw4:
- mov.w %d0,%d4
- rts
-sdregw5:
- mov.w %d0,%d5
- rts
-sdregw6:
- mov.w %d0,%d6
- rts
-sdregw7:
- mov.w %d0,%d7
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_dreg_b(): store byte to data register specified by d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = byte value to store #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# (data register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1, store the byte value #
-# in d0 to the corresponding data register. D0/D1 are on the stack #
-# while the rest are in their initial places. #
-# #
-#########################################################################
-
- global store_dreg_b
-store_dreg_b:
- mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregb.b,%pc,%d1.w*1)
-
-tbl_sdregb:
- short sdregb0 - tbl_sdregb
- short sdregb1 - tbl_sdregb
- short sdregb2 - tbl_sdregb
- short sdregb3 - tbl_sdregb
- short sdregb4 - tbl_sdregb
- short sdregb5 - tbl_sdregb
- short sdregb6 - tbl_sdregb
- short sdregb7 - tbl_sdregb
-
-sdregb0:
- mov.b %d0,3+EXC_DREGS+0x0(%a6)
- rts
-sdregb1:
- mov.b %d0,3+EXC_DREGS+0x4(%a6)
- rts
-sdregb2:
- mov.b %d0,%d2
- rts
-sdregb3:
- mov.b %d0,%d3
- rts
-sdregb4:
- mov.b %d0,%d4
- rts
-sdregb5:
- mov.b %d0,%d5
- rts
-sdregb6:
- mov.b %d0,%d6
- rts
-sdregb7:
- mov.b %d0,%d7
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# inc_areg(): increment an address register by the value in d0 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = amount to increment by #
-# d1 = index of address register to increment #
-# #
-# OUTPUT ************************************************************** #
-# (address register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# Typically used for an instruction w/ a post-increment <ea>, #
-# this routine adds the increment value in d0 to the address register #
-# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
-# in their original places. #
-# For a7, if the increment amount is one, then we have to #
-# increment by two. For any a7 update, set the mia7_flag so that if #
-# an access error exception occurs later in emulation, this address #
-# register update can be undone. #
-# #
-#########################################################################
-
- global inc_areg
-inc_areg:
- mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1
- jmp (tbl_iareg.b,%pc,%d1.w*1)
-
-tbl_iareg:
- short iareg0 - tbl_iareg
- short iareg1 - tbl_iareg
- short iareg2 - tbl_iareg
- short iareg3 - tbl_iareg
- short iareg4 - tbl_iareg
- short iareg5 - tbl_iareg
- short iareg6 - tbl_iareg
- short iareg7 - tbl_iareg
-
-iareg0: add.l %d0,EXC_DREGS+0x8(%a6)
- rts
-iareg1: add.l %d0,EXC_DREGS+0xc(%a6)
- rts
-iareg2: add.l %d0,%a2
- rts
-iareg3: add.l %d0,%a3
- rts
-iareg4: add.l %d0,%a4
- rts
-iareg5: add.l %d0,%a5
- rts
-iareg6: add.l %d0,(%a6)
- rts
-iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6)
- cmpi.b %d0,&0x1
- beq.b iareg7b
- add.l %d0,EXC_A7(%a6)
- rts
-iareg7b:
- addq.l &0x2,EXC_A7(%a6)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# dec_areg(): decrement an address register by the value in d0 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = amount to decrement by #
-# d1 = index of address register to decrement #
-# #
-# OUTPUT ************************************************************** #
-# (address register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# Typically used for an instruction w/ a pre-decrement <ea>, #
-# this routine adds the decrement value in d0 to the address register #
-# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
-# in their original places. #
-# For a7, if the decrement amount is one, then we have to #
-# decrement by two. For any a7 update, set the mda7_flag so that if #
-# an access error exception occurs later in emulation, this address #
-# register update can be undone. #
-# #
-#########################################################################
-
- global dec_areg
-dec_areg:
- mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1
- jmp (tbl_dareg.b,%pc,%d1.w*1)
-
-tbl_dareg:
- short dareg0 - tbl_dareg
- short dareg1 - tbl_dareg
- short dareg2 - tbl_dareg
- short dareg3 - tbl_dareg
- short dareg4 - tbl_dareg
- short dareg5 - tbl_dareg
- short dareg6 - tbl_dareg
- short dareg7 - tbl_dareg
-
-dareg0: sub.l %d0,EXC_DREGS+0x8(%a6)
- rts
-dareg1: sub.l %d0,EXC_DREGS+0xc(%a6)
- rts
-dareg2: sub.l %d0,%a2
- rts
-dareg3: sub.l %d0,%a3
- rts
-dareg4: sub.l %d0,%a4
- rts
-dareg5: sub.l %d0,%a5
- rts
-dareg6: sub.l %d0,(%a6)
- rts
-dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6)
- cmpi.b %d0,&0x1
- beq.b dareg7b
- sub.l %d0,EXC_A7(%a6)
- rts
-dareg7b:
- subq.l &0x2,EXC_A7(%a6)
- rts
-
-##############################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# load_fpn1(): load FP register value into FP_SRC(a6). #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = index of FP register to load #
-# #
-# OUTPUT ************************************************************** #
-# FP_SRC(a6) = value loaded from FP register file #
-# #
-# ALGORITHM *********************************************************** #
-# Using the index in d0, load FP_SRC(a6) with a number from the #
-# FP register file. #
-# #
-#########################################################################
-
- global load_fpn1
-load_fpn1:
- mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0
- jmp (tbl_load_fpn1.b,%pc,%d0.w*1)
-
-tbl_load_fpn1:
- short load_fpn1_0 - tbl_load_fpn1
- short load_fpn1_1 - tbl_load_fpn1
- short load_fpn1_2 - tbl_load_fpn1
- short load_fpn1_3 - tbl_load_fpn1
- short load_fpn1_4 - tbl_load_fpn1
- short load_fpn1_5 - tbl_load_fpn1
- short load_fpn1_6 - tbl_load_fpn1
- short load_fpn1_7 - tbl_load_fpn1
-
-load_fpn1_0:
- mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6)
- mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6)
- mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_1:
- mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6)
- mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6)
- mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_2:
- fmovm.x &0x20, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_3:
- fmovm.x &0x10, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_4:
- fmovm.x &0x08, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_5:
- fmovm.x &0x04, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_6:
- fmovm.x &0x02, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_7:
- fmovm.x &0x01, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-
-#############################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# load_fpn2(): load FP register value into FP_DST(a6). #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = index of FP register to load #
-# #
-# OUTPUT ************************************************************** #
-# FP_DST(a6) = value loaded from FP register file #
-# #
-# ALGORITHM *********************************************************** #
-# Using the index in d0, load FP_DST(a6) with a number from the #
-# FP register file. #
-# #
-#########################################################################
-
- global load_fpn2
-load_fpn2:
- mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0
- jmp (tbl_load_fpn2.b,%pc,%d0.w*1)
-
-tbl_load_fpn2:
- short load_fpn2_0 - tbl_load_fpn2
- short load_fpn2_1 - tbl_load_fpn2
- short load_fpn2_2 - tbl_load_fpn2
- short load_fpn2_3 - tbl_load_fpn2
- short load_fpn2_4 - tbl_load_fpn2
- short load_fpn2_5 - tbl_load_fpn2
- short load_fpn2_6 - tbl_load_fpn2
- short load_fpn2_7 - tbl_load_fpn2
-
-load_fpn2_0:
- mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6)
- mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6)
- mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_1:
- mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6)
- mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6)
- mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_2:
- fmovm.x &0x20, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_3:
- fmovm.x &0x10, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_4:
- fmovm.x &0x08, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_5:
- fmovm.x &0x04, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_6:
- fmovm.x &0x02, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_7:
- fmovm.x &0x01, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-
-#############################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_fpreg(): store an fp value to the fpreg designated d0. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# fp0 = extended precision value to store #
-# d0 = index of floating-point register #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# Store the value in fp0 to the FP register designated by the #
-# value in d0. The FP number can be DENORM or SNAN so we have to be #
-# careful that we don't take an exception here. #
-# #
-#########################################################################
-
- global store_fpreg
-store_fpreg:
- mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0
- jmp (tbl_store_fpreg.b,%pc,%d0.w*1)
-
-tbl_store_fpreg:
- short store_fpreg_0 - tbl_store_fpreg
- short store_fpreg_1 - tbl_store_fpreg
- short store_fpreg_2 - tbl_store_fpreg
- short store_fpreg_3 - tbl_store_fpreg
- short store_fpreg_4 - tbl_store_fpreg
- short store_fpreg_5 - tbl_store_fpreg
- short store_fpreg_6 - tbl_store_fpreg
- short store_fpreg_7 - tbl_store_fpreg
-
-store_fpreg_0:
- fmovm.x &0x80, EXC_FP0(%a6)
- rts
-store_fpreg_1:
- fmovm.x &0x80, EXC_FP1(%a6)
- rts
-store_fpreg_2:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x20
- rts
-store_fpreg_3:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x10
- rts
-store_fpreg_4:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x08
- rts
-store_fpreg_5:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x04
- rts
-store_fpreg_6:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x02
- rts
-store_fpreg_7:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x01
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _denorm(): denormalize an intermediate result #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = points to the operand to be denormalized #
-# (in the internal extended format) #
-# #
-# d0 = rounding precision #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to the denormalized result #
-# (in the internal extended format) #
-# #
-# d0 = guard,round,sticky #
-# #
-# ALGORITHM *********************************************************** #
-# According to the exponent underflow threshold for the given #
-# precision, shift the mantissa bits to the right in order raise the #
-# exponent of the operand to the threshold value. While shifting the #
-# mantissa bits right, maintain the value of the guard, round, and #
-# sticky bits. #
-# other notes: #
-# (1) _denorm() is called by the underflow routines #
-# (2) _denorm() does NOT affect the status register #
-# #
-#########################################################################
-
-#
-# table of exponent threshold values for each precision
-#
-tbl_thresh:
- short 0x0
- short sgl_thresh
- short dbl_thresh
-
- global _denorm
-_denorm:
-#
-# Load the exponent threshold for the precision selected and check
-# to see if (threshold - exponent) is > 65 in which case we can
-# simply calculate the sticky bit and zero the mantissa. otherwise
-# we have to call the denormalization routine.
-#
- lsr.b &0x2, %d0 # shift prec to lo bits
- mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold
- mov.w %d1, %d0 # copy d1 into d0
- sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp
- cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits)
- bpl.b denorm_set_stky # yes; just calc sticky
-
- clr.l %d0 # clear g,r,s
- btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set?
- beq.b denorm_call # no; don't change anything
- bset &29, %d0 # yes; set sticky bit
-
-denorm_call:
- bsr.l dnrm_lp # denormalize the number
- rts
-
-#
-# all bit would have been shifted off during the denorm so simply
-# calculate if the sticky should be set and clear the entire mantissa.
-#
-denorm_set_stky:
- mov.l &0x20000000, %d0 # set sticky bit in return value
- mov.w %d1, FTEMP_EX(%a0) # load exp with threshold
- clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa)
- clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa)
- rts
-
-# #
-# dnrm_lp(): normalize exponent/mantissa to specified threshold #
-# #
-# INPUT: #
-# %a0 : points to the operand to be denormalized #
-# %d0{31:29} : initial guard,round,sticky #
-# %d1{15:0} : denormalization threshold #
-# OUTPUT: #
-# %a0 : points to the denormalized operand #
-# %d0{31:29} : final guard,round,sticky #
-# #
-
-# *** Local Equates *** #
-set GRS, L_SCR2 # g,r,s temp storage
-set FTEMP_LO2, L_SCR1 # FTEMP_LO copy
-
- global dnrm_lp
-dnrm_lp:
-
-#
-# make a copy of FTEMP_LO and place the g,r,s bits directly after it
-# in memory so as to make the bitfield extraction for denormalization easier.
-#
- mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy
- mov.l %d0, GRS(%a6) # place g,r,s after it
-
-#
-# check to see how much less than the underflow threshold the operand
-# exponent is.
-#
- mov.l %d1, %d0 # copy the denorm threshold
- sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent
- ble.b dnrm_no_lp # d1 <= 0
- cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ?
- blt.b case_1 # yes
- cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ?
- blt.b case_2 # yes
- bra.w case_3 # (d1 >= 64)
-
-#
-# No normalization necessary
-#
-dnrm_no_lp:
- mov.l GRS(%a6), %d0 # restore original g,r,s
- rts
-
-#
-# case (0<d1<32)
-#
-# %d0 = denorm threshold
-# %d1 = "n" = amt to shift
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# <-(n)-><-(32 - n)-><------(32)-------><------(32)------->
-# ---------------------------------------------------------
-# |0.....0| NEW_HI | NEW_FTEMP_LO |grs |
-# ---------------------------------------------------------
-#
-case_1:
- mov.l %d2, -(%sp) # create temp storage
-
- mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
- mov.l &32, %d0
- sub.w %d1, %d0 # %d0 = 32 - %d1
-
- cmpi.w %d1, &29 # is shft amt >= 29
- blt.b case1_extract # no; no fix needed
- mov.b GRS(%a6), %d2
- or.b %d2, 3+FTEMP_LO2(%a6)
-
-case1_extract:
- bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI
- bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO
- bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S
-
- mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI
- mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO
-
- bftst %d0{&2:&30} # were bits shifted off?
- beq.b case1_sticky_clear # no; go finish
- bset &rnd_stky_bit, %d0 # yes; set sticky bit
-
-case1_sticky_clear:
- and.l &0xe0000000, %d0 # clear all but G,R,S
- mov.l (%sp)+, %d2 # restore temp register
- rts
-
-#
-# case (32<=d1<64)
-#
-# %d0 = denorm threshold
-# %d1 = "n" = amt to shift
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
-# \ \ \
-# \ \ \
-# \ \ -------------------
-# \ -------------------- \
-# ------------------- \ \
-# \ \ \
-# \ \ \
-# \ \ \
-# <-------(32)------><-(n)-><-(32 - n)-><------(32)------->
-# ---------------------------------------------------------
-# |0...............0|0....0| NEW_LO |grs |
-# ---------------------------------------------------------
-#
-case_2:
- mov.l %d2, -(%sp) # create temp storage
-
- mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
- subi.w &0x20, %d1 # %d1 now between 0 and 32
- mov.l &0x20, %d0
- sub.w %d1, %d0 # %d0 = 32 - %d1
-
-# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize
-# the number of bits to check for the sticky detect.
-# it only plays a role in shift amounts of 61-63.
- mov.b GRS(%a6), %d2
- or.b %d2, 3+FTEMP_LO2(%a6)
-
- bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO
- bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S
-
- bftst %d1{&2:&30} # were any bits shifted off?
- bne.b case2_set_sticky # yes; set sticky bit
- bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off?
- bne.b case2_set_sticky # yes; set sticky bit
-
- mov.l %d1, %d0 # move new G,R,S to %d0
- bra.b case2_end
-
-case2_set_sticky:
- mov.l %d1, %d0 # move new G,R,S to %d0
- bset &rnd_stky_bit, %d0 # set sticky bit
-
-case2_end:
- clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0
- mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO
- and.l &0xe0000000, %d0 # clear all but G,R,S
-
- mov.l (%sp)+,%d2 # restore temp register
- rts
-
-#
-# case (d1>=64)
-#
-# %d0 = denorm threshold
-# %d1 = amt to shift
-#
-case_3:
- mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold
-
- cmpi.w %d1, &65 # is shift amt > 65?
- blt.b case3_64 # no; it's == 64
- beq.b case3_65 # no; it's == 65
-
-#
-# case (d1>65)
-#
-# Shift value is > 65 and out of range. All bits are shifted off.
-# Return a zero mantissa with the sticky bit set
-#
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- mov.l &0x20000000, %d0 # set sticky bit
- rts
-
-#
-# case (d1 == 64)
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-------(32)------>
-# \ \
-# \ \
-# \ \
-# \ ------------------------------
-# ------------------------------- \
-# \ \
-# \ \
-# \ \
-# <-------(32)------>
-# ---------------------------------------------------------
-# |0...............0|0................0|grs |
-# ---------------------------------------------------------
-#
-case3_64:
- mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
- mov.l %d0, %d1 # make a copy
- and.l &0xc0000000, %d0 # extract G,R
- and.l &0x3fffffff, %d1 # extract other bits
-
- bra.b case3_complete
-
-#
-# case (d1 == 65)
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-------(32)------>
-# \ \
-# \ \
-# \ \
-# \ ------------------------------
-# -------------------------------- \
-# \ \
-# \ \
-# \ \
-# <-------(31)----->
-# ---------------------------------------------------------
-# |0...............0|0................0|0rs |
-# ---------------------------------------------------------
-#
-case3_65:
- mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
- and.l &0x80000000, %d0 # extract R bit
- lsr.l &0x1, %d0 # shift high bit into R bit
- and.l &0x7fffffff, %d1 # extract other bits
-
-case3_complete:
-# last operation done was an "and" of the bits shifted off so the condition
-# codes are already set so branch accordingly.
- bne.b case3_set_sticky # yes; go set new sticky
- tst.l FTEMP_LO(%a0) # were any bits shifted off?
- bne.b case3_set_sticky # yes; go set new sticky
- tst.b GRS(%a6) # were any bits shifted off?
- bne.b case3_set_sticky # yes; go set new sticky
-
-#
-# no bits were shifted off so don't set the sticky bit.
-# the guard and
-# the entire mantissa is zero.
-#
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- rts
-
-#
-# some bits were shifted off so set the sticky bit.
-# the entire mantissa is zero.
-#
-case3_set_sticky:
- bset &rnd_stky_bit,%d0 # set new sticky bit
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _round(): round result according to precision/mode #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = ptr to input operand in internal extended format #
-# d1(hi) = contains rounding precision: #
-# ext = $0000xxxx #
-# sgl = $0004xxxx #
-# dbl = $0008xxxx #
-# d1(lo) = contains rounding mode: #
-# RN = $xxxx0000 #
-# RZ = $xxxx0001 #
-# RM = $xxxx0002 #
-# RP = $xxxx0003 #
-# d0{31:29} = contains the g,r,s bits (extended) #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to rounded result #
-# #
-# ALGORITHM *********************************************************** #
-# On return the value pointed to by a0 is correctly rounded, #
-# a0 is preserved and the g-r-s bits in d0 are cleared. #
-# The result is not typed - the tag field is invalid. The #
-# result is still in the internal extended format. #
-# #
-# The INEX bit of USER_FPSR will be set if the rounded result was #
-# inexact (i.e. if any of the g-r-s bits were set). #
-# #
-#########################################################################
-
- global _round
-_round:
-#
-# ext_grs() looks at the rounding precision and sets the appropriate
-# G,R,S bits.
-# If (G,R,S == 0) then result is exact and round is done, else set
-# the inex flag in status reg and continue.
-#
- bsr.l ext_grs # extract G,R,S
-
- tst.l %d0 # are G,R,S zero?
- beq.w truncate # yes; round is complete
-
- or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex
-
-#
-# Use rounding mode as an index into a jump table for these modes.
-# All of the following assumes grs != 0.
-#
- mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset
- jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler
-
-tbl_mode:
- short rnd_near - tbl_mode
- short truncate - tbl_mode # RZ always truncates
- short rnd_mnus - tbl_mode
- short rnd_plus - tbl_mode
-
-#################################################################
-# ROUND PLUS INFINITY #
-# #
-# If sign of fp number = 0 (positive), then add 1 to l. #
-#################################################################
-rnd_plus:
- tst.b FTEMP_SGN(%a0) # check for sign
- bmi.w truncate # if positive then truncate
-
- mov.l &0xffffffff, %d0 # force g,r,s to be all f's
- swap %d1 # set up d1 for round prec.
-
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
-
-#################################################################
-# ROUND MINUS INFINITY #
-# #
-# If sign of fp number = 1 (negative), then add 1 to l. #
-#################################################################
-rnd_mnus:
- tst.b FTEMP_SGN(%a0) # check for sign
- bpl.w truncate # if negative then truncate
-
- mov.l &0xffffffff, %d0 # force g,r,s to be all f's
- swap %d1 # set up d1 for round prec.
-
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
-
-#################################################################
-# ROUND NEAREST #
-# #
-# If (g=1), then add 1 to l and if (r=s=0), then clear l #
-# Note that this will round to even in case of a tie. #
-#################################################################
-rnd_near:
- asl.l &0x1, %d0 # shift g-bit to c-bit
- bcc.w truncate # if (g=1) then
-
- swap %d1 # set up d1 for round prec.
-
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
-
-# *** LOCAL EQUATES ***
-set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec
-set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec
-
-#########################
-# ADD SINGLE #
-#########################
-add_sgl:
- add.l &ad_1_sgl, FTEMP_HI(%a0)
- bcc.b scc_clr # no mantissa overflow
- roxr.w FTEMP_HI(%a0) # shift v-bit back in
- roxr.w FTEMP_HI+2(%a0) # shift v-bit back in
- add.w &0x1, FTEMP_EX(%a0) # and incr exponent
-scc_clr:
- tst.l %d0 # test for rs = 0
- bne.b sgl_done
- and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit
-sgl_done:
- and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit
- clr.l FTEMP_LO(%a0) # clear d2
- rts
-
-#########################
-# ADD EXTENDED #
-#########################
-add_ext:
- addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit
- bcc.b xcc_clr # test for carry out
- addq.l &1,FTEMP_HI(%a0) # propagate carry
- bcc.b xcc_clr
- roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_LO(%a0)
- roxr.w FTEMP_LO+2(%a0)
- add.w &0x1,FTEMP_EX(%a0) # and inc exp
-xcc_clr:
- tst.l %d0 # test rs = 0
- bne.b add_ext_done
- and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit
-add_ext_done:
- rts
-
-#########################
-# ADD DOUBLE #
-#########################
-add_dbl:
- add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb
- bcc.b dcc_clr # no carry
- addq.l &0x1, FTEMP_HI(%a0) # propagate carry
- bcc.b dcc_clr # no carry
-
- roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_LO(%a0)
- roxr.w FTEMP_LO+2(%a0)
- addq.w &0x1, FTEMP_EX(%a0) # incr exponent
-dcc_clr:
- tst.l %d0 # test for rs = 0
- bne.b dbl_done
- and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit
-
-dbl_done:
- and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit
- rts
-
-###########################
-# Truncate all other bits #
-###########################
-truncate:
- swap %d1 # select rnd prec
-
- cmpi.b %d1, &s_mode # is prec sgl?
- beq.w sgl_done # yes
- bgt.b dbl_done # no; it's dbl
- rts # no; it's ext
-
-
-#
-# ext_grs(): extract guard, round and sticky bits according to
-# rounding precision.
-#
-# INPUT
-# d0 = extended precision g,r,s (in d0{31:29})
-# d1 = {PREC,ROUND}
-# OUTPUT
-# d0{31:29} = guard, round, sticky
-#
-# The ext_grs extract the guard/round/sticky bits according to the
-# selected rounding precision. It is called by the round subroutine
-# only. All registers except d0 are kept intact. d0 becomes an
-# updated guard,round,sticky in d0{31:29}
-#
-# Notes: the ext_grs uses the round PREC, and therefore has to swap d1
-# prior to usage, and needs to restore d1 to original. this
-# routine is tightly tied to the round routine and not meant to
-# uphold standard subroutine calling practices.
-#
-
-ext_grs:
- swap %d1 # have d1.w point to round precision
- tst.b %d1 # is rnd prec = extended?
- bne.b ext_grs_not_ext # no; go handle sgl or dbl
-
-#
-# %d0 actually already hold g,r,s since _round() had it before calling
-# this function. so, as long as we don't disturb it, we are "returning" it.
-#
-ext_grs_ext:
- swap %d1 # yes; return to correct positions
- rts
-
-ext_grs_not_ext:
- movm.l &0x3000, -(%sp) # make some temp registers {d2/d3}
-
- cmpi.b %d1, &s_mode # is rnd prec = sgl?
- bne.b ext_grs_dbl # no; go handle dbl
-
-#
-# sgl:
-# 96 64 40 32 0
-# -----------------------------------------------------
-# | EXP |XXXXXXX| |xx | |grs|
-# -----------------------------------------------------
-# <--(24)--->nn\ /
-# ee ---------------------
-# ww |
-# v
-# gr new sticky
-#
-ext_grs_sgl:
- bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right
- mov.l &30, %d2 # of the sgl prec. limits
- lsl.l %d2, %d3 # shift g-r bits to MSB of d3
- mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test
- and.l &0x0000003f, %d2 # s bit is the or of all other
- bne.b ext_grs_st_stky # bits to the right of g-r
- tst.l FTEMP_LO(%a0) # test lower mantissa
- bne.b ext_grs_st_stky # if any are set, set sticky
- tst.l %d0 # test original g,r,s
- bne.b ext_grs_st_stky # if any are set, set sticky
- bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit
-
-#
-# dbl:
-# 96 64 32 11 0
-# -----------------------------------------------------
-# | EXP |XXXXXXX| | |xx |grs|
-# -----------------------------------------------------
-# nn\ /
-# ee -------
-# ww |
-# v
-# gr new sticky
-#
-ext_grs_dbl:
- bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right
- mov.l &30, %d2 # of the dbl prec. limits
- lsl.l %d2, %d3 # shift g-r bits to the MSB of d3
- mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test
- and.l &0x000001ff, %d2 # s bit is the or-ing of all
- bne.b ext_grs_st_stky # other bits to the right of g-r
- tst.l %d0 # test word original g,r,s
- bne.b ext_grs_st_stky # if any are set, set sticky
- bra.b ext_grs_end_sd # if clear, exit
-
-ext_grs_st_stky:
- bset &rnd_stky_bit, %d3 # set sticky bit
-ext_grs_end_sd:
- mov.l %d3, %d0 # return grs to d0
-
- movm.l (%sp)+, &0xc # restore scratch registers {d2/d3}
-
- swap %d1 # restore d1 to original
- rts
-
-#########################################################################
-# norm(): normalize the mantissa of an extended precision input. the #
-# input operand should not be normalized already. #
-# #
-# XDEF **************************************************************** #
-# norm() #
-# #
-# XREF **************************************************************** #
-# none #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer fp extended precision operand to normalize #
-# #
-# OUTPUT ************************************************************** #
-# d0 = number of bit positions the mantissa was shifted #
-# a0 = the input operand's mantissa is normalized; the exponent #
-# is unchanged. #
-# #
-#########################################################################
- global norm
-norm:
- mov.l %d2, -(%sp) # create some temp regs
- mov.l %d3, -(%sp)
-
- mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
- mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
-
- bfffo %d0{&0:&32}, %d2 # how many places to shift?
- beq.b norm_lo # hi(man) is all zeroes!
-
-norm_hi:
- lsl.l %d2, %d0 # left shift hi(man)
- bfextu %d1{&0:%d2}, %d3 # extract lo bits
-
- or.l %d3, %d0 # create hi(man)
- lsl.l %d2, %d1 # create lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
-norm_lo:
- bfffo %d1{&0:&32}, %d2 # how many places to shift?
- lsl.l %d2, %d1 # shift lo(man)
- add.l &32, %d2 # add 32 to shft amount
-
- mov.l %d1, FTEMP_HI(%a0) # store hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) is now zero
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
-#########################################################################
-# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
-# - returns corresponding optype tag #
-# #
-# XDEF **************************************************************** #
-# unnorm_fix() #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to unnormalized extended precision number #
-# #
-# OUTPUT ************************************************************** #
-# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
-# a0 = input operand has been converted to a norm, denorm, or #
-# zero; both the exponent and mantissa are changed. #
-# #
-#########################################################################
-
- global unnorm_fix
-unnorm_fix:
- bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
- bne.b unnorm_shift # hi(man) is not all zeroes
-
-#
-# hi(man) is all zeroes so see if any bits in lo(man) are set
-#
-unnorm_chk_lo:
- bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
- beq.w unnorm_zero # yes
-
- add.w &32, %d0 # no; fix shift distance
-
-#
-# d0 = # shifts needed for complete normalization
-#
-unnorm_shift:
- clr.l %d1 # clear top word
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1 # strip off sgn
-
- cmp.w %d0, %d1 # will denorm push exp < 0?
- bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
-
-#
-# exponent would not go < 0. Therefore, number stays normalized
-#
- sub.w %d0, %d1 # shift exponent value
- mov.w FTEMP_EX(%a0), %d0 # load old exponent
- and.w &0x8000, %d0 # save old sign
- or.w %d0, %d1 # {sgn,new exp}
- mov.w %d1, FTEMP_EX(%a0) # insert new exponent
-
- bsr.l norm # normalize UNNORM
-
- mov.b &NORM, %d0 # return new optype tag
- rts
-
-#
-# exponent would go < 0, so only denormalize until exp = 0
-#
-unnorm_nrm_zero:
- cmp.b %d1, &32 # is exp <= 32?
- bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
-
- bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
- mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # extract new lo(man)
- mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
-#
-# only mantissa bits set are in lo(man)
-#
-unnorm_nrm_zero_lrg:
- sub.w &32, %d1 # adjust shft amt by 32
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # left shift lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) = 0
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
-#
-# whole mantissa is zero so this UNNORM is actually a zero
-#
-unnorm_zero:
- and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
-
- mov.b &ZERO, %d0 # fix optype tag
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# set_tag_x(): return the optype of the input ext fp number #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# If it's an unnormalized zero, alter the operand and force it #
-# to be a normal zero. #
-# #
-#########################################################################
-
- global set_tag_x
-set_tag_x:
- mov.w FTEMP_EX(%a0), %d0 # extract exponent
- andi.w &0x7fff, %d0 # strip off sign
- cmpi.w %d0, &0x7fff # is (EXP == MAX)?
- beq.b inf_or_nan_x
-not_inf_or_nan_x:
- btst &0x7,FTEMP_HI(%a0)
- beq.b not_norm_x
-is_norm_x:
- mov.b &NORM, %d0
- rts
-not_norm_x:
- tst.w %d0 # is exponent = 0?
- bne.b is_unnorm_x
-not_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_denorm_x
- tst.l FTEMP_LO(%a0)
- bne.b is_denorm_x
-is_zero_x:
- mov.b &ZERO, %d0
- rts
-is_denorm_x:
- mov.b &DENORM, %d0
- rts
-# must distinguish now "Unnormalized zeroes" which we
-# must convert to zero.
-is_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_unnorm_reg_x
- tst.l FTEMP_LO(%a0)
- bne.b is_unnorm_reg_x
-# it's an "unnormalized zero". let's convert it to an actual zero...
- andi.w &0x8000,FTEMP_EX(%a0) # clear exponent
- mov.b &ZERO, %d0
- rts
-is_unnorm_reg_x:
- mov.b &UNNORM, %d0
- rts
-inf_or_nan_x:
- tst.l FTEMP_LO(%a0)
- bne.b is_nan_x
- mov.l FTEMP_HI(%a0), %d0
- and.l &0x7fffffff, %d0 # msb is a don't care!
- bne.b is_nan_x
-is_inf_x:
- mov.b &INF, %d0
- rts
-is_nan_x:
- btst &0x6, FTEMP_HI(%a0)
- beq.b is_snan_x
- mov.b &QNAN, %d0
- rts
-is_snan_x:
- mov.b &SNAN, %d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# set_tag_d(): return the optype of the input dbl fp number #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = points to double precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# #
-#########################################################################
-
- global set_tag_d
-set_tag_d:
- mov.l FTEMP(%a0), %d0
- mov.l %d0, %d1
-
- andi.l &0x7ff00000, %d0
- beq.b zero_or_denorm_d
-
- cmpi.l %d0, &0x7ff00000
- beq.b inf_or_nan_d
-
-is_norm_d:
- mov.b &NORM, %d0
- rts
-zero_or_denorm_d:
- and.l &0x000fffff, %d1
- bne is_denorm_d
- tst.l 4+FTEMP(%a0)
- bne is_denorm_d
-is_zero_d:
- mov.b &ZERO, %d0
- rts
-is_denorm_d:
- mov.b &DENORM, %d0
- rts
-inf_or_nan_d:
- and.l &0x000fffff, %d1
- bne is_nan_d
- tst.l 4+FTEMP(%a0)
- bne is_nan_d
-is_inf_d:
- mov.b &INF, %d0
- rts
-is_nan_d:
- btst &19, %d1
- bne is_qnan_d
-is_snan_d:
- mov.b &SNAN, %d0
- rts
-is_qnan_d:
- mov.b &QNAN, %d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# set_tag_s(): return the optype of the input sgl fp number #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to single precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# #
-#########################################################################
-
- global set_tag_s
-set_tag_s:
- mov.l FTEMP(%a0), %d0
- mov.l %d0, %d1
-
- andi.l &0x7f800000, %d0
- beq.b zero_or_denorm_s
-
- cmpi.l %d0, &0x7f800000
- beq.b inf_or_nan_s
-
-is_norm_s:
- mov.b &NORM, %d0
- rts
-zero_or_denorm_s:
- and.l &0x007fffff, %d1
- bne is_denorm_s
-is_zero_s:
- mov.b &ZERO, %d0
- rts
-is_denorm_s:
- mov.b &DENORM, %d0
- rts
-inf_or_nan_s:
- and.l &0x007fffff, %d1
- bne is_nan_s
-is_inf_s:
- mov.b &INF, %d0
- rts
-is_nan_s:
- btst &22, %d1
- bne is_qnan_s
-is_snan_s:
- mov.b &SNAN, %d0
- rts
-is_qnan_s:
- mov.b &QNAN, %d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# unf_res(): routine to produce default underflow result of a #
-# scaled extended precision number; this is used by #
-# fadd/fdiv/fmul/etc. emulation routines. #
-# unf_res4(): same as above but for fsglmul/fsgldiv which use #
-# single round prec and extended prec mode. #
-# #
-# XREF **************************************************************** #
-# _denorm() - denormalize according to scale factor #
-# _round() - round denormalized number according to rnd prec #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precison operand #
-# d0 = scale factor #
-# d1 = rounding precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to default underflow result in extended precision #
-# d0.b = result FPSR_cc which caller may or may not want to save #
-# #
-# ALGORITHM *********************************************************** #
-# Convert the input operand to "internal format" which means the #
-# exponent is extended to 16 bits and the sign is stored in the unused #
-# portion of the extended precison operand. Denormalize the number #
-# according to the scale factor passed in d0. Then, round the #
-# denormalized result. #
-# Set the FPSR_exc bits as appropriate but return the cc bits in #
-# d0 in case the caller doesn't want to save them (as is the case for #
-# fmove out). #
-# unf_res4() for fsglmul/fsgldiv forces the denorm to extended #
-# precision and the rounding mode to single. #
-# #
-#########################################################################
- global unf_res
-unf_res:
- mov.l %d1, -(%sp) # save rnd prec,mode on stack
-
- btst &0x7, FTEMP_EX(%a0) # make "internal" format
- sne FTEMP_SGN(%a0)
-
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1
- sub.w %d0, %d1
- mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent
-
- mov.l %a0, -(%sp) # save operand ptr during calls
-
- mov.l 0x4(%sp),%d0 # pass rnd prec.
- andi.w &0x00c0,%d0
- lsr.w &0x4,%d0
- bsr.l _denorm # denorm result
-
- mov.l (%sp),%a0
- mov.w 0x6(%sp),%d1 # load prec:mode into %d1
- andi.w &0xc0,%d1 # extract rnd prec
- lsr.w &0x4,%d1
- swap %d1
- mov.w 0x6(%sp),%d1
- andi.w &0x30,%d1
- lsr.w &0x4,%d1
- bsr.l _round # round the denorm
-
- mov.l (%sp)+, %a0
-
-# result is now rounded properly. convert back to normal format
- bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue
- tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
- beq.b unf_res_chkifzero # no; result is positive
- bset &0x7, FTEMP_EX(%a0) # set result sgn
- clr.b FTEMP_SGN(%a0) # clear temp sign
-
-# the number may have become zero after rounding. set ccodes accordingly.
-unf_res_chkifzero:
- clr.l %d0
- tst.l FTEMP_HI(%a0) # is value now a zero?
- bne.b unf_res_cont # no
- tst.l FTEMP_LO(%a0)
- bne.b unf_res_cont # no
-# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit
- bset &z_bit, %d0 # yes; set zero ccode bit
-
-unf_res_cont:
-
-#
-# can inex1 also be set along with unfl and inex2???
-#
-# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
-#
- btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.b unf_res_end # no
- bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl
-
-unf_res_end:
- add.l &0x4, %sp # clear stack
- rts
-
-# unf_res() for fsglmul() and fsgldiv().
- global unf_res4
-unf_res4:
- mov.l %d1,-(%sp) # save rnd prec,mode on stack
-
- btst &0x7,FTEMP_EX(%a0) # make "internal" format
- sne FTEMP_SGN(%a0)
-
- mov.w FTEMP_EX(%a0),%d1 # extract exponent
- and.w &0x7fff,%d1
- sub.w %d0,%d1
- mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent
-
- mov.l %a0,-(%sp) # save operand ptr during calls
-
- clr.l %d0 # force rnd prec = ext
- bsr.l _denorm # denorm result
-
- mov.l (%sp),%a0
- mov.w &s_mode,%d1 # force rnd prec = sgl
- swap %d1
- mov.w 0x6(%sp),%d1 # load rnd mode
- andi.w &0x30,%d1 # extract rnd prec
- lsr.w &0x4,%d1
- bsr.l _round # round the denorm
-
- mov.l (%sp)+,%a0
-
-# result is now rounded properly. convert back to normal format
- bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue
- tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
- beq.b unf_res4_chkifzero # no; result is positive
- bset &0x7,FTEMP_EX(%a0) # set result sgn
- clr.b FTEMP_SGN(%a0) # clear temp sign
-
-# the number may have become zero after rounding. set ccodes accordingly.
-unf_res4_chkifzero:
- clr.l %d0
- tst.l FTEMP_HI(%a0) # is value now a zero?
- bne.b unf_res4_cont # no
- tst.l FTEMP_LO(%a0)
- bne.b unf_res4_cont # no
-# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit
- bset &z_bit,%d0 # yes; set zero ccode bit
-
-unf_res4_cont:
-
-#
-# can inex1 also be set along with unfl and inex2???
-#
-# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
-#
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.b unf_res4_end # no
- bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl
-
-unf_res4_end:
- add.l &0x4,%sp # clear stack
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# ovf_res(): routine to produce the default overflow result of #
-# an overflowing number. #
-# ovf_res2(): same as above but the rnd mode/prec are passed #
-# differently. #
-# #
-# XREF **************************************************************** #
-# none #
-# #
-# INPUT *************************************************************** #
-# d1.b = '-1' => (-); '0' => (+) #
-# ovf_res(): #
-# d0 = rnd mode/prec #
-# ovf_res2(): #
-# hi(d0) = rnd prec #
-# lo(d0) = rnd mode #
-# #
-# OUTPUT ************************************************************** #
-# a0 = points to extended precision result #
-# d0.b = condition code bits #
-# #
-# ALGORITHM *********************************************************** #
-# The default overflow result can be determined by the sign of #
-# the result and the rounding mode/prec in effect. These bits are #
-# concatenated together to create an index into the default result #
-# table. A pointer to the correct result is returned in a0. The #
-# resulting condition codes are returned in d0 in case the caller #
-# doesn't want FPSR_cc altered (as is the case for fmove out). #
-# #
-#########################################################################
-
- global ovf_res
-ovf_res:
- andi.w &0x10,%d1 # keep result sign
- lsr.b &0x4,%d0 # shift prec/mode
- or.b %d0,%d1 # concat the two
- mov.w %d1,%d0 # make a copy
- lsl.b &0x1,%d1 # multiply d1 by 2
- bra.b ovf_res_load
-
- global ovf_res2
-ovf_res2:
- and.w &0x10, %d1 # keep result sign
- or.b %d0, %d1 # insert rnd mode
- swap %d0
- or.b %d0, %d1 # insert rnd prec
- mov.w %d1, %d0 # make a copy
- lsl.b &0x1, %d1 # shift left by 1
-
-#
-# use the rounding mode, precision, and result sign as in index into the
-# two tables below to fetch the default result and the result ccodes.
-#
-ovf_res_load:
- mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes
- lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr
-
- rts
-
-tbl_ovfl_cc:
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x0, 0x0, 0x0, 0x0
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
-
-tbl_ovfl_result:
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ
- long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
-
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ
- long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
-
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ
- long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
-
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
-
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP
-
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP
-
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP
-
-#########################################################################
-# XDEF **************************************************************** #
-# get_packed(): fetch a packed operand from memory and then #
-# convert it to a floating-point binary number. #
-# #
-# XREF **************************************************************** #
-# _dcalc_ea() - calculate the correct <ea> #
-# _mem_read() - fetch the packed operand from memory #
-# facc_in_x() - the fetch failed so jump to special exit code #
-# decbin() - convert packed to binary extended precision #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If no failure on _mem_read(): #
-# FP_SRC(a6) = packed operand now as a binary FP number #
-# #
-# ALGORITHM *********************************************************** #
-# Get the correct <ea> which is the value on the exception stack #
-# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. #
-# Then, fetch the operand from memory. If the fetch fails, exit #
-# through facc_in_x(). #
-# If the packed operand is a ZERO,NAN, or INF, convert it to #
-# its binary representation here. Else, call decbin() which will #
-# convert the packed value to an extended precision binary value. #
-# #
-#########################################################################
-
-# the stacked <ea> for packed is correct except for -(An).
-# the base reg must be updated for both -(An) and (An)+.
- global get_packed
-get_packed:
- mov.l &0xc,%d0 # packed is 12 bytes
- bsr.l _dcalc_ea # fetch <ea>; correct An
-
- lea FP_SRC(%a6),%a1 # pass: ptr to super dst
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _dmem_read # read packed operand
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_x # yes
-
-# The packed operand is an INF or a NAN if the exponent field is all ones.
- bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
- cmpi.w %d0,&0x7fff # INF or NAN?
- bne.b gp_try_zero # no
- rts # operand is an INF or NAN
-
-# The packed operand is a zero if the mantissa is all zero, else it's
-# a normal packed op.
-gp_try_zero:
- mov.b 3+FP_SRC(%a6),%d0 # get byte 4
- andi.b &0x0f,%d0 # clear all but last nybble
- bne.b gp_not_spec # not a zero
- tst.l FP_SRC_HI(%a6) # is lw 2 zero?
- bne.b gp_not_spec # not a zero
- tst.l FP_SRC_LO(%a6) # is lw 3 zero?
- bne.b gp_not_spec # not a zero
- rts # operand is a ZERO
-gp_not_spec:
- lea FP_SRC(%a6),%a0 # pass: ptr to packed op
- bsr.l decbin # convert to extended
- fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
- rts
-
-#########################################################################
-# decbin(): Converts normalized packed bcd value pointed to by register #
-# a0 to extended-precision value in fp0. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to normalized packed bcd value #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = exact fp representation of the packed bcd value. #
-# #
-# ALGORITHM *********************************************************** #
-# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, #
-# and NaN operands are dispatched without entering this routine) #
-# value in 68881/882 format at location (a0). #
-# #
-# A1. Convert the bcd exponent to binary by successive adds and #
-# muls. Set the sign according to SE. Subtract 16 to compensate #
-# for the mantissa which is to be interpreted as 17 integer #
-# digits, rather than 1 integer and 16 fraction digits. #
-# Note: this operation can never overflow. #
-# #
-# A2. Convert the bcd mantissa to binary by successive #
-# adds and muls in FP0. Set the sign according to SM. #
-# The mantissa digits will be converted with the decimal point #
-# assumed following the least-significant digit. #
-# Note: this operation can never overflow. #
-# #
-# A3. Count the number of leading/trailing zeros in the #
-# bcd string. If SE is positive, count the leading zeros; #
-# if negative, count the trailing zeros. Set the adjusted #
-# exponent equal to the exponent from A1 and the zero count #
-# added if SM = 1 and subtracted if SM = 0. Scale the #
-# mantissa the equivalent of forcing in the bcd value: #
-# #
-# SM = 0 a non-zero digit in the integer position #
-# SM = 1 a non-zero digit in Mant0, lsd of the fraction #
-# #
-# this will insure that any value, regardless of its #
-# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted #
-# consistently. #
-# #
-# A4. Calculate the factor 10^exp in FP1 using a table of #
-# 10^(2^n) values. To reduce the error in forming factors #
-# greater than 10^27, a directed rounding scheme is used with #
-# tables rounded to RN, RM, and RP, according to the table #
-# in the comments of the pwrten section. #
-# #
-# A5. Form the final binary number by scaling the mantissa by #
-# the exponent factor. This is done by multiplying the #
-# mantissa in FP0 by the factor in FP1 if the adjusted #
-# exponent sign is positive, and dividing FP0 by FP1 if #
-# it is negative. #
-# #
-# Clean up and return. Check if the final mul or div was inexact. #
-# If so, set INEX1 in USER_FPSR. #
-# #
-#########################################################################
-
-#
-# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
-# to nearest, minus, and plus, respectively. The tables include
-# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
-# is required until the power is greater than 27, however, all
-# tables include the first 5 for ease of indexing.
-#
-RTABLE:
- byte 0,0,0,0
- byte 2,3,2,3
- byte 2,3,3,2
- byte 3,2,2,3
-
- set FNIBS,7
- set FSTRT,0
-
- set ESTRT,4
- set EDIGITS,2
-
- global decbin
-decbin:
- mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input
- mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it
- mov.l 0x8(%a0),FP_SCR0_LO(%a6)
-
- lea FP_SCR0(%a6),%a0
-
- movm.l &0x3c00,-(%sp) # save d2-d5
- fmovm.x &0x1,-(%sp) # save fp1
-#
-# Calculate exponent:
-# 1. Copy bcd value in memory for use as a working copy.
-# 2. Calculate absolute value of exponent in d1 by mul and add.
-# 3. Correct for exponent sign.
-# 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
-# (i.e., all digits assumed left of the decimal point.)
-#
-# Register usage:
-#
-# calc_e:
-# (*) d0: temp digit storage
-# (*) d1: accumulator for binary exponent
-# (*) d2: digit count
-# (*) d3: offset pointer
-# ( ) d4: first word of bcd
-# ( ) a0: pointer to working bcd value
-# ( ) a6: pointer to original bcd value
-# (*) FP_SCR1: working copy of original bcd value
-# (*) L_SCR1: copy of original exponent word
-#
-calc_e:
- mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part
- mov.l &ESTRT,%d3 # counter to pick up digits
- mov.l (%a0),%d4 # get first word of bcd
- clr.l %d1 # zero d1 for accumulator
-e_gd:
- mulu.l &0xa,%d1 # mul partial product by one digit place
- bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0
- add.l %d0,%d1 # d1 = d1 + d0
- addq.b &4,%d3 # advance d3 to the next digit
- dbf.w %d2,e_gd # if we have used all 3 digits, exit loop
- btst &30,%d4 # get SE
- beq.b e_pos # don't negate if pos
- neg.l %d1 # negate before subtracting
-e_pos:
- sub.l &16,%d1 # sub to compensate for shift of mant
- bge.b e_save # if still pos, do not neg
- neg.l %d1 # now negative, make pos and set SE
- or.l &0x40000000,%d4 # set SE in d4,
- or.l &0x40000000,(%a0) # and in working bcd
-e_save:
- mov.l %d1,-(%sp) # save exp on stack
-#
-#
-# Calculate mantissa:
-# 1. Calculate absolute value of mantissa in fp0 by mul and add.
-# 2. Correct for mantissa sign.
-# (i.e., all digits assumed left of the decimal point.)
-#
-# Register usage:
-#
-# calc_m:
-# (*) d0: temp digit storage
-# (*) d1: lword counter
-# (*) d2: digit count
-# (*) d3: offset pointer
-# ( ) d4: words 2 and 3 of bcd
-# ( ) a0: pointer to working bcd value
-# ( ) a6: pointer to original bcd value
-# (*) fp0: mantissa accumulator
-# ( ) FP_SCR1: working copy of original bcd value
-# ( ) L_SCR1: copy of original exponent word
-#
-calc_m:
- mov.l &1,%d1 # word counter, init to 1
- fmov.s &0x00000000,%fp0 # accumulator
-#
-#
-# Since the packed number has a long word between the first & second parts,
-# get the integer digit then skip down & get the rest of the
-# mantissa. We will unroll the loop once.
-#
- bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word
- fadd.b %d0,%fp0 # add digit to sum in fp0
-#
-#
-# Get the rest of the mantissa.
-#
-loadlw:
- mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4
- mov.l &FSTRT,%d3 # counter to pick up digits
- mov.l &FNIBS,%d2 # reset number of digits per a0 ptr
-md2b:
- fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10
- bfextu %d4{%d3:&4},%d0 # get the digit and zero extend
- fadd.b %d0,%fp0 # fp0 = fp0 + digit
-#
-#
-# If all the digits (8) in that long word have been converted (d2=0),
-# then inc d1 (=2) to point to the next long word and reset d3 to 0
-# to initialize the digit offset, and set d2 to 7 for the digit count;
-# else continue with this long word.
-#
- addq.b &4,%d3 # advance d3 to the next digit
- dbf.w %d2,md2b # check for last digit in this lw
-nextlw:
- addq.l &1,%d1 # inc lw pointer in mantissa
- cmp.l %d1,&2 # test for last lw
- ble.b loadlw # if not, get last one
-#
-# Check the sign of the mant and make the value in fp0 the same sign.
-#
-m_sign:
- btst &31,(%a0) # test sign of the mantissa
- beq.b ap_st_z # if clear, go to append/strip zeros
- fneg.x %fp0 # if set, negate fp0
-#
-# Append/strip zeros:
-#
-# For adjusted exponents which have an absolute value greater than 27*,
-# this routine calculates the amount needed to normalize the mantissa
-# for the adjusted exponent. That number is subtracted from the exp
-# if the exp was positive, and added if it was negative. The purpose
-# of this is to reduce the value of the exponent and the possibility
-# of error in calculation of pwrten.
-#
-# 1. Branch on the sign of the adjusted exponent.
-# 2p.(positive exp)
-# 2. Check M16 and the digits in lwords 2 and 3 in decending order.
-# 3. Add one for each zero encountered until a non-zero digit.
-# 4. Subtract the count from the exp.
-# 5. Check if the exp has crossed zero in #3 above; make the exp abs
-# and set SE.
-# 6. Multiply the mantissa by 10**count.
-# 2n.(negative exp)
-# 2. Check the digits in lwords 3 and 2 in decending order.
-# 3. Add one for each zero encountered until a non-zero digit.
-# 4. Add the count to the exp.
-# 5. Check if the exp has crossed zero in #3 above; clear SE.
-# 6. Divide the mantissa by 10**count.
-#
-# *Why 27? If the adjusted exponent is within -28 < expA < 28, than
-# any adjustment due to append/strip zeros will drive the resultane
-# exponent towards zero. Since all pwrten constants with a power
-# of 27 or less are exact, there is no need to use this routine to
-# attempt to lessen the resultant exponent.
-#
-# Register usage:
-#
-# ap_st_z:
-# (*) d0: temp digit storage
-# (*) d1: zero count
-# (*) d2: digit count
-# (*) d3: offset pointer
-# ( ) d4: first word of bcd
-# (*) d5: lword counter
-# ( ) a0: pointer to working bcd value
-# ( ) FP_SCR1: working copy of original bcd value
-# ( ) L_SCR1: copy of original exponent word
-#
-#
-# First check the absolute value of the exponent to see if this
-# routine is necessary. If so, then check the sign of the exponent
-# and do append (+) or strip (-) zeros accordingly.
-# This section handles a positive adjusted exponent.
-#
-ap_st_z:
- mov.l (%sp),%d1 # load expA for range test
- cmp.l %d1,&27 # test is with 27
- ble.w pwrten # if abs(expA) <28, skip ap/st zeros
- btst &30,(%a0) # check sign of exp
- bne.b ap_st_n # if neg, go to neg side
- clr.l %d1 # zero count reg
- mov.l (%a0),%d4 # load lword 1 to d4
- bfextu %d4{&28:&4},%d0 # get M16 in d0
- bne.b ap_p_fx # if M16 is non-zero, go fix exp
- addq.l &1,%d1 # inc zero count
- mov.l &1,%d5 # init lword counter
- mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4
- bne.b ap_p_cl # if lw 2 is zero, skip it
- addq.l &8,%d1 # and inc count by 8
- addq.l &1,%d5 # inc lword counter
- mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4
-ap_p_cl:
- clr.l %d3 # init offset reg
- mov.l &7,%d2 # init digit counter
-ap_p_gd:
- bfextu %d4{%d3:&4},%d0 # get digit
- bne.b ap_p_fx # if non-zero, go to fix exp
- addq.l &4,%d3 # point to next digit
- addq.l &1,%d1 # inc digit counter
- dbf.w %d2,ap_p_gd # get next digit
-ap_p_fx:
- mov.l %d1,%d0 # copy counter to d2
- mov.l (%sp),%d1 # get adjusted exp from memory
- sub.l %d0,%d1 # subtract count from exp
- bge.b ap_p_fm # if still pos, go to pwrten
- neg.l %d1 # now its neg; get abs
- mov.l (%a0),%d4 # load lword 1 to d4
- or.l &0x40000000,%d4 # and set SE in d4
- or.l &0x40000000,(%a0) # and in memory
-#
-# Calculate the mantissa multiplier to compensate for the striping of
-# zeros from the mantissa.
-#
-ap_p_fm:
- lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
- clr.l %d3 # init table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- mov.l &3,%d2 # init d2 to count bits in counter
-ap_p_el:
- asr.l &1,%d0 # shift lsb into carry
- bcc.b ap_p_en # if 1, mul fp1 by pwrten factor
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-ap_p_en:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b ap_p_el # if not, get next bit
- fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted)
- bra.b pwrten # go calc pwrten
-#
-# This section handles a negative adjusted exponent.
-#
-ap_st_n:
- clr.l %d1 # clr counter
- mov.l &2,%d5 # set up d5 to point to lword 3
- mov.l (%a0,%d5.L*4),%d4 # get lword 3
- bne.b ap_n_cl # if not zero, check digits
- sub.l &1,%d5 # dec d5 to point to lword 2
- addq.l &8,%d1 # inc counter by 8
- mov.l (%a0,%d5.L*4),%d4 # get lword 2
-ap_n_cl:
- mov.l &28,%d3 # point to last digit
- mov.l &7,%d2 # init digit counter
-ap_n_gd:
- bfextu %d4{%d3:&4},%d0 # get digit
- bne.b ap_n_fx # if non-zero, go to exp fix
- subq.l &4,%d3 # point to previous digit
- addq.l &1,%d1 # inc digit counter
- dbf.w %d2,ap_n_gd # get next digit
-ap_n_fx:
- mov.l %d1,%d0 # copy counter to d0
- mov.l (%sp),%d1 # get adjusted exp from memory
- sub.l %d0,%d1 # subtract count from exp
- bgt.b ap_n_fm # if still pos, go fix mantissa
- neg.l %d1 # take abs of exp and clr SE
- mov.l (%a0),%d4 # load lword 1 to d4
- and.l &0xbfffffff,%d4 # and clr SE in d4
- and.l &0xbfffffff,(%a0) # and in memory
-#
-# Calculate the mantissa multiplier to compensate for the appending of
-# zeros to the mantissa.
-#
-ap_n_fm:
- lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
- clr.l %d3 # init table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- mov.l &3,%d2 # init d2 to count bits in counter
-ap_n_el:
- asr.l &1,%d0 # shift lsb into carry
- bcc.b ap_n_en # if 1, mul fp1 by pwrten factor
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-ap_n_en:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b ap_n_el # if not, get next bit
- fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted)
-#
-#
-# Calculate power-of-ten factor from adjusted and shifted exponent.
-#
-# Register usage:
-#
-# pwrten:
-# (*) d0: temp
-# ( ) d1: exponent
-# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
-# (*) d3: FPCR work copy
-# ( ) d4: first word of bcd
-# (*) a1: RTABLE pointer
-# calc_p:
-# (*) d0: temp
-# ( ) d1: exponent
-# (*) d3: PWRTxx table index
-# ( ) a0: pointer to working copy of bcd
-# (*) a1: PWRTxx pointer
-# (*) fp1: power-of-ten accumulator
-#
-# Pwrten calculates the exponent factor in the selected rounding mode
-# according to the following table:
-#
-# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
-#
-# ANY ANY RN RN
-#
-# + + RP RP
-# - + RP RM
-# + - RP RM
-# - - RP RP
-#
-# + + RM RM
-# - + RM RP
-# + - RM RP
-# - - RM RM
-#
-# + + RZ RM
-# - + RZ RM
-# + - RZ RP
-# - - RZ RP
-#
-#
-pwrten:
- mov.l USER_FPCR(%a6),%d3 # get user's FPCR
- bfextu %d3{&26:&2},%d2 # isolate rounding mode bits
- mov.l (%a0),%d4 # reload 1st bcd word to d4
- asl.l &2,%d2 # format d2 to be
- bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE}
- add.l %d0,%d2 # in d2 as index into RTABLE
- lea.l RTABLE(%pc),%a1 # load rtable base
- mov.b (%a1,%d2),%d0 # load new rounding bits from table
- clr.l %d3 # clear d3 to force no exc and extended
- bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR
- fmov.l %d3,%fpcr # write new FPCR
- asr.l &1,%d0 # write correct PTENxx table
- bcc.b not_rp # to a1
- lea.l PTENRP(%pc),%a1 # it is RP
- bra.b calc_p # go to init section
-not_rp:
- asr.l &1,%d0 # keep checking
- bcc.b not_rm
- lea.l PTENRM(%pc),%a1 # it is RM
- bra.b calc_p # go to init section
-not_rm:
- lea.l PTENRN(%pc),%a1 # it is RN
-calc_p:
- mov.l %d1,%d0 # copy exp to d0;use d0
- bpl.b no_neg # if exp is negative,
- neg.l %d0 # invert it
- or.l &0x40000000,(%a0) # and set SE bit
-no_neg:
- clr.l %d3 # table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
-e_loop:
- asr.l &1,%d0 # shift next bit into carry
- bcc.b e_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-e_next:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b e_loop # not zero, continue shifting
-#
-#
-# Check the sign of the adjusted exp and make the value in fp0 the
-# same sign. If the exp was pos then multiply fp1*fp0;
-# else divide fp0/fp1.
-#
-# Register Usage:
-# norm:
-# ( ) a0: pointer to working bcd value
-# (*) fp0: mantissa accumulator
-# ( ) fp1: scaling factor - 10**(abs(exp))
-#
-pnorm:
- btst &30,(%a0) # test the sign of the exponent
- beq.b mul # if clear, go to multiply
-div:
- fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp
- bra.b end_dec
-mul:
- fmul.x %fp1,%fp0 # exp is positive, so multiply by exp
-#
-#
-# Clean up and return with result in fp0.
-#
-# If the final mul/div in decbin incurred an inex exception,
-# it will be inex2, but will be reported as inex1 by get_op.
-#
-end_dec:
- fmov.l %fpsr,%d0 # get status register
- bclr &inex2_bit+8,%d0 # test for inex2 and clear it
- beq.b no_exc # skip this if no exc
- ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX
-no_exc:
- add.l &0x4,%sp # clear 1 lw param
- fmovm.x (%sp)+,&0x40 # restore fp1
- movm.l (%sp)+,&0x3c # restore d2-d5
- fmov.l &0x0,%fpcr
- fmov.l &0x0,%fpsr
- rts
-
-#########################################################################
-# bindec(): Converts an input in extended precision format to bcd format#
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to the input extended precision value in memory. #
-# the input may be either normalized, unnormalized, or #
-# denormalized. #
-# d0 = contains the k-factor sign-extended to 32-bits. #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR0(a6) = bcd format result on the stack. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# A1. Set RM and size ext; Set SIGMA = sign of input. #
-# The k-factor is saved for use in d7. Clear the #
-# BINDEC_FLG for separating normalized/denormalized #
-# input. If input is unnormalized or denormalized, #
-# normalize it. #
-# #
-# A2. Set X = abs(input). #
-# #
-# A3. Compute ILOG. #
-# ILOG is the log base 10 of the input value. It is #
-# approximated by adding e + 0.f when the original #
-# value is viewed as 2^^e * 1.f in extended precision. #
-# This value is stored in d6. #
-# #
-# A4. Clr INEX bit. #
-# The operation in A3 above may have set INEX2. #
-# #
-# A5. Set ICTR = 0; #
-# ICTR is a flag used in A13. It must be set before the #
-# loop entry A6. #
-# #
-# A6. Calculate LEN. #
-# LEN is the number of digits to be displayed. The #
-# k-factor can dictate either the total number of digits, #
-# if it is a positive number, or the number of digits #
-# after the decimal point which are to be included as #
-# significant. See the 68882 manual for examples. #
-# If LEN is computed to be greater than 17, set OPERR in #
-# USER_FPSR. LEN is stored in d4. #
-# #
-# A7. Calculate SCALE. #
-# SCALE is equal to 10^ISCALE, where ISCALE is the number #
-# of decimal places needed to insure LEN integer digits #
-# in the output before conversion to bcd. LAMBDA is the #
-# sign of ISCALE, used in A9. Fp1 contains #
-# 10^^(abs(ISCALE)) using a rounding mode which is a #
-# function of the original rounding mode and the signs #
-# of ISCALE and X. A table is given in the code. #
-# #
-# A8. Clr INEX; Force RZ. #
-# The operation in A3 above may have set INEX2. #
-# RZ mode is forced for the scaling operation to insure #
-# only one rounding error. The grs bits are collected in #
-# the INEX flag for use in A10. #
-# #
-# A9. Scale X -> Y. #
-# The mantissa is scaled to the desired number of #
-# significant digits. The excess digits are collected #
-# in INEX2. #
-# #
-# A10. Or in INEX. #
-# If INEX is set, round error occurred. This is #
-# compensated for by 'or-ing' in the INEX2 flag to #
-# the lsb of Y. #
-# #
-# A11. Restore original FPCR; set size ext. #
-# Perform FINT operation in the user's rounding mode. #
-# Keep the size to extended. #
-# #
-# A12. Calculate YINT = FINT(Y) according to user's rounding #
-# mode. The FPSP routine sintd0 is used. The output #
-# is in fp0. #
-# #
-# A13. Check for LEN digits. #
-# If the int operation results in more than LEN digits, #
-# or less than LEN -1 digits, adjust ILOG and repeat from #
-# A6. This test occurs only on the first pass. If the #
-# result is exactly 10^LEN, decrement ILOG and divide #
-# the mantissa by 10. #
-# #
-# A14. Convert the mantissa to bcd. #
-# The binstr routine is used to convert the LEN digit #
-# mantissa to bcd in memory. The input to binstr is #
-# to be a fraction; i.e. (mantissa)/10^LEN and adjusted #
-# such that the decimal point is to the left of bit 63. #
-# The bcd digits are stored in the correct position in #
-# the final string area in memory. #
-# #
-# A15. Convert the exponent to bcd. #
-# As in A14 above, the exp is converted to bcd and the #
-# digits are stored in the final string. #
-# Test the length of the final exponent string. If the #
-# length is 4, set operr. #
-# #
-# A16. Write sign bits to final string. #
-# #
-#########################################################################
-
-set BINDEC_FLG, EXC_TEMP # DENORM flag
-
-# Constants in extended precision
-PLOG2:
- long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
-PLOG2UP1:
- long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
-
-# Constants in single precision
-FONE:
- long 0x3F800000,0x00000000,0x00000000,0x00000000
-FTWO:
- long 0x40000000,0x00000000,0x00000000,0x00000000
-FTEN:
- long 0x41200000,0x00000000,0x00000000,0x00000000
-F4933:
- long 0x459A2800,0x00000000,0x00000000,0x00000000
-
-RBDTBL:
- byte 0,0,0,0
- byte 3,3,2,2
- byte 3,2,2,3
- byte 2,3,3,2
-
-# Implementation Notes:
-#
-# The registers are used as follows:
-#
-# d0: scratch; LEN input to binstr
-# d1: scratch
-# d2: upper 32-bits of mantissa for binstr
-# d3: scratch;lower 32-bits of mantissa for binstr
-# d4: LEN
-# d5: LAMBDA/ICTR
-# d6: ILOG
-# d7: k-factor
-# a0: ptr for original operand/final result
-# a1: scratch pointer
-# a2: pointer to FP_X; abs(original value) in ext
-# fp0: scratch
-# fp1: scratch
-# fp2: scratch
-# F_SCR1:
-# F_SCR2:
-# L_SCR1:
-# L_SCR2:
-
- global bindec
-bindec:
- movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2}
- fmovm.x &0x7,-(%sp) # {%fp0-%fp2}
-
-# A1. Set RM and size ext. Set SIGMA = sign input;
-# The k-factor is saved for use in d7. Clear BINDEC_FLG for
-# separating normalized/denormalized input. If the input
-# is a denormalized number, set the BINDEC_FLG memory word
-# to signal denorm. If the input is unnormalized, normalize
-# the input and test for denormalized result.
-#
- fmov.l &rm_mode*0x10,%fpcr # set RM and ext
- mov.l (%a0),L_SCR2(%a6) # save exponent for sign check
- mov.l %d0,%d7 # move k-factor to d7
-
- clr.b BINDEC_FLG(%a6) # clr norm/denorm flag
- cmpi.b STAG(%a6),&DENORM # is input a DENORM?
- bne.w A2_str # no; input is a NORM
-
-#
-# Normalize the denorm
-#
-un_de_norm:
- mov.w (%a0),%d0
- and.w &0x7fff,%d0 # strip sign of normalized exp
- mov.l 4(%a0),%d1
- mov.l 8(%a0),%d2
-norm_loop:
- sub.w &1,%d0
- lsl.l &1,%d2
- roxl.l &1,%d1
- tst.l %d1
- bge.b norm_loop
-#
-# Test if the normalized input is denormalized
-#
- tst.w %d0
- bgt.b pos_exp # if greater than zero, it is a norm
- st BINDEC_FLG(%a6) # set flag for denorm
-pos_exp:
- and.w &0x7fff,%d0 # strip sign of normalized exp
- mov.w %d0,(%a0)
- mov.l %d1,4(%a0)
- mov.l %d2,8(%a0)
-
-# A2. Set X = abs(input).
-#
-A2_str:
- mov.l (%a0),FP_SCR1(%a6) # move input to work space
- mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space
- mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space
- and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X)
-
-# A3. Compute ILOG.
-# ILOG is the log base 10 of the input value. It is approx-
-# imated by adding e + 0.f when the original value is viewed
-# as 2^^e * 1.f in extended precision. This value is stored
-# in d6.
-#
-# Register usage:
-# Input/Output
-# d0: k-factor/exponent
-# d2: x/x
-# d3: x/x
-# d4: x/x
-# d5: x/x
-# d6: x/ILOG
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: x/x
-# a2: x/x
-# fp0: x/float(ILOG)
-# fp1: x/x
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X)/Abs(X) with $3fff exponent
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.b A3_cont # if clr, continue with norm
- mov.l &-4933,%d6 # force ILOG = -4933
- bra.b A4_str
-A3_cont:
- mov.w FP_SCR1(%a6),%d0 # move exp to d0
- mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff
- fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f
- sub.w &0x3fff,%d0 # strip off bias
- fadd.w %d0,%fp0 # add in exp
- fsub.s FONE(%pc),%fp0 # subtract off 1.0
- fbge.w pos_res # if pos, branch
- fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1
- fmov.l %fp0,%d6 # put ILOG in d6 as a lword
- bra.b A4_str # go move out ILOG
-pos_res:
- fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2
- fmov.l %fp0,%d6 # put ILOG in d6 as a lword
-
-
-# A4. Clr INEX bit.
-# The operation in A3 above may have set INEX2.
-
-A4_str:
- fmov.l &0,%fpsr # zero all of fpsr - nothing needed
-
-
-# A5. Set ICTR = 0;
-# ICTR is a flag used in A13. It must be set before the
-# loop entry A6. The lower word of d5 is used for ICTR.
-
- clr.w %d5 # clear ICTR
-
-# A6. Calculate LEN.
-# LEN is the number of digits to be displayed. The k-factor
-# can dictate either the total number of digits, if it is
-# a positive number, or the number of digits after the
-# original decimal point which are to be included as
-# significant. See the 68882 manual for examples.
-# If LEN is computed to be greater than 17, set OPERR in
-# USER_FPSR. LEN is stored in d4.
-#
-# Register usage:
-# Input/Output
-# d0: exponent/Unchanged
-# d2: x/x/scratch
-# d3: x/x
-# d4: exc picture/LEN
-# d5: ICTR/Unchanged
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: x/x
-# a2: x/x
-# fp0: float(ILOG)/Unchanged
-# fp1: x/x
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X) with $3fff exponent/Unchanged
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
-A6_str:
- tst.l %d7 # branch on sign of k
- ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k
- mov.l %d7,%d4 # if k > 0, LEN = k
- bra.b len_ck # skip to LEN check
-k_neg:
- mov.l %d6,%d4 # first load ILOG to d4
- sub.l %d7,%d4 # subtract off k
- addq.l &1,%d4 # add in the 1
-len_ck:
- tst.l %d4 # LEN check: branch on sign of LEN
- ble.b LEN_ng # if neg, set LEN = 1
- cmp.l %d4,&17 # test if LEN > 17
- ble.b A7_str # if not, forget it
- mov.l &17,%d4 # set max LEN = 17
- tst.l %d7 # if negative, never set OPERR
- ble.b A7_str # if positive, continue
- or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
- bra.b A7_str # finished here
-LEN_ng:
- mov.l &1,%d4 # min LEN is 1
-
-
-# A7. Calculate SCALE.
-# SCALE is equal to 10^ISCALE, where ISCALE is the number
-# of decimal places needed to insure LEN integer digits
-# in the output before conversion to bcd. LAMBDA is the sign
-# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
-# the rounding mode as given in the following table (see
-# Coonen, p. 7.23 as ref.; however, the SCALE variable is
-# of opposite sign in bindec.sa from Coonen).
-#
-# Initial USE
-# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
-# ----------------------------------------------
-# RN 00 0 0 00/0 RN
-# RN 00 0 1 00/0 RN
-# RN 00 1 0 00/0 RN
-# RN 00 1 1 00/0 RN
-# RZ 01 0 0 11/3 RP
-# RZ 01 0 1 11/3 RP
-# RZ 01 1 0 10/2 RM
-# RZ 01 1 1 10/2 RM
-# RM 10 0 0 11/3 RP
-# RM 10 0 1 10/2 RM
-# RM 10 1 0 10/2 RM
-# RM 10 1 1 11/3 RP
-# RP 11 0 0 10/2 RM
-# RP 11 0 1 11/3 RP
-# RP 11 1 0 11/3 RP
-# RP 11 1 1 10/2 RM
-#
-# Register usage:
-# Input/Output
-# d0: exponent/scratch - final is 0
-# d2: x/0 or 24 for A9
-# d3: x/scratch - offset ptr into PTENRM array
-# d4: LEN/Unchanged
-# d5: 0/ICTR:LAMBDA
-# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: x/ptr to PTENRM array
-# a2: x/x
-# fp0: float(ILOG)/Unchanged
-# fp1: x/10^ISCALE
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X) with $3fff exponent/Unchanged
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
-A7_str:
- tst.l %d7 # test sign of k
- bgt.b k_pos # if pos and > 0, skip this
- cmp.l %d7,%d6 # test k - ILOG
- blt.b k_pos # if ILOG >= k, skip this
- mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k
-k_pos:
- mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0
- addq.l &1,%d0 # add the 1
- sub.l %d4,%d0 # sub off LEN
- swap %d5 # use upper word of d5 for LAMBDA
- clr.w %d5 # set it zero initially
- clr.w %d2 # set up d2 for very small case
- tst.l %d0 # test sign of ISCALE
- bge.b iscale # if pos, skip next inst
- addq.w &1,%d5 # if neg, set LAMBDA true
- cmp.l %d0,&0xffffecd4 # test iscale <= -4908
- bgt.b no_inf # if false, skip rest
- add.l &24,%d0 # add in 24 to iscale
- mov.l &24,%d2 # put 24 in d2 for A9
-no_inf:
- neg.l %d0 # and take abs of ISCALE
-iscale:
- fmov.s FONE(%pc),%fp1 # init fp1 to 1
- bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits
- lsl.w &1,%d1 # put them in bits 2:1
- add.w %d5,%d1 # add in LAMBDA
- lsl.w &1,%d1 # put them in bits 3:1
- tst.l L_SCR2(%a6) # test sign of original x
- bge.b x_pos # if pos, don't set bit 0
- addq.l &1,%d1 # if neg, set bit 0
-x_pos:
- lea.l RBDTBL(%pc),%a2 # load rbdtbl base
- mov.b (%a2,%d1),%d3 # load d3 with new rmode
- lsl.l &4,%d3 # put bits in proper position
- fmov.l %d3,%fpcr # load bits into fpu
- lsr.l &4,%d3 # put bits in proper position
- tst.b %d3 # decode new rmode for pten table
- bne.b not_rn # if zero, it is RN
- lea.l PTENRN(%pc),%a1 # load a1 with RN table base
- bra.b rmode # exit decode
-not_rn:
- lsr.b &1,%d3 # get lsb in carry
- bcc.b not_rp2 # if carry clear, it is RM
- lea.l PTENRP(%pc),%a1 # load a1 with RP table base
- bra.b rmode # exit decode
-not_rp2:
- lea.l PTENRM(%pc),%a1 # load a1 with RM table base
-rmode:
- clr.l %d3 # clr table index
-e_loop2:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b e_next2 # if zero, skip the mul
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-e_next2:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if ISCALE is zero
- bne.b e_loop2 # if not, loop
-
-# A8. Clr INEX; Force RZ.
-# The operation in A3 above may have set INEX2.
-# RZ mode is forced for the scaling operation to insure
-# only one rounding error. The grs bits are collected in
-# the INEX flag for use in A10.
-#
-# Register usage:
-# Input/Output
-
- fmov.l &0,%fpsr # clr INEX
- fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode
-
-# A9. Scale X -> Y.
-# The mantissa is scaled to the desired number of significant
-# digits. The excess digits are collected in INEX2. If mul,
-# Check d2 for excess 10 exponential value. If not zero,
-# the iscale value would have caused the pwrten calculation
-# to overflow. Only a negative iscale can cause this, so
-# multiply by 10^(d2), which is now only allowed to be 24,
-# with a multiply by 10^8 and 10^16, which is exact since
-# 10^24 is exact. If the input was denormalized, we must
-# create a busy stack frame with the mul command and the
-# two operands, and allow the fpu to complete the multiply.
-#
-# Register usage:
-# Input/Output
-# d0: FPCR with RZ mode/Unchanged
-# d2: 0 or 24/unchanged
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: ptr to PTENRM array/Unchanged
-# a2: x/x
-# fp0: float(ILOG)/X adjusted for SCALE (Y)
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X) with $3fff exponent/Unchanged
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
-A9_str:
- fmov.x (%a0),%fp0 # load X from memory
- fabs.x %fp0 # use abs(X)
- tst.w %d5 # LAMBDA is in lower word of d5
- bne.b sc_mul # if neg (LAMBDA = 1), scale by mul
- fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0
- bra.w A10_st # branch to A10
-
-sc_mul:
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.w A9_norm # if norm, continue with mul
-
-# for DENORM, we must calculate:
-# fp0 = input_op * 10^ISCALE * 10^24
-# since the input operand is a DENORM, we can't multiply it directly.
-# so, we do the multiplication of the exponents and mantissas separately.
-# in this way, we avoid underflow on intermediate stages of the
-# multiplication and guarantee a result without exception.
- fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack
-
- mov.w (%sp),%d3 # grab exponent
- andi.w &0x7fff,%d3 # clear sign
- ori.w &0x8000,(%a0) # make DENORM exp negative
- add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp
- subi.w &0x3fff,%d3 # subtract BIAS
- add.w 36(%a1),%d3
- subi.w &0x3fff,%d3 # subtract BIAS
- add.w 48(%a1),%d3
- subi.w &0x3fff,%d3 # subtract BIAS
-
- bmi.w sc_mul_err # is result is DENORM, punt!!!
-
- andi.w &0x8000,(%sp) # keep sign
- or.w %d3,(%sp) # insert new exponent
- andi.w &0x7fff,(%a0) # clear sign bit on DENORM again
- mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk
- mov.l 0x4(%a0),-(%sp)
- mov.l &0x3fff0000,-(%sp) # force exp to zero
- fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0
- fmul.x (%sp)+,%fp0
-
-# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
-# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
- mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa
- mov.l 36+4(%a1),-(%sp)
- mov.l &0x3fff0000,-(%sp) # force exp to zero
- mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa
- mov.l 48+4(%a1),-(%sp)
- mov.l &0x3fff0000,-(%sp)# force exp to zero
- fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8
- fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16
- bra.b A10_st
-
-sc_mul_err:
- bra.b sc_mul_err
-
-A9_norm:
- tst.w %d2 # test for small exp case
- beq.b A9_con # if zero, continue as normal
- fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
- fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
-A9_con:
- fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0
-
-# A10. Or in INEX.
-# If INEX is set, round error occurred. This is compensated
-# for by 'or-ing' in the INEX2 flag to the lsb of Y.
-#
-# Register usage:
-# Input/Output
-# d0: FPCR with RZ mode/FPSR with INEX2 isolated
-# d2: x/x
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: ptr to PTENxx array/Unchanged
-# a2: x/ptr to FP_SCR1(a6)
-# fp0: Y/Y with lsb adjusted
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/x
-
-A10_st:
- fmov.l %fpsr,%d0 # get FPSR
- fmov.x %fp0,FP_SCR1(%a6) # move Y to memory
- lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1
- btst &9,%d0 # check if INEX2 set
- beq.b A11_st # if clear, skip rest
- or.l &1,8(%a2) # or in 1 to lsb of mantissa
- fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu
-
-
-# A11. Restore original FPCR; set size ext.
-# Perform FINT operation in the user's rounding mode. Keep
-# the size to extended. The sintdo entry point in the sint
-# routine expects the FPCR value to be in USER_FPCR for
-# mode and precision. The original FPCR is saved in L_SCR1.
-
-A11_st:
- mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later
- and.l &0x00000030,USER_FPCR(%a6) # set size to ext,
-# ;block exceptions
-
-
-# A12. Calculate YINT = FINT(Y) according to user's rounding mode.
-# The FPSP routine sintd0 is used. The output is in fp0.
-#
-# Register usage:
-# Input/Output
-# d0: FPSR with AINEX cleared/FPCR with size set to ext
-# d2: x/x/scratch
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/Unchanged
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/src ptr for sintdo
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored
-# fp0: Y/YINT
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Y adjusted for inex/Y with original exponent
-# L_SCR1:x/original USER_FPCR
-# L_SCR2:first word of X packed/Unchanged
-
-A12_st:
- movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1}
- mov.l L_SCR1(%a6),-(%sp)
- mov.l L_SCR2(%a6),-(%sp)
-
- lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6)
- fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6)
- tst.l L_SCR2(%a6) # test sign of original operand
- bge.b do_fint12 # if pos, use Y
- or.l &0x80000000,(%a0) # if neg, use -Y
-do_fint12:
- mov.l USER_FPSR(%a6),-(%sp)
-# bsr sintdo # sint routine returns int in fp0
-
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.l &0x0,%fpsr # clear the AEXC bits!!!
-## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode
-## andi.l &0x00000030,%d0
-## fmov.l %d0,%fpcr
- fint.x FP_SCR1(%a6),%fp0 # do fint()
- fmov.l %fpsr,%d0
- or.w %d0,FPSR_EXCEPT(%a6)
-## fmov.l &0x0,%fpcr
-## fmov.l %fpsr,%d0 # don't keep ccodes
-## or.w %d0,FPSR_EXCEPT(%a6)
-
- mov.b (%sp),USER_FPSR(%a6)
- add.l &4,%sp
-
- mov.l (%sp)+,L_SCR2(%a6)
- mov.l (%sp)+,L_SCR1(%a6)
- movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1}
-
- mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent
- mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR
-
-# A13. Check for LEN digits.
-# If the int operation results in more than LEN digits,
-# or less than LEN -1 digits, adjust ILOG and repeat from
-# A6. This test occurs only on the first pass. If the
-# result is exactly 10^LEN, decrement ILOG and divide
-# the mantissa by 10. The calculation of 10^LEN cannot
-# be inexact, since all powers of ten up to 10^27 are exact
-# in extended precision, so the use of a previous power-of-ten
-# table will introduce no error.
-#
-#
-# Register usage:
-# Input/Output
-# d0: FPCR with size set to ext/scratch final = 0
-# d2: x/x
-# d3: x/scratch final = x
-# d4: LEN/LEN adjusted
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG/ILOG adjusted
-# d7: k-factor/Unchanged
-# a0: pointer into memory for packed bcd string formation
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: int portion of Y/abs(YINT) adjusted
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/10^LEN
-# F_SCR1:x/x
-# F_SCR2:Y with original exponent/Unchanged
-# L_SCR1:original USER_FPCR/Unchanged
-# L_SCR2:first word of X packed/Unchanged
-
-A13_st:
- swap %d5 # put ICTR in lower word of d5
- tst.w %d5 # check if ICTR = 0
- bne not_zr # if non-zero, go to second test
-#
-# Compute 10^(LEN-1)
-#
- fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
- mov.l %d4,%d0 # put LEN in d0
- subq.l &1,%d0 # d0 = LEN -1
- clr.l %d3 # clr table index
-l_loop:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b l_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
-l_next:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if LEN is zero
- bne.b l_loop # if not, loop
-#
-# 10^LEN-1 is computed for this test and A14. If the input was
-# denormalized, check only the case in which YINT > 10^LEN.
-#
- tst.b BINDEC_FLG(%a6) # check if input was norm
- beq.b A13_con # if norm, continue with checking
- fabs.x %fp0 # take abs of YINT
- bra test_2
-#
-# Compare abs(YINT) to 10^(LEN-1) and 10^LEN
-#
-A13_con:
- fabs.x %fp0 # take abs of YINT
- fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1)
- fbge.w test_2 # if greater, do next test
- subq.l &1,%d6 # subtract 1 from ILOG
- mov.w &1,%d5 # set ICTR
- fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
- fmul.s FTEN(%pc),%fp2 # compute 10^LEN
- bra.w A6_str # return to A6 and recompute YINT
-test_2:
- fmul.s FTEN(%pc),%fp2 # compute 10^LEN
- fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN
- fblt.w A14_st # if less, all is ok, go to A14
- fbgt.w fix_ex # if greater, fix and redo
- fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10
- addq.l &1,%d6 # and inc ILOG
- bra.b A14_st # and continue elsewhere
-fix_ex:
- addq.l &1,%d6 # increment ILOG by 1
- mov.w &1,%d5 # set ICTR
- fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
- bra.w A6_str # return to A6 and recompute YINT
-#
-# Since ICTR <> 0, we have already been through one adjustment,
-# and shouldn't have another; this is to check if abs(YINT) = 10^LEN
-# 10^LEN is again computed using whatever table is in a1 since the
-# value calculated cannot be inexact.
-#
-not_zr:
- fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
- mov.l %d4,%d0 # put LEN in d0
- clr.l %d3 # clr table index
-z_loop:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b z_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
-z_next:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if LEN is zero
- bne.b z_loop # if not, loop
- fabs.x %fp0 # get abs(YINT)
- fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN
- fbneq.w A14_st # if not, skip this
- fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10
- addq.l &1,%d6 # and inc ILOG by 1
- addq.l &1,%d4 # and inc LEN
- fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN
-
-# A14. Convert the mantissa to bcd.
-# The binstr routine is used to convert the LEN digit
-# mantissa to bcd in memory. The input to binstr is
-# to be a fraction; i.e. (mantissa)/10^LEN and adjusted
-# such that the decimal point is to the left of bit 63.
-# The bcd digits are stored in the correct position in
-# the final string area in memory.
-#
-#
-# Register usage:
-# Input/Output
-# d0: x/LEN call to binstr - final is 0
-# d1: x/0
-# d2: x/ms 32-bits of mant of abs(YINT)
-# d3: x/ls 32-bits of mant of abs(YINT)
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG
-# d7: k-factor/Unchanged
-# a0: pointer into memory for packed bcd string formation
-# /ptr to first mantissa byte in result string
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: int portion of Y/abs(YINT) adjusted
-# fp1: 10^ISCALE/Unchanged
-# fp2: 10^LEN/Unchanged
-# F_SCR1:x/Work area for final result
-# F_SCR2:Y with original exponent/Unchanged
-# L_SCR1:original USER_FPCR/Unchanged
-# L_SCR2:first word of X packed/Unchanged
-
-A14_st:
- fmov.l &rz_mode*0x10,%fpcr # force rz for conversion
- fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN
- lea.l FP_SCR0(%a6),%a0
- fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory
- mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2
- mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3
- clr.l 4(%a0) # zero word 2 of FP_RES
- clr.l 8(%a0) # zero word 3 of FP_RES
- mov.l (%a0),%d0 # move exponent to d0
- swap %d0 # put exponent in lower word
- beq.b no_sft # if zero, don't shift
- sub.l &0x3ffd,%d0 # sub bias less 2 to make fract
- tst.l %d0 # check if > 1
- bgt.b no_sft # if so, don't shift
- neg.l %d0 # make exp positive
-m_loop:
- lsr.l &1,%d2 # shift d2:d3 right, add 0s
- roxr.l &1,%d3 # the number of places
- dbf.w %d0,m_loop # given in d0
-no_sft:
- tst.l %d2 # check for mantissa of zero
- bne.b no_zr # if not, go on
- tst.l %d3 # continue zero check
- beq.b zer_m # if zero, go directly to binstr
-no_zr:
- clr.l %d1 # put zero in d1 for addx
- add.l &0x00000080,%d3 # inc at bit 7
- addx.l %d1,%d2 # continue inc
- and.l &0xffffff80,%d3 # strip off lsb not used by 882
-zer_m:
- mov.l %d4,%d0 # put LEN in d0 for binstr call
- addq.l &3,%a0 # a0 points to M16 byte in result
- bsr binstr # call binstr to convert mant
-
-
-# A15. Convert the exponent to bcd.
-# As in A14 above, the exp is converted to bcd and the
-# digits are stored in the final string.
-#
-# Digits are stored in L_SCR1(a6) on return from BINDEC as:
-#
-# 32 16 15 0
-# -----------------------------------------
-# | 0 | e3 | e2 | e1 | e4 | X | X | X |
-# -----------------------------------------
-#
-# And are moved into their proper places in FP_SCR0. If digit e4
-# is non-zero, OPERR is signaled. In all cases, all 4 digits are
-# written as specified in the 881/882 manual for packed decimal.
-#
-# Register usage:
-# Input/Output
-# d0: x/LEN call to binstr - final is 0
-# d1: x/scratch (0);shift count for final exponent packing
-# d2: x/ms 32-bits of exp fraction/scratch
-# d3: x/ls 32-bits of exp fraction
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG
-# d7: k-factor/Unchanged
-# a0: ptr to result string/ptr to L_SCR1(a6)
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: abs(YINT) adjusted/float(ILOG)
-# fp1: 10^ISCALE/Unchanged
-# fp2: 10^LEN/Unchanged
-# F_SCR1:Work area for final result/BCD result
-# F_SCR2:Y with original exponent/ILOG/10^4
-# L_SCR1:original USER_FPCR/Exponent digits on return from binstr
-# L_SCR2:first word of X packed/Unchanged
-
-A15_st:
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.b not_denorm
- ftest.x %fp0 # test for zero
- fbeq.w den_zero # if zero, use k-factor or 4933
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- bra.b convrt
-den_zero:
- tst.l %d7 # check sign of the k-factor
- blt.b use_ilog # if negative, use ILOG
- fmov.s F4933(%pc),%fp0 # force exponent to 4933
- bra.b convrt # do it
-use_ilog:
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- bra.b convrt
-not_denorm:
- ftest.x %fp0 # test for zero
- fbneq.w not_zero # if zero, force exponent
- fmov.s FONE(%pc),%fp0 # force exponent to 1
- bra.b convrt # do it
-not_zero:
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
-convrt:
- fdiv.x 24(%a1),%fp0 # compute ILOG/10^4
- fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory
- mov.l 4(%a2),%d2 # move word 2 to d2
- mov.l 8(%a2),%d3 # move word 3 to d3
- mov.w (%a2),%d0 # move exp to d0
- beq.b x_loop_fin # if zero, skip the shift
- sub.w &0x3ffd,%d0 # subtract off bias
- neg.w %d0 # make exp positive
-x_loop:
- lsr.l &1,%d2 # shift d2:d3 right
- roxr.l &1,%d3 # the number of places
- dbf.w %d0,x_loop # given in d0
-x_loop_fin:
- clr.l %d1 # put zero in d1 for addx
- add.l &0x00000080,%d3 # inc at bit 6
- addx.l %d1,%d2 # continue inc
- and.l &0xffffff80,%d3 # strip off lsb not used by 882
- mov.l &4,%d0 # put 4 in d0 for binstr call
- lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits
- bsr binstr # call binstr to convert exp
- mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0
- mov.l &12,%d1 # use d1 for shift count
- lsr.l %d1,%d0 # shift d0 right by 12
- bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0
- lsr.l %d1,%d0 # shift d0 right by 12
- bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0
- tst.b %d0 # check if e4 is zero
- beq.b A16_st # if zero, skip rest
- or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
-
-
-# A16. Write sign bits to final string.
-# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
-#
-# Register usage:
-# Input/Output
-# d0: x/scratch - final is x
-# d2: x/x
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG/ILOG adjusted
-# d7: k-factor/Unchanged
-# a0: ptr to L_SCR1(a6)/Unchanged
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: float(ILOG)/Unchanged
-# fp1: 10^ISCALE/Unchanged
-# fp2: 10^LEN/Unchanged
-# F_SCR1:BCD result with correct signs
-# F_SCR2:ILOG/10^4
-# L_SCR1:Exponent digits on return from binstr
-# L_SCR2:first word of X packed/Unchanged
-
-A16_st:
- clr.l %d0 # clr d0 for collection of signs
- and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0
- tst.l L_SCR2(%a6) # check sign of original mantissa
- bge.b mant_p # if pos, don't set SM
- mov.l &2,%d0 # move 2 in to d0 for SM
-mant_p:
- tst.l %d6 # check sign of ILOG
- bge.b wr_sgn # if pos, don't set SE
- addq.l &1,%d0 # set bit 0 in d0 for SE
-wr_sgn:
- bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0
-
-# Clean up and restore all registers used.
-
- fmov.l &0,%fpsr # clear possible inex2/ainex bits
- fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2}
- movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2}
- rts
-
- global PTENRN
-PTENRN:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
-
- global PTENRP
-PTENRP:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
-
- global PTENRM
-PTENRM:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096
-
-#########################################################################
-# binstr(): Converts a 64-bit binary integer to bcd. #
-# #
-# INPUT *************************************************************** #
-# d2:d3 = 64-bit binary integer #
-# d0 = desired length (LEN) #
-# a0 = pointer to start in memory for bcd characters #
-# (This pointer must point to byte 4 of the first #
-# lword of the packed decimal memory string.) #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to LEN bcd digits representing the 64-bit integer. #
-# #
-# ALGORITHM *********************************************************** #
-# The 64-bit binary is assumed to have a decimal point before #
-# bit 63. The fraction is multiplied by 10 using a mul by 2 #
-# shift and a mul by 8 shift. The bits shifted out of the #
-# msb form a decimal digit. This process is iterated until #
-# LEN digits are formed. #
-# #
-# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the #
-# digit formed will be assumed the least significant. This is #
-# to force the first byte formed to have a 0 in the upper 4 bits. #
-# #
-# A2. Beginning of the loop: #
-# Copy the fraction in d2:d3 to d4:d5. #
-# #
-# A3. Multiply the fraction in d2:d3 by 8 using bit-field #
-# extracts and shifts. The three msbs from d2 will go into d1. #
-# #
-# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb #
-# will be collected by the carry. #
-# #
-# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 #
-# into d2:d3. D1 will contain the bcd digit formed. #
-# #
-# A6. Test d7. If zero, the digit formed is the ms digit. If non- #
-# zero, it is the ls digit. Put the digit in its place in the #
-# upper word of d0. If it is the ls digit, write the word #
-# from d0 to memory. #
-# #
-# A7. Decrement d6 (LEN counter) and repeat the loop until zero. #
-# #
-#########################################################################
-
-# Implementation Notes:
-#
-# The registers are used as follows:
-#
-# d0: LEN counter
-# d1: temp used to form the digit
-# d2: upper 32-bits of fraction for mul by 8
-# d3: lower 32-bits of fraction for mul by 8
-# d4: upper 32-bits of fraction for mul by 2
-# d5: lower 32-bits of fraction for mul by 2
-# d6: temp for bit-field extracts
-# d7: byte digit formation word;digit count {0,1}
-# a0: pointer into memory for packed bcd string formation
-#
-
- global binstr
-binstr:
- movm.l &0xff00,-(%sp) # {%d0-%d7}
-
-#
-# A1: Init d7
-#
- mov.l &1,%d7 # init d7 for second digit
- subq.l &1,%d0 # for dbf d0 would have LEN+1 passes
-#
-# A2. Copy d2:d3 to d4:d5. Start loop.
-#
-loop:
- mov.l %d2,%d4 # copy the fraction before muls
- mov.l %d3,%d5 # to d4:d5
-#
-# A3. Multiply d2:d3 by 8; extract msbs into d1.
-#
- bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1
- asl.l &3,%d2 # shift d2 left by 3 places
- bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6
- asl.l &3,%d3 # shift d3 left by 3 places
- or.l %d6,%d2 # or in msbs from d3 into d2
-#
-# A4. Multiply d4:d5 by 2; add carry out to d1.
-#
- asl.l &1,%d5 # mul d5 by 2
- roxl.l &1,%d4 # mul d4 by 2
- swap %d6 # put 0 in d6 lower word
- addx.w %d6,%d1 # add in extend from mul by 2
-#
-# A5. Add mul by 8 to mul by 2. D1 contains the digit formed.
-#
- add.l %d5,%d3 # add lower 32 bits
- nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
- addx.l %d4,%d2 # add with extend upper 32 bits
- nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
- addx.w %d6,%d1 # add in extend from add to d1
- swap %d6 # with d6 = 0; put 0 in upper word
-#
-# A6. Test d7 and branch.
-#
- tst.w %d7 # if zero, store digit & to loop
- beq.b first_d # if non-zero, form byte & write
-sec_d:
- swap %d7 # bring first digit to word d7b
- asl.w &4,%d7 # first digit in upper 4 bits d7b
- add.w %d1,%d7 # add in ls digit to d7b
- mov.b %d7,(%a0)+ # store d7b byte in memory
- swap %d7 # put LEN counter in word d7a
- clr.w %d7 # set d7a to signal no digits done
- dbf.w %d0,loop # do loop some more!
- bra.b end_bstr # finished, so exit
-first_d:
- swap %d7 # put digit word in d7b
- mov.w %d1,%d7 # put new digit in d7b
- swap %d7 # put LEN counter in word d7a
- addq.w &1,%d7 # set d7a to signal first digit done
- dbf.w %d0,loop # do loop some more!
- swap %d7 # put last digit in string
- lsl.w &4,%d7 # move it to upper 4 bits
- mov.b %d7,(%a0)+ # store it in memory string
-#
-# Clean up and return with result in fp0.
-#
-end_bstr:
- movm.l (%sp)+,&0xff # {%d0-%d7}
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# facc_in_b(): dmem_read_byte failed #
-# facc_in_w(): dmem_read_word failed #
-# facc_in_l(): dmem_read_long failed #
-# facc_in_d(): dmem_read of dbl prec failed #
-# facc_in_x(): dmem_read of ext prec failed #
-# #
-# facc_out_b(): dmem_write_byte failed #
-# facc_out_w(): dmem_write_word failed #
-# facc_out_l(): dmem_write_long failed #
-# facc_out_d(): dmem_write of dbl prec failed #
-# facc_out_x(): dmem_write of ext prec failed #
-# #
-# XREF **************************************************************** #
-# _real_access() - exit through access error handler #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# Flow jumps here when an FP data fetch call gets an error #
-# result. This means the operating system wants an access error frame #
-# made out of the current exception stack frame. #
-# So, we first call restore() which makes sure that any updated #
-# -(an)+ register gets returned to its pre-exception value and then #
-# we change the stack to an access error stack frame. #
-# #
-#########################################################################
-
-facc_in_b:
- movq.l &0x1,%d0 # one byte
- bsr.w restore # fix An
-
- mov.w &0x0121,EXC_VOFF(%a6) # set FSLW
- bra.w facc_finish
-
-facc_in_w:
- movq.l &0x2,%d0 # two bytes
- bsr.w restore # fix An
-
- mov.w &0x0141,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_in_l:
- movq.l &0x4,%d0 # four bytes
- bsr.w restore # fix An
-
- mov.w &0x0101,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_in_d:
- movq.l &0x8,%d0 # eight bytes
- bsr.w restore # fix An
-
- mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_in_x:
- movq.l &0xc,%d0 # twelve bytes
- bsr.w restore # fix An
-
- mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-################################################################
-
-facc_out_b:
- movq.l &0x1,%d0 # one byte
- bsr.w restore # restore An
-
- mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_w:
- movq.l &0x2,%d0 # two bytes
- bsr.w restore # restore An
-
- mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_l:
- movq.l &0x4,%d0 # four bytes
- bsr.w restore # restore An
-
- mov.w &0x0081,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_d:
- movq.l &0x8,%d0 # eight bytes
- bsr.w restore # restore An
-
- mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_x:
- mov.l &0xc,%d0 # twelve bytes
- bsr.w restore # restore An
-
- mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
-
-# here's where we actually create the access error frame from the
-# current exception stack frame.
-facc_finish:
- mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- mov.l (%sp),-(%sp) # store SR, hi(PC)
- mov.l 0x8(%sp),0x4(%sp) # store lo(PC)
- mov.l 0xc(%sp),0x8(%sp) # store EA
- mov.l &0x00000001,0xc(%sp) # store FSLW
- mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size)
- mov.w &0x4008,0x6(%sp) # store voff
-
- btst &0x5,(%sp) # supervisor or user mode?
- beq.b facc_out2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-
-facc_out2:
- bra.l _real_access
-
-##################################################################
-
-# if the effective addressing mode was predecrement or postincrement,
-# the emulation has already changed its value to the correct post-
-# instruction value. but since we're exiting to the access error
-# handler, then AN must be returned to its pre-instruction value.
-# we do that here.
-restore:
- mov.b EXC_OPWORD+0x1(%a6),%d1
- andi.b &0x38,%d1 # extract opmode
- cmpi.b %d1,&0x18 # postinc?
- beq.w rest_inc
- cmpi.b %d1,&0x20 # predec?
- beq.w rest_dec
- rts
-
-rest_inc:
- mov.b EXC_OPWORD+0x1(%a6),%d1
- andi.w &0x0007,%d1 # fetch An
-
- mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1
- jmp (tbl_rest_inc.b,%pc,%d1.w*1)
-
-tbl_rest_inc:
- short ri_a0 - tbl_rest_inc
- short ri_a1 - tbl_rest_inc
- short ri_a2 - tbl_rest_inc
- short ri_a3 - tbl_rest_inc
- short ri_a4 - tbl_rest_inc
- short ri_a5 - tbl_rest_inc
- short ri_a6 - tbl_rest_inc
- short ri_a7 - tbl_rest_inc
-
-ri_a0:
- sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0
- rts
-ri_a1:
- sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1
- rts
-ri_a2:
- sub.l %d0,%a2 # fix a2
- rts
-ri_a3:
- sub.l %d0,%a3 # fix a3
- rts
-ri_a4:
- sub.l %d0,%a4 # fix a4
- rts
-ri_a5:
- sub.l %d0,%a5 # fix a5
- rts
-ri_a6:
- sub.l %d0,(%a6) # fix stacked a6
- rts
-# if it's a fmove out instruction, we don't have to fix a7
-# because we hadn't changed it yet. if it's an opclass two
-# instruction (data moved in) and the exception was in supervisor
-# mode, then also also wasn't updated. if it was user mode, then
-# restore the correct a7 which is in the USP currently.
-ri_a7:
- cmpi.b EXC_VOFF(%a6),&0x30 # move in or out?
- bne.b ri_a7_done # out
-
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.b ri_a7_done # supervisor
- movc %usp,%a0 # restore USP
- sub.l %d0,%a0
- movc %a0,%usp
-ri_a7_done:
- rts
-
-# need to invert adjustment value if the <ea> was predec
-rest_dec:
- neg.l %d0
- bra.b rest_inc
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S
deleted file mode 100644
index 1f947915..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ftest.S
+++ /dev/null
@@ -1,1456 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-#############################################
-set SREGS, -64
-set IREGS, -128
-set IFPREGS, -224
-set SFPREGS, -320
-set IFPCREGS, -332
-set SFPCREGS, -344
-set ICCR, -346
-set SCCR, -348
-set TESTCTR, -352
-set DATA, -384
-
-#############################################
-TESTTOP:
- bra.l _060TESTS_
- short 0x0000
-
- bra.l _060TESTS_unimp
- short 0x0000
-
- bra.l _060TESTS_enable
- short 0x0000
-
-start_str:
- string "Testing 68060 FPSP started:\n"
-
-start_str_unimp:
- string "Testing 68060 FPSP unimplemented instruction started:\n"
-
-start_str_enable:
- string "Testing 68060 FPSP exception enabled started:\n"
-
-pass_str:
- string "passed\n"
-
-fail_str:
- string " failed\n"
-
- align 0x4
-chk_test:
- tst.l %d0
- bne.b test_fail
-test_pass:
- pea pass_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
- rts
-test_fail:
- mov.l %d1,-(%sp)
- bsr.l _print_num
- addq.l &0x4,%sp
-
- pea fail_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
- rts
-
-#############################################
-_060TESTS_:
- link %a6,&-384
-
- movm.l &0x3f3c,-(%sp)
- fmovm.x &0xff,-(%sp)
-
- pea start_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
-### effadd
- clr.l TESTCTR(%a6)
- pea effadd_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l effadd_0
-
- bsr.l chk_test
-
-### unsupp
- clr.l TESTCTR(%a6)
- pea unsupp_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l unsupp_0
-
- bsr.l chk_test
-
-### ovfl non-maskable
- clr.l TESTCTR(%a6)
- pea ovfl_nm_str(%pc)
- bsr.l _print_str
- bsr.l ovfl_nm_0
-
- bsr.l chk_test
-
-### unfl non-maskable
- clr.l TESTCTR(%a6)
- pea unfl_nm_str(%pc)
- bsr.l _print_str
- bsr.l unfl_nm_0
-
- bsr.l chk_test
-
- movm.l (%sp)+,&0x3cfc
- fmovm.x (%sp)+,&0xff
-
- unlk %a6
- rts
-
-_060TESTS_unimp:
- link %a6,&-384
-
- movm.l &0x3f3c,-(%sp)
- fmovm.x &0xff,-(%sp)
-
- pea start_str_unimp(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
-### unimp
- clr.l TESTCTR(%a6)
- pea unimp_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l unimp_0
-
- bsr.l chk_test
-
- movm.l (%sp)+,&0x3cfc
- fmovm.x (%sp)+,&0xff
-
- unlk %a6
- rts
-
-_060TESTS_enable:
- link %a6,&-384
-
- movm.l &0x3f3c,-(%sp)
- fmovm.x &0xff,-(%sp)
-
- pea start_str_enable(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
-### snan
- clr.l TESTCTR(%a6)
- pea snan_str(%pc)
- bsr.l _print_str
- bsr.l snan_0
-
- bsr.l chk_test
-
-### operr
- clr.l TESTCTR(%a6)
- pea operr_str(%pc)
- bsr.l _print_str
- bsr.l operr_0
-
- bsr.l chk_test
-
-### ovfl
- clr.l TESTCTR(%a6)
- pea ovfl_str(%pc)
- bsr.l _print_str
- bsr.l ovfl_0
-
- bsr.l chk_test
-
-### unfl
- clr.l TESTCTR(%a6)
- pea unfl_str(%pc)
- bsr.l _print_str
- bsr.l unfl_0
-
- bsr.l chk_test
-
-### dz
- clr.l TESTCTR(%a6)
- pea dz_str(%pc)
- bsr.l _print_str
- bsr.l dz_0
-
- bsr.l chk_test
-
-### inexact
- clr.l TESTCTR(%a6)
- pea inex_str(%pc)
- bsr.l _print_str
- bsr.l inex_0
-
- bsr.l chk_test
-
- movm.l (%sp)+,&0x3cfc
- fmovm.x (%sp)+,&0xff
-
- unlk %a6
- rts
-
-#############################################
-#############################################
-
-unimp_str:
- string "\tUnimplemented FP instructions..."
-
- align 0x4
-unimp_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x40000000,DATA+0x0(%a6)
- mov.l &0xc90fdaa2,DATA+0x4(%a6)
- mov.l &0x2168c235,DATA+0x8(%a6)
-
- mov.w &0x0000,%cc
-unimp_0_pc:
- fsin.x DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0xbfbf0000,IFPREGS+0x0(%a6)
- mov.l &0x80000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x08000208,IFPCREGS+0x4(%a6)
- lea unimp_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-unimp_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x3ffe0000,DATA+0x0(%a6)
- mov.l &0xc90fdaa2,DATA+0x4(%a6)
- mov.l &0x2168c235,DATA+0x8(%a6)
-
- mov.w &0x0000,%cc
-unimp_1_pc:
- ftan.x DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x3fff0000,IFPREGS+0x0(%a6)
- mov.l &0x80000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x00000208,IFPCREGS+0x4(%a6)
- lea unimp_1_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# fmovecr
-unimp_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.w &0x0000,%cc
-unimp_2_pc:
- fmovcr.x &0x31,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x40000000,IFPREGS+0x0(%a6)
- mov.l &0x935d8ddd,IFPREGS+0x4(%a6)
- mov.l &0xaaa8ac17,IFPREGS+0x8(%a6)
- mov.l &0x00000208,IFPCREGS+0x4(%a6)
- lea unimp_2_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# fscc
-unimp_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- fmov.l &0x0f000000,%fpsr
- mov.l &0x00,%d7
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.w &0x0000,%cc
-unimp_3_pc:
- fsgt %d7
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.l &0x0f008080,IFPCREGS+0x4(%a6)
- lea unimp_3_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# fdbcc
-unimp_4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- fmov.l &0x0f000000,%fpsr
- mov.l &0x2,%d7
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.w &0x0000,%cc
-unimp_4_pc:
- fdbgt.w %d7,unimp_4_pc
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.w &0xffff,IREGS+28+2(%a6)
- mov.l &0x0f008080,IFPCREGS+0x4(%a6)
- lea unimp_4_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# ftrapcc
-unimp_5:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- fmov.l &0x0f000000,%fpsr
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.w &0x0000,%cc
-unimp_5_pc:
- ftpgt.l &0xabcdef01
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.l &0x0f008080,IFPCREGS+0x4(%a6)
- lea unimp_5_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#############################################
-
-effadd_str:
- string "\tUnimplemented <ea>..."
-
- align 0x4
-effadd_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmov.b &0x2,%fp0
-
- mov.w &0x0000,%cc
-effadd_0_pc:
- fmul.x &0xc00000008000000000000000,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0xc0010000,IFPREGS+0x0(%a6)
- mov.l &0x80000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x08000000,IFPCREGS+0x4(%a6)
- lea effadd_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-effadd_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.w &0x0000,%cc
-effadd_1_pc:
- fabs.p &0xc12300012345678912345678,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x3e660000,IFPREGS+0x0(%a6)
- mov.l &0xd0ed23e8,IFPREGS+0x4(%a6)
- mov.l &0xd14035bc,IFPREGS+0x8(%a6)
- mov.l &0x00000108,IFPCREGS+0x4(%a6)
- lea effadd_1_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-fmovml_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmovm.l &0xffffffffffffffff,%fpcr,%fpsr
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.l &0x0000fff0,IFPCREGS+0x0(%a6)
- mov.l &0x0ffffff8,IFPCREGS+0x4(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-fmovml_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmovm.l &0xffffffffffffffff,%fpcr,%fpiar
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.l &0x0000fff0,IFPCREGS+0x0(%a6)
- mov.l &0xffffffff,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-fmovml_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmovm.l &0xffffffffffffffff,%fpsr,%fpiar
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.l &0x0ffffff8,IFPCREGS+0x4(%a6)
- mov.l &0xffffffff,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-fmovml_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmovm.l &0xffffffffffffffffffffffff,%fpcr,%fpsr,%fpiar
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
- mov.l &0x0000fff0,IFPCREGS+0x0(%a6)
- mov.l &0x0ffffff8,IFPCREGS+0x4(%a6)
- mov.l &0xffffffff,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# fmovmx dynamic
-fmovmx_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- fmov.b &0x1,%fp0
- fmov.b &0x2,%fp1
- fmov.b &0x3,%fp2
- fmov.b &0x4,%fp3
- fmov.b &0x5,%fp4
- fmov.b &0x6,%fp5
- fmov.b &0x7,%fp6
- fmov.b &0x8,%fp7
-
- fmov.l &0x0,%fpiar
- mov.l &0xffffffaa,%d0
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0xffff,IREGS(%a6)
-
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
-
- mov.w &0x0000,%cc
-
- fmovm.x %d0,-(%sp)
-
- mov.w %cc,SCCR(%a6)
-
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- fmov.s &0x7f800000,%fp1
- fmov.s &0x7f800000,%fp3
- fmov.s &0x7f800000,%fp5
- fmov.s &0x7f800000,%fp7
-
- fmov.x (%sp)+,%fp1
- fmov.x (%sp)+,%fp3
- fmov.x (%sp)+,%fp5
- fmov.x (%sp)+,%fp7
-
- movm.l &0xffff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-fmovmx_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- fmov.b &0x1,%fp0
- fmov.b &0x2,%fp1
- fmov.b &0x3,%fp2
- fmov.b &0x4,%fp3
- fmov.b &0x5,%fp4
- fmov.b &0x6,%fp5
- fmov.b &0x7,%fp6
- fmov.b &0x8,%fp7
-
- fmov.x %fp6,-(%sp)
- fmov.x %fp4,-(%sp)
- fmov.x %fp2,-(%sp)
- fmov.x %fp0,-(%sp)
-
- fmovm.x &0xff,IFPREGS(%a6)
-
- fmov.s &0x7f800000,%fp6
- fmov.s &0x7f800000,%fp4
- fmov.s &0x7f800000,%fp2
- fmov.s &0x7f800000,%fp0
-
- fmov.l &0x0,%fpiar
- fmov.l &0x0,%fpsr
- mov.l &0xffffffaa,%d0
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0xffff,IREGS(%a6)
-
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.w &0x0000,%cc
-
- fmovm.x (%sp)+,%d0
-
- mov.w %cc,SCCR(%a6)
-
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- movm.l &0xffff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-fmovmx_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- fmov.b &0x1,%fp0
- fmov.b &0x2,%fp1
- fmov.b &0x3,%fp2
- fmov.b &0x4,%fp3
- fmov.b &0x5,%fp4
- fmov.b &0x6,%fp5
- fmov.b &0x7,%fp6
- fmov.b &0x8,%fp7
-
- fmov.l &0x0,%fpiar
- mov.l &0xffffff00,%d0
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0xffff,IREGS(%a6)
-
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
-
- mov.w &0x0000,%cc
-
- fmovm.x %d0,-(%sp)
-
- mov.w %cc,SCCR(%a6)
-
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- movm.l &0xffff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-###########################################################
-
-# This test will take a non-maskable overflow directly.
-ovfl_nm_str:
- string "\tNon-maskable overflow..."
-
- align 0x4
-ovfl_nm_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmov.b &0x2,%fp0
- mov.l &0x7ffe0000,DATA+0x0(%a6)
- mov.l &0x80000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
-
- mov.w &0x0000,%cc
-ovfl_nm_0_pc:
- fmul.x DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x7fff0000,IFPREGS+0x0(%a6)
- mov.l &0x00000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x02001048,IFPCREGS+0x4(%a6)
- lea ovfl_nm_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-###########################################################
-
-# This test will take an overflow directly.
-ovfl_str:
- string "\tEnabled overflow..."
-
- align 0x4
-ovfl_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmov.l &0x00001000,%fpcr
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- fmov.b &0x2,%fp0
- mov.l &0x7ffe0000,DATA+0x0(%a6)
- mov.l &0x80000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
-
- mov.w &0x0000,%cc
-ovfl_0_pc:
- fmul.x DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x7fff0000,IFPREGS+0x0(%a6)
- mov.l &0x00000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x02001048,IFPCREGS+0x4(%a6)
- lea ovfl_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-# This test will take an underflow directly.
-unfl_str:
- string "\tEnabled underflow..."
-
- align 0x4
-unfl_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmov.l &0x00000800,%fpcr
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x00000000,DATA+0x0(%a6)
- mov.l &0x80000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
- fmovm.x DATA(%a6),&0x80
-
- mov.w &0x0000,%cc
-unfl_0_pc:
- fdiv.b &0x2,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x00000000,IFPREGS+0x0(%a6)
- mov.l &0x40000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x00000800,IFPCREGS+0x4(%a6)
- lea unfl_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-# This test will take a non-maskable underflow directly.
-unfl_nm_str:
- string "\tNon-maskable underflow..."
-
- align 0x4
-unfl_nm_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x00000000,DATA+0x0(%a6)
- mov.l &0x80000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
- fmovm.x DATA(%a6),&0x80
-
- mov.w &0x0000,%cc
-unfl_nm_0_pc:
- fdiv.b &0x2,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x00000000,IFPREGS+0x0(%a6)
- mov.l &0x40000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x00000800,IFPCREGS+0x4(%a6)
- lea unfl_nm_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-inex_str:
- string "\tEnabled inexact..."
-
- align 0x4
-inex_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmov.l &0x00000200,%fpcr # enable inexact
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x50000000,DATA+0x0(%a6)
- mov.l &0x80000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
- fmovm.x DATA(%a6),&0x80
-
- mov.w &0x0000,%cc
-inex_0_pc:
- fadd.b &0x2,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x50000000,IFPREGS+0x0(%a6)
- mov.l &0x80000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x00000208,IFPCREGS+0x4(%a6)
- lea inex_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-snan_str:
- string "\tEnabled SNAN..."
-
- align 0x4
-snan_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmov.l &0x00004000,%fpcr # enable SNAN
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0xffff0000,DATA+0x0(%a6)
- mov.l &0x00000000,DATA+0x4(%a6)
- mov.l &0x00000001,DATA+0x8(%a6)
- fmovm.x DATA(%a6),&0x80
-
- mov.w &0x0000,%cc
-snan_0_pc:
- fadd.b &0x2,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0xffff0000,IFPREGS+0x0(%a6)
- mov.l &0x00000000,IFPREGS+0x4(%a6)
- mov.l &0x00000001,IFPREGS+0x8(%a6)
- mov.l &0x09004080,IFPCREGS+0x4(%a6)
- lea snan_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-operr_str:
- string "\tEnabled OPERR..."
-
- align 0x4
-operr_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmov.l &0x00002000,%fpcr # enable OPERR
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0xffff0000,DATA+0x0(%a6)
- mov.l &0x00000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
- fmovm.x DATA(%a6),&0x80
-
- mov.w &0x0000,%cc
-operr_0_pc:
- fadd.s &0x7f800000,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0xffff0000,IFPREGS+0x0(%a6)
- mov.l &0x00000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x01002080,IFPCREGS+0x4(%a6)
- lea operr_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-dz_str:
- string "\tEnabled DZ..."
-
- align 0x4
-dz_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmov.l &0x00000400,%fpcr # enable DZ
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x40000000,DATA+0x0(%a6)
- mov.l &0x80000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
- fmovm.x DATA(%a6),&0x80
-
- mov.w &0x0000,%cc
-dz_0_pc:
- fdiv.b &0x0,%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x40000000,IFPREGS+0x0(%a6)
- mov.l &0x80000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x02000410,IFPCREGS+0x4(%a6)
- lea dz_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-#####################################################################
-
-unsupp_str:
- string "\tUnimplemented data type/format..."
-
-# an unnormalized number
- align 0x4
-unsupp_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0xc03f0000,DATA+0x0(%a6)
- mov.l &0x00000000,DATA+0x4(%a6)
- mov.l &0x00000001,DATA+0x8(%a6)
- fmov.b &0x2,%fp0
- mov.w &0x0000,%cc
-unsupp_0_pc:
- fmul.x DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0xc0010000,IFPREGS+0x0(%a6)
- mov.l &0x80000000,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x08000000,IFPCREGS+0x4(%a6)
- lea unsupp_0_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# a denormalized number
-unsupp_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0x80000000,DATA+0x0(%a6)
- mov.l &0x01000000,DATA+0x4(%a6)
- mov.l &0x00000000,DATA+0x8(%a6)
- fmov.l &0x7fffffff,%fp0
-
- mov.w &0x0000,%cc
-unsupp_1_pc:
- fmul.x DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x80170000,IFPREGS+0x0(%a6)
- mov.l &0xfffffffe,IFPREGS+0x4(%a6)
- mov.l &0x00000000,IFPREGS+0x8(%a6)
- mov.l &0x08000000,IFPCREGS+0x4(%a6)
- lea unsupp_1_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
-# packed
-unsupp_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- fmovm.x DEF_FPREGS(%pc),&0xff
- fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar
-
- mov.w &0x0000,ICCR(%a6)
- movm.l &0x7fff,IREGS(%a6)
- fmovm.x &0xff,IFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6)
-
- mov.l &0xc1230001,DATA+0x0(%a6)
- mov.l &0x23456789,DATA+0x4(%a6)
- mov.l &0x12345678,DATA+0x8(%a6)
-
- mov.w &0x0000,%cc
-unsupp_2_pc:
- fabs.p DATA(%a6),%fp0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- fmovm.x &0xff,SFPREGS(%a6)
- fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6)
-
- mov.l &0x3e660000,IFPREGS+0x0(%a6)
- mov.l &0xd0ed23e8,IFPREGS+0x4(%a6)
- mov.l &0xd14035bc,IFPREGS+0x8(%a6)
- mov.l &0x00000108,IFPCREGS+0x4(%a6)
- lea unsupp_2_pc(%pc),%a0
- mov.l %a0,IFPCREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- bsr.l chkfpregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-###########################################################
-###########################################################
-
-chkregs:
- lea IREGS(%a6),%a0
- lea SREGS(%a6),%a1
- mov.l &14,%d0
-chkregs_loop:
- cmp.l (%a0)+,(%a1)+
- bne.l chkregs_error
- dbra.w %d0,chkregs_loop
-
- mov.w ICCR(%a6),%d0
- mov.w SCCR(%a6),%d1
- cmp.w %d0,%d1
- bne.l chkregs_error
-
- clr.l %d0
- rts
-
-chkregs_error:
- movq.l &0x1,%d0
- rts
-
-error:
- mov.l TESTCTR(%a6),%d1
- movq.l &0x1,%d0
- rts
-
-chkfpregs:
- lea IFPREGS(%a6),%a0
- lea SFPREGS(%a6),%a1
- mov.l &23,%d0
-chkfpregs_loop:
- cmp.l (%a0)+,(%a1)+
- bne.l chkfpregs_error
- dbra.w %d0,chkfpregs_loop
-
- lea IFPCREGS(%a6),%a0
- lea SFPCREGS(%a6),%a1
- cmp.l (%a0)+,(%a1)+
- bne.l chkfpregs_error
- cmp.l (%a0)+,(%a1)+
- bne.l chkfpregs_error
- cmp.l (%a0)+,(%a1)+
- bne.l chkfpregs_error
-
- clr.l %d0
- rts
-
-chkfpregs_error:
- movq.l &0x1,%d0
- rts
-
-DEF_REGS:
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
-
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
-
-DEF_FPREGS:
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
- long 0x7fff0000, 0xffffffff, 0xffffffff
-
-DEF_FPCREGS:
- long 0x00000000, 0x00000000, 0x00000000
-
-############################################################
-
-_print_str:
- mov.l %d0,-(%sp)
- mov.l (TESTTOP-0x80+0x0,%pc),%d0
- pea (TESTTOP-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-_print_num:
- mov.l %d0,-(%sp)
- mov.l (TESTTOP-0x80+0x4,%pc),%d0
- pea (TESTTOP-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-############################################################
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S
deleted file mode 100644
index 970abaf3..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/ilsp.S
+++ /dev/null
@@ -1,932 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-# litop.s:
-# This file is appended to the top of the 060FPLSP package
-# and contains the entry points into the package. The user, in
-# effect, branches to one of the branch table entries located here.
-#
-
- bra.l _060LSP__idivs64_
- short 0x0000
- bra.l _060LSP__idivu64_
- short 0x0000
-
- bra.l _060LSP__imuls64_
- short 0x0000
- bra.l _060LSP__imulu64_
- short 0x0000
-
- bra.l _060LSP__cmp2_Ab_
- short 0x0000
- bra.l _060LSP__cmp2_Aw_
- short 0x0000
- bra.l _060LSP__cmp2_Al_
- short 0x0000
- bra.l _060LSP__cmp2_Db_
- short 0x0000
- bra.l _060LSP__cmp2_Dw_
- short 0x0000
- bra.l _060LSP__cmp2_Dl_
- short 0x0000
-
-# leave room for future possible aditions.
- align 0x200
-
-#########################################################################
-# XDEF **************************************************************** #
-# _060LSP__idivu64_(): Emulate 64-bit unsigned div instruction. #
-# _060LSP__idivs64_(): Emulate 64-bit signed div instruction. #
-# #
-# This is the library version which is accessed as a subroutine #
-# and therefore does not work exactly like the 680X0 div{s,u}.l #
-# 64-bit divide instruction. #
-# #
-# XREF **************************************************************** #
-# None. #
-# #
-# INPUT *************************************************************** #
-# 0x4(sp) = divisor #
-# 0x8(sp) = hi(dividend) #
-# 0xc(sp) = lo(dividend) #
-# 0x10(sp) = pointer to location to place quotient/remainder #
-# #
-# OUTPUT ************************************************************** #
-# 0x10(sp) = points to location of remainder/quotient. #
-# remainder is in first longword, quotient is in 2nd. #
-# #
-# ALGORITHM *********************************************************** #
-# If the operands are signed, make them unsigned and save the #
-# sign info for later. Separate out special cases like divide-by-zero #
-# or 32-bit divides if possible. Else, use a special math algorithm #
-# to calculate the result. #
-# Restore sign info if signed instruction. Set the condition #
-# codes before performing the final "rts". If the divisor was equal to #
-# zero, then perform a divide-by-zero using a 16-bit implemented #
-# divide instruction. This way, the operating system can record that #
-# the event occurred even though it may not point to the correct place. #
-# #
-#########################################################################
-
-set POSNEG, -1
-set NDIVISOR, -2
-set NDIVIDEND, -3
-set DDSECOND, -4
-set DDNORMAL, -8
-set DDQUOTIENT, -12
-set DIV64_CC, -16
-
-##########
-# divs.l #
-##########
- global _060LSP__idivs64_
-_060LSP__idivs64_:
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-16
- movm.l &0x3f00,-(%sp) # save d2-d7
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,DIV64_CC(%a6)
- st POSNEG(%a6) # signed operation
- bra.b ldiv64_cont
-
-##########
-# divu.l #
-##########
- global _060LSP__idivu64_
-_060LSP__idivu64_:
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-16
- movm.l &0x3f00,-(%sp) # save d2-d7
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,DIV64_CC(%a6)
- sf POSNEG(%a6) # unsigned operation
-
-ldiv64_cont:
- mov.l 0x8(%a6),%d7 # fetch divisor
-
- beq.w ldiv64eq0 # divisor is = 0!!!
-
- mov.l 0xc(%a6), %d5 # get dividend hi
- mov.l 0x10(%a6), %d6 # get dividend lo
-
-# separate signed and unsigned divide
- tst.b POSNEG(%a6) # signed or unsigned?
- beq.b ldspecialcases # use positive divide
-
-# save the sign of the divisor
-# make divisor unsigned if it's negative
- tst.l %d7 # chk sign of divisor
- slt NDIVISOR(%a6) # save sign of divisor
- bpl.b ldsgndividend
- neg.l %d7 # complement negative divisor
-
-# save the sign of the dividend
-# make dividend unsigned if it's negative
-ldsgndividend:
- tst.l %d5 # chk sign of hi(dividend)
- slt NDIVIDEND(%a6) # save sign of dividend
- bpl.b ldspecialcases
-
- mov.w &0x0, %cc # clear 'X' cc bit
- negx.l %d6 # complement signed dividend
- negx.l %d5
-
-# extract some special cases:
-# - is (dividend == 0) ?
-# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)
-ldspecialcases:
- tst.l %d5 # is (hi(dividend) == 0)
- bne.b ldnormaldivide # no, so try it the long way
-
- tst.l %d6 # is (lo(dividend) == 0), too
- beq.w lddone # yes, so (dividend == 0)
-
- cmp.l %d7,%d6 # is (divisor <= lo(dividend))
- bls.b ld32bitdivide # yes, so use 32 bit divide
-
- exg %d5,%d6 # q = 0, r = dividend
- bra.w ldivfinish # can't divide, we're done.
-
-ld32bitdivide:
- tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div!
-
- bra.b ldivfinish
-
-ldnormaldivide:
-# last special case:
-# - is hi(dividend) >= divisor ? if yes, then overflow
- cmp.l %d7,%d5
- bls.b lddovf # answer won't fit in 32 bits
-
-# perform the divide algorithm:
- bsr.l ldclassical # do int divide
-
-# separate into signed and unsigned finishes.
-ldivfinish:
- tst.b POSNEG(%a6) # do divs, divu separately
- beq.b lddone # divu has no processing!!!
-
-# it was a divs.l, so ccode setting is a little more complicated...
- tst.b NDIVIDEND(%a6) # remainder has same sign
- beq.b ldcc # as dividend.
- neg.l %d5 # sgn(rem) = sgn(dividend)
-ldcc:
- mov.b NDIVISOR(%a6), %d0
- eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative
- beq.b ldqpos # branch to quot positive
-
-# 0x80000000 is the largest number representable as a 32-bit negative
-# number. the negative of 0x80000000 is 0x80000000.
- cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits?
- bhi.b lddovf
-
- neg.l %d6 # make (-quot) 2's comp
-
- bra.b lddone
-
-ldqpos:
- btst &0x1f, %d6 # will (+quot) fit in 32 bits?
- bne.b lddovf
-
-lddone:
-# if the register numbers are the same, only the quotient gets saved.
-# so, if we always save the quotient second, we save ourselves a cmp&beq
- andi.w &0x10,DIV64_CC(%a6)
- mov.w DIV64_CC(%a6),%cc
- tst.l %d6 # may set 'N' ccode bit
-
-# here, the result is in d1 and d0. the current strategy is to save
-# the values at the location pointed to by a0.
-# use movm here to not disturb the condition codes.
-ldexit:
- movm.l &0x0060,([0x14,%a6]) # save result
-
-# EPILOGUE BEGIN ########################################################
-# fmovm.l (%sp)+,&0x0 # restore no fpregs
- movm.l (%sp)+,&0x00fc # restore d2-d7
- unlk %a6
-# EPILOGUE END ##########################################################
-
- rts
-
-# the result should be the unchanged dividend
-lddovf:
- mov.l 0xc(%a6), %d5 # get dividend hi
- mov.l 0x10(%a6), %d6 # get dividend lo
-
- andi.w &0x1c,DIV64_CC(%a6)
- ori.w &0x02,DIV64_CC(%a6) # set 'V' ccode bit
- mov.w DIV64_CC(%a6),%cc
-
- bra.b ldexit
-
-ldiv64eq0:
- mov.l 0xc(%a6),([0x14,%a6])
- mov.l 0x10(%a6),([0x14,%a6],0x4)
-
- mov.w DIV64_CC(%a6),%cc
-
-# EPILOGUE BEGIN ########################################################
-# fmovm.l (%sp)+,&0x0 # restore no fpregs
- movm.l (%sp)+,&0x00fc # restore d2-d7
- unlk %a6
-# EPILOGUE END ##########################################################
-
- divu.w &0x0,%d0 # force a divbyzero exception
- rts
-
-###########################################################################
-#########################################################################
-# This routine uses the 'classical' Algorithm D from Donald Knuth's #
-# Art of Computer Programming, vol II, Seminumerical Algorithms. #
-# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, #
-# where U,V are words of the quadword dividend and longword divisor, #
-# and U1, V1 are the most significant words. #
-# #
-# The most sig. longword of the 64 bit dividend must be in %d5, least #
-# in %d6. The divisor must be in the variable ddivisor, and the #
-# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). #
-# The quotient is returned in %d6, remainder in %d5, unless the #
-# v (overflow) bit is set in the saved %ccr. If overflow, the dividend #
-# is unchanged. #
-#########################################################################
-ldclassical:
-# if the divisor msw is 0, use simpler algorithm then the full blown
-# one at ddknuth:
-
- cmpi.l %d7, &0xffff
- bhi.b lddknuth # go use D. Knuth algorithm
-
-# Since the divisor is only a word (and larger than the mslw of the dividend),
-# a simpler algorithm may be used :
-# In the general case, four quotient words would be created by
-# dividing the divisor word into each dividend word. In this case,
-# the first two quotient words must be zero, or overflow would occur.
-# Since we already checked this case above, we can treat the most significant
-# longword of the dividend as (0) remainder (see Knuth) and merely complete
-# the last two divisions to get a quotient longword and word remainder:
-
- clr.l %d1
- swap %d5 # same as r*b if previous step rqd
- swap %d6 # get u3 to lsw position
- mov.w %d6, %d5 # rb + u3
-
- divu.w %d7, %d5
-
- mov.w %d5, %d1 # first quotient word
- swap %d6 # get u4
- mov.w %d6, %d5 # rb + u4
-
- divu.w %d7, %d5
-
- swap %d1
- mov.w %d5, %d1 # 2nd quotient 'digit'
- clr.w %d5
- swap %d5 # now remainder
- mov.l %d1, %d6 # and quotient
-
- rts
-
-lddknuth:
-# In this algorithm, the divisor is treated as a 2 digit (word) number
-# which is divided into a 3 digit (word) dividend to get one quotient
-# digit (word). After subtraction, the dividend is shifted and the
-# process repeated. Before beginning, the divisor and quotient are
-# 'normalized' so that the process of estimating the quotient digit
-# will yield verifiably correct results..
-
- clr.l DDNORMAL(%a6) # count of shifts for normalization
- clr.b DDSECOND(%a6) # clear flag for quotient digits
- clr.l %d1 # %d1 will hold trial quotient
-lddnchk:
- btst &31, %d7 # must we normalize? first word of
- bne.b lddnormalized # divisor (V1) must be >= 65536/2
- addq.l &0x1, DDNORMAL(%a6) # count normalization shifts
- lsl.l &0x1, %d7 # shift the divisor
- lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2
- roxl.l &0x1, %d5 # shift u1,u2
- bra.w lddnchk
-lddnormalized:
-
-# Now calculate an estimate of the quotient words (msw first, then lsw).
-# The comments use subscripts for the first quotient digit determination.
- mov.l %d7, %d3 # divisor
- mov.l %d5, %d2 # dividend mslw
- swap %d2
- swap %d3
- cmp.w %d2, %d3 # V1 = U1 ?
- bne.b lddqcalc1
- mov.w &0xffff, %d1 # use max trial quotient word
- bra.b lddadj0
-lddqcalc1:
- mov.l %d5, %d1
-
- divu.w %d3, %d1 # use quotient of mslw/msw
-
- andi.l &0x0000ffff, %d1 # zero any remainder
-lddadj0:
-
-# now test the trial quotient and adjust. This step plus the
-# normalization assures (according to Knuth) that the trial
-# quotient will be at worst 1 too large.
- mov.l %d6, -(%sp)
- clr.w %d6 # word u3 left
- swap %d6 # in lsw position
-lddadj1: mov.l %d7, %d3
- mov.l %d1, %d2
- mulu.w %d7, %d2 # V2q
- swap %d3
- mulu.w %d1, %d3 # V1q
- mov.l %d5, %d4 # U1U2
- sub.l %d3, %d4 # U1U2 - V1q
-
- swap %d4
-
- mov.w %d4,%d0
- mov.w %d6,%d4 # insert lower word (U3)
-
- tst.w %d0 # is upper word set?
- bne.w lddadjd1
-
-# add.l %d6, %d4 # (U1U2 - V1q) + U3
-
- cmp.l %d2, %d4
- bls.b lddadjd1 # is V2q > (U1U2-V1q) + U3 ?
- subq.l &0x1, %d1 # yes, decrement and recheck
- bra.b lddadj1
-lddadjd1:
-# now test the word by multiplying it by the divisor (V1V2) and comparing
-# the 3 digit (word) result with the current dividend words
- mov.l %d5, -(%sp) # save %d5 (%d6 already saved)
- mov.l %d1, %d6
- swap %d6 # shift answer to ms 3 words
- mov.l %d7, %d5
- bsr.l ldmm2
- mov.l %d5, %d2 # now %d2,%d3 are trial*divisor
- mov.l %d6, %d3
- mov.l (%sp)+, %d5 # restore dividend
- mov.l (%sp)+, %d6
- sub.l %d3, %d6
- subx.l %d2, %d5 # subtract double precision
- bcc ldd2nd # no carry, do next quotient digit
- subq.l &0x1, %d1 # q is one too large
-# need to add back divisor longword to current ms 3 digits of dividend
-# - according to Knuth, this is done only 2 out of 65536 times for random
-# divisor, dividend selection.
- clr.l %d2
- mov.l %d7, %d3
- swap %d3
- clr.w %d3 # %d3 now ls word of divisor
- add.l %d3, %d6 # aligned with 3rd word of dividend
- addx.l %d2, %d5
- mov.l %d7, %d3
- clr.w %d3 # %d3 now ms word of divisor
- swap %d3 # aligned with 2nd word of dividend
- add.l %d3, %d5
-ldd2nd:
- tst.b DDSECOND(%a6) # both q words done?
- bne.b lddremain
-# first quotient digit now correct. store digit and shift the
-# (subtracted) dividend
- mov.w %d1, DDQUOTIENT(%a6)
- clr.l %d1
- swap %d5
- swap %d6
- mov.w %d6, %d5
- clr.w %d6
- st DDSECOND(%a6) # second digit
- bra.w lddnormalized
-lddremain:
-# add 2nd word to quotient, get the remainder.
- mov.w %d1, DDQUOTIENT+2(%a6)
-# shift down one word/digit to renormalize remainder.
- mov.w %d5, %d6
- swap %d6
- swap %d5
- mov.l DDNORMAL(%a6), %d7 # get norm shift count
- beq.b lddrn
- subq.l &0x1, %d7 # set for loop count
-lddnlp:
- lsr.l &0x1, %d5 # shift into %d6
- roxr.l &0x1, %d6
- dbf %d7, lddnlp
-lddrn:
- mov.l %d6, %d5 # remainder
- mov.l DDQUOTIENT(%a6), %d6 # quotient
-
- rts
-ldmm2:
-# factors for the 32X32->64 multiplication are in %d5 and %d6.
-# returns 64 bit result in %d5 (hi) %d6(lo).
-# destroys %d2,%d3,%d4.
-
-# multiply hi,lo words of each factor to get 4 intermediate products
- mov.l %d6, %d2
- mov.l %d6, %d3
- mov.l %d5, %d4
- swap %d3
- swap %d4
- mulu.w %d5, %d6 # %d6 <- lsw*lsw
- mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source
- mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest
- mulu.w %d4, %d3 # %d3 <- msw*msw
-# now use swap and addx to consolidate to two longwords
- clr.l %d4
- swap %d6
- add.w %d5, %d6 # add msw of l*l to lsw of m*l product
- addx.w %d4, %d3 # add any carry to m*m product
- add.w %d2, %d6 # add in lsw of other m*l product
- addx.w %d4, %d3 # add any carry to m*m product
- swap %d6 # %d6 is low 32 bits of final product
- clr.w %d5
- clr.w %d2 # lsw of two mixed products used,
- swap %d5 # now use msws of longwords
- swap %d2
- add.l %d2, %d5
- add.l %d3, %d5 # %d5 now ms 32 bits of final product
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _060LSP__imulu64_(): Emulate 64-bit unsigned mul instruction #
-# _060LSP__imuls64_(): Emulate 64-bit signed mul instruction. #
-# #
-# This is the library version which is accessed as a subroutine #
-# and therefore does not work exactly like the 680X0 mul{s,u}.l #
-# 64-bit multiply instruction. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# 0x4(sp) = multiplier #
-# 0x8(sp) = multiplicand #
-# 0xc(sp) = pointer to location to place 64-bit result #
-# #
-# OUTPUT ************************************************************** #
-# 0xc(sp) = points to location of 64-bit result #
-# #
-# ALGORITHM *********************************************************** #
-# Perform the multiply in pieces using 16x16->32 unsigned #
-# multiplies and "add" instructions. #
-# Set the condition codes as appropriate before performing an #
-# "rts". #
-# #
-#########################################################################
-
-set MUL64_CC, -4
-
- global _060LSP__imulu64_
-_060LSP__imulu64_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,MUL64_CC(%a6) # save incoming ccodes
-
- mov.l 0x8(%a6),%d0 # store multiplier in d0
- beq.w mulu64_zero # handle zero separately
-
- mov.l 0xc(%a6),%d1 # get multiplicand in d1
- beq.w mulu64_zero # handle zero separately
-
-#########################################################################
-# 63 32 0 #
-# ---------------------------- #
-# | hi(mplier) * hi(mplicand)| #
-# ---------------------------- #
-# ----------------------------- #
-# | hi(mplier) * lo(mplicand) | #
-# ----------------------------- #
-# ----------------------------- #
-# | lo(mplier) * hi(mplicand) | #
-# ----------------------------- #
-# | ----------------------------- #
-# --|-- | lo(mplier) * lo(mplicand) | #
-# | ----------------------------- #
-# ======================================================== #
-# -------------------------------------------------------- #
-# | hi(result) | lo(result) | #
-# -------------------------------------------------------- #
-#########################################################################
-mulu64_alg:
-# load temp registers with operands
- mov.l %d0,%d2 # mr in d2
- mov.l %d0,%d3 # mr in d3
- mov.l %d1,%d4 # md in d4
- swap %d3 # hi(mr) in lo d3
- swap %d4 # hi(md) in lo d4
-
-# complete necessary multiplies:
- mulu.w %d1,%d0 # [1] lo(mr) * lo(md)
- mulu.w %d3,%d1 # [2] hi(mr) * lo(md)
- mulu.w %d4,%d2 # [3] lo(mr) * hi(md)
- mulu.w %d4,%d3 # [4] hi(mr) * hi(md)
-
-# add lo portions of [2],[3] to hi portion of [1].
-# add carries produced from these adds to [4].
-# lo([1]) is the final lo 16 bits of the result.
- clr.l %d4 # load d4 w/ zero value
- swap %d0 # hi([1]) <==> lo([1])
- add.w %d1,%d0 # hi([1]) + lo([2])
- addx.l %d4,%d3 # [4] + carry
- add.w %d2,%d0 # hi([1]) + lo([3])
- addx.l %d4,%d3 # [4] + carry
- swap %d0 # lo([1]) <==> hi([1])
-
-# lo portions of [2],[3] have been added in to final result.
-# now, clear lo, put hi in lo reg, and add to [4]
- clr.w %d1 # clear lo([2])
- clr.w %d2 # clear hi([3])
- swap %d1 # hi([2]) in lo d1
- swap %d2 # hi([3]) in lo d2
- add.l %d2,%d1 # [4] + hi([2])
- add.l %d3,%d1 # [4] + hi([3])
-
-# now, grab the condition codes. only one that can be set is 'N'.
-# 'N' CAN be set if the operation is unsigned if bit 63 is set.
- mov.w MUL64_CC(%a6),%d4
- andi.b &0x10,%d4 # keep old 'X' bit
- tst.l %d1 # may set 'N' bit
- bpl.b mulu64_ddone
- ori.b &0x8,%d4 # set 'N' bit
-mulu64_ddone:
- mov.w %d4,%cc
-
-# here, the result is in d1 and d0. the current strategy is to save
-# the values at the location pointed to by a0.
-# use movm here to not disturb the condition codes.
-mulu64_end:
- exg %d1,%d0
- movm.l &0x0003,([0x10,%a6]) # save result
-
-# EPILOGUE BEGIN ########################################################
-# fmovm.l (%sp)+,&0x0 # restore no fpregs
- movm.l (%sp)+,&0x001c # restore d2-d4
- unlk %a6
-# EPILOGUE END ##########################################################
-
- rts
-
-# one or both of the operands is zero so the result is also zero.
-# save the zero result to the register file and set the 'Z' ccode bit.
-mulu64_zero:
- clr.l %d0
- clr.l %d1
-
- mov.w MUL64_CC(%a6),%d4
- andi.b &0x10,%d4
- ori.b &0x4,%d4
- mov.w %d4,%cc # set 'Z' ccode bit
-
- bra.b mulu64_end
-
-##########
-# muls.l #
-##########
- global _060LSP__imuls64_
-_060LSP__imuls64_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3c00,-(%sp) # save d2-d5
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,MUL64_CC(%a6) # save incoming ccodes
-
- mov.l 0x8(%a6),%d0 # store multiplier in d0
- beq.b mulu64_zero # handle zero separately
-
- mov.l 0xc(%a6),%d1 # get multiplicand in d1
- beq.b mulu64_zero # handle zero separately
-
- clr.b %d5 # clear sign tag
- tst.l %d0 # is multiplier negative?
- bge.b muls64_chk_md_sgn # no
- neg.l %d0 # make multiplier positive
-
- ori.b &0x1,%d5 # save multiplier sgn
-
-# the result sign is the exclusive or of the operand sign bits.
-muls64_chk_md_sgn:
- tst.l %d1 # is multiplicand negative?
- bge.b muls64_alg # no
- neg.l %d1 # make multiplicand positive
-
- eori.b &0x1,%d5 # calculate correct sign
-
-#########################################################################
-# 63 32 0 #
-# ---------------------------- #
-# | hi(mplier) * hi(mplicand)| #
-# ---------------------------- #
-# ----------------------------- #
-# | hi(mplier) * lo(mplicand) | #
-# ----------------------------- #
-# ----------------------------- #
-# | lo(mplier) * hi(mplicand) | #
-# ----------------------------- #
-# | ----------------------------- #
-# --|-- | lo(mplier) * lo(mplicand) | #
-# | ----------------------------- #
-# ======================================================== #
-# -------------------------------------------------------- #
-# | hi(result) | lo(result) | #
-# -------------------------------------------------------- #
-#########################################################################
-muls64_alg:
-# load temp registers with operands
- mov.l %d0,%d2 # mr in d2
- mov.l %d0,%d3 # mr in d3
- mov.l %d1,%d4 # md in d4
- swap %d3 # hi(mr) in lo d3
- swap %d4 # hi(md) in lo d4
-
-# complete necessary multiplies:
- mulu.w %d1,%d0 # [1] lo(mr) * lo(md)
- mulu.w %d3,%d1 # [2] hi(mr) * lo(md)
- mulu.w %d4,%d2 # [3] lo(mr) * hi(md)
- mulu.w %d4,%d3 # [4] hi(mr) * hi(md)
-
-# add lo portions of [2],[3] to hi portion of [1].
-# add carries produced from these adds to [4].
-# lo([1]) is the final lo 16 bits of the result.
- clr.l %d4 # load d4 w/ zero value
- swap %d0 # hi([1]) <==> lo([1])
- add.w %d1,%d0 # hi([1]) + lo([2])
- addx.l %d4,%d3 # [4] + carry
- add.w %d2,%d0 # hi([1]) + lo([3])
- addx.l %d4,%d3 # [4] + carry
- swap %d0 # lo([1]) <==> hi([1])
-
-# lo portions of [2],[3] have been added in to final result.
-# now, clear lo, put hi in lo reg, and add to [4]
- clr.w %d1 # clear lo([2])
- clr.w %d2 # clear hi([3])
- swap %d1 # hi([2]) in lo d1
- swap %d2 # hi([3]) in lo d2
- add.l %d2,%d1 # [4] + hi([2])
- add.l %d3,%d1 # [4] + hi([3])
-
- tst.b %d5 # should result be signed?
- beq.b muls64_done # no
-
-# result should be a signed negative number.
-# compute 2's complement of the unsigned number:
-# -negate all bits and add 1
-muls64_neg:
- not.l %d0 # negate lo(result) bits
- not.l %d1 # negate hi(result) bits
- addq.l &1,%d0 # add 1 to lo(result)
- addx.l %d4,%d1 # add carry to hi(result)
-
-muls64_done:
- mov.w MUL64_CC(%a6),%d4
- andi.b &0x10,%d4 # keep old 'X' bit
- tst.l %d1 # may set 'N' bit
- bpl.b muls64_ddone
- ori.b &0x8,%d4 # set 'N' bit
-muls64_ddone:
- mov.w %d4,%cc
-
-# here, the result is in d1 and d0. the current strategy is to save
-# the values at the location pointed to by a0.
-# use movm here to not disturb the condition codes.
-muls64_end:
- exg %d1,%d0
- movm.l &0x0003,([0x10,%a6]) # save result at (a0)
-
-# EPILOGUE BEGIN ########################################################
-# fmovm.l (%sp)+,&0x0 # restore no fpregs
- movm.l (%sp)+,&0x003c # restore d2-d5
- unlk %a6
-# EPILOGUE END ##########################################################
-
- rts
-
-# one or both of the operands is zero so the result is also zero.
-# save the zero result to the register file and set the 'Z' ccode bit.
-muls64_zero:
- clr.l %d0
- clr.l %d1
-
- mov.w MUL64_CC(%a6),%d4
- andi.b &0x10,%d4
- ori.b &0x4,%d4
- mov.w %d4,%cc # set 'Z' ccode bit
-
- bra.b muls64_end
-
-#########################################################################
-# XDEF **************************************************************** #
-# _060LSP__cmp2_Ab_(): Emulate "cmp2.b An,<ea>". #
-# _060LSP__cmp2_Aw_(): Emulate "cmp2.w An,<ea>". #
-# _060LSP__cmp2_Al_(): Emulate "cmp2.l An,<ea>". #
-# _060LSP__cmp2_Db_(): Emulate "cmp2.b Dn,<ea>". #
-# _060LSP__cmp2_Dw_(): Emulate "cmp2.w Dn,<ea>". #
-# _060LSP__cmp2_Dl_(): Emulate "cmp2.l Dn,<ea>". #
-# #
-# This is the library version which is accessed as a subroutine #
-# and therefore does not work exactly like the 680X0 "cmp2" #
-# instruction. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# 0x4(sp) = Rn #
-# 0x8(sp) = pointer to boundary pair #
-# #
-# OUTPUT ************************************************************** #
-# cc = condition codes are set correctly #
-# #
-# ALGORITHM *********************************************************** #
-# In the interest of simplicity, all operands are converted to #
-# longword size whether the operation is byte, word, or long. The #
-# bounds are sign extended accordingly. If Rn is a data regsiter, Rn is #
-# also sign extended. If Rn is an address register, it need not be sign #
-# extended since the full register is always used. #
-# The condition codes are set correctly before the final "rts". #
-# #
-#########################################################################
-
-set CMP2_CC, -4
-
- global _060LSP__cmp2_Ab_
-_060LSP__cmp2_Ab_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,CMP2_CC(%a6)
- mov.l 0x8(%a6), %d2 # get regval
-
- mov.b ([0xc,%a6],0x0),%d0
- mov.b ([0xc,%a6],0x1),%d1
-
- extb.l %d0 # sign extend lo bnd
- extb.l %d1 # sign extend hi bnd
- bra.w l_cmp2_cmp # go do the compare emulation
-
- global _060LSP__cmp2_Aw_
-_060LSP__cmp2_Aw_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,CMP2_CC(%a6)
- mov.l 0x8(%a6), %d2 # get regval
-
- mov.w ([0xc,%a6],0x0),%d0
- mov.w ([0xc,%a6],0x2),%d1
-
- ext.l %d0 # sign extend lo bnd
- ext.l %d1 # sign extend hi bnd
- bra.w l_cmp2_cmp # go do the compare emulation
-
- global _060LSP__cmp2_Al_
-_060LSP__cmp2_Al_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,CMP2_CC(%a6)
- mov.l 0x8(%a6), %d2 # get regval
-
- mov.l ([0xc,%a6],0x0),%d0
- mov.l ([0xc,%a6],0x4),%d1
- bra.w l_cmp2_cmp # go do the compare emulation
-
- global _060LSP__cmp2_Db_
-_060LSP__cmp2_Db_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,CMP2_CC(%a6)
- mov.l 0x8(%a6), %d2 # get regval
-
- mov.b ([0xc,%a6],0x0),%d0
- mov.b ([0xc,%a6],0x1),%d1
-
- extb.l %d0 # sign extend lo bnd
- extb.l %d1 # sign extend hi bnd
-
-# operation is a data register compare.
-# sign extend byte to long so we can do simple longword compares.
- extb.l %d2 # sign extend data byte
- bra.w l_cmp2_cmp # go do the compare emulation
-
- global _060LSP__cmp2_Dw_
-_060LSP__cmp2_Dw_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,CMP2_CC(%a6)
- mov.l 0x8(%a6), %d2 # get regval
-
- mov.w ([0xc,%a6],0x0),%d0
- mov.w ([0xc,%a6],0x2),%d1
-
- ext.l %d0 # sign extend lo bnd
- ext.l %d1 # sign extend hi bnd
-
-# operation is a data register compare.
-# sign extend word to long so we can do simple longword compares.
- ext.l %d2 # sign extend data word
- bra.w l_cmp2_cmp # go emulate compare
-
- global _060LSP__cmp2_Dl_
-_060LSP__cmp2_Dl_:
-
-# PROLOGUE BEGIN ########################################################
- link.w %a6,&-4
- movm.l &0x3800,-(%sp) # save d2-d4
-# fmovm.l &0x0,-(%sp) # save no fpregs
-# PROLOGUE END ##########################################################
-
- mov.w %cc,CMP2_CC(%a6)
- mov.l 0x8(%a6), %d2 # get regval
-
- mov.l ([0xc,%a6],0x0),%d0
- mov.l ([0xc,%a6],0x4),%d1
-
-#
-# To set the ccodes correctly:
-# (1) save 'Z' bit from (Rn - lo)
-# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi))
-# (3) keep 'X', 'N', and 'V' from before instruction
-# (4) combine ccodes
-#
-l_cmp2_cmp:
- sub.l %d0, %d2 # (Rn - lo)
- mov.w %cc, %d3 # fetch resulting ccodes
- andi.b &0x4, %d3 # keep 'Z' bit
- sub.l %d0, %d1 # (hi - lo)
- cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi))
-
- mov.w %cc, %d4 # fetch resulting ccodes
- or.b %d4, %d3 # combine w/ earlier ccodes
- andi.b &0x5, %d3 # keep 'Z' and 'N'
-
- mov.w CMP2_CC(%a6), %d4 # fetch old ccodes
- andi.b &0x1a, %d4 # keep 'X','N','V' bits
- or.b %d3, %d4 # insert new ccodes
- mov.w %d4,%cc # save new ccodes
-
-# EPILOGUE BEGIN ########################################################
-# fmovm.l (%sp)+,&0x0 # restore no fpregs
- movm.l (%sp)+,&0x001c # restore d2-d4
- unlk %a6
-# EPILOGUE END ##########################################################
-
- rts
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S
deleted file mode 100644
index 6dccda76..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S
+++ /dev/null
@@ -1,4299 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-# ireal.s:
-# This file is appended to the top of the 060ISP package
-# and contains the entry points into the package. The user, in
-# effect, branches to one of the branch table entries located
-# after _060ISP_TABLE.
-# Also, subroutine stubs exist in this file (_isp_done for
-# example) that are referenced by the ISP package itself in order
-# to call a given routine. The stub routine actually performs the
-# callout. The ISP code does a "bsr" to the stub routine. This
-# extra layer of hierarchy adds a slight performance penalty but
-# it makes the ISP code easier to read and more mainatinable.
-#
-
-set _off_chk, 0x00
-set _off_divbyzero, 0x04
-set _off_trace, 0x08
-set _off_access, 0x0c
-set _off_done, 0x10
-
-set _off_cas, 0x14
-set _off_cas2, 0x18
-set _off_lock, 0x1c
-set _off_unlock, 0x20
-
-set _off_imr, 0x40
-set _off_dmr, 0x44
-set _off_dmw, 0x48
-set _off_irw, 0x4c
-set _off_irl, 0x50
-set _off_drb, 0x54
-set _off_drw, 0x58
-set _off_drl, 0x5c
-set _off_dwb, 0x60
-set _off_dww, 0x64
-set _off_dwl, 0x68
-
-_060ISP_TABLE:
-
-# Here's the table of ENTRY POINTS for those linking the package.
- bra.l _isp_unimp
- short 0x0000
-
- bra.l _isp_cas
- short 0x0000
-
- bra.l _isp_cas2
- short 0x0000
-
- bra.l _isp_cas_finish
- short 0x0000
-
- bra.l _isp_cas2_finish
- short 0x0000
-
- bra.l _isp_cas_inrange
- short 0x0000
-
- bra.l _isp_cas_terminate
- short 0x0000
-
- bra.l _isp_cas_restart
- short 0x0000
-
- space 64
-
-#############################################################
-
- global _real_chk
-_real_chk:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_chk,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_divbyzero
-_real_divbyzero:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_trace
-_real_trace:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_trace,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_access
-_real_access:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_access,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _isp_done
-_isp_done:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_done,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#######################################
-
- global _real_cas
-_real_cas:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_cas,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_cas2
-_real_cas2:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_lock_page
-_real_lock_page:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_lock,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_unlock_page
-_real_unlock_page:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#######################################
-
- global _imem_read
-_imem_read:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_imr,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read
-_dmem_read:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write
-_dmem_write:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_word
-_imem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_irw,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_long
-_imem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_irl,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_byte
-_dmem_read_byte:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_drb,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_word
-_dmem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_drw,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_long
-_dmem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_drl,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_byte
-_dmem_write_byte:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_word
-_dmem_write_word:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dww,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_long
-_dmem_write_long:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#
-# This file contains a set of define statements for constants
-# in oreder to promote readability within the core code itself.
-#
-
-set LOCAL_SIZE, 96 # stack frame size(bytes)
-set LV, -LOCAL_SIZE # stack offset
-
-set EXC_ISR, 0x4 # stack status register
-set EXC_IPC, 0x6 # stack pc
-set EXC_IVOFF, 0xa # stacked vector offset
-
-set EXC_AREGS, LV+64 # offset of all address regs
-set EXC_DREGS, LV+32 # offset of all data regs
-
-set EXC_A7, EXC_AREGS+(7*4) # offset of a7
-set EXC_A6, EXC_AREGS+(6*4) # offset of a6
-set EXC_A5, EXC_AREGS+(5*4) # offset of a5
-set EXC_A4, EXC_AREGS+(4*4) # offset of a4
-set EXC_A3, EXC_AREGS+(3*4) # offset of a3
-set EXC_A2, EXC_AREGS+(2*4) # offset of a2
-set EXC_A1, EXC_AREGS+(1*4) # offset of a1
-set EXC_A0, EXC_AREGS+(0*4) # offset of a0
-set EXC_D7, EXC_DREGS+(7*4) # offset of d7
-set EXC_D6, EXC_DREGS+(6*4) # offset of d6
-set EXC_D5, EXC_DREGS+(5*4) # offset of d5
-set EXC_D4, EXC_DREGS+(4*4) # offset of d4
-set EXC_D3, EXC_DREGS+(3*4) # offset of d3
-set EXC_D2, EXC_DREGS+(2*4) # offset of d2
-set EXC_D1, EXC_DREGS+(1*4) # offset of d1
-set EXC_D0, EXC_DREGS+(0*4) # offset of d0
-
-set EXC_TEMP, LV+16 # offset of temp stack space
-
-set EXC_SAVVAL, LV+12 # offset of old areg value
-set EXC_SAVREG, LV+11 # offset of old areg index
-
-set SPCOND_FLG, LV+10 # offset of spc condition flg
-
-set EXC_CC, LV+8 # offset of cc register
-set EXC_EXTWPTR, LV+4 # offset of current PC
-set EXC_EXTWORD, LV+2 # offset of current ext opword
-set EXC_OPWORD, LV+0 # offset of current opword
-
-###########################
-# SPecial CONDition FLaGs #
-###########################
-set mia7_flg, 0x04 # (a7)+ flag
-set mda7_flg, 0x08 # -(a7) flag
-set ichk_flg, 0x10 # chk exception flag
-set idbyz_flg, 0x20 # divbyzero flag
-set restore_flg, 0x40 # restore -(an)+ flag
-set immed_flg, 0x80 # immediate data flag
-
-set mia7_bit, 0x2 # (a7)+ bit
-set mda7_bit, 0x3 # -(a7) bit
-set ichk_bit, 0x4 # chk exception bit
-set idbyz_bit, 0x5 # divbyzero bit
-set restore_bit, 0x6 # restore -(a7)+ bit
-set immed_bit, 0x7 # immediate data bit
-
-#########
-# Misc. #
-#########
-set BYTE, 1 # len(byte) == 1 byte
-set WORD, 2 # len(word) == 2 bytes
-set LONG, 4 # len(longword) == 4 bytes
-
-#########################################################################
-# XDEF **************************************************************** #
-# _isp_unimp(): 060ISP entry point for Unimplemented Instruction #
-# #
-# This handler should be the first code executed upon taking the #
-# "Unimplemented Integer Instruction" exception in an operating #
-# system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_{word,long}() - read instruction word/longword #
-# _mul64() - emulate 64-bit multiply #
-# _div64() - emulate 64-bit divide #
-# _moveperipheral() - emulate "movep" #
-# _compandset() - emulate misaligned "cas" #
-# _compandset2() - emulate "cas2" #
-# _chk2_cmp2() - emulate "cmp2" and "chk2" #
-# _isp_done() - "callout" for normal final exit #
-# _real_trace() - "callout" for Trace exception #
-# _real_chk() - "callout" for Chk exception #
-# _real_divbyzero() - "callout" for DZ exception #
-# _real_access() - "callout" for access error exception #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the Unimp Int Instr stack frame #
-# #
-# OUTPUT ************************************************************** #
-# If Trace exception: #
-# - The system stack changed to contain Trace exc stack frame #
-# If Chk exception: #
-# - The system stack changed to contain Chk exc stack frame #
-# If DZ exception: #
-# - The system stack changed to contain DZ exc stack frame #
-# If access error exception: #
-# - The system stack changed to contain access err exc stk frame #
-# Else: #
-# - Results saved as appropriate #
-# #
-# ALGORITHM *********************************************************** #
-# This handler fetches the first instruction longword from #
-# memory and decodes it to determine which of the unimplemented #
-# integer instructions caused this exception. This handler then calls #
-# one of _mul64(), _div64(), _moveperipheral(), _compandset(), #
-# _compandset2(), or _chk2_cmp2() as appropriate. #
-# Some of these instructions, by their nature, may produce other #
-# types of exceptions. "div" can produce a divide-by-zero exception, #
-# and "chk2" can cause a "Chk" exception. In both cases, the current #
-# exception stack frame must be converted to an exception stack frame #
-# of the correct exception type and an exit must be made through #
-# _real_divbyzero() or _real_chk() as appropriate. In addition, all #
-# instructions may be executing while Trace is enabled. If so, then #
-# a Trace exception stack frame must be created and an exit made #
-# through _real_trace(). #
-# Meanwhile, if any read or write to memory using the #
-# _mem_{read,write}() "callout"s returns a failing value, then an #
-# access error frame must be created and an exit made through #
-# _real_access(). #
-# If none of these occur, then a normal exit is made through #
-# _isp_done(). #
-# #
-# This handler, upon entry, saves almost all user-visible #
-# address and data registers to the stack. Although this may seem to #
-# cause excess memory traffic, it was found that due to having to #
-# access these register files for things like data retrieval and <ea> #
-# calculations, it was more efficient to have them on the stack where #
-# they could be accessed by indexing rather than to make subroutine #
-# calls to retrieve a register of a particular index. #
-# #
-#########################################################################
-
- global _isp_unimp
-_isp_unimp:
- link.w %a6,&-LOCAL_SIZE # create room for stack frame
-
- movm.l &0x3fff,EXC_DREGS(%a6) # store d0-d7/a0-a5
- mov.l (%a6),EXC_A6(%a6) # store a6
-
- btst &0x5,EXC_ISR(%a6) # from s or u mode?
- bne.b uieh_s # supervisor mode
-uieh_u:
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # store a7
- bra.b uieh_cont
-uieh_s:
- lea 0xc(%a6),%a0
- mov.l %a0,EXC_A7(%a6) # store corrected sp
-
-###############################################################################
-
-uieh_cont:
- clr.b SPCOND_FLG(%a6) # clear "special case" flag
-
- mov.w EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack
- mov.l EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack
-
-#
-# fetch the opword and first extension word pointed to by the stacked pc
-# and store them to the stack for now
-#
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch opword & extword
- mov.l %d0,EXC_OPWORD(%a6) # store extword on stack
-
-
-#########################################################################
-# muls.l 0100 1100 00 |<ea>| 0*** 1100 0000 0*** #
-# mulu.l 0100 1100 00 |<ea>| 0*** 0100 0000 0*** #
-# #
-# divs.l 0100 1100 01 |<ea>| 0*** 1100 0000 0*** #
-# divu.l 0100 1100 01 |<ea>| 0*** 0100 0000 0*** #
-# #
-# movep.w m2r 0000 ***1 00 001*** | <displacement> | #
-# movep.l m2r 0000 ***1 01 001*** | <displacement> | #
-# movep.w r2m 0000 ***1 10 001*** | <displacement> | #
-# movep.l r2m 0000 ***1 11 001*** | <displacement> | #
-# #
-# cas.w 0000 1100 11 |<ea>| 0000 000* **00 0*** #
-# cas.l 0000 1110 11 |<ea>| 0000 000* **00 0*** #
-# #
-# cas2.w 0000 1100 11 111100 **** 000* **00 0*** #
-# **** 000* **00 0*** #
-# cas2.l 0000 1110 11 111100 **** 000* **00 0*** #
-# **** 000* **00 0*** #
-# #
-# chk2.b 0000 0000 11 |<ea>| **** 1000 0000 0000 #
-# chk2.w 0000 0010 11 |<ea>| **** 1000 0000 0000 #
-# chk2.l 0000 0100 11 |<ea>| **** 1000 0000 0000 #
-# #
-# cmp2.b 0000 0000 11 |<ea>| **** 0000 0000 0000 #
-# cmp2.w 0000 0010 11 |<ea>| **** 0000 0000 0000 #
-# cmp2.l 0000 0100 11 |<ea>| **** 0000 0000 0000 #
-#########################################################################
-
-#
-# using bit 14 of the operation word, separate into 2 groups:
-# (group1) mul64, div64
-# (group2) movep, chk2, cmp2, cas2, cas
-#
- btst &0x1e,%d0 # group1 or group2
- beq.b uieh_group2 # go handle group2
-
-#
-# now, w/ group1, make mul64's decode the fastest since it will
-# most likely be used the most.
-#
-uieh_group1:
- btst &0x16,%d0 # test for div64
- bne.b uieh_div64 # go handle div64
-
-uieh_mul64:
-# mul64() may use ()+ addressing and may, therefore, alter a7
-
- bsr.l _mul64 # _mul64()
-
- btst &0x5,EXC_ISR(%a6) # supervisor mode?
- beq.w uieh_done
- btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed?
- beq.w uieh_done # no
- btst &0x7,EXC_ISR(%a6) # is trace enabled?
- bne.w uieh_trace_a7 # yes
- bra.w uieh_a7 # no
-
-uieh_div64:
-# div64() may use ()+ addressing and may, therefore, alter a7.
-# div64() may take a divide by zero exception.
-
- bsr.l _div64 # _div64()
-
-# here, we sort out all of the special cases that may have happened.
- btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed?
- bne.b uieh_div64_a7 # yes
-uieh_div64_dbyz:
- btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur?
- bne.w uieh_divbyzero # yes
- bra.w uieh_done # no
-uieh_div64_a7:
- btst &0x5,EXC_ISR(%a6) # supervisor mode?
- beq.b uieh_div64_dbyz # no
-# here, a7 has been incremented by 4 bytes in supervisor mode. we still
-# may have the following 3 cases:
-# (i) (a7)+
-# (ii) (a7)+; trace
-# (iii) (a7)+; divide-by-zero
-#
- btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur?
- bne.w uieh_divbyzero_a7 # yes
- tst.b EXC_ISR(%a6) # no; is trace enabled?
- bmi.w uieh_trace_a7 # yes
- bra.w uieh_a7 # no
-
-#
-# now, w/ group2, make movep's decode the fastest since it will
-# most likely be used the most.
-#
-uieh_group2:
- btst &0x18,%d0 # test for not movep
- beq.b uieh_not_movep
-
-
- bsr.l _moveperipheral # _movep()
- bra.w uieh_done
-
-uieh_not_movep:
- btst &0x1b,%d0 # test for chk2,cmp2
- beq.b uieh_chk2cmp2 # go handle chk2,cmp2
-
- swap %d0 # put opword in lo word
- cmpi.b %d0,&0xfc # test for cas2
- beq.b uieh_cas2 # go handle cas2
-
-uieh_cas:
-
- bsr.l _compandset # _cas()
-
-# the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor
-# mode are simply not considered valid and therefore are not handled.
-
- bra.w uieh_done
-
-uieh_cas2:
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # read extension word
-
- tst.l %d1 # ifetch error?
- bne.w isp_iacc # yes
-
- bsr.l _compandset2 # _cas2()
- bra.w uieh_done
-
-uieh_chk2cmp2:
-# chk2 may take a chk exception
-
- bsr.l _chk2_cmp2 # _chk2_cmp2()
-
-# here we check to see if a chk trap should be taken
- cmpi.b SPCOND_FLG(%a6),&ichk_flg
- bne.w uieh_done
- bra.b uieh_chk_trap
-
-###########################################################################
-
-#
-# the required emulation has been completed. now, clean up the necessary stack
-# info and prepare for rte
-#
-uieh_done:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
-
-# if exception occurred in user mode, then we have to restore a7 in case it
-# changed. we don't have to update a7 for supervisor mose because that case
-# doesn't flow through here
- btst &0x5,EXC_ISR(%a6) # user or supervisor?
- bne.b uieh_finish # supervisor
-
- mov.l EXC_A7(%a6),%a0 # fetch user stack pointer
- mov.l %a0,%usp # restore it
-
-uieh_finish:
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- btst &0x7,EXC_ISR(%a6) # is trace mode on?
- bne.b uieh_trace # yes;go handle trace mode
-
- mov.l EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame
- mov.l EXC_A6(%a6),(%a6) # prepare new a6 for unlink
- unlk %a6 # unlink stack frame
- bra.l _isp_done
-
-#
-# The instruction that was just emulated was also being traced. The trace
-# trap for this instruction will be lost unless we jump to the trace handler.
-# So, here we create a Trace Exception format number two exception stack
-# frame from the Unimplemented Integer Intruction Exception stack frame
-# format number zero and jump to the user supplied hook "_real_trace()".
-#
-# UIEH FRAME TRACE FRAME
-# ***************** *****************
-# * 0x0 * 0x0f4 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x024 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# ->* Old * *****************
-# from link -->* A6 * * SR *
-# ***************** *****************
-# /* A7 * * New * <-- for final unlink
-# / * * * A6 *
-# link frame < ***************** *****************
-# \ ~ ~ ~ ~
-# \***************** *****************
-#
-uieh_trace:
- mov.l EXC_A6(%a6),-0x4(%a6)
- mov.w EXC_ISR(%a6),0x0(%a6)
- mov.l EXC_IPC(%a6),0x8(%a6)
- mov.l EXC_EXTWPTR(%a6),0x2(%a6)
- mov.w &0x2024,0x6(%a6)
- sub.l &0x4,%a6
- unlk %a6
- bra.l _real_trace
-
-#
-# UIEH FRAME CHK FRAME
-# ***************** *****************
-# * 0x0 * 0x0f4 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x018 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# (4 words) *****************
-# * SR *
-# *****************
-# (6 words)
-#
-# the chk2 instruction should take a chk trap. so, here we must create a
-# chk stack frame from an unimplemented integer instruction exception frame
-# and jump to the user supplied entry point "_real_chk()".
-#
-uieh_chk_trap:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.w EXC_ISR(%a6),(%a6) # put new SR on stack
- mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack
- mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack
- mov.w &0x2018,0x6(%a6) # put Vector Offset on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_chk
-
-#
-# UIEH FRAME DIVBYZERO FRAME
-# ***************** *****************
-# * 0x0 * 0x0f4 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x014 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# (4 words) *****************
-# * SR *
-# *****************
-# (6 words)
-#
-# the divide instruction should take an integer divide by zero trap. so, here
-# we must create a divbyzero stack frame from an unimplemented integer
-# instruction exception frame and jump to the user supplied entry point
-# "_real_divbyzero()".
-#
-uieh_divbyzero:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.w EXC_ISR(%a6),(%a6) # put new SR on stack
- mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack
- mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack
- mov.w &0x2014,0x6(%a6) # put Vector Offset on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_divbyzero
-
-#
-# DIVBYZERO FRAME
-# *****************
-# * Current *
-# UIEH FRAME * PC *
-# ***************** *****************
-# * 0x0 * 0x0f4 * * 0x2 * 0x014 *
-# ***************** *****************
-# * Current * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-# (4 words) (6 words)
-#
-# the divide instruction should take an integer divide by zero trap. so, here
-# we must create a divbyzero stack frame from an unimplemented integer
-# instruction exception frame and jump to the user supplied entry point
-# "_real_divbyzero()".
-#
-# However, we must also deal with the fact that (a7)+ was used from supervisor
-# mode, thereby shifting the stack frame up 4 bytes.
-#
-uieh_divbyzero_a7:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack
- mov.w &0x2014,0xa(%a6) # put Vector Offset on stack
- mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &4+LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_divbyzero
-
-#
-# TRACE FRAME
-# *****************
-# * Current *
-# UIEH FRAME * PC *
-# ***************** *****************
-# * 0x0 * 0x0f4 * * 0x2 * 0x024 *
-# ***************** *****************
-# * Current * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-# (4 words) (6 words)
-#
-#
-# The instruction that was just emulated was also being traced. The trace
-# trap for this instruction will be lost unless we jump to the trace handler.
-# So, here we create a Trace Exception format number two exception stack
-# frame from the Unimplemented Integer Intruction Exception stack frame
-# format number zero and jump to the user supplied hook "_real_trace()".
-#
-# However, we must also deal with the fact that (a7)+ was used from supervisor
-# mode, thereby shifting the stack frame up 4 bytes.
-#
-uieh_trace_a7:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack
- mov.w &0x2024,0xa(%a6) # put Vector Offset on stack
- mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &4+LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_trace
-
-#
-# UIEH FRAME
-# *****************
-# * 0x0 * 0x0f4 *
-# UIEH FRAME *****************
-# ***************** * Next *
-# * 0x0 * 0x0f4 * * PC *
-# ***************** *****************
-# * Current * * SR *
-# * PC * *****************
-# ***************** (4 words)
-# * SR *
-# *****************
-# (4 words)
-uieh_a7:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.w &0x00f4,0xe(%a6) # put Vector Offset on stack
- mov.l EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack
- mov.w EXC_ISR(%a6),0x8(%a6) # put SR on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &8+LOCAL_SIZE,%sp # clear stack frame
- bra.l _isp_done
-
-##########
-
-# this is the exit point if a data read or write fails.
-# a0 = failing address
-# d0 = fslw
-isp_dacc:
- mov.l %a0,(%a6) # save address
- mov.l %d0,-0x4(%a6) # save partial fslw
-
- lea -64(%a6),%sp
- movm.l (%sp)+,&0x7fff # restore d0-d7/a0-a6
-
- mov.l 0xc(%sp),-(%sp) # move voff,hi(pc)
- mov.l 0x4(%sp),0x10(%sp) # store fslw
- mov.l 0xc(%sp),0x4(%sp) # store sr,lo(pc)
- mov.l 0x8(%sp),0xc(%sp) # store address
- mov.l (%sp)+,0x4(%sp) # store voff,hi(pc)
- mov.w &0x4008,0x6(%sp) # store new voff
-
- bra.b isp_acc_exit
-
-# this is the exit point if an instruction word read fails.
-# FSLW:
-# misaligned = true
-# read = true
-# size = word
-# instruction = true
-# software emulation error = true
-isp_iacc:
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
- unlk %a6 # unlink frame
- sub.w &0x8,%sp # make room for acc frame
- mov.l 0x8(%sp),(%sp) # store sr,lo(pc)
- mov.w 0xc(%sp),0x4(%sp) # store hi(pc)
- mov.w &0x4008,0x6(%sp) # store new voff
- mov.l 0x2(%sp),0x8(%sp) # store address (=pc)
- mov.l &0x09428001,0xc(%sp) # store fslw
-
-isp_acc_exit:
- btst &0x5,(%sp) # user or supervisor?
- beq.b isp_acc_exit2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-isp_acc_exit2:
- bra.l _real_access
-
-# if the addressing mode was (an)+ or -(an), the address register must
-# be restored to its pre-exception value before entering _real_access.
-isp_restore:
- cmpi.b SPCOND_FLG(%a6),&restore_flg # do we need a restore?
- bne.b isp_restore_done # no
- clr.l %d0
- mov.b EXC_SAVREG(%a6),%d0 # regno to restore
- mov.l EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value
-isp_restore_done:
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _calc_ea(): routine to calculate effective address #
-# #
-# XREF **************************************************************** #
-# _imem_read_word() - read instruction word #
-# _imem_read_long() - read instruction longword #
-# _dmem_read_long() - read data longword (for memory indirect) #
-# isp_iacc() - handle instruction access error exception #
-# isp_dacc() - handle data access error exception #
-# #
-# INPUT *************************************************************** #
-# d0 = number of bytes related to effective address (w,l) #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# elsif exiting though isp_iacc... #
-# none #
-# else #
-# a0 = effective address #
-# #
-# ALGORITHM *********************************************************** #
-# The effective address type is decoded from the opword residing #
-# on the stack. A jump table is used to vector to a routine for the #
-# appropriate mode. Since none of the emulated integer instructions #
-# uses byte-sized operands, only handle word and long operations. #
-# #
-# Dn,An - shouldn't enter here #
-# (An) - fetch An value from stack #
-# -(An) - fetch An value from stack; return decr value; #
-# place decr value on stack; store old value in case of #
-# future access error; if -(a7), set mda7_flg in #
-# SPCOND_FLG #
-# (An)+ - fetch An value from stack; return value; #
-# place incr value on stack; store old value in case of #
-# future access error; if (a7)+, set mia7_flg in #
-# SPCOND_FLG #
-# (d16,An) - fetch An value from stack; read d16 using #
-# _imem_read_word(); fetch may fail -> branch to #
-# isp_iacc() #
-# (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch #
-# address; fetch may fail #
-# #<data> - return address of immediate value; set immed_flg #
-# in SPCOND_FLG #
-# (d16,PC) - fetch stacked PC value; read d16 using #
-# _imem_read_word(); fetch may fail -> branch to #
-# isp_iacc() #
-# everything else - read needed displacements as appropriate w/ #
-# _imem_read_{word,long}(); read may fail; if memory #
-# indirect, read indirect address using #
-# _dmem_read_long() which may also fail #
-# #
-#########################################################################
-
- global _calc_ea
-_calc_ea:
- mov.l %d0,%a0 # move # bytes to a0
-
-# MODE and REG are taken from the EXC_OPWORD.
- mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.w %d0,%d1 # make a copy
-
- andi.w &0x3f,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
-
-# jump to the corresponding function for each {MODE,REG} pair.
- mov.w (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance
- jmp (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
-
- swbeg &64
-tbl_ea_mode:
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
-
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
-
- short addr_ind_a0 - tbl_ea_mode
- short addr_ind_a1 - tbl_ea_mode
- short addr_ind_a2 - tbl_ea_mode
- short addr_ind_a3 - tbl_ea_mode
- short addr_ind_a4 - tbl_ea_mode
- short addr_ind_a5 - tbl_ea_mode
- short addr_ind_a6 - tbl_ea_mode
- short addr_ind_a7 - tbl_ea_mode
-
- short addr_ind_p_a0 - tbl_ea_mode
- short addr_ind_p_a1 - tbl_ea_mode
- short addr_ind_p_a2 - tbl_ea_mode
- short addr_ind_p_a3 - tbl_ea_mode
- short addr_ind_p_a4 - tbl_ea_mode
- short addr_ind_p_a5 - tbl_ea_mode
- short addr_ind_p_a6 - tbl_ea_mode
- short addr_ind_p_a7 - tbl_ea_mode
-
- short addr_ind_m_a0 - tbl_ea_mode
- short addr_ind_m_a1 - tbl_ea_mode
- short addr_ind_m_a2 - tbl_ea_mode
- short addr_ind_m_a3 - tbl_ea_mode
- short addr_ind_m_a4 - tbl_ea_mode
- short addr_ind_m_a5 - tbl_ea_mode
- short addr_ind_m_a6 - tbl_ea_mode
- short addr_ind_m_a7 - tbl_ea_mode
-
- short addr_ind_disp_a0 - tbl_ea_mode
- short addr_ind_disp_a1 - tbl_ea_mode
- short addr_ind_disp_a2 - tbl_ea_mode
- short addr_ind_disp_a3 - tbl_ea_mode
- short addr_ind_disp_a4 - tbl_ea_mode
- short addr_ind_disp_a5 - tbl_ea_mode
- short addr_ind_disp_a6 - tbl_ea_mode
- short addr_ind_disp_a7 - tbl_ea_mode
-
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
-
- short abs_short - tbl_ea_mode
- short abs_long - tbl_ea_mode
- short pc_ind - tbl_ea_mode
- short pc_ind_ext - tbl_ea_mode
- short immediate - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
-
-###################################
-# Address register indirect: (An) #
-###################################
-addr_ind_a0:
- mov.l EXC_A0(%a6),%a0 # Get current a0
- rts
-
-addr_ind_a1:
- mov.l EXC_A1(%a6),%a0 # Get current a1
- rts
-
-addr_ind_a2:
- mov.l EXC_A2(%a6),%a0 # Get current a2
- rts
-
-addr_ind_a3:
- mov.l EXC_A3(%a6),%a0 # Get current a3
- rts
-
-addr_ind_a4:
- mov.l EXC_A4(%a6),%a0 # Get current a4
- rts
-
-addr_ind_a5:
- mov.l EXC_A5(%a6),%a0 # Get current a5
- rts
-
-addr_ind_a6:
- mov.l EXC_A6(%a6),%a0 # Get current a6
- rts
-
-addr_ind_a7:
- mov.l EXC_A7(%a6),%a0 # Get current a7
- rts
-
-#####################################################
-# Address register indirect w/ postincrement: (An)+ #
-#####################################################
-addr_ind_p_a0:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A0(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A0(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x0,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a1:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A1(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A1(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x1,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a2:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A2(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A2(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x2,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a3:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A3(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A3(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x3,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a4:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A4(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A4(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x4,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a5:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A5(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A5(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x5,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a6:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A6(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A6(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x6,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a7:
- mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A7(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A7(%a6) # save incremented value
- rts
-
-####################################################
-# Address register indirect w/ predecrement: -(An) #
-####################################################
-addr_ind_m_a0:
- mov.l EXC_A0(%a6),%d0 # Get current a0
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A0(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x0,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a1:
- mov.l EXC_A1(%a6),%d0 # Get current a1
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A1(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x1,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a2:
- mov.l EXC_A2(%a6),%d0 # Get current a2
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A2(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x2,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a3:
- mov.l EXC_A3(%a6),%d0 # Get current a3
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A3(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x3,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a4:
- mov.l EXC_A4(%a6),%d0 # Get current a4
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A4(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x4,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a5:
- mov.l EXC_A5(%a6),%d0 # Get current a5
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A5(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x5,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a6:
- mov.l EXC_A6(%a6),%d0 # Get current a6
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A6(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x6,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a7:
- mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l EXC_A7(%a6),%d0 # Get current a7
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A7(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-########################################################
-# Address register indirect w/ displacement: (d16, An) #
-########################################################
-addr_ind_disp_a0:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A0(%a6),%a0 # a0 + d16
- rts
-
-addr_ind_disp_a1:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A1(%a6),%a0 # a1 + d16
- rts
-
-addr_ind_disp_a2:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A2(%a6),%a0 # a2 + d16
- rts
-
-addr_ind_disp_a3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A3(%a6),%a0 # a3 + d16
- rts
-
-addr_ind_disp_a4:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A4(%a6),%a0 # a4 + d16
- rts
-
-addr_ind_disp_a5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A5(%a6),%a0 # a5 + d16
- rts
-
-addr_ind_disp_a6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A6(%a6),%a0 # a6 + d16
- rts
-
-addr_ind_disp_a7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A7(%a6),%a0 # a7 + d16
- rts
-
-########################################################################
-# Address register indirect w/ index(8-bit displacement): (dn, An, Xn) #
-# " " " w/ " (base displacement): (bd, An, Xn) #
-# Memory indirect postindexed: ([bd, An], Xn, od) #
-# Memory indirect preindexed: ([bd, An, Xn], od) #
-########################################################################
-_addr_ind_ext:
- mov.l %d1,-(%sp)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch extword in d0
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l (%sp)+,%d1
-
- mov.l (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0
-
- btst &0x8,%d0
- beq.b addr_ind_index_8bit # for ext word or not?
-
- movm.l &0x3c00,-(%sp) # save d2-d5
-
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
-
- bra.l calc_mem_ind # calc memory indirect
-
-addr_ind_index_8bit:
- mov.l %d2,-(%sp) # save old d2
-
- mov.l %d0,%d1
- rol.w &0x4,%d1
- andi.w &0xf,%d1 # extract index regno
-
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value
-
- btst &0xb,%d0 # is it word or long?
- bne.b aii8_long
- ext.l %d1 # sign extend word index
-aii8_long:
- mov.l %d0,%d2
- rol.w &0x7,%d2
- andi.l &0x3,%d2 # extract scale value
-
- lsl.l %d2,%d1 # shift index by scale
-
- extb.l %d0 # sign extend displacement
- add.l %d1,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore old d2
- rts
-
-######################
-# Immediate: #<data> #
-#########################################################################
-# word, long: <ea> of the data is the current extension word #
-# pointer value. new extension word pointer is simply the old #
-# plus the number of bytes in the data type(2 or 4). #
-#########################################################################
-immediate:
- mov.b &immed_flg,SPCOND_FLG(%a6) # set immediate flag
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch extension word ptr
- rts
-
-###########################
-# Absolute short: (XXX).W #
-###########################
-abs_short:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch short address
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # return <ea> in a0
- rts
-
-##########################
-# Absolute long: (XXX).L #
-##########################
-abs_long:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch long address
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l %d0,%a0 # return <ea> in a0
- rts
-
-#######################################################
-# Program counter indirect w/ displacement: (d16, PC) #
-#######################################################
-pc_ind:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch word displacement
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_EXTWPTR(%a6),%a0 # pc + d16
-
-# _imem_read_word() increased the extwptr by 2. need to adjust here.
- subq.l &0x2,%a0 # adjust <ea>
-
- rts
-
-##########################################################
-# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
-# " " w/ " (base displacement): (bd, PC, An) #
-# PC memory indirect postindexed: ([bd, PC], Xn, od) #
-# PC memory indirect preindexed: ([bd, PC, Xn], od) #
-##########################################################
-pc_ind_ext:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch ext word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0
- subq.l &0x2,%a0 # adjust base
-
- btst &0x8,%d0 # is disp only 8 bits?
- beq.b pc_ind_index_8bit # yes
-
-# the indexed addressing mode uses a base displacement of size
-# word or long
- movm.l &0x3c00,-(%sp) # save d2-d5
-
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
-
- bra.l calc_mem_ind # calc memory indirect
-
-pc_ind_index_8bit:
- mov.l %d2,-(%sp) # create a temp register
-
- mov.l %d0,%d1 # make extword copy
- rol.w &0x4,%d1 # rotate reg num into place
- andi.w &0xf,%d1 # extract register number
-
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value
-
- btst &0xb,%d0 # is index word or long?
- bne.b pii8_long # long
- ext.l %d1 # sign extend word index
-pii8_long:
- mov.l %d0,%d2 # make extword copy
- rol.w &0x7,%d2 # rotate scale value into place
- andi.l &0x3,%d2 # extract scale value
-
- lsl.l %d2,%d1 # shift index by scale
-
- extb.l %d0 # sign extend displacement
- add.l %d1,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore temp register
-
- rts
-
-# a5 = exc_extwptr (global to uaeh)
-# a4 = exc_opword (global to uaeh)
-# a3 = exc_dregs (global to uaeh)
-
-# d2 = index (internal " " )
-# d3 = base (internal " " )
-# d4 = od (internal " " )
-# d5 = extword (internal " " )
-calc_mem_ind:
- btst &0x6,%d5 # is the index suppressed?
- beq.b calc_index
- clr.l %d2 # yes, so index = 0
- bra.b base_supp_ck
-calc_index:
- bfextu %d5{&16:&4},%d2
- mov.l (EXC_DREGS,%a6,%d2.w*4),%d2
- btst &0xb,%d5 # is index word or long?
- bne.b no_ext
- ext.l %d2
-no_ext:
- bfextu %d5{&21:&2},%d0
- lsl.l %d0,%d2
-base_supp_ck:
- btst &0x7,%d5 # is the bd suppressed?
- beq.b no_base_sup
- clr.l %d3
-no_base_sup:
- bfextu %d5{&26:&2},%d0 # get bd size
-# beq.l _error # if (size == 0) it's reserved
- cmpi.b %d0,&2
- blt.b no_bd
- beq.b get_word_bd
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- bra.b chk_ind
-get_word_bd:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- ext.l %d0 # sign extend bd
-
-chk_ind:
- add.l %d0,%d3 # base += bd
-no_bd:
- bfextu %d5{&30:&2},%d0 # is od suppressed?
- beq.w aii_bd
- cmpi.b %d0,&0x2
- blt.b null_od
- beq.b word_od
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- bra.b add_them
-
-word_od:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- ext.l %d0 # sign extend od
- bra.b add_them
-
-null_od:
- clr.l %d0
-add_them:
- mov.l %d0,%d4
- btst &0x2,%d5 # pre or post indexing?
- beq.b pre_indexed
-
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # dfetch error?
- bne.b calc_ea_err # yes
-
- add.l %d2,%d0 # <ea> += index
- add.l %d4,%d0 # <ea> += od
- bra.b done_ea
-
-pre_indexed:
- add.l %d2,%d3 # preindexing
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # ifetch error?
- bne.b calc_ea_err # yes
-
- add.l %d4,%d0 # ea += od
- bra.b done_ea
-
-aii_bd:
- add.l %d2,%d3 # ea = (base + bd) + index
- mov.l %d3,%d0
-done_ea:
- mov.l %d0,%a0
-
- movm.l (%sp)+,&0x003c # restore d2-d5
- rts
-
-# if dmem_read_long() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-calc_ea_err:
- mov.l %d3,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _moveperipheral(): routine to emulate movep instruction #
-# #
-# XREF **************************************************************** #
-# _dmem_read_byte() - read byte from memory #
-# _dmem_write_byte() - write byte to memory #
-# isp_dacc() - handle data access error exception #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# Decode the movep instruction words stored at EXC_OPWORD and #
-# either read or write the required bytes from/to memory. Use the #
-# _dmem_{read,write}_byte() routines. If one of the memory routines #
-# returns a failing value, we must pass the failing address and a FSLW #
-# to the _isp_dacc() routine. #
-# Since this instruction is used to access peripherals, make sure #
-# to only access the required bytes. #
-# #
-#########################################################################
-
-###########################
-# movep.(w,l) Dx,(d,Ay) #
-# movep.(w,l) (d,Ay),Dx #
-###########################
- global _moveperipheral
-_moveperipheral:
- mov.w EXC_OPWORD(%a6),%d1 # fetch the opcode word
-
- mov.b %d1,%d0
- and.w &0x7,%d0 # extract Ay from opcode word
-
- mov.l (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay
-
- add.w EXC_EXTWORD(%a6),%a0 # add: an + sgn_ext(disp)
-
- btst &0x7,%d1 # (reg 2 mem) or (mem 2 reg)
- beq.w mem2reg
-
-# reg2mem: fetch dx, then write it to memory
-reg2mem:
- mov.w %d1,%d0
- rol.w &0x7,%d0
- and.w &0x7,%d0 # extract Dx from opcode word
-
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx
-
- btst &0x6,%d1 # word or long operation?
- beq.b r2mwtrans
-
-# a0 = dst addr
-# d0 = Dx
-r2mltrans:
- mov.l %d0,%d2 # store data
- mov.l %a0,%a2 # store addr
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write hi
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2 # incr addr
- mov.l %a2,%a0
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2 # incr addr
- mov.l %a2,%a0
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2 # incr addr
- mov.l %a2,%a0
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- rts
-
-# a0 = dst addr
-# d0 = Dx
-r2mwtrans:
- mov.l %d0,%d2 # store data
- mov.l %a0,%a2 # store addr
- lsr.w &0x8,%d0
-
- bsr.l _dmem_write_byte # os : write hi
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2
- mov.l %a2,%a0
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- rts
-
-# mem2reg: read bytes from memory.
-# determines the dest register, and then writes the bytes into it.
-mem2reg:
- btst &0x6,%d1 # word or long operation?
- beq.b m2rwtrans
-
-# a0 = dst addr
-m2rltrans:
- mov.l %a0,%a2 # store addr
-
- bsr.l _dmem_read_byte # read first byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- mov.l %d0,%d2
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.w &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.l &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.l &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- mov.b EXC_OPWORD(%a6),%d1
- lsr.b &0x1,%d1
- and.w &0x7,%d1 # extract Dx from opcode word
-
- mov.l %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx
-
- rts
-
-# a0 = dst addr
-m2rwtrans:
- mov.l %a0,%a2 # store addr
-
- bsr.l _dmem_read_byte # read first byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- mov.l %d0,%d2
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.w &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- mov.b EXC_OPWORD(%a6),%d1
- lsr.b &0x1,%d1
- and.w &0x7,%d1 # extract Dx from opcode word
-
- mov.w %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx
-
- rts
-
-# if dmem_{read,write}_byte() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# FSLW:
-# write = true
-# size = byte
-# TM = data
-# software emulation error = true
-movp_write_err:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x00a10001,%d0 # pass fslw
- bra.l isp_dacc
-
-# FSLW:
-# read = true
-# size = byte
-# TM = data
-# software emulation error = true
-movp_read_err:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01210001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _chk2_cmp2(): routine to emulate chk2/cmp2 instructions #
-# #
-# XREF **************************************************************** #
-# _calc_ea(): calculate effective address #
-# _dmem_read_long(): read operands #
-# _dmem_read_word(): read operands #
-# isp_dacc(): handle data access error exception #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# First, calculate the effective address, then fetch the byte, #
-# word, or longword sized operands. Then, in the interest of #
-# simplicity, all operands are converted to longword size whether the #
-# operation is byte, word, or long. The bounds are sign extended #
-# accordingly. If Rn is a data regsiter, Rn is also sign extended. If #
-# Rn is an address register, it need not be sign extended since the #
-# full register is always used. #
-# The comparisons are made and the condition codes calculated. #
-# If the instruction is chk2 and the Rn value is out-of-bounds, set #
-# the ichk_flg in SPCOND_FLG. #
-# If the memory fetch returns a failing value, pass the failing #
-# address and FSLW to the isp_dacc() routine. #
-# #
-#########################################################################
-
- global _chk2_cmp2
-_chk2_cmp2:
-
-# passing size parameter doesn't matter since chk2 & cmp2 can't do
-# either predecrement, postincrement, or immediate.
- bsr.l _calc_ea # calculate <ea>
-
- mov.b EXC_EXTWORD(%a6), %d0 # fetch hi extension word
- rol.b &0x4, %d0 # rotate reg bits into lo
- and.w &0xf, %d0 # extract reg bits
-
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval
-
- cmpi.b EXC_OPWORD(%a6), &0x2 # what size is operation?
- blt.b chk2_cmp2_byte # size == byte
- beq.b chk2_cmp2_word # size == word
-
-# the bounds are longword size. call routine to read the lower
-# bound into d0 and the higher bound into d1.
-chk2_cmp2_long:
- mov.l %a0,%a2 # save copy of <ea>
- bsr.l _dmem_read_long # fetch long lower bound
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_l # yes
-
- mov.l %d0,%d3 # save long lower bound
- addq.l &0x4,%a2
- mov.l %a2,%a0 # pass <ea> of long upper bound
- bsr.l _dmem_read_long # fetch long upper bound
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_l # yes
-
- mov.l %d0,%d1 # long upper bound in d1
- mov.l %d3,%d0 # long lower bound in d0
- bra.w chk2_cmp2_compare # go do the compare emulation
-
-# the bounds are word size. fetch them in one subroutine call by
-# reading a longword. sign extend both. if it's a data operation,
-# sign extend Rn to long, also.
-chk2_cmp2_word:
- mov.l %a0,%a2
- bsr.l _dmem_read_long # fetch 2 word bounds
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_l # yes
-
- mov.w %d0, %d1 # place hi in %d1
- swap %d0 # place lo in %d0
-
- ext.l %d0 # sign extend lo bnd
- ext.l %d1 # sign extend hi bnd
-
- btst &0x7, EXC_EXTWORD(%a6) # address compare?
- bne.w chk2_cmp2_compare # yes; don't sign extend
-
-# operation is a data register compare.
-# sign extend word to long so we can do simple longword compares.
- ext.l %d2 # sign extend data word
- bra.w chk2_cmp2_compare # go emulate compare
-
-# the bounds are byte size. fetch them in one subroutine call by
-# reading a word. sign extend both. if it's a data operation,
-# sign extend Rn to long, also.
-chk2_cmp2_byte:
- mov.l %a0,%a2
- bsr.l _dmem_read_word # fetch 2 byte bounds
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_w # yes
-
- mov.b %d0, %d1 # place hi in %d1
- lsr.w &0x8, %d0 # place lo in %d0
-
- extb.l %d0 # sign extend lo bnd
- extb.l %d1 # sign extend hi bnd
-
- btst &0x7, EXC_EXTWORD(%a6) # address compare?
- bne.b chk2_cmp2_compare # yes; don't sign extend
-
-# operation is a data register compare.
-# sign extend byte to long so we can do simple longword compares.
- extb.l %d2 # sign extend data byte
-
-#
-# To set the ccodes correctly:
-# (1) save 'Z' bit from (Rn - lo)
-# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi))
-# (3) keep 'X', 'N', and 'V' from before instruction
-# (4) combine ccodes
-#
-chk2_cmp2_compare:
- sub.l %d0, %d2 # (Rn - lo)
- mov.w %cc, %d3 # fetch resulting ccodes
- andi.b &0x4, %d3 # keep 'Z' bit
- sub.l %d0, %d1 # (hi - lo)
- cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi))
-
- mov.w %cc, %d4 # fetch resulting ccodes
- or.b %d4, %d3 # combine w/ earlier ccodes
- andi.b &0x5, %d3 # keep 'Z' and 'N'
-
- mov.w EXC_CC(%a6), %d4 # fetch old ccodes
- andi.b &0x1a, %d4 # keep 'X','N','V' bits
- or.b %d3, %d4 # insert new ccodes
- mov.w %d4, EXC_CC(%a6) # save new ccodes
-
- btst &0x3, EXC_EXTWORD(%a6) # separate chk2,cmp2
- bne.b chk2_finish # it's a chk2
-
- rts
-
-# this code handles the only difference between chk2 and cmp2. chk2 would
-# have trapped out if the value was out of bounds. we check this by seeing
-# if the 'N' bit was set by the operation.
-chk2_finish:
- btst &0x0, %d4 # is 'N' bit set?
- bne.b chk2_trap # yes;chk2 should trap
- rts
-chk2_trap:
- mov.b &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag
- rts
-
-# if dmem_read_{long,word}() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-chk2_cmp2_err_l:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-# FSLW:
-# read = true
-# size = word
-# TM = data
-# software emulation error = true
-chk2_cmp2_err_w:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01410001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _div64(): routine to emulate div{u,s}.l <ea>,Dr:Dq #
-# 64/32->32r:32q #
-# #
-# XREF **************************************************************** #
-# _calc_ea() - calculate effective address #
-# isp_iacc() - handle instruction access error exception #
-# isp_dacc() - handle data access error exception #
-# isp_restore() - restore An on access error w/ -() or ()+ #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# First, decode the operand location. If it's in Dn, fetch from #
-# the stack. If it's in memory, use _calc_ea() to calculate the #
-# effective address. Use _dmem_read_long() to fetch at that address. #
-# Unless the operand is immediate data. Then use _imem_read_long(). #
-# Send failures to isp_dacc() or isp_iacc() as appropriate. #
-# If the operands are signed, make them unsigned and save the #
-# sign info for later. Separate out special cases like divide-by-zero #
-# or 32-bit divides if possible. Else, use a special math algorithm #
-# to calculate the result. #
-# Restore sign info if signed instruction. Set the condition #
-# codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the #
-# quotient and remainder in the appropriate data registers on the stack.#
-# #
-#########################################################################
-
-set NDIVISOR, EXC_TEMP+0x0
-set NDIVIDEND, EXC_TEMP+0x1
-set NDRSAVE, EXC_TEMP+0x2
-set NDQSAVE, EXC_TEMP+0x4
-set DDSECOND, EXC_TEMP+0x6
-set DDQUOTIENT, EXC_TEMP+0x8
-set DDNORMAL, EXC_TEMP+0xc
-
- global _div64
-#############
-# div(u,s)l #
-#############
-_div64:
- mov.b EXC_OPWORD+1(%a6), %d0
- andi.b &0x38, %d0 # extract src mode
-
- bne.w dcontrolmodel_s # %dn dest or control mode?
-
- mov.b EXC_OPWORD+1(%a6), %d0 # extract Dn from opcode
- andi.w &0x7, %d0
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register
-
-dgotsrcl:
- beq.w div64eq0 # divisor is = 0!!!
-
- mov.b EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword
- mov.b EXC_EXTWORD(%a6), %d1 # extract Dq from extword
- and.w &0x7, %d0
- lsr.b &0x4, %d1
- and.w &0x7, %d1
- mov.w %d0, NDRSAVE(%a6) # save Dr for later
- mov.w %d1, NDQSAVE(%a6) # save Dq for later
-
-# fetch %dr and %dq directly off stack since all regs are saved there
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi
- mov.l (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo
-
-# separate signed and unsigned divide
- btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned?
- beq.b dspecialcases # use positive divide
-
-# save the sign of the divisor
-# make divisor unsigned if it's negative
- tst.l %d7 # chk sign of divisor
- slt NDIVISOR(%a6) # save sign of divisor
- bpl.b dsgndividend
- neg.l %d7 # complement negative divisor
-
-# save the sign of the dividend
-# make dividend unsigned if it's negative
-dsgndividend:
- tst.l %d5 # chk sign of hi(dividend)
- slt NDIVIDEND(%a6) # save sign of dividend
- bpl.b dspecialcases
-
- mov.w &0x0, %cc # clear 'X' cc bit
- negx.l %d6 # complement signed dividend
- negx.l %d5
-
-# extract some special cases:
-# - is (dividend == 0) ?
-# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)
-dspecialcases:
- tst.l %d5 # is (hi(dividend) == 0)
- bne.b dnormaldivide # no, so try it the long way
-
- tst.l %d6 # is (lo(dividend) == 0), too
- beq.w ddone # yes, so (dividend == 0)
-
- cmp.l %d7,%d6 # is (divisor <= lo(dividend))
- bls.b d32bitdivide # yes, so use 32 bit divide
-
- exg %d5,%d6 # q = 0, r = dividend
- bra.w divfinish # can't divide, we're done.
-
-d32bitdivide:
- tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div!
-
- bra.b divfinish
-
-dnormaldivide:
-# last special case:
-# - is hi(dividend) >= divisor ? if yes, then overflow
- cmp.l %d7,%d5
- bls.b ddovf # answer won't fit in 32 bits
-
-# perform the divide algorithm:
- bsr.l dclassical # do int divide
-
-# separate into signed and unsigned finishes.
-divfinish:
- btst &0x3, EXC_EXTWORD(%a6) # do divs, divu separately
- beq.b ddone # divu has no processing!!!
-
-# it was a divs.l, so ccode setting is a little more complicated...
- tst.b NDIVIDEND(%a6) # remainder has same sign
- beq.b dcc # as dividend.
- neg.l %d5 # sgn(rem) = sgn(dividend)
-dcc:
- mov.b NDIVISOR(%a6), %d0
- eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative
- beq.b dqpos # branch to quot positive
-
-# 0x80000000 is the largest number representable as a 32-bit negative
-# number. the negative of 0x80000000 is 0x80000000.
- cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits?
- bhi.b ddovf
-
- neg.l %d6 # make (-quot) 2's comp
-
- bra.b ddone
-
-dqpos:
- btst &0x1f, %d6 # will (+quot) fit in 32 bits?
- bne.b ddovf
-
-ddone:
-# at this point, result is normal so ccodes are set based on result.
- mov.w EXC_CC(%a6), %cc
- tst.l %d6 # set %ccode bits
- mov.w %cc, EXC_CC(%a6)
-
- mov.w NDRSAVE(%a6), %d0 # get Dr off stack
- mov.w NDQSAVE(%a6), %d1 # get Dq off stack
-
-# if the register numbers are the same, only the quotient gets saved.
-# so, if we always save the quotient second, we save ourselves a cmp&beq
- mov.l %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder
- mov.l %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient
-
- rts
-
-ddovf:
- bset &0x1, EXC_CC+1(%a6) # 'V' set on overflow
- bclr &0x0, EXC_CC+1(%a6) # 'C' cleared on overflow
-
- rts
-
-div64eq0:
- andi.b &0x1e, EXC_CC+1(%a6) # clear 'C' bit on divbyzero
- ori.b &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag
- rts
-
-###########################################################################
-#########################################################################
-# This routine uses the 'classical' Algorithm D from Donald Knuth's #
-# Art of Computer Programming, vol II, Seminumerical Algorithms. #
-# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, #
-# where U,V are words of the quadword dividend and longword divisor, #
-# and U1, V1 are the most significant words. #
-# #
-# The most sig. longword of the 64 bit dividend must be in %d5, least #
-# in %d6. The divisor must be in the variable ddivisor, and the #
-# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). #
-# The quotient is returned in %d6, remainder in %d5, unless the #
-# v (overflow) bit is set in the saved %ccr. If overflow, the dividend #
-# is unchanged. #
-#########################################################################
-dclassical:
-# if the divisor msw is 0, use simpler algorithm then the full blown
-# one at ddknuth:
-
- cmpi.l %d7, &0xffff
- bhi.b ddknuth # go use D. Knuth algorithm
-
-# Since the divisor is only a word (and larger than the mslw of the dividend),
-# a simpler algorithm may be used :
-# In the general case, four quotient words would be created by
-# dividing the divisor word into each dividend word. In this case,
-# the first two quotient words must be zero, or overflow would occur.
-# Since we already checked this case above, we can treat the most significant
-# longword of the dividend as (0) remainder (see Knuth) and merely complete
-# the last two divisions to get a quotient longword and word remainder:
-
- clr.l %d1
- swap %d5 # same as r*b if previous step rqd
- swap %d6 # get u3 to lsw position
- mov.w %d6, %d5 # rb + u3
-
- divu.w %d7, %d5
-
- mov.w %d5, %d1 # first quotient word
- swap %d6 # get u4
- mov.w %d6, %d5 # rb + u4
-
- divu.w %d7, %d5
-
- swap %d1
- mov.w %d5, %d1 # 2nd quotient 'digit'
- clr.w %d5
- swap %d5 # now remainder
- mov.l %d1, %d6 # and quotient
-
- rts
-
-ddknuth:
-# In this algorithm, the divisor is treated as a 2 digit (word) number
-# which is divided into a 3 digit (word) dividend to get one quotient
-# digit (word). After subtraction, the dividend is shifted and the
-# process repeated. Before beginning, the divisor and quotient are
-# 'normalized' so that the process of estimating the quotient digit
-# will yield verifiably correct results..
-
- clr.l DDNORMAL(%a6) # count of shifts for normalization
- clr.b DDSECOND(%a6) # clear flag for quotient digits
- clr.l %d1 # %d1 will hold trial quotient
-ddnchk:
- btst &31, %d7 # must we normalize? first word of
- bne.b ddnormalized # divisor (V1) must be >= 65536/2
- addq.l &0x1, DDNORMAL(%a6) # count normalization shifts
- lsl.l &0x1, %d7 # shift the divisor
- lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2
- roxl.l &0x1, %d5 # shift u1,u2
- bra.w ddnchk
-ddnormalized:
-
-# Now calculate an estimate of the quotient words (msw first, then lsw).
-# The comments use subscripts for the first quotient digit determination.
- mov.l %d7, %d3 # divisor
- mov.l %d5, %d2 # dividend mslw
- swap %d2
- swap %d3
- cmp.w %d2, %d3 # V1 = U1 ?
- bne.b ddqcalc1
- mov.w &0xffff, %d1 # use max trial quotient word
- bra.b ddadj0
-ddqcalc1:
- mov.l %d5, %d1
-
- divu.w %d3, %d1 # use quotient of mslw/msw
-
- andi.l &0x0000ffff, %d1 # zero any remainder
-ddadj0:
-
-# now test the trial quotient and adjust. This step plus the
-# normalization assures (according to Knuth) that the trial
-# quotient will be at worst 1 too large.
- mov.l %d6, -(%sp)
- clr.w %d6 # word u3 left
- swap %d6 # in lsw position
-ddadj1: mov.l %d7, %d3
- mov.l %d1, %d2
- mulu.w %d7, %d2 # V2q
- swap %d3
- mulu.w %d1, %d3 # V1q
- mov.l %d5, %d4 # U1U2
- sub.l %d3, %d4 # U1U2 - V1q
-
- swap %d4
-
- mov.w %d4,%d0
- mov.w %d6,%d4 # insert lower word (U3)
-
- tst.w %d0 # is upper word set?
- bne.w ddadjd1
-
-# add.l %d6, %d4 # (U1U2 - V1q) + U3
-
- cmp.l %d2, %d4
- bls.b ddadjd1 # is V2q > (U1U2-V1q) + U3 ?
- subq.l &0x1, %d1 # yes, decrement and recheck
- bra.b ddadj1
-ddadjd1:
-# now test the word by multiplying it by the divisor (V1V2) and comparing
-# the 3 digit (word) result with the current dividend words
- mov.l %d5, -(%sp) # save %d5 (%d6 already saved)
- mov.l %d1, %d6
- swap %d6 # shift answer to ms 3 words
- mov.l %d7, %d5
- bsr.l dmm2
- mov.l %d5, %d2 # now %d2,%d3 are trial*divisor
- mov.l %d6, %d3
- mov.l (%sp)+, %d5 # restore dividend
- mov.l (%sp)+, %d6
- sub.l %d3, %d6
- subx.l %d2, %d5 # subtract double precision
- bcc dd2nd # no carry, do next quotient digit
- subq.l &0x1, %d1 # q is one too large
-# need to add back divisor longword to current ms 3 digits of dividend
-# - according to Knuth, this is done only 2 out of 65536 times for random
-# divisor, dividend selection.
- clr.l %d2
- mov.l %d7, %d3
- swap %d3
- clr.w %d3 # %d3 now ls word of divisor
- add.l %d3, %d6 # aligned with 3rd word of dividend
- addx.l %d2, %d5
- mov.l %d7, %d3
- clr.w %d3 # %d3 now ms word of divisor
- swap %d3 # aligned with 2nd word of dividend
- add.l %d3, %d5
-dd2nd:
- tst.b DDSECOND(%a6) # both q words done?
- bne.b ddremain
-# first quotient digit now correct. store digit and shift the
-# (subtracted) dividend
- mov.w %d1, DDQUOTIENT(%a6)
- clr.l %d1
- swap %d5
- swap %d6
- mov.w %d6, %d5
- clr.w %d6
- st DDSECOND(%a6) # second digit
- bra.w ddnormalized
-ddremain:
-# add 2nd word to quotient, get the remainder.
- mov.w %d1, DDQUOTIENT+2(%a6)
-# shift down one word/digit to renormalize remainder.
- mov.w %d5, %d6
- swap %d6
- swap %d5
- mov.l DDNORMAL(%a6), %d7 # get norm shift count
- beq.b ddrn
- subq.l &0x1, %d7 # set for loop count
-ddnlp:
- lsr.l &0x1, %d5 # shift into %d6
- roxr.l &0x1, %d6
- dbf %d7, ddnlp
-ddrn:
- mov.l %d6, %d5 # remainder
- mov.l DDQUOTIENT(%a6), %d6 # quotient
-
- rts
-dmm2:
-# factors for the 32X32->64 multiplication are in %d5 and %d6.
-# returns 64 bit result in %d5 (hi) %d6(lo).
-# destroys %d2,%d3,%d4.
-
-# multiply hi,lo words of each factor to get 4 intermediate products
- mov.l %d6, %d2
- mov.l %d6, %d3
- mov.l %d5, %d4
- swap %d3
- swap %d4
- mulu.w %d5, %d6 # %d6 <- lsw*lsw
- mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source
- mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest
- mulu.w %d4, %d3 # %d3 <- msw*msw
-# now use swap and addx to consolidate to two longwords
- clr.l %d4
- swap %d6
- add.w %d5, %d6 # add msw of l*l to lsw of m*l product
- addx.w %d4, %d3 # add any carry to m*m product
- add.w %d2, %d6 # add in lsw of other m*l product
- addx.w %d4, %d3 # add any carry to m*m product
- swap %d6 # %d6 is low 32 bits of final product
- clr.w %d5
- clr.w %d2 # lsw of two mixed products used,
- swap %d5 # now use msws of longwords
- swap %d2
- add.l %d2, %d5
- add.l %d3, %d5 # %d5 now ms 32 bits of final product
- rts
-
-##########
-dcontrolmodel_s:
- movq.l &LONG,%d0
- bsr.l _calc_ea # calc <ea>
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode?
- beq.b dimmed # yes
-
- mov.l %a0,%a2
- bsr.l _dmem_read_long # fetch divisor from <ea>
-
- tst.l %d1 # dfetch error?
- bne.b div64_err # yes
-
- mov.l %d0, %d7
- bra.w dgotsrcl
-
-# we have to split out immediate data here because it must be read using
-# imem_read() instead of dmem_read(). this becomes especially important
-# if the fetch runs into some deadly fault.
-dimmed:
- addq.l &0x4,EXC_EXTWPTR(%a6)
- bsr.l _imem_read_long # read immediate value
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l %d0,%d7
- bra.w dgotsrcl
-
-##########
-
-# if dmem_read_long() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# also, we call isp_restore in case the effective addressing mode was
-# (an)+ or -(an) in which case the previous "an" value must be restored.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-div64_err:
- bsr.l isp_restore # restore addr reg
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _mul64(): routine to emulate mul{u,s}.l <ea>,Dh:Dl 32x32->64 #
-# #
-# XREF **************************************************************** #
-# _calc_ea() - calculate effective address #
-# isp_iacc() - handle instruction access error exception #
-# isp_dacc() - handle data access error exception #
-# isp_restore() - restore An on access error w/ -() or ()+ #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# First, decode the operand location. If it's in Dn, fetch from #
-# the stack. If it's in memory, use _calc_ea() to calculate the #
-# effective address. Use _dmem_read_long() to fetch at that address. #
-# Unless the operand is immediate data. Then use _imem_read_long(). #
-# Send failures to isp_dacc() or isp_iacc() as appropriate. #
-# If the operands are signed, make them unsigned and save the #
-# sign info for later. Perform the multiplication using 16x16->32 #
-# unsigned multiplies and "add" instructions. Store the high and low #
-# portions of the result in the appropriate data registers on the #
-# stack. Calculate the condition codes, also. #
-# #
-#########################################################################
-
-#############
-# mul(u,s)l #
-#############
- global _mul64
-_mul64:
- mov.b EXC_OPWORD+1(%a6), %d0 # extract src {mode,reg}
- cmpi.b %d0, &0x7 # is src mode Dn or other?
- bgt.w mul64_memop # src is in memory
-
-# multiplier operand in the data register file.
-# must extract the register number and fetch the operand from the stack.
-mul64_regop:
- andi.w &0x7, %d0 # extract Dn
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier
-
-# multiplier is in %d3. now, extract Dl and Dh fields and fetch the
-# multiplicand from the data register specified by Dl.
-mul64_multiplicand:
- mov.w EXC_EXTWORD(%a6), %d2 # fetch ext word
- clr.w %d1 # clear Dh reg
- mov.b %d2, %d1 # grab Dh
- rol.w &0x4, %d2 # align Dl byte
- andi.w &0x7, %d2 # extract Dl
-
- mov.l (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand
-
-# check for the case of "zero" result early
- tst.l %d4 # test multiplicand
- beq.w mul64_zero # handle zero separately
- tst.l %d3 # test multiplier
- beq.w mul64_zero # handle zero separately
-
-# multiplier is in %d3 and multiplicand is in %d4.
-# if the operation is to be signed, then the operands are converted
-# to unsigned and the result sign is saved for the end.
- clr.b EXC_TEMP(%a6) # clear temp space
- btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned?
- beq.b mul64_alg # unsigned; skip sgn calc
-
- tst.l %d3 # is multiplier negative?
- bge.b mul64_chk_md_sgn # no
- neg.l %d3 # make multiplier positive
- ori.b &0x1, EXC_TEMP(%a6) # save multiplier sgn
-
-# the result sign is the exclusive or of the operand sign bits.
-mul64_chk_md_sgn:
- tst.l %d4 # is multiplicand negative?
- bge.b mul64_alg # no
- neg.l %d4 # make multiplicand positive
- eori.b &0x1, EXC_TEMP(%a6) # calculate correct sign
-
-#########################################################################
-# 63 32 0 #
-# ---------------------------- #
-# | hi(mplier) * hi(mplicand)| #
-# ---------------------------- #
-# ----------------------------- #
-# | hi(mplier) * lo(mplicand) | #
-# ----------------------------- #
-# ----------------------------- #
-# | lo(mplier) * hi(mplicand) | #
-# ----------------------------- #
-# | ----------------------------- #
-# --|-- | lo(mplier) * lo(mplicand) | #
-# | ----------------------------- #
-# ======================================================== #
-# -------------------------------------------------------- #
-# | hi(result) | lo(result) | #
-# -------------------------------------------------------- #
-#########################################################################
-mul64_alg:
-# load temp registers with operands
- mov.l %d3, %d5 # mr in %d5
- mov.l %d3, %d6 # mr in %d6
- mov.l %d4, %d7 # md in %d7
- swap %d6 # hi(mr) in lo %d6
- swap %d7 # hi(md) in lo %d7
-
-# complete necessary multiplies:
- mulu.w %d4, %d3 # [1] lo(mr) * lo(md)
- mulu.w %d6, %d4 # [2] hi(mr) * lo(md)
- mulu.w %d7, %d5 # [3] lo(mr) * hi(md)
- mulu.w %d7, %d6 # [4] hi(mr) * hi(md)
-
-# add lo portions of [2],[3] to hi portion of [1].
-# add carries produced from these adds to [4].
-# lo([1]) is the final lo 16 bits of the result.
- clr.l %d7 # load %d7 w/ zero value
- swap %d3 # hi([1]) <==> lo([1])
- add.w %d4, %d3 # hi([1]) + lo([2])
- addx.l %d7, %d6 # [4] + carry
- add.w %d5, %d3 # hi([1]) + lo([3])
- addx.l %d7, %d6 # [4] + carry
- swap %d3 # lo([1]) <==> hi([1])
-
-# lo portions of [2],[3] have been added in to final result.
-# now, clear lo, put hi in lo reg, and add to [4]
- clr.w %d4 # clear lo([2])
- clr.w %d5 # clear hi([3])
- swap %d4 # hi([2]) in lo %d4
- swap %d5 # hi([3]) in lo %d5
- add.l %d5, %d4 # [4] + hi([2])
- add.l %d6, %d4 # [4] + hi([3])
-
-# unsigned result is now in {%d4,%d3}
- tst.b EXC_TEMP(%a6) # should result be signed?
- beq.b mul64_done # no
-
-# result should be a signed negative number.
-# compute 2's complement of the unsigned number:
-# -negate all bits and add 1
-mul64_neg:
- not.l %d3 # negate lo(result) bits
- not.l %d4 # negate hi(result) bits
- addq.l &1, %d3 # add 1 to lo(result)
- addx.l %d7, %d4 # add carry to hi(result)
-
-# the result is saved to the register file.
-# for '040 compatibility, if Dl == Dh then only the hi(result) is
-# saved. so, saving hi after lo accomplishes this without need to
-# check Dl,Dh equality.
-mul64_done:
- mov.l %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result)
- mov.w &0x0, %cc
- mov.l %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result)
-
-# now, grab the condition codes. only one that can be set is 'N'.
-# 'N' CAN be set if the operation is unsigned if bit 63 is set.
- mov.w %cc, %d7 # fetch %ccr to see if 'N' set
- andi.b &0x8, %d7 # extract 'N' bit
-
-mul64_ccode_set:
- mov.b EXC_CC+1(%a6), %d6 # fetch previous %ccr
- andi.b &0x10, %d6 # all but 'X' bit changes
-
- or.b %d7, %d6 # group 'X' and 'N'
- mov.b %d6, EXC_CC+1(%a6) # save new %ccr
-
- rts
-
-# one or both of the operands is zero so the result is also zero.
-# save the zero result to the register file and set the 'Z' ccode bit.
-mul64_zero:
- clr.l (EXC_DREGS,%a6,%d2.w*4) # save lo(result)
- clr.l (EXC_DREGS,%a6,%d1.w*4) # save hi(result)
-
- movq.l &0x4, %d7 # set 'Z' ccode bit
- bra.b mul64_ccode_set # finish ccode set
-
-##########
-
-# multiplier operand is in memory at the effective address.
-# must calculate the <ea> and go fetch the 32-bit operand.
-mul64_memop:
- movq.l &LONG, %d0 # pass # of bytes
- bsr.l _calc_ea # calculate <ea>
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode?
- beq.b mul64_immed # yes
-
- mov.l %a0,%a2
- bsr.l _dmem_read_long # fetch src from addr (%a0)
-
- tst.l %d1 # dfetch error?
- bne.w mul64_err # yes
-
- mov.l %d0, %d3 # store multiplier in %d3
-
- bra.w mul64_multiplicand
-
-# we have to split out immediate data here because it must be read using
-# imem_read() instead of dmem_read(). this becomes especially important
-# if the fetch runs into some deadly fault.
-mul64_immed:
- addq.l &0x4,EXC_EXTWPTR(%a6)
- bsr.l _imem_read_long # read immediate value
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l %d0,%d3
- bra.w mul64_multiplicand
-
-##########
-
-# if dmem_read_long() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# also, we call isp_restore in case the effective addressing mode was
-# (an)+ or -(an) in which case the previous "an" value must be restored.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-mul64_err:
- bsr.l isp_restore # restore addr reg
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _compandset2(): routine to emulate cas2() #
-# (internal to package) #
-# #
-# _isp_cas2_finish(): store ccodes, store compare regs #
-# (external to package) #
-# #
-# XREF **************************************************************** #
-# _real_lock_page() - "callout" to lock op's page from page-outs #
-# _cas_terminate2() - access error exit #
-# _real_cas2() - "callout" to core cas2 emulation code #
-# _real_unlock_page() - "callout" to unlock page #
-# #
-# INPUT *************************************************************** #
-# _compandset2(): #
-# d0 = instruction extension word #
-# #
-# _isp_cas2_finish(): #
-# see cas2 core emulation code #
-# #
-# OUTPUT ************************************************************** #
-# _compandset2(): #
-# see cas2 core emulation code #
-# #
-# _isp_cas_finish(): #
-# None (register file or memroy changed as appropriate) #
-# #
-# ALGORITHM *********************************************************** #
-# compandset2(): #
-# Decode the instruction and fetch the appropriate Update and #
-# Compare operands. Then call the "callout" _real_lock_page() for each #
-# memory operand address so that the operating system can keep these #
-# pages from being paged out. If either _real_lock_page() fails, exit #
-# through _cas_terminate2(). Don't forget to unlock the 1st locked page #
-# using _real_unlock_paged() if the 2nd lock-page fails. #
-# Finally, branch to the core cas2 emulation code by calling the #
-# "callout" _real_cas2(). #
-# #
-# _isp_cas2_finish(): #
-# Re-perform the comparison so we can determine the condition #
-# codes which were too much trouble to keep around during the locked #
-# emulation. Then unlock each operands page by calling the "callout" #
-# _real_unlock_page(). #
-# #
-#########################################################################
-
-set ADDR1, EXC_TEMP+0xc
-set ADDR2, EXC_TEMP+0x0
-set DC2, EXC_TEMP+0xa
-set DC1, EXC_TEMP+0x8
-
- global _compandset2
-_compandset2:
- mov.l %d0,EXC_TEMP+0x4(%a6) # store for possible restart
- mov.l %d0,%d1 # extension word in d0
-
- rol.w &0x4,%d0
- andi.w &0xf,%d0 # extract Rn2
- mov.l (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2
- mov.l %a1,ADDR2(%a6)
-
- mov.l %d1,%d0
-
- lsr.w &0x6,%d1
- andi.w &0x7,%d1 # extract Du2
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op
-
- andi.w &0x7,%d0 # extract Dc2
- mov.l (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op
- mov.w %d0,DC2(%a6)
-
- mov.w EXC_EXTWORD(%a6),%d0
- mov.l %d0,%d1
-
- rol.w &0x4,%d0
- andi.w &0xf,%d0 # extract Rn1
- mov.l (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1
- mov.l %a0,ADDR1(%a6)
-
- mov.l %d1,%d0
-
- lsr.w &0x6,%d1
- andi.w &0x7,%d1 # extract Du1
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op
-
- andi.w &0x7,%d0 # extract Dc1
- mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op
- mov.w %d0,DC1(%a6)
-
- btst &0x1,EXC_OPWORD(%a6) # word or long?
- sne %d7
-
- btst &0x5,EXC_ISR(%a6) # user or supervisor?
- sne %d6
-
- mov.l %a0,%a2
- mov.l %a1,%a3
-
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- bsr.l _real_lock_page # lock page
- mov.l %a2,%a0
- tst.l %d0 # error?
- bne.l _cas_terminate2 # yes
-
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- mov.l %a3,%a0 # pass addr
- bsr.l _real_lock_page # lock page
- mov.l %a3,%a0
- tst.l %d0 # error?
- bne.b cas_preterm # yes
-
- mov.l %a2,%a0
- mov.l %a3,%a1
-
- bra.l _real_cas2
-
-# if the 2nd lock attempt fails, then we must still unlock the
-# first page(s).
-cas_preterm:
- mov.l %d0,-(%sp) # save FSLW
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- mov.l %a2,%a0 # pass ADDR1
- bsr.l _real_unlock_page # unlock first page(s)
- mov.l (%sp)+,%d0 # restore FSLW
- mov.l %a3,%a0 # pass failing addr
- bra.l _cas_terminate2
-
-#############################################################
-
- global _isp_cas2_finish
-_isp_cas2_finish:
- btst &0x1,EXC_OPWORD(%a6)
- bne.b cas2_finish_l
-
- mov.w EXC_CC(%a6),%cc # load old ccodes
- cmp.w %d0,%d2
- bne.b cas2_finish_w_save
- cmp.w %d1,%d3
-cas2_finish_w_save:
- mov.w %cc,EXC_CC(%a6) # save new ccodes
-
- tst.b %d4 # update compare reg?
- bne.b cas2_finish_w_done # no
-
- mov.w DC2(%a6),%d3 # fetch Dc2
- mov.w %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op
-
- mov.w DC1(%a6),%d2 # fetch Dc1
- mov.w %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op
-
-cas2_finish_w_done:
- btst &0x5,EXC_ISR(%a6)
- sne %d2
- mov.l %d2,%d0 # pass mode
- sf %d1 # pass size
- mov.l ADDR1(%a6),%a0 # pass ADDR1
- bsr.l _real_unlock_page # unlock page
-
- mov.l %d2,%d0 # pass mode
- sf %d1 # pass size
- mov.l ADDR2(%a6),%a0 # pass ADDR2
- bsr.l _real_unlock_page # unlock page
- rts
-
-cas2_finish_l:
- mov.w EXC_CC(%a6),%cc # load old ccodes
- cmp.l %d0,%d2
- bne.b cas2_finish_l_save
- cmp.l %d1,%d3
-cas2_finish_l_save:
- mov.w %cc,EXC_CC(%a6) # save new ccodes
-
- tst.b %d4 # update compare reg?
- bne.b cas2_finish_l_done # no
-
- mov.w DC2(%a6),%d3 # fetch Dc2
- mov.l %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op
-
- mov.w DC1(%a6),%d2 # fetch Dc1
- mov.l %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op
-
-cas2_finish_l_done:
- btst &0x5,EXC_ISR(%a6)
- sne %d2
- mov.l %d2,%d0 # pass mode
- st %d1 # pass size
- mov.l ADDR1(%a6),%a0 # pass ADDR1
- bsr.l _real_unlock_page # unlock page
-
- mov.l %d2,%d0 # pass mode
- st %d1 # pass size
- mov.l ADDR2(%a6),%a0 # pass ADDR2
- bsr.l _real_unlock_page # unlock page
- rts
-
-########
- global cr_cas2
-cr_cas2:
- mov.l EXC_TEMP+0x4(%a6),%d0
- bra.w _compandset2
-
-#########################################################################
-# XDEF **************************************************************** #
-# _compandset(): routine to emulate cas w/ misaligned <ea> #
-# (internal to package) #
-# _isp_cas_finish(): routine called when cas emulation completes #
-# (external and internal to package) #
-# _isp_cas_restart(): restart cas emulation after a fault #
-# (external to package) #
-# _isp_cas_terminate(): create access error stack frame on fault #
-# (external and internal to package) #
-# _isp_cas_inrange(): checks whether instr addess is within range #
-# of core cas/cas2emulation code #
-# (external to package) #
-# #
-# XREF **************************************************************** #
-# _calc_ea(): calculate effective address #
-# #
-# INPUT *************************************************************** #
-# compandset(): #
-# none #
-# _isp_cas_restart(): #
-# d6 = previous sfc/dfc #
-# _isp_cas_finish(): #
-# _isp_cas_terminate(): #
-# a0 = failing address #
-# d0 = FSLW #
-# d6 = previous sfc/dfc #
-# _isp_cas_inrange(): #
-# a0 = instruction address to be checked #
-# #
-# OUTPUT ************************************************************** #
-# compandset(): #
-# none #
-# _isp_cas_restart(): #
-# a0 = effective address #
-# d7 = word or longword flag #
-# _isp_cas_finish(): #
-# a0 = effective address #
-# _isp_cas_terminate(): #
-# initial register set before emulation exception #
-# _isp_cas_inrange(): #
-# d0 = 0 => in range; -1 => out of range #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# compandset(): #
-# First, calculate the effective address. Then, decode the #
-# instruction word and fetch the "compare" (DC) and "update" (Du) #
-# operands. #
-# Next, call the external routine _real_lock_page() so that the #
-# operating system can keep this page from being paged out while we're #
-# in this routine. If this call fails, jump to _cas_terminate2(). #
-# The routine then branches to _real_cas(). This external routine #
-# that actually emulates cas can be supplied by the external os or #
-# made to point directly back into the 060ISP which has a routine for #
-# this purpose. #
-# #
-# _isp_cas_finish(): #
-# Either way, after emulation, the package is re-entered at #
-# _isp_cas_finish(). This routine re-compares the operands in order to #
-# set the condition codes. Finally, these routines will call #
-# _real_unlock_page() in order to unlock the pages that were previously #
-# locked. #
-# #
-# _isp_cas_restart(): #
-# This routine can be entered from an access error handler where #
-# the emulation sequence should be re-started from the beginning. #
-# #
-# _isp_cas_terminate(): #
-# This routine can be entered from an access error handler where #
-# an emulation operand access failed and the operating system would #
-# like an access error stack frame created instead of the current #
-# unimplemented integer instruction frame. #
-# Also, the package enters here if a call to _real_lock_page() #
-# fails. #
-# #
-# _isp_cas_inrange(): #
-# Checks to see whether the instruction address passed to it in #
-# a0 is within the software package cas/cas2 emulation routines. This #
-# can be helpful for an operating system to determine whether an access #
-# error during emulation was due to a cas/cas2 emulation access. #
-# #
-#########################################################################
-
-set DC, EXC_TEMP+0x8
-set ADDR, EXC_TEMP+0x4
-
- global _compandset
-_compandset:
- btst &0x1,EXC_OPWORD(%a6) # word or long operation?
- bne.b compandsetl # long
-
-compandsetw:
- movq.l &0x2,%d0 # size = 2 bytes
- bsr.l _calc_ea # a0 = calculated <ea>
- mov.l %a0,ADDR(%a6) # save <ea> for possible restart
- sf %d7 # clear d7 for word size
- bra.b compandsetfetch
-
-compandsetl:
- movq.l &0x4,%d0 # size = 4 bytes
- bsr.l _calc_ea # a0 = calculated <ea>
- mov.l %a0,ADDR(%a6) # save <ea> for possible restart
- st %d7 # set d7 for longword size
-
-compandsetfetch:
- mov.w EXC_EXTWORD(%a6),%d0 # fetch cas extension word
- mov.l %d0,%d1 # make a copy
-
- lsr.w &0x6,%d0
- andi.w &0x7,%d0 # extract Du
- mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand
-
- andi.w &0x7,%d1 # extract Dc
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand
- mov.w %d1,DC(%a6) # save Dc
-
- btst &0x5,EXC_ISR(%a6) # which mode for exception?
- sne %d6 # set on supervisor mode
-
- mov.l %a0,%a2 # save temporarily
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- bsr.l _real_lock_page # lock page
- tst.l %d0 # did error occur?
- bne.w _cas_terminate2 # yes, clean up the mess
- mov.l %a2,%a0 # pass addr in a0
-
- bra.l _real_cas
-
-########
- global _isp_cas_finish
-_isp_cas_finish:
- btst &0x1,EXC_OPWORD(%a6)
- bne.b cas_finish_l
-
-# just do the compare again since it's faster than saving the ccodes
-# from the locked routine...
-cas_finish_w:
- mov.w EXC_CC(%a6),%cc # restore cc
- cmp.w %d0,%d4 # do word compare
- mov.w %cc,EXC_CC(%a6) # save cc
-
- tst.b %d1 # update compare reg?
- bne.b cas_finish_w_done # no
-
- mov.w DC(%a6),%d3
- mov.w %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination
-
-cas_finish_w_done:
- mov.l ADDR(%a6),%a0 # pass addr
- sf %d1 # pass size
- btst &0x5,EXC_ISR(%a6)
- sne %d0 # pass mode
- bsr.l _real_unlock_page # unlock page
- rts
-
-# just do the compare again since it's faster than saving the ccodes
-# from the locked routine...
-cas_finish_l:
- mov.w EXC_CC(%a6),%cc # restore cc
- cmp.l %d0,%d4 # do longword compare
- mov.w %cc,EXC_CC(%a6) # save cc
-
- tst.b %d1 # update compare reg?
- bne.b cas_finish_l_done # no
-
- mov.w DC(%a6),%d3
- mov.l %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination
-
-cas_finish_l_done:
- mov.l ADDR(%a6),%a0 # pass addr
- st %d1 # pass size
- btst &0x5,EXC_ISR(%a6)
- sne %d0 # pass mode
- bsr.l _real_unlock_page # unlock page
- rts
-
-########
-
- global _isp_cas_restart
-_isp_cas_restart:
- mov.l %d6,%sfc # restore previous sfc
- mov.l %d6,%dfc # restore previous dfc
-
- cmpi.b EXC_OPWORD+1(%a6),&0xfc # cas or cas2?
- beq.l cr_cas2 # cas2
-cr_cas:
- mov.l ADDR(%a6),%a0 # load <ea>
- btst &0x1,EXC_OPWORD(%a6) # word or long operation?
- sne %d7 # set d7 accordingly
- bra.w compandsetfetch
-
-########
-
-# At this stage, it would be nice if d0 held the FSLW.
- global _isp_cas_terminate
-_isp_cas_terminate:
- mov.l %d6,%sfc # restore previous sfc
- mov.l %d6,%dfc # restore previous dfc
-
- global _cas_terminate2
-_cas_terminate2:
- mov.l %a0,%a2 # copy failing addr to a2
-
- mov.l %d0,-(%sp)
- bsr.l isp_restore # restore An (if ()+ or -())
- mov.l (%sp)+,%d0
-
- addq.l &0x4,%sp # remove sub return addr
- subq.l &0x8,%sp # make room for bigger stack
- subq.l &0x8,%a6 # shift frame ptr down, too
- mov.l &26,%d1 # want to move 51 longwords
- lea 0x8(%sp),%a0 # get address of old stack
- lea 0x0(%sp),%a1 # get address of new stack
-cas_term_cont:
- mov.l (%a0)+,(%a1)+ # move a longword
- dbra.w %d1,cas_term_cont # keep going
-
- mov.w &0x4008,EXC_IVOFF(%a6) # put new stk fmt, voff
- mov.l %a2,EXC_IVOFF+0x2(%a6) # put faulting addr on stack
- mov.l %d0,EXC_IVOFF+0x6(%a6) # put FSLW on stack
- movm.l EXC_DREGS(%a6),&0x3fff # restore user regs
- unlk %a6 # unlink stack frame
- bra.l _real_access
-
-########
-
- global _isp_cas_inrange
-_isp_cas_inrange:
- clr.l %d0 # clear return result
- lea _CASHI(%pc),%a1 # load end of CAS core code
- cmp.l %a1,%a0 # is PC in range?
- blt.b cin_no # no
- lea _CASLO(%pc),%a1 # load begin of CAS core code
- cmp.l %a0,%a1 # is PC in range?
- blt.b cin_no # no
- rts # yes; return d0 = 0
-cin_no:
- mov.l &-0x1,%d0 # out of range; return d0 = -1
- rts
-
-#################################################################
-#################################################################
-#################################################################
-# This is the start of the cas and cas2 "core" emulation code. #
-# This is the section that may need to be replaced by the host #
-# OS if it is too operating system-specific. #
-# Please refer to the package documentation to see how to #
-# "replace" this section, if necessary. #
-#################################################################
-#################################################################
-#################################################################
-
-# ###### ## ###### ####
-# # # # # # #
-# # ###### ###### #
-# # # # # #
-# ###### # # ###### ######
-
-#########################################################################
-# XDEF **************************************************************** #
-# _isp_cas2(): "core" emulation code for the cas2 instruction #
-# #
-# XREF **************************************************************** #
-# _isp_cas2_finish() - only exit point for this emulation code; #
-# do clean-up; calculate ccodes; store #
-# Compare Ops if appropriate. #
-# #
-# INPUT *************************************************************** #
-# *see chart below* #
-# #
-# OUTPUT ************************************************************** #
-# *see chart below* #
-# #
-# ALGORITHM *********************************************************** #
-# (1) Make several copies of the effective address. #
-# (2) Save current SR; Then mask off all maskable interrupts. #
-# (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set #
-# according to whether exception occurred in user or #
-# supervisor mode. #
-# (4) Use "plpaw" instruction to pre-load ATC with effective #
-# address pages(s). THIS SHOULD NOT FAULT!!! The relevant #
-# page(s) should have already been made resident prior to #
-# entering this routine. #
-# (5) Push the operand lines from the cache w/ "cpushl". #
-# In the 68040, this was done within the locked region. In #
-# the 68060, it is done outside of the locked region. #
-# (6) Use "plpar" instruction to do a re-load of ATC entries for #
-# ADDR1 since ADDR2 entries may have pushed ADDR1 out of the #
-# ATC. #
-# (7) Pre-fetch the core emulation instructions by executing #
-# one branch within each physical line (16 bytes) of the code #
-# before actually executing the code. #
-# (8) Load the BUSCR w/ the bus lock value. #
-# (9) Fetch the source operands using "moves". #
-# (10)Do the compares. If both equal, go to step (13). #
-# (11)Unequal. No update occurs. But, we do write the DST1 op #
-# back to itself (as w/ the '040) so we can gracefully unlock #
-# the bus (and assert LOCKE*) using BUSCR and the final move. #
-# (12)Exit. #
-# (13)Write update operand to the DST locations. Use BUSCR to #
-# assert LOCKE* for the final write operation. #
-# (14)Exit. #
-# #
-# The algorithm is actually implemented slightly differently #
-# depending on the size of the operation and the misalignment of the #
-# operands. A misaligned operand must be written in aligned chunks or #
-# else the BUSCR register control gets confused. #
-# #
-#########################################################################
-
-#################################################################
-# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas2(). #
-# #
-# D0 = xxxxxxxx #
-# D1 = xxxxxxxx #
-# D2 = cmp operand 1 #
-# D3 = cmp operand 2 #
-# D4 = update oper 1 #
-# D5 = update oper 2 #
-# D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode #
-# D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word #
-# A0 = ADDR1 #
-# A1 = ADDR2 #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-# align 0x1000
-# beginning label used by _isp_cas_inrange()
- global _CASLO
-_CASLO:
-
- global _isp_cas2
-_isp_cas2:
- tst.b %d6 # user or supervisor mode?
- bne.b cas2_supervisor # supervisor
-cas2_user:
- movq.l &0x1,%d0 # load user data fc
- bra.b cas2_cont
-cas2_supervisor:
- movq.l &0x5,%d0 # load supervisor data fc
-cas2_cont:
- tst.b %d7 # word or longword?
- beq.w cas2w # word
-
-####
-cas2l:
- mov.l %a0,%a2 # copy ADDR1
- mov.l %a1,%a3 # copy ADDR2
- mov.l %a0,%a4 # copy ADDR1
- mov.l %a1,%a5 # copy ADDR2
-
- addq.l &0x3,%a4 # ADDR1+3
- addq.l &0x3,%a5 # ADDR2+3
- mov.l %a2,%d1 # ADDR1
-
-# mask interrupts levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # store new SFC
- movc %d0,%dfc # store new DFC
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this.
- plpaw (%a2) # load atc for ADDR1
- plpaw (%a4) # load atc for ADDR1+3
- plpaw (%a3) # load atc for ADDR2
- plpaw (%a5) # load atc for ADDR2+3
-
-# push the operand lines from the cache if they exist.
- cpushl %dc,(%a2) # push line for ADDR1
- cpushl %dc,(%a4) # push line for ADDR1+3
- cpushl %dc,(%a3) # push line for ADDR2
- cpushl %dc,(%a5) # push line for ADDR2+2
-
- mov.l %d1,%a2 # ADDR1
- addq.l &0x3,%d1
- mov.l %d1,%a4 # ADDR1+3
-# if ADDR1 was ATC resident before the above "plpaw" and was executed
-# and it was the next entry scheduled for replacement and ADDR2
-# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1
-# entries from the ATC. so, we do a second set of "plpa"s.
- plpar (%a2) # load atc for ADDR1
- plpar (%a4) # load atc for ADDR1+3
-
-# load the BUSCR values.
- mov.l &0x80000000,%a2 # assert LOCK* buscr value
- mov.l &0xa0000000,%a3 # assert LOCKE* buscr value
- mov.l &0x00000000,%a4 # buscr unlock value
-
-# there are three possible mis-aligned cases for longword cas. they
-# are separated because the final write which asserts LOCKE* must
-# be aligned.
- mov.l %a0,%d0 # is ADDR1 misaligned?
- andi.b &0x3,%d0
- beq.b CAS2L_ENTER # no
- cmpi.b %d0,&0x2
- beq.w CAS2L2_ENTER # yes; word misaligned
- bra.w CAS2L3_ENTER # yes; byte misaligned
-
-#
-# D0 = dst operand 1 <-
-# D1 = dst operand 2 <-
-# D2 = cmp operand 1
-# D3 = cmp operand 2
-# D4 = update oper 1
-# D5 = update oper 2
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR1
-# A1 = ADDR2
-# A2 = bus LOCK* value
-# A3 = bus LOCKE* value
-# A4 = bus unlock value
-# A5 = xxxxxxxx
-#
- align 0x10
-CAS2L_START:
- movc %a2,%buscr # assert LOCK*
- movs.l (%a1),%d1 # fetch Dest2[31:0]
- movs.l (%a0),%d0 # fetch Dest1[31:0]
- bra.b CAS2L_CONT
-CAS2L_ENTER:
- bra.b ~+16
-
-CAS2L_CONT:
- cmp.l %d0,%d2 # Dest1 - Compare1
- bne.b CAS2L_NOUPDATE
- cmp.l %d1,%d3 # Dest2 - Compare2
- bne.b CAS2L_NOUPDATE
- movs.l %d5,(%a1) # Update2[31:0] -> DEST2
- bra.b CAS2L_UPDATE
- bra.b ~+16
-
-CAS2L_UPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.l %d4,(%a0) # Update1[31:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2l_update_done
- bra.b ~+16
-
-CAS2L_NOUPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.l %d0,(%a0) # Dest1[31:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2l_noupdate_done
- bra.b ~+16
-
-CAS2L_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2L_START
-
-####
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas2(). #
-# #
-# D0 = destination[31:0] operand 1 #
-# D1 = destination[31:0] operand 2 #
-# D2 = cmp[31:0] operand 1 #
-# D3 = cmp[31:0] operand 2 #
-# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-cas2l_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d4 # indicate no update was done
- bra.l _isp_cas2_finish
-
-cas2l_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d4 # indicate update was done
- bra.l _isp_cas2_finish
-####
-
- align 0x10
-CAS2L2_START:
- movc %a2,%buscr # assert LOCK*
- movs.l (%a1),%d1 # fetch Dest2[31:0]
- movs.l (%a0),%d0 # fetch Dest1[31:0]
- bra.b CAS2L2_CONT
-CAS2L2_ENTER:
- bra.b ~+16
-
-CAS2L2_CONT:
- cmp.l %d0,%d2 # Dest1 - Compare1
- bne.b CAS2L2_NOUPDATE
- cmp.l %d1,%d3 # Dest2 - Compare2
- bne.b CAS2L2_NOUPDATE
- movs.l %d5,(%a1) # Update2[31:0] -> Dest2
- bra.b CAS2L2_UPDATE
- bra.b ~+16
-
-CAS2L2_UPDATE:
- swap %d4 # get Update1[31:16]
- movs.w %d4,(%a0)+ # Update1[31:16] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- swap %d4 # get Update1[15:0]
- bra.b CAS2L2_UPDATE2
- bra.b ~+16
-
-CAS2L2_UPDATE2:
- movs.w %d4,(%a0) # Update1[15:0] -> DEST1+0x2
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_update_done
- nop
- bra.b ~+16
-
-CAS2L2_NOUPDATE:
- swap %d0 # get Dest1[31:16]
- movs.w %d0,(%a0)+ # Dest1[31:16] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- swap %d0 # get Dest1[15:0]
- bra.b CAS2L2_NOUPDATE2
- bra.b ~+16
-
-CAS2L2_NOUPDATE2:
- movs.w %d0,(%a0) # Dest1[15:0] -> DEST1+0x2
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_noupdate_done
- nop
- bra.b ~+16
-
-CAS2L2_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2L2_START
-
-#################################
-
- align 0x10
-CAS2L3_START:
- movc %a2,%buscr # assert LOCK*
- movs.l (%a1),%d1 # fetch Dest2[31:0]
- movs.l (%a0),%d0 # fetch Dest1[31:0]
- bra.b CAS2L3_CONT
-CAS2L3_ENTER:
- bra.b ~+16
-
-CAS2L3_CONT:
- cmp.l %d0,%d2 # Dest1 - Compare1
- bne.b CAS2L3_NOUPDATE
- cmp.l %d1,%d3 # Dest2 - Compare2
- bne.b CAS2L3_NOUPDATE
- movs.l %d5,(%a1) # Update2[31:0] -> DEST2
- bra.b CAS2L3_UPDATE
- bra.b ~+16
-
-CAS2L3_UPDATE:
- rol.l &0x8,%d4 # get Update1[31:24]
- movs.b %d4,(%a0)+ # Update1[31:24] -> DEST1
- swap %d4 # get Update1[23:8]
- movs.w %d4,(%a0)+ # Update1[23:8] -> DEST1+0x1
- bra.b CAS2L3_UPDATE2
- bra.b ~+16
-
-CAS2L3_UPDATE2:
- rol.l &0x8,%d4 # get Update1[7:0]
- movc %a3,%buscr # assert LOCKE*
- movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x3
- bra.b CAS2L3_UPDATE3
- nop
- bra.b ~+16
-
-CAS2L3_UPDATE3:
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_update_done
- nop
- nop
- nop
- bra.b ~+16
-
-CAS2L3_NOUPDATE:
- rol.l &0x8,%d0 # get Dest1[31:24]
- movs.b %d0,(%a0)+ # Dest1[31:24] -> DEST1
- swap %d0 # get Dest1[23:8]
- movs.w %d0,(%a0)+ # Dest1[23:8] -> DEST1+0x1
- bra.b CAS2L3_NOUPDATE2
- bra.b ~+16
-
-CAS2L3_NOUPDATE2:
- rol.l &0x8,%d0 # get Dest1[7:0]
- movc %a3,%buscr # assert LOCKE*
- movs.b %d0,(%a0) # Update1[7:0] -> DEST1+0x3
- bra.b CAS2L3_NOUPDATE3
- nop
- bra.b ~+16
-
-CAS2L3_NOUPDATE3:
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_noupdate_done
- nop
- nop
- nop
- bra.b ~+14
-
-CAS2L3_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- bra.w CAS2L3_START
-
-#############################################################
-#############################################################
-
-cas2w:
- mov.l %a0,%a2 # copy ADDR1
- mov.l %a1,%a3 # copy ADDR2
- mov.l %a0,%a4 # copy ADDR1
- mov.l %a1,%a5 # copy ADDR2
-
- addq.l &0x1,%a4 # ADDR1+1
- addq.l &0x1,%a5 # ADDR2+1
- mov.l %a2,%d1 # ADDR1
-
-# mask interrupt levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # store new SFC
- movc %d0,%dfc # store new DFC
-
-# pre-load the operand ATC. no page faults should occur because
-# _real_lock_page() should have taken care of this.
- plpaw (%a2) # load atc for ADDR1
- plpaw (%a4) # load atc for ADDR1+1
- plpaw (%a3) # load atc for ADDR2
- plpaw (%a5) # load atc for ADDR2+1
-
-# push the operand cache lines from the cache if they exist.
- cpushl %dc,(%a2) # push line for ADDR1
- cpushl %dc,(%a4) # push line for ADDR1+1
- cpushl %dc,(%a3) # push line for ADDR2
- cpushl %dc,(%a5) # push line for ADDR2+1
-
- mov.l %d1,%a2 # ADDR1
- addq.l &0x3,%d1
- mov.l %d1,%a4 # ADDR1+3
-# if ADDR1 was ATC resident before the above "plpaw" and was executed
-# and it was the next entry scheduled for replacement and ADDR2
-# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1
-# entries from the ATC. so, we do a second set of "plpa"s.
- plpar (%a2) # load atc for ADDR1
- plpar (%a4) # load atc for ADDR1+3
-
-# load the BUSCR values.
- mov.l &0x80000000,%a2 # assert LOCK* buscr value
- mov.l &0xa0000000,%a3 # assert LOCKE* buscr value
- mov.l &0x00000000,%a4 # buscr unlock value
-
-# there are two possible mis-aligned cases for word cas. they
-# are separated because the final write which asserts LOCKE* must
-# be aligned.
- mov.l %a0,%d0 # is ADDR1 misaligned?
- btst &0x0,%d0
- bne.w CAS2W2_ENTER # yes
- bra.b CAS2W_ENTER # no
-
-#
-# D0 = dst operand 1 <-
-# D1 = dst operand 2 <-
-# D2 = cmp operand 1
-# D3 = cmp operand 2
-# D4 = update oper 1
-# D5 = update oper 2
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR1
-# A1 = ADDR2
-# A2 = bus LOCK* value
-# A3 = bus LOCKE* value
-# A4 = bus unlock value
-# A5 = xxxxxxxx
-#
- align 0x10
-CAS2W_START:
- movc %a2,%buscr # assert LOCK*
- movs.w (%a1),%d1 # fetch Dest2[15:0]
- movs.w (%a0),%d0 # fetch Dest1[15:0]
- bra.b CAS2W_CONT2
-CAS2W_ENTER:
- bra.b ~+16
-
-CAS2W_CONT2:
- cmp.w %d0,%d2 # Dest1 - Compare1
- bne.b CAS2W_NOUPDATE
- cmp.w %d1,%d3 # Dest2 - Compare2
- bne.b CAS2W_NOUPDATE
- movs.w %d5,(%a1) # Update2[15:0] -> DEST2
- bra.b CAS2W_UPDATE
- bra.b ~+16
-
-CAS2W_UPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.w %d4,(%a0) # Update1[15:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2w_update_done
- bra.b ~+16
-
-CAS2W_NOUPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.w %d0,(%a0) # Dest1[15:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2w_noupdate_done
- bra.b ~+16
-
-CAS2W_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2W_START
-
-####
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas2(). #
-# #
-# D0 = destination[15:0] operand 1 #
-# D1 = destination[15:0] operand 2 #
-# D2 = cmp[15:0] operand 1 #
-# D3 = cmp[15:0] operand 2 #
-# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-cas2w_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d4 # indicate no update was done
- bra.l _isp_cas2_finish
-
-cas2w_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d4 # indicate update was done
- bra.l _isp_cas2_finish
-####
-
- align 0x10
-CAS2W2_START:
- movc %a2,%buscr # assert LOCK*
- movs.w (%a1),%d1 # fetch Dest2[15:0]
- movs.w (%a0),%d0 # fetch Dest1[15:0]
- bra.b CAS2W2_CONT2
-CAS2W2_ENTER:
- bra.b ~+16
-
-CAS2W2_CONT2:
- cmp.w %d0,%d2 # Dest1 - Compare1
- bne.b CAS2W2_NOUPDATE
- cmp.w %d1,%d3 # Dest2 - Compare2
- bne.b CAS2W2_NOUPDATE
- movs.w %d5,(%a1) # Update2[15:0] -> DEST2
- bra.b CAS2W2_UPDATE
- bra.b ~+16
-
-CAS2W2_UPDATE:
- ror.l &0x8,%d4 # get Update1[15:8]
- movs.b %d4,(%a0)+ # Update1[15:8] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- rol.l &0x8,%d4 # get Update1[7:0]
- bra.b CAS2W2_UPDATE2
- bra.b ~+16
-
-CAS2W2_UPDATE2:
- movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x1
- movc %a4,%buscr # unlock the bus
- bra.w cas2w_update_done
- nop
- bra.b ~+16
-
-CAS2W2_NOUPDATE:
- ror.l &0x8,%d0 # get Dest1[15:8]
- movs.b %d0,(%a0)+ # Dest1[15:8] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- rol.l &0x8,%d0 # get Dest1[7:0]
- bra.b CAS2W2_NOUPDATE2
- bra.b ~+16
-
-CAS2W2_NOUPDATE2:
- movs.b %d0,(%a0) # Dest1[7:0] -> DEST1+0x1
- movc %a4,%buscr # unlock the bus
- bra.w cas2w_noupdate_done
- nop
- bra.b ~+16
-
-CAS2W2_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2W2_START
-
-# ###### ## ######
-# # # # #
-# # ###### ######
-# # # # #
-# ###### # # ######
-
-#########################################################################
-# XDEF **************************************************************** #
-# _isp_cas(): "core" emulation code for the cas instruction #
-# #
-# XREF **************************************************************** #
-# _isp_cas_finish() - only exit point for this emulation code; #
-# do clean-up #
-# #
-# INPUT *************************************************************** #
-# *see entry chart below* #
-# #
-# OUTPUT ************************************************************** #
-# *see exit chart below* #
-# #
-# ALGORITHM *********************************************************** #
-# (1) Make several copies of the effective address. #
-# (2) Save current SR; Then mask off all maskable interrupts. #
-# (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set #
-# SFC/DFC according to whether exception occurred in user or #
-# supervisor mode. #
-# (4) Use "plpaw" instruction to pre-load ATC with efective #
-# address page(s). THIS SHOULD NOT FAULT!!! The relevant #
-# page(s) should have been made resident prior to entering #
-# this routine. #
-# (5) Push the operand lines from the cache w/ "cpushl". #
-# In the 68040, this was done within the locked region. In #
-# the 68060, it is done outside of the locked region. #
-# (6) Pre-fetch the core emulation instructions by executing one #
-# branch within each physical line (16 bytes) of the code #
-# before actually executing the code. #
-# (7) Load the BUSCR with the bus lock value. #
-# (8) Fetch the source operand. #
-# (9) Do the compare. If equal, go to step (12). #
-# (10)Unequal. No update occurs. But, we do write the DST op back #
-# to itself (as w/ the '040) so we can gracefully unlock #
-# the bus (and assert LOCKE*) using BUSCR and the final move. #
-# (11)Exit. #
-# (12)Write update operand to the DST location. Use BUSCR to #
-# assert LOCKE* for the final write operation. #
-# (13)Exit. #
-# #
-# The algorithm is actually implemented slightly differently #
-# depending on the size of the operation and the misalignment of the #
-# operand. A misaligned operand must be written in aligned chunks or #
-# else the BUSCR register control gets confused. #
-# #
-#########################################################################
-
-#########################################################
-# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas(). #
-# #
-# D0 = xxxxxxxx #
-# D1 = xxxxxxxx #
-# D2 = update operand #
-# D3 = xxxxxxxx #
-# D4 = compare operand #
-# D5 = xxxxxxxx #
-# D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00) #
-# D7 = longword ('xxxxxxff) or word size ('xxxxxx00) #
-# A0 = ADDR #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#########################################################
-
- global _isp_cas
-_isp_cas:
- tst.b %d6 # user or supervisor mode?
- bne.b cas_super # supervisor
-cas_user:
- movq.l &0x1,%d0 # load user data fc
- bra.b cas_cont
-cas_super:
- movq.l &0x5,%d0 # load supervisor data fc
-
-cas_cont:
- tst.b %d7 # word or longword?
- bne.w casl # longword
-
-####
-casw:
- mov.l %a0,%a1 # make copy for plpaw1
- mov.l %a0,%a2 # make copy for plpaw2
- addq.l &0x1,%a2 # plpaw2 points to end of word
-
- mov.l %d2,%d3 # d3 = update[7:0]
- lsr.w &0x8,%d2 # d2 = update[15:8]
-
-# mask interrupt levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # load new sfc
- movc %d0,%dfc # load new dfc
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this.
- plpaw (%a1) # load atc for ADDR
- plpaw (%a2) # load atc for ADDR+1
-
-# push the operand lines from the cache if they exist.
- cpushl %dc,(%a1) # push dirty data
- cpushl %dc,(%a2) # push dirty data
-
-# load the BUSCR values.
- mov.l &0x80000000,%a1 # assert LOCK* buscr value
- mov.l &0xa0000000,%a2 # assert LOCKE* buscr value
- mov.l &0x00000000,%a3 # buscr unlock value
-
-# pre-load the instruction cache for the following algorithm.
-# this will minimize the number of cycles that LOCK* will be asserted.
- bra.b CASW_ENTER # start pre-loading icache
-
-#
-# D0 = dst operand <-
-# D1 = update[15:8] operand
-# D2 = update[7:0] operand
-# D3 = xxxxxxxx
-# D4 = compare[15:0] operand
-# D5 = xxxxxxxx
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR
-# A1 = bus LOCK* value
-# A2 = bus LOCKE* value
-# A3 = bus unlock value
-# A4 = xxxxxxxx
-# A5 = xxxxxxxx
-#
- align 0x10
-CASW_START:
- movc %a1,%buscr # assert LOCK*
- movs.w (%a0),%d0 # fetch Dest[15:0]
- cmp.w %d0,%d4 # Dest - Compare
- bne.b CASW_NOUPDATE
- bra.b CASW_UPDATE
-CASW_ENTER:
- bra.b ~+16
-
-CASW_UPDATE:
- movs.b %d2,(%a0)+ # Update[15:8] -> DEST
- movc %a2,%buscr # assert LOCKE*
- movs.b %d3,(%a0) # Update[7:0] -> DEST+0x1
- bra.b CASW_UPDATE2
- bra.b ~+16
-
-CASW_UPDATE2:
- movc %a3,%buscr # unlock the bus
- bra.b casw_update_done
- nop
- nop
- nop
- nop
- bra.b ~+16
-
-CASW_NOUPDATE:
- ror.l &0x8,%d0 # get Dest[15:8]
- movs.b %d0,(%a0)+ # Dest[15:8] -> DEST
- movc %a2,%buscr # assert LOCKE*
- rol.l &0x8,%d0 # get Dest[7:0]
- bra.b CASW_NOUPDATE2
- bra.b ~+16
-
-CASW_NOUPDATE2:
- movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x1
- movc %a3,%buscr # unlock the bus
- bra.b casw_noupdate_done
- nop
- nop
- bra.b ~+16
-
-CASW_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CASW_START
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# CALLING _isp_cas_finish(). #
-# #
-# D0 = destination[15:0] operand #
-# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D2 = xxxxxxxx #
-# D3 = xxxxxxxx #
-# D4 = compare[15:0] operand #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-casw_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d1 # indicate no update was done
- bra.l _isp_cas_finish
-
-casw_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d1 # indicate update was done
- bra.l _isp_cas_finish
-
-################
-
-# there are two possible mis-aligned cases for longword cas. they
-# are separated because the final write which asserts LOCKE* must
-# be an aligned write.
-casl:
- mov.l %a0,%a1 # make copy for plpaw1
- mov.l %a0,%a2 # make copy for plpaw2
- addq.l &0x3,%a2 # plpaw2 points to end of longword
-
- mov.l %a0,%d1 # byte or word misaligned?
- btst &0x0,%d1
- bne.w casl2 # byte misaligned
-
- mov.l %d2,%d3 # d3 = update[15:0]
- swap %d2 # d2 = update[31:16]
-
-# mask interrupts levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # load new sfc
- movc %d0,%dfc # load new dfc
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this.
- plpaw (%a1) # load atc for ADDR
- plpaw (%a2) # load atc for ADDR+3
-
-# push the operand lines from the cache if they exist.
- cpushl %dc,(%a1) # push dirty data
- cpushl %dc,(%a2) # push dirty data
-
-# load the BUSCR values.
- mov.l &0x80000000,%a1 # assert LOCK* buscr value
- mov.l &0xa0000000,%a2 # assert LOCKE* buscr value
- mov.l &0x00000000,%a3 # buscr unlock value
-
- bra.b CASL_ENTER # start pre-loading icache
-
-#
-# D0 = dst operand <-
-# D1 = xxxxxxxx
-# D2 = update[31:16] operand
-# D3 = update[15:0] operand
-# D4 = compare[31:0] operand
-# D5 = xxxxxxxx
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR
-# A1 = bus LOCK* value
-# A2 = bus LOCKE* value
-# A3 = bus unlock value
-# A4 = xxxxxxxx
-# A5 = xxxxxxxx
-#
- align 0x10
-CASL_START:
- movc %a1,%buscr # assert LOCK*
- movs.l (%a0),%d0 # fetch Dest[31:0]
- cmp.l %d0,%d4 # Dest - Compare
- bne.b CASL_NOUPDATE
- bra.b CASL_UPDATE
-CASL_ENTER:
- bra.b ~+16
-
-CASL_UPDATE:
- movs.w %d2,(%a0)+ # Update[31:16] -> DEST
- movc %a2,%buscr # assert LOCKE*
- movs.w %d3,(%a0) # Update[15:0] -> DEST+0x2
- bra.b CASL_UPDATE2
- bra.b ~+16
-
-CASL_UPDATE2:
- movc %a3,%buscr # unlock the bus
- bra.b casl_update_done
- nop
- nop
- nop
- nop
- bra.b ~+16
-
-CASL_NOUPDATE:
- swap %d0 # get Dest[31:16]
- movs.w %d0,(%a0)+ # Dest[31:16] -> DEST
- swap %d0 # get Dest[15:0]
- movc %a2,%buscr # assert LOCKE*
- bra.b CASL_NOUPDATE2
- bra.b ~+16
-
-CASL_NOUPDATE2:
- movs.w %d0,(%a0) # Dest[15:0] -> DEST+0x2
- movc %a3,%buscr # unlock the bus
- bra.b casl_noupdate_done
- nop
- nop
- bra.b ~+16
-
-CASL_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CASL_START
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# CALLING _isp_cas_finish(). #
-# #
-# D0 = destination[31:0] operand #
-# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D2 = xxxxxxxx #
-# D3 = xxxxxxxx #
-# D4 = compare[31:0] operand #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-casl_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d1 # indicate no update was done
- bra.l _isp_cas_finish
-
-casl_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupts mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d1 # indicate update was done
- bra.l _isp_cas_finish
-
-#######################################
-casl2:
- mov.l %d2,%d5 # d5 = Update[7:0]
- lsr.l &0x8,%d2
- mov.l %d2,%d3 # d3 = Update[23:8]
- swap %d2 # d2 = Update[31:24]
-
-# mask interrupts levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # load new sfc
- movc %d0,%dfc # load new dfc
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this already.
- plpaw (%a1) # load atc for ADDR
- plpaw (%a2) # load atc for ADDR+3
-
-# puch the operand lines from the cache if they exist.
- cpushl %dc,(%a1) # push dirty data
- cpushl %dc,(%a2) # push dirty data
-
-# load the BUSCR values.
- mov.l &0x80000000,%a1 # assert LOCK* buscr value
- mov.l &0xa0000000,%a2 # assert LOCKE* buscr value
- mov.l &0x00000000,%a3 # buscr unlock value
-
-# pre-load the instruction cache for the following algorithm.
-# this will minimize the number of cycles that LOCK* will be asserted.
- bra.b CASL2_ENTER # start pre-loading icache
-
-#
-# D0 = dst operand <-
-# D1 = xxxxxxxx
-# D2 = update[31:24] operand
-# D3 = update[23:8] operand
-# D4 = compare[31:0] operand
-# D5 = update[7:0] operand
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR
-# A1 = bus LOCK* value
-# A2 = bus LOCKE* value
-# A3 = bus unlock value
-# A4 = xxxxxxxx
-# A5 = xxxxxxxx
-#
- align 0x10
-CASL2_START:
- movc %a1,%buscr # assert LOCK*
- movs.l (%a0),%d0 # fetch Dest[31:0]
- cmp.l %d0,%d4 # Dest - Compare
- bne.b CASL2_NOUPDATE
- bra.b CASL2_UPDATE
-CASL2_ENTER:
- bra.b ~+16
-
-CASL2_UPDATE:
- movs.b %d2,(%a0)+ # Update[31:24] -> DEST
- movs.w %d3,(%a0)+ # Update[23:8] -> DEST+0x1
- movc %a2,%buscr # assert LOCKE*
- bra.b CASL2_UPDATE2
- bra.b ~+16
-
-CASL2_UPDATE2:
- movs.b %d5,(%a0) # Update[7:0] -> DEST+0x3
- movc %a3,%buscr # unlock the bus
- bra.w casl_update_done
- nop
- bra.b ~+16
-
-CASL2_NOUPDATE:
- rol.l &0x8,%d0 # get Dest[31:24]
- movs.b %d0,(%a0)+ # Dest[31:24] -> DEST
- swap %d0 # get Dest[23:8]
- movs.w %d0,(%a0)+ # Dest[23:8] -> DEST+0x1
- bra.b CASL2_NOUPDATE2
- bra.b ~+16
-
-CASL2_NOUPDATE2:
- rol.l &0x8,%d0 # get Dest[7:0]
- movc %a2,%buscr # assert LOCKE*
- movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x3
- bra.b CASL2_NOUPDATE3
- nop
- bra.b ~+16
-
-CASL2_NOUPDATE3:
- movc %a3,%buscr # unlock the bus
- bra.w casl_noupdate_done
- nop
- nop
- nop
- bra.b ~+16
-
-CASL2_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CASL2_START
-
-####
-####
-# end label used by _isp_cas_inrange()
- global _CASHI
-_CASHI:
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S
deleted file mode 100644
index beca47e7..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/itest.S
+++ /dev/null
@@ -1,6386 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-#############################################
-set SREGS, -64
-set IREGS, -128
-set SCCR, -130
-set ICCR, -132
-set TESTCTR, -136
-set EAMEM, -140
-set EASTORE, -144
-set DATA, -160
-
-#############################################
-TESTTOP:
- bra.l _060TESTS_
-
-start_str:
- string "Testing 68060 ISP started:\n"
-
-pass_str:
- string "passed\n"
-fail_str:
- string " failed\n"
-
- align 0x4
-chk_test:
- tst.l %d0
- bne.b test_fail
-test_pass:
- pea pass_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
- rts
-test_fail:
- mov.l %d1,-(%sp)
- bsr.l _print_num
- addq.l &0x4,%sp
-
- pea fail_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
- rts
-
-#############################################
-_060TESTS_:
- link %a6,&-160
-
- movm.l &0x3f3c,-(%sp)
-
- pea start_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
-### mul
- clr.l TESTCTR(%a6)
- pea mulul_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l mulul_0
-
- bsr.l chk_test
-
-### div
- clr.l TESTCTR(%a6)
- pea divul_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l divul_0
-
- bsr.l chk_test
-
-### cmp2
- clr.l TESTCTR(%a6)
- pea cmp2_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l cmp2_1
-
- bsr.l chk_test
-
-### movp
- clr.l TESTCTR(%a6)
- pea movp_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l movp_0
-
- bsr.l chk_test
-
-### ea
- clr.l TESTCTR(%a6)
- pea ea_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- mov.l &0x2,EAMEM(%a6)
- bsr.l ea_0
-
- bsr.l chk_test
-
-### cas
- clr.l TESTCTR(%a6)
- pea cas_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l cas0
-
- bsr.l chk_test
-
-### cas2
- clr.l TESTCTR(%a6)
- pea cas2_str(%pc)
- bsr.l _print_str
- addq.l &0x4,%sp
-
- bsr.l cas20
-
- bsr.l chk_test
-
-###
- movm.l (%sp)+,&0x3cfc
-
- unlk %a6
- rts
-
-#############################################
-#############################################
-
-mulul_str:
- string "\t64-bit multiply..."
-
- align 0x4
-mulul_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d1
- mov.l &0x99999999,%d2
- mov.l &0x88888888,%d3
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- clr.l IREGS+0x8(%a6)
- clr.l IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x77777777,%d1
- mov.l &0x99999999,%d2
- mov.l &0x00000000,%d3
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- clr.l IREGS+0x8(%a6)
- clr.l IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x00000010,%d1
- mov.l &0x66666666,%d2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l %d1,%d2:%d2
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000006,IREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x55555555,%d1
- mov.l &0x00000000,%d2
- mov.l &0x00000003,%d3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000000,IREGS+0x8(%a6)
- mov.l &0xffffffff,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x40000000,%d1
- mov.l &0x00000000,%d2
- mov.l &0x00000004,%d3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000001,IREGS+0x8(%a6)
- mov.l &0x00000000,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_5:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xffffffff,%d1
- mov.l &0x00000000,%d2
- mov.l &0xffffffff,%d3
-
- mov.w &0x0008,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xfffffffe,IREGS+0x8(%a6)
- mov.l &0x00000001,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_6:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x80000000,%d1
- mov.l &0x00000000,%d2
- mov.l &0xffffffff,%d3
-
- mov.w &0x00000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- muls.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000000,IREGS+0x8(%a6)
- mov.l &0x80000000,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_7:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x80000000,%d1
- mov.l &0x00000000,%d2
- mov.l &0x00000001,%d3
-
- mov.w &0x0008,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- muls.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xffffffff,IREGS+0x8(%a6)
- mov.l &0x80000000,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-mulul_8:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x00000001,%d1
- mov.l &0x00000000,%d2
- mov.l &0x80000000,%d3
-
- mov.w &0x0008,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- muls.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xffffffff,IREGS+0x8(%a6)
- mov.l &0x80000000,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-#############################################
-
-movp_str:
- string "\tmovep..."
-
- align 0x4
-###############################
-# movep.w %d0,(0x0,%a0) #
-###############################
-movp_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.w &0xaaaa,%d0
- clr.b 0x0(%a0)
- clr.b 0x2(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d0,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x2(%a0),%d1
- lsl.w &0x8,%d1
- mov.b 0x0(%a0),%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w %d0,(0x0,%a0) #
-###############################
-movp_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x4(%a6),%a0
- mov.w &0xaaaa,%d0
- clr.l -0x4(%a0)
- clr.l (%a0)
- clr.l 0x4(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d0,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- tst.l -0x4(%a0)
- bne.l error
- tst.l 0x4(%a0)
- bne.l error
- cmpi.l (%a0),&0xaa00aa00
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-#####################################################
-# movep.w %d0,(0x0,%a0) #
-# - this test has %cc initially equal to zero #
-#####################################################
-movp_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.w &0xaaaa,%d0
- clr.b 0x0(%a0)
- clr.b 0x2(%a0)
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d0,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x2(%a0),%d1
- lsl.w &0x8,%d1
- mov.b 0x0(%a0),%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w (0x0,%a0),%d0 #
-###############################
-movp_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.b &0xaa,0x0(%a0)
- mov.b &0xaa,0x2(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w (0x0,%a0),%d0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.w &0xaaaa,IREGS+0x2(%a6)
-
- mov.w &0xaaaa,%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.l %d0,(0x0,%a0) #
-###############################
-movp_4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.l &0xaaaaaaaa,%d0
- clr.b 0x0(%a0)
- clr.b 0x2(%a0)
- clr.b 0x4(%a0)
- clr.b 0x6(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l %d0,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x6(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x4(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x2(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x0(%a0),%d1
-
- cmp.l %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.l %d0,(0x0,%a0) #
-###############################
-movp_5:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x4(%a6),%a0
- mov.l &0xaaaaaaaa,%d0
- clr.l -0x4(%a0)
- clr.l (%a0)
- clr.l 0x4(%a0)
- clr.l 0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l %d0,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- tst.l -0x4(%a0)
- bne.l error
- tst.l 0x8(%a0)
- bne.l error
- cmpi.l (%a0),&0xaa00aa00
- bne.l error
- cmpi.l 0x4(%a0),&0xaa00aa00
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.l (0x0,%a0),%d0 #
-###############################
-movp_6:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.b &0xaa,0x0(%a0)
- mov.b &0xaa,0x2(%a0)
- mov.b &0xaa,0x4(%a0)
- mov.b &0xaa,0x6(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l (0x0,%a0),%d0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xaaaaaaaa,IREGS(%a6)
-
- mov.l &0xaaaaaaaa,%d1
-
- cmp.l %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w %d7,(0x0,%a0) #
-###############################
-movp_7:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.w &0xaaaa,%d7
- clr.b 0x0(%a0)
- clr.b 0x2(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d7,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x2(%a0),%d1
- lsl.w &0x8,%d1
- mov.b 0x0(%a0),%d1
-
- cmp.w %d7,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w (0x0,%a0),%d7 #
-###############################
-movp_8:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.b &0xaa,0x0(%a0)
- mov.b &0xaa,0x2(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w (0x0,%a0),%d7
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.w &0xaaaa,IREGS+30(%a6)
-
- mov.w &0xaaaa,%d1
-
- cmp.w %d7,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w %d0,(0x0,%a0) #
-###############################
-movp_9:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.w &0xaaaa,%d0
- clr.b 0x0(%a0)
- clr.b 0x2(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d0,(0x0,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x2(%a0),%d1
- lsl.w &0x8,%d1
- mov.b 0x0(%a0),%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w %d0,(0x8,%a0) #
-###############################
-movp_10:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.w &0xaaaa,%d0
- clr.b 0x0+0x8(%a0)
- clr.b 0x2+0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d0,(0x8,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x2+0x8(%a0),%d1
- lsl.w &0x8,%d1
- mov.b 0x0+0x8(%a0),%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.w (0x8,%a0),%d0 #
-###############################
-movp_11:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.b &0xaa,0x0+0x8(%a0)
- mov.b &0xaa,0x2+0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w (0x8,%a0),%d0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.w &0xaaaa,IREGS+0x2(%a6)
-
- mov.w &0xaaaa,%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.l %d0,(0x8,%a0) #
-###############################
-movp_12:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.l &0xaaaaaaaa,%d0
- clr.b 0x0+0x8(%a0)
- clr.b 0x2+0x8(%a0)
- clr.b 0x4+0x8(%a0)
- clr.b 0x6+0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l %d0,(0x8,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x6+0x8(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x4+0x8(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x2+0x8(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x0+0x8(%a0),%d1
-
- cmp.l %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-###############################
-# movep.l (0x8,%a0),%d0 #
-###############################
-movp_13:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA(%a6),%a0
- mov.b &0xaa,0x0+0x8(%a0)
- mov.b &0xaa,0x2+0x8(%a0)
- mov.b &0xaa,0x4+0x8(%a0)
- mov.b &0xaa,0x6+0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l (0x8,%a0),%d0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xaaaaaaaa,IREGS(%a6)
-
- mov.l &0xaaaaaaaa,%d1
-
- cmp.l %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-################################
-# movep.w %d0,(-0x8,%a0) #
-################################
-movp_14:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x8(%a6),%a0
- mov.w &0xaaaa,%d0
- clr.b 0x0-0x8(%a0)
- clr.b 0x2-0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w %d0,(-0x8,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x2-0x8(%a0),%d1
- lsl.w &0x8,%d1
- mov.b 0x0-0x8(%a0),%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-################################
-# movep.w (-0x8,%a0),%d0 #
-################################
-movp_15:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x8(%a6),%a0
- mov.b &0xaa,0x0-0x8(%a0)
- mov.b &0xaa,0x2-0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.w (-0x8,%a0),%d0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.w &0xaaaa,IREGS+0x2(%a6)
-
- mov.w &0xaaaa,%d1
-
- cmp.w %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-################################
-# movep.l %d0,(-0x8,%a0) #
-################################
-movp_16:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x8(%a6),%a0
- mov.l &0xaaaaaaaa,%d0
- clr.b 0x0-0x8(%a0)
- clr.b 0x2-0x8(%a0)
- clr.b 0x4-0x8(%a0)
- clr.b 0x8-0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l %d0,(-0x8,%a0)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- mov.b 0x6-0x8(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x4-0x8(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x2-0x8(%a0),%d1
- lsl.l &0x8,%d1
- mov.b 0x0-0x8(%a0),%d1
-
- cmp.l %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-################################
-# movep.l (-0x8,%a0),%d0 #
-################################
-movp_17:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x8(%a6),%a0
- mov.b &0xaa,0x0-0x8(%a0)
- mov.b &0xaa,0x2-0x8(%a0)
- mov.b &0xaa,0x4-0x8(%a0)
- mov.b &0xaa,0x8-0x8(%a0)
-
- mov.w &0x001f,ICCR(%a6)
- mov.w &0x1f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- movp.l (-0x8,%a0),%d0
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xaaaaaaaa,IREGS(%a6)
-
- mov.l &0xaaaaaaaa,%d1
-
- cmp.l %d0,%d1
- bne.l error
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-###########################################################
-
-divul_str:
- string "\t64-bit divide..."
-
- align 0x4
-divul_0:
- addq.l &0x1,TESTCTR(%a6)
-
-# movm.l DEF_REGS(%pc),&0x3fff
-
-# clr.l %d1
-# mov.l &0x99999999,%d2
-# mov.l &0x88888888,%d3
-
-# mov.w &0x001e,ICCR(%a6)
-# mov.w &0x001f,%cc
-# movm.l &0x7fff,IREGS(%a6)
-
-# divu.l %d1,%d2:%d3
-
-# mov.w %cc,SCCR(%a6)
-# movm.l &0x7fff,SREGS(%a6)
-
-# bsr.l chkregs
-# tst.b %d0
-# bne.l error
-
-divul_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x00000001,%d1
- mov.l &0x00000000,%d2
- mov.l &0x00000000,%d3
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x44444444,%d1
- mov.l &0x00000000,%d2
- mov.l &0x55555555,%d3
-
- mov.w &0x0010,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x11111111,IREGS+0x8(%a6)
- mov.l &0x00000001,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x55555555,%d1
- mov.l &0x00000000,%d2
- mov.l &0x44444444,%d3
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x44444444,IREGS+0x8(%a6)
- mov.l &0x00000000,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x11111111,%d1
- mov.l &0x44444444,%d2
- mov.l &0x44444444,%d3
-
- mov.w &0x001e,ICCR(%a6)
- mov.w &0x001d,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_5:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xfffffffe,%d1
- mov.l &0x00000001,%d2
- mov.l &0x00000002,%d3
-
- mov.w &0x001e,ICCR(%a6)
- mov.w &0x001d,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divs.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_6:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xfffffffe,%d1
- mov.l &0x00000001,%d2
- mov.l &0x00000000,%d3
-
- mov.w &0x0018,ICCR(%a6)
- mov.w &0x001d,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divs.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000000,IREGS+0x8(%a6)
- mov.l &0x80000000,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_7:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x00000002,%d1
- mov.l &0x00000001,%d2
- mov.l &0x00000000,%d3
-
- mov.w &0x001e,ICCR(%a6)
- mov.w &0x001d,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divs.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_8:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xffffffff,%d1
- mov.l &0xfffffffe,%d2
- mov.l &0xffffffff,%d3
-
- mov.w &0x0008,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_9:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xffffffff,%d1
- mov.l &0xfffffffe,%d2
- mov.l &0xffffffff,%d3
-
- mov.w &0x0008,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l &0xffffffff,%d2:%d2
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0xffffffff,IREGS+0x8(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-divul_10:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x0000ffff,%d1
- mov.l &0x00000001,%d2
- mov.l &0x55555555,%d3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- divu.l %d1,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x0000aaab,IREGS+0x8(%a6)
- mov.l &0x00015556,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-###########################################################
-
-cas_str:
- string "\tcas..."
-
- align 0x4
-cas0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
-
- mov.w &0xaaaa,(%a0)
-
- mov.w &0xaaaa,%d1
- mov.w &0xbbbb,%d2
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas.w %d1,%d2,(%a0) # Dc,Du,<ea>
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d3
- mov.w &0xbbbb,IREGS+0xc+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
-
- mov.w &0xeeee,(%a0)
-
- mov.w &0x0000aaaa,%d1
- mov.w &0x0000bbbb,%d2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas.w %d1,%d2,(%a0) # Dc,Du,<ea>
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d3
- mov.w &0xeeee,IREGS+0x4+0x2(%a6)
- mov.w &0xeeee,IREGS+0xc+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x2(%a6),%a0
-
- mov.l &0xaaaaaaaa,(%a0)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas.l %d1,%d2,(%a0) # Dc,Du,<ea>
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d3
- mov.l &0xbbbbbbbb,IREGS+0xc(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x2(%a6),%a0
-
- mov.l &0xeeeeeeee,(%a0)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas.l %d1,%d2,(%a0) # Dc,Du,<ea>
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d3
- mov.l &0xeeeeeeee,IREGS+0x4(%a6)
- mov.l &0xeeeeeeee,IREGS+0xc(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
-
- mov.l &0xaaaaaaaa,(%a0)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas.l %d1,%d2,(%a0) # Dc,Du,<ea>
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d3
- mov.l &0xbbbbbbbb,IREGS+0xc(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas5:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
-
- mov.l &0x7fffffff,(%a0)
-
- mov.l &0x80000000,%d1
- mov.l &0xbbbbbbbb,%d2
-
- mov.w &0x001b,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas.l %d1,%d2,(%a0) # Dc,Du,<ea>
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d3
- mov.l &0x7fffffff,IREGS+0x4(%a6)
- mov.l &0x7fffffff,IREGS+0xc(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-###########################################################
-
-cas2_str:
- string "\tcas2..."
-
- align 0x4
-cas20:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x0(%a6),%a0
- lea DATA+0x4(%a6),%a1
-
- mov.l &0xaaaaaaaa,(%a0)
- mov.l &0xbbbbbbbb,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xcccccccc,IREGS+0x14(%a6)
- mov.l &0xdddddddd,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas21:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
- lea DATA+0x5(%a6),%a1
-
- mov.l &0xaaaaaaaa,(%a0)
- mov.l &0xbbbbbbbb,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xcccccccc,IREGS+0x14(%a6)
- mov.l &0xdddddddd,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas22:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x2(%a6),%a0
- lea DATA+0x6(%a6),%a1
-
- mov.l &0xaaaaaaaa,(%a0)
- mov.l &0xbbbbbbbb,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xcccccccc,IREGS+0x14(%a6)
- mov.l &0xdddddddd,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas23:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x0(%a6),%a0
- lea DATA+0x4(%a6),%a1
-
- mov.l &0xeeeeeeee,(%a0)
- mov.l &0xbbbbbbbb,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xeeeeeeee,IREGS+0x4(%a6)
- mov.l &0xbbbbbbbb,IREGS+0x8(%a6)
- mov.l &0xeeeeeeee,IREGS+0x14(%a6)
- mov.l &0xbbbbbbbb,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas24:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
- lea DATA+0x5(%a6),%a1
-
- mov.l &0xeeeeeeee,(%a0)
- mov.l &0xbbbbbbbb,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xeeeeeeee,IREGS+0x4(%a6)
- mov.l &0xbbbbbbbb,IREGS+0x8(%a6)
- mov.l &0xeeeeeeee,IREGS+0x14(%a6)
- mov.l &0xbbbbbbbb,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas25:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x2(%a6),%a0
- lea DATA+0x6(%a6),%a1
-
- mov.l &0xeeeeeeee,(%a0)
- mov.l &0xbbbbbbbb,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xeeeeeeee,IREGS+0x4(%a6)
- mov.l &0xbbbbbbbb,IREGS+0x8(%a6)
- mov.l &0xeeeeeeee,IREGS+0x14(%a6)
- mov.l &0xbbbbbbbb,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas26:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x0(%a6),%a0
- lea DATA+0x4(%a6),%a1
-
- mov.l &0xaaaaaaaa,(%a0)
- mov.l &0xeeeeeeee,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xaaaaaaaa,IREGS+0x4(%a6)
- mov.l &0xeeeeeeee,IREGS+0x8(%a6)
- mov.l &0xaaaaaaaa,IREGS+0x14(%a6)
- mov.l &0xeeeeeeee,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas27:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
- lea DATA+0x5(%a6),%a1
-
- mov.l &0xaaaaaaaa,(%a0)
- mov.l &0xeeeeeeee,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0xbbbbbbbb,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xaaaaaaaa,IREGS+0x4(%a6)
- mov.l &0xeeeeeeee,IREGS+0x8(%a6)
- mov.l &0xaaaaaaaa,IREGS+0x14(%a6)
- mov.l &0xeeeeeeee,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas28:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x2(%a6),%a0
- lea DATA+0x6(%a6),%a1
-
- mov.l &0xaaaaaaaa,(%a0)
- mov.l &0x7fffffff,(%a1)
-
- mov.l &0xaaaaaaaa,%d1
- mov.l &0x80000000,%d2
- mov.l &0xcccccccc,%d3
- mov.l &0xdddddddd,%d4
-
- mov.w &0x000b,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.l (%a0),%d5
- mov.l (%a1),%d6
- mov.l &0xaaaaaaaa,IREGS+0x4(%a6)
- mov.l &0x7fffffff,IREGS+0x8(%a6)
- mov.l &0xaaaaaaaa,IREGS+0x14(%a6)
- mov.l &0x7fffffff,IREGS+0x18(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-##################################
-cas29:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x0(%a6),%a0
- lea DATA+0x4(%a6),%a1
-
- mov.w &0xaaaa,(%a0)
- mov.w &0xbbbb,(%a1)
-
- mov.w &0xaaaa,%d1
- mov.w &0xbbbb,%d2
- mov.w &0xcccc,%d3
- mov.w &0xdddd,%d4
-
- mov.w &0x0014,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d5
- mov.w (%a1),%d6
- mov.w &0xcccc,IREGS+0x14+0x2(%a6)
- mov.w &0xdddd,IREGS+0x18+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas210:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
- lea DATA+0x5(%a6),%a1
-
- mov.w &0xaaaa,(%a0)
- mov.w &0xbbbb,(%a1)
-
- mov.w &0xaaaa,%d1
- mov.w &0xbbbb,%d2
- mov.w &0xcccc,%d3
- mov.w &0xdddd,%d4
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d5
- mov.w (%a1),%d6
- mov.w &0xcccc,IREGS+0x14+0x2(%a6)
- mov.w &0xdddd,IREGS+0x18+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas211:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x0(%a6),%a0
- lea DATA+0x4(%a6),%a1
-
- mov.w &0xeeee,(%a0)
- mov.w &0xbbbb,(%a1)
-
- mov.w &0xaaaa,%d1
- mov.w &0xbbbb,%d2
- mov.w &0xcccc,%d3
- mov.w &0xdddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d5
- mov.w (%a1),%d6
- mov.w &0xeeee,IREGS+0x4+0x2(%a6)
- mov.w &0xbbbb,IREGS+0x8+0x2(%a6)
- mov.w &0xeeee,IREGS+0x14+0x2(%a6)
- mov.w &0xbbbb,IREGS+0x18+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas212:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
- lea DATA+0x5(%a6),%a1
-
- mov.w &0xeeee,(%a0)
- mov.w &0xbbbb,(%a1)
-
- mov.w &0xaaaa,%d1
- mov.w &0xbbbb,%d2
- mov.w &0xcccc,%d3
- mov.w &0xdddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d5
- mov.w (%a1),%d6
- mov.w &0xeeee,IREGS+0x4+0x2(%a6)
- mov.w &0xbbbb,IREGS+0x8+0x2(%a6)
- mov.w &0xeeee,IREGS+0x14+0x2(%a6)
- mov.w &0xbbbb,IREGS+0x18+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas213:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x0(%a6),%a0
- lea DATA+0x4(%a6),%a1
-
- mov.w &0xaaaa,(%a0)
- mov.w &0xeeee,(%a1)
-
- mov.w &0xaaaa,%d1
- mov.w &0xbbbb,%d2
- mov.w &0xcccc,%d3
- mov.w &0xdddd,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d5
- mov.w (%a1),%d6
- mov.w &0xaaaa,IREGS+0x4+0x2(%a6)
- mov.w &0xeeee,IREGS+0x8+0x2(%a6)
- mov.w &0xaaaa,IREGS+0x14+0x2(%a6)
- mov.w &0xeeee,IREGS+0x18+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cas214:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- lea DATA+0x1(%a6),%a0
- lea DATA+0x5(%a6),%a1
-
- mov.w &0xaaaa,(%a0)
- mov.w &0x7fff,(%a1)
-
- mov.w &0xaaaa,%d1
- mov.w &0x8000,%d2
- mov.w &0xcccc,%d3
- mov.w &0xdddd,%d4
-
- mov.w &0x001b,ICCR(%a6)
- mov.w &0x0010,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)
-
- mov.w %cc,SCCR(%a6)
- mov.w (%a0),%d5
- mov.w (%a1),%d6
- mov.w &0xaaaa,IREGS+0x4+0x2(%a6)
- mov.w &0x7fff,IREGS+0x8+0x2(%a6)
- mov.w &0xaaaa,IREGS+0x14+0x2(%a6)
- mov.w &0x7fff,IREGS+0x18+0x2(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-###########################################################
-
-cmp2_str:
- string "\tcmp2,chk2..."
-
- align 0x4
-# unsigned - small,small
-cmp2_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0x2040,DATA(%a6)
- mov.l &0x11111120,%d1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0x2040,DATA(%a6)
- mov.l &0x00000040,%a1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0x2040,DATA(%a6)
- mov.l &0x11111130,%d1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- chk2.b DATA(%a6),%d1
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0x2040,DATA(%a6)
- mov.l &0x00000010,%a1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_5:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0x2040,DATA(%a6)
- mov.l &0x11111150,%d1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_6:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0x2040,DATA(%a6)
- mov.l &0x00000090,%a1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-# unsigned - small,large
-cmp2_7:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x2000a000,DATA(%a6)
- mov.l &0x11112000,%d1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.w %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_8:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x2000a000,DATA(%a6)
- mov.l &0xffffa000,%a1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.w %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_9:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x2000a000,DATA(%a6)
- mov.l &0x11113000,%d1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- chk2.w DATA(%a6),%d1
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_10:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x2000a000,DATA(%a6)
- mov.l &0xffff9000,%a1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.w %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_11:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x2000a000,DATA(%a6)
- mov.l &0x11111000,%d1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.w %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_12:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0x2000a000,DATA(%a6)
- mov.l &0xffffb000,%a1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.w %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-# unsigned - large,large
-cmp2_13:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xa0000000,DATA(%a6)
- mov.l &0xc0000000,DATA+0x4(%a6)
- mov.l &0xa0000000,%d1
-
- mov.w &0x000c,ICCR(%a6)
- mov.w &0x0008,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.l %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_14:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xa0000000,DATA(%a6)
- mov.l &0xc0000000,DATA+0x4(%a6)
- mov.l &0xc0000000,%a1
-
- mov.w &0x000c,ICCR(%a6)
- mov.w &0x0008,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.l %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_15:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xa0000000,DATA(%a6)
- mov.l &0xc0000000,DATA+0x4(%a6)
- mov.l &0xb0000000,%d1
-
- mov.w &0x0008,ICCR(%a6)
- mov.w &0x0008,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- chk2.l DATA(%a6),%d1
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_16:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xa0000000,DATA(%a6)
- mov.l &0xc0000000,DATA+0x4(%a6)
- mov.l &0x10000000,%a1
-
- mov.w &0x0009,ICCR(%a6)
- mov.w &0x0008,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.l %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_17:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xa0000000,DATA(%a6)
- mov.l &0xc0000000,DATA+0x4(%a6)
- mov.l &0x90000000,%d1
-
- mov.w &0x0009,ICCR(%a6)
- mov.w &0x0008,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.l %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_18:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l &0xa0000000,DATA(%a6)
- mov.l &0xc0000000,DATA+0x4(%a6)
- mov.l &0xd0000000,%a1
-
- mov.w &0x0009,ICCR(%a6)
- mov.w &0x0008,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.l %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-# signed - negative,positive
-cmp2_19:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa040,DATA(%a6)
- mov.l &0x111111a0,%d1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_20:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa040,DATA(%a6)
- mov.l &0x00000040,%a1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- chk2.b DATA(%a6),%a1
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_21:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa040,DATA(%a6)
- mov.l &0x111111b0,%d1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_22:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa040,DATA(%a6)
- mov.l &0x00000010,%a1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_23:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa040,DATA(%a6)
- mov.l &0x11111190,%d1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_24:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa040,DATA(%a6)
- mov.l &0x00000050,%a1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-# signed - negative,negative
-cmp2_25:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa0c0,DATA(%a6)
- mov.l &0x111111a0,%d1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_26:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa0c0,DATA(%a6)
- mov.l &0xffffffc0,%a1
-
- mov.w &0x0004,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_27:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa0c0,DATA(%a6)
- mov.l &0x111111b0,%d1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- chk2.b DATA(%a6),%d1
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_28:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa0c0,DATA(%a6)
- mov.l &0x11111190,%a1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_29:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa0c0,DATA(%a6)
- mov.l &0x111111d0,%d1
-
- mov.w &0x0001,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %d1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-cmp2_30:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.w &0xa0c0,DATA(%a6)
- mov.l &0x00000050,%a1
-
- mov.w &0x001b,ICCR(%a6)
- mov.w &0x001f,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- cmp2.b %a1,DATA(%a6)
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-###########################################################
-
-ea_str:
- string "\tEffective addresses..."
-
- align 0x4
-ea_0:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a0),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_1:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a0)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a0
- mov.l %a0,IREGS+0x20(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_2:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a6),%a0
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a0),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a0
- mov.l %a0,IREGS+0x20(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_3:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x1000(%a6),%a0
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (-0x1000,%a0),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_4:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a0
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a0),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_5:
- addq.l &0x1,TESTCTR(%a6)
-
-# movm.l DEF_REGS(%pc),&0x3fff
-
-# clr.l %d2
-# mov.l &0x00000002,%d3
-
-# mov.w &0x0000,ICCR(%a6)
-# mov.w &0x0000,%cc
-# movm.l &0xffff,IREGS(%a6)
-
-# mulu.l EAMEM.w,%d2:%d3
-
-# mov.w %cc,SCCR(%a6)
-# movm.l &0xffff,SREGS(%a6)
-# mov.l &0x00000004,IREGS+0xc(%a6)
-
-# bsr.l chkregs
-# tst.b %d0
-# bne.l error
-
-ea_6:
- addq.l &0x1,TESTCTR(%a6)
-
-# movm.l DEF_REGS(%pc),&0x3fff
-
-# clr.l %d2
-# mov.l &0x00000002,%d3
-
-# mov.w &0x0000,ICCR(%a6)
-# mov.w &0x0000,%cc
-# movm.l &0xffff,IREGS(%a6)
-
-# mulu.l EAMEM.l,%d2:%d3
-
-# mov.w %cc,SCCR(%a6)
-# movm.l &0xffff,SREGS(%a6)
-# mov.l &0x00000004,IREGS+0xc(%a6)
-
-# bsr.l chkregs
-# tst.b %d0
-# bne.l error
-
-ea_7:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l &0x00000002,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_8:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_8_next
-ea_8_mem:
- long 0x00000002
-ea_8_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_8_mem.w,%pc),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_9:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a6),%a1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a0
- mov.l %a0,IREGS+0x24(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_10:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a6),%a2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a0
- mov.l %a0,IREGS+0x28(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_11:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a6),%a3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a3),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a0
- mov.l %a0,IREGS+0x2c(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_12:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a6),%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a0
- mov.l %a0,IREGS+0x30(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_13:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a6),%a5
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a5),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a0
- mov.l %a0,IREGS+0x34(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_14:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x4(%a1),%a6
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l -(%a6),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
- lea EAMEM(%a1),%a0
- mov.l %a0,IREGS+0x38(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_15:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
- clr.l %d2
- mov.l &0x00000002,%d3
- mov.l %a7,%a0
- lea EAMEM+0x4(%a6),%a7
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l -(%a7),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM(%a6),%a1
- mov.l %a1,IREGS+0x3c(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_16:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_17:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.w*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_18:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.w*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_19:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.w*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_20:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.l*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_21:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.l*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_22:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.l*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_23:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%d4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_24:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a0,%a4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_25:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (-0x10.b,%a0,%a4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_26:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a1
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a1,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_27:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a2
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a2,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_28:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a3,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_29:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a4
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a4,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_30:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a5
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a5,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_31:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a1),%a6
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l (0x10.b,%a6,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_32:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- mov.l %a7,%a0
- lea EAMEM(%a6),%a7
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.b,%a7,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_33:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_34:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_35:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a3),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_36:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_37:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a5
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a5),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_38:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a1),%a6
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l (%a6),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_39:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- mov.l %a7,%a0
- lea EAMEM(%a6),%a7
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a7),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_40:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a1)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a0
- mov.l %a0,IREGS+0x24(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_41:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a2)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a0
- mov.l %a0,IREGS+0x28(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_42:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a3)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a0
- mov.l %a0,IREGS+0x2c(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_43:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a4)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a0
- mov.l %a0,IREGS+0x30(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_44:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a5
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a5)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a0
- mov.l %a0,IREGS+0x34(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_45:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a1),%a6
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l (%a6)+,%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
- lea EAMEM+0x4(%a1),%a0
- mov.l %a0,IREGS+0x38(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_46:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- mov.l %a7,%a0
- lea EAMEM(%a6),%a7
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (%a7)+,%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
- lea EAMEM+0x4(%a6),%a1
- mov.l %a1,IREGS+0x3c(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_47:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a1
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_48:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a2
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_49:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a3),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_50:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_51:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a5
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a5),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_52:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a1),%a6
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l (0x1000,%a6),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_53:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- mov.l %a7,%a0
- lea EAMEM-0x1000(%a6),%a7
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x1000,%a7),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_54:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x1000(%a6),%a0
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (-0x1000,%a0),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_55:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_55_next
-
-ea_55_data:
- long 0x00000002
-ea_55_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_55_data.w,%pc),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_56:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_57:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.w*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_58:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.w*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_59:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.w*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_60:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.l*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_61:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.l*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_62:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.l*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_63:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x10.w,%a3,%d4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_64:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (-0x10.w,%a3,%a4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_65:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (0x00.w,%a3,%za4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_66:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l %a3,%a4
- add.l &0x10,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (-0x10.w,%za3,%a4.l*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_67:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (-0x10.l,%a3,%a4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_68:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_68_next
-ea_68_mem:
- long 0x00000002
-ea_68_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_68_mem+0x10.w,%pc,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_69:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_69_next
-ea_69_mem:
- long 0x00000002
-ea_69_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_69_mem+0x10.w,%pc,%d4.w*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_70:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_70_next
-ea_70_mem:
- long 0x00000002
-ea_70_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_70_mem+0x10.w,%pc,%d4.w*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_71:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_71_next
-ea_71_mem:
- long 0x00000002
-ea_71_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_71_mem+0x10.w,%pc,%d4.w*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_72:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_72_next
-ea_72_mem:
- long 0x00000002
-ea_72_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_72_mem+0x10.w,%pc,%d4.l*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_73:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_73_next
-ea_73_mem:
- long 0x00000002
-ea_73_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_73_mem+0x10.w,%pc,%d4.l*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_74:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_74_next
-ea_74_mem:
- long 0x00000002
-ea_74_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_74_mem+0x10.w,%pc,%d4.l*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_75:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_75_next
-ea_75_mem:
- long 0x00000002
-ea_75_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0x7fff,IREGS(%a6)
-
- mulu.l (ea_75_mem+0x10.w,%pc,%d4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0x7fff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_76:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_76_next
-ea_76_mem:
- long 0x00000002
-ea_76_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &-0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_76_mem+0x10.w,%pc,%a4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_77:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_77_next
-ea_77_mem:
- long 0x00000002
-ea_77_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a3
- mov.l &0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_77_mem+0x00.w,%pc,%za4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_78:
- addq.l &0x1,TESTCTR(%a6)
-
-# movm.l DEF_REGS(%pc),&0x3fff
-
-# clr.l %d2
-# mov.l &0x00000002,%d3
-# lea EAMEM,%a3
-# mov.l %a3,%a4
-# add.l &0x10,%a4
-
-# mov.w &0x0000,ICCR(%a6)
-# mov.w &0x0000,%cc
-# movm.l &0xffff,IREGS(%a6)
-
-# mulu.l (EAMEM-0x10.w,%zpc,%a4.l*1),%d2:%d3
-
-# mov.w %cc,SCCR(%a6)
-# movm.l &0xffff,SREGS(%a6)
-# mov.l &0x00000004,IREGS+0xc(%a6)
-
-# bsr.l chkregs
-# tst.b %d0
-# bne.l error
-
-ea_79:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM,%a3
- mov.l &0x2,%a4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_79_mem-0x10.l,%pc,%a4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bra.b ea_79_next
-ea_79_mem:
- long 0x00000002
-ea_79_next:
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_80:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_80_next
-ea_80_mem:
- long 0x00000002
-ea_80_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a1
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_80_mem+0x10.b,%pc,%d4.w*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_81:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_81_next
-ea_81_mem:
- long 0x00000002
-ea_81_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_81_mem+0x10.b,%pc,%d4.w*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_82:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_82_next
-ea_82_mem:
- long 0x00000002
-ea_82_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_82_mem+0x10.b,%pc,%d4.w*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_83:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_83_next
-ea_83_mem:
- long 0x00000002
-ea_83_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_83_mem+0x10.b,%pc,%d4.w*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_84:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_84_next
-ea_84_mem:
- long 0x00000002
-ea_84_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_84_mem+0x10.b,%pc,%d4.l*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_85:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_85_next
-ea_85_mem:
- long 0x00000002
-ea_85_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_85_mem+0x10.b,%pc,%d4.l*2),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_86:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_86_next
-ea_86_mem:
- long 0x00000002
-ea_86_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_86_mem+0x10.b,%pc,%d4.l*4),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_87:
- addq.l &0x1,TESTCTR(%a6)
-
- bra.b ea_87_next
-ea_87_mem:
- long 0x00000002
-ea_87_next:
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_87_mem+0x10.b,%pc,%d4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_88:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a6),%a0
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l (ea_88_mem+0x10.b,%pc,%d4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bra.b ea_88_next
-ea_88_mem:
- long 0x00000002
-ea_88_next:
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_89:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.w*1],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_90:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.w*2],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_91:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.w*4],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_92:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.w*8],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_93:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.l*1],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_94:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.l*2],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_95:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.l*4],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_96:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4,%d4.l*8],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_97:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.l,%a4,%d4.l*8],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_98:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x00.l,%a4,%zd4.l*8],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_99:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([%a4,%zd4.l*8],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_100:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
- add.l %a4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.l,%za4,%d4.l*1],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_101:
- addq.l &0x1,TESTCTR(%a6)
-
-# movm.l DEF_REGS(%pc),&0x3fff
-
-# clr.l %d2
-# mov.l &0x00000002,%d3
-# lea EAMEM(%a6),%a3
-# lea EASTORE(%a6),%a4
-# mov.l %a3,(%a4)
-# mov.l &-0x10,%d4
-
-# mov.w &0x0000,ICCR(%a6)
-# mov.w &0x0000,%cc
-# movm.l &0xffff,IREGS(%a6)
-
-# mulu.l ([EASTORE.l,%za4,%zd4.l*1]),%d2:%d3
-
-# mov.w %cc,SCCR(%a6)
-# movm.l &0xffff,SREGS(%a6)
-# mov.l &0x00000004,IREGS+0xc(%a6)
-
-# bsr.l chkregs
-# tst.b %d0
-# bne.l error
-
-ea_102:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x1000(%a1),%a3
- lea EASTORE(%a1),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%a6
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l ([0x10.w,%a4,%a6.l*8],-0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_103:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x1000(%a1),%a3
- lea EASTORE(%a1),%a4
- mov.l %a3,(%a4)
- mov.l &0x2,%a6
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l ([-0x10.w,%a4,%a6.l*8],-0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_104:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.w*1,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_105:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.w*2,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_106:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.w*4,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_107:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.w*8,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_108:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.l*1,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_109:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.w*2,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_110:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.l*4,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_111:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.w,%a4],%d4.l*8,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_112:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.l,%a4],%d4.l*8,0x10.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_113:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a4
- mov.l %a3,(%a4)
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x00.l,%a4],%zd4.l*8,0x20.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_114:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a7,%a0
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%a6),%a3
- lea EASTORE(%a6),%a7
- mov.l %a3,(%a7)
- mov.l &0x20,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([%a7],%d4.l*1),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_115:
- addq.l &0x1,TESTCTR(%a6)
-
-# movm.l DEF_REGS(%pc),&0x3fff
-
-# clr.l %d2
-# mov.l &0x00000002,%d3
-# lea EAMEM-0x20(%pc),%a3
-# lea EASTORE(%pc),%a4
-# mov.l %a3,(%a4)
-# mov.l &0x2,%d4
-
-# mov.w &0x0000,ICCR(%a6)
-# mov.w &0x0000,%cc
-# movm.l &0xffff,IREGS(%a6)
-
-# mulu.l ([EASTORE.l,%za4],%zd4.l*8,0x20.l),%d2:%d3
-
-# mov.w %cc,SCCR(%a6)
-# movm.l &0xffff,SREGS(%a6)
-# mov.l &0x00000004,IREGS+0xc(%a6)
-
-# bsr.l chkregs
-# tst.b %d0
-# bne.l error
-
-ea_116:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a6,%a1
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%a1),%a3
- lea EASTORE(%a1),%a6
- mov.l %a3,(%a6)
- add.l &0x10,%a6
- mov.l &-0x2,%a5
-
- mov.w &0x0000,ICCR(%a1)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a1)
-
- mulu.l ([-0x10.w,%a6],%a5.l*8,0x10.l),%d2:%d3
-
- mov.w %cc,SCCR(%a1)
- movm.l &0xffff,SREGS(%a1)
- mov.l &0x00000004,IREGS+0xc(%a1)
-
- mov.l %a1,%a6
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- mov.l TESTCTR(%a6),%d1
- clr.l %d0
- rts
-
-ea_117:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.w*1],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_118:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.w*2],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_119:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.w*4],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_120:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.w*8],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_121:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.l*1],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_122:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.l*2],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_123:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.l*4],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_124:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x10.w,%pc,%d4.l*8],0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_125:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
- mulu.l ([EASTORE+0x10.l,%pc,%d4.l*8],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_126:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE+0x00.l,%pc,%zd4.l*8],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_127:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l %a4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([%zpc,%d4.l*1],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_128:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
- add.l %a4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([0x10.l,%zpc,%d4.l*1],0x1000.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_129:
- addq.l &0x1,TESTCTR(%a6)
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &-0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.l,%zpc,%zd4.l*1]),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_130:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &0x2,%a6
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE-0x10.w,%pc,%a6.l*8],-0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_131:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a7,%a0
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM+0x1000(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &0x2,%a7
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE-0x10.w,%pc,%a7.l*8],-0x1000.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_132:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.w*1,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_133:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.w*2,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_134:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.w*4,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_135:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.w*8,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_136:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x10,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.l*1,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_137:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x8,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.w*2,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_138:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.l*4,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_139:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%d4.l*8,0x10.w),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_140:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- sub.l &0x10,%a4
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.l,%pc],%d4.l*8,0x10.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_141:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &0x2,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.l,%pc],%zd4.l*8,0x20.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_142:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM-0x20(%pc),%a3
- lea EASTORE(%pc),%a4
- mov.l %a3,(%a4)
- mov.l &0x4,%d4
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.l,%zpc],%d4.l*8),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
-ea_143:
- addq.l &0x1,TESTCTR(%a6)
-
- movm.l DEF_REGS(%pc),&0x3fff
-
- mov.l %a7,%a0
- clr.l %d2
- mov.l &0x00000002,%d3
- lea EAMEM(%pc),%a3
- lea EASTORE(%pc),%a6
- mov.l %a3,(%a6)
- add.l &0x10,%a6
- mov.l &-0x2,%a7
-
- mov.w &0x0000,ICCR(%a6)
- mov.w &0x0000,%cc
- movm.l &0xffff,IREGS(%a6)
-
- mulu.l ([EASTORE.w,%pc],%a7.l*8,0x10.l),%d2:%d3
-
- mov.w %cc,SCCR(%a6)
- movm.l &0xffff,SREGS(%a6)
- mov.l &0x00000004,IREGS+0xc(%a6)
-
- mov.l %a0,%a7
- bsr.l chkregs
- tst.b %d0
- bne.l error
-
- clr.l %d0
- rts
-
-###########################################################
-###########################################################
-chkregs:
- lea IREGS(%a6),%a0
- lea SREGS(%a6),%a1
- mov.l &14,%d0
-chkregs_loop:
- cmp.l (%a0)+,(%a1)+
- bne.l chkregs_error
- dbra.w %d0,chkregs_loop
-
- mov.w ICCR(%a6),%d0
- mov.w SCCR(%a6),%d1
- cmp.w %d0,%d1
- bne.l chkregs_error
-
- clr.l %d0
- rts
-
-chkregs_error:
- movq.l &0x1,%d0
- rts
-
-error:
- mov.l TESTCTR(%a6),%d1
- movq.l &0x1,%d0
- rts
-
-DEF_REGS:
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
-
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
- long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac
-
-############################################################
-
-_print_str:
- mov.l %d0,-(%sp)
- mov.l (TESTTOP-0x80+0x0,%pc),%d0
- pea (TESTTOP-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-_print_num:
- mov.l %d0,-(%sp)
- mov.l (TESTTOP-0x80+0x4,%pc),%d0
- pea (TESTTOP-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-############################################################
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S
deleted file mode 100644
index 4aedef97..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S
+++ /dev/null
@@ -1,14745 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-# freal.s:
-# This file is appended to the top of the 060FPSP package
-# and contains the entry points into the package. The user, in
-# effect, branches to one of the branch table entries located
-# after _060FPSP_TABLE.
-# Also, subroutine stubs exist in this file (_fpsp_done for
-# example) that are referenced by the FPSP package itself in order
-# to call a given routine. The stub routine actually performs the
-# callout. The FPSP code does a "bsr" to the stub routine. This
-# extra layer of hierarchy adds a slight performance penalty but
-# it makes the FPSP code easier to read and more mainatinable.
-#
-
-set _off_bsun, 0x00
-set _off_snan, 0x04
-set _off_operr, 0x08
-set _off_ovfl, 0x0c
-set _off_unfl, 0x10
-set _off_dz, 0x14
-set _off_inex, 0x18
-set _off_fline, 0x1c
-set _off_fpu_dis, 0x20
-set _off_trap, 0x24
-set _off_trace, 0x28
-set _off_access, 0x2c
-set _off_done, 0x30
-
-set _off_imr, 0x40
-set _off_dmr, 0x44
-set _off_dmw, 0x48
-set _off_irw, 0x4c
-set _off_irl, 0x50
-set _off_drb, 0x54
-set _off_drw, 0x58
-set _off_drl, 0x5c
-set _off_dwb, 0x60
-set _off_dww, 0x64
-set _off_dwl, 0x68
-
-_060FPSP_TABLE:
-
-###############################################################
-
-# Here's the table of ENTRY POINTS for those linking the package.
- bra.l _fpsp_snan
- short 0x0000
- bra.l _fpsp_operr
- short 0x0000
- bra.l _fpsp_ovfl
- short 0x0000
- bra.l _fpsp_unfl
- short 0x0000
- bra.l _fpsp_dz
- short 0x0000
- bra.l _fpsp_inex
- short 0x0000
- bra.l _fpsp_fline
- short 0x0000
- bra.l _fpsp_unsupp
- short 0x0000
- bra.l _fpsp_effadd
- short 0x0000
-
- space 56
-
-###############################################################
- global _fpsp_done
-_fpsp_done:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_ovfl
-_real_ovfl:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_unfl
-_real_unfl:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_inex
-_real_inex:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_bsun
-_real_bsun:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_operr
-_real_operr:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_snan
-_real_snan:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_dz
-_real_dz:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_fline
-_real_fline:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_fpu_disabled
-_real_fpu_disabled:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_trap
-_real_trap:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_trace
-_real_trace:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_access
-_real_access:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#######################################
-
- global _imem_read
-_imem_read:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read
-_dmem_read:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write
-_dmem_write:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_word
-_imem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_long
-_imem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_byte
-_dmem_read_byte:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_word
-_dmem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_long
-_dmem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_byte
-_dmem_write_byte:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_word
-_dmem_write_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_long
-_dmem_write_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#
-# This file contains a set of define statements for constants
-# in order to promote readability within the corecode itself.
-#
-
-set LOCAL_SIZE, 192 # stack frame size(bytes)
-set LV, -LOCAL_SIZE # stack offset
-
-set EXC_SR, 0x4 # stack status register
-set EXC_PC, 0x6 # stack pc
-set EXC_VOFF, 0xa # stacked vector offset
-set EXC_EA, 0xc # stacked <ea>
-
-set EXC_FP, 0x0 # frame pointer
-
-set EXC_AREGS, -68 # offset of all address regs
-set EXC_DREGS, -100 # offset of all data regs
-set EXC_FPREGS, -36 # offset of all fp regs
-
-set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
-set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
-set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
-set EXC_A5, EXC_AREGS+(5*4)
-set EXC_A4, EXC_AREGS+(4*4)
-set EXC_A3, EXC_AREGS+(3*4)
-set EXC_A2, EXC_AREGS+(2*4)
-set EXC_A1, EXC_AREGS+(1*4)
-set EXC_A0, EXC_AREGS+(0*4)
-set EXC_D7, EXC_DREGS+(7*4)
-set EXC_D6, EXC_DREGS+(6*4)
-set EXC_D5, EXC_DREGS+(5*4)
-set EXC_D4, EXC_DREGS+(4*4)
-set EXC_D3, EXC_DREGS+(3*4)
-set EXC_D2, EXC_DREGS+(2*4)
-set EXC_D1, EXC_DREGS+(1*4)
-set EXC_D0, EXC_DREGS+(0*4)
-
-set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
-set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
-set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
-
-set FP_SCR1, LV+80 # fp scratch 1
-set FP_SCR1_EX, FP_SCR1+0
-set FP_SCR1_SGN, FP_SCR1+2
-set FP_SCR1_HI, FP_SCR1+4
-set FP_SCR1_LO, FP_SCR1+8
-
-set FP_SCR0, LV+68 # fp scratch 0
-set FP_SCR0_EX, FP_SCR0+0
-set FP_SCR0_SGN, FP_SCR0+2
-set FP_SCR0_HI, FP_SCR0+4
-set FP_SCR0_LO, FP_SCR0+8
-
-set FP_DST, LV+56 # fp destination operand
-set FP_DST_EX, FP_DST+0
-set FP_DST_SGN, FP_DST+2
-set FP_DST_HI, FP_DST+4
-set FP_DST_LO, FP_DST+8
-
-set FP_SRC, LV+44 # fp source operand
-set FP_SRC_EX, FP_SRC+0
-set FP_SRC_SGN, FP_SRC+2
-set FP_SRC_HI, FP_SRC+4
-set FP_SRC_LO, FP_SRC+8
-
-set USER_FPIAR, LV+40 # FP instr address register
-
-set USER_FPSR, LV+36 # FP status register
-set FPSR_CC, USER_FPSR+0 # FPSR condition codes
-set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
-set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
-set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
-
-set USER_FPCR, LV+32 # FP control register
-set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
-set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
-
-set L_SCR3, LV+28 # integer scratch 3
-set L_SCR2, LV+24 # integer scratch 2
-set L_SCR1, LV+20 # integer scratch 1
-
-set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
-
-set EXC_TEMP2, LV+24 # temporary space
-set EXC_TEMP, LV+16 # temporary space
-
-set DTAG, LV+15 # destination operand type
-set STAG, LV+14 # source operand type
-
-set SPCOND_FLG, LV+10 # flag: special case (see below)
-
-set EXC_CC, LV+8 # saved condition codes
-set EXC_EXTWPTR, LV+4 # saved current PC (active)
-set EXC_EXTWORD, LV+2 # saved extension word
-set EXC_CMDREG, LV+2 # saved extension word
-set EXC_OPWORD, LV+0 # saved operation word
-
-################################
-
-# Helpful macros
-
-set FTEMP, 0 # offsets within an
-set FTEMP_EX, 0 # extended precision
-set FTEMP_SGN, 2 # value saved in memory.
-set FTEMP_HI, 4
-set FTEMP_LO, 8
-set FTEMP_GRS, 12
-
-set LOCAL, 0 # offsets within an
-set LOCAL_EX, 0 # extended precision
-set LOCAL_SGN, 2 # value saved in memory.
-set LOCAL_HI, 4
-set LOCAL_LO, 8
-set LOCAL_GRS, 12
-
-set DST, 0 # offsets within an
-set DST_EX, 0 # extended precision
-set DST_HI, 4 # value saved in memory.
-set DST_LO, 8
-
-set SRC, 0 # offsets within an
-set SRC_EX, 0 # extended precision
-set SRC_HI, 4 # value saved in memory.
-set SRC_LO, 8
-
-set SGL_LO, 0x3f81 # min sgl prec exponent
-set SGL_HI, 0x407e # max sgl prec exponent
-set DBL_LO, 0x3c01 # min dbl prec exponent
-set DBL_HI, 0x43fe # max dbl prec exponent
-set EXT_LO, 0x0 # min ext prec exponent
-set EXT_HI, 0x7ffe # max ext prec exponent
-
-set EXT_BIAS, 0x3fff # extended precision bias
-set SGL_BIAS, 0x007f # single precision bias
-set DBL_BIAS, 0x03ff # double precision bias
-
-set NORM, 0x00 # operand type for STAG/DTAG
-set ZERO, 0x01 # operand type for STAG/DTAG
-set INF, 0x02 # operand type for STAG/DTAG
-set QNAN, 0x03 # operand type for STAG/DTAG
-set DENORM, 0x04 # operand type for STAG/DTAG
-set SNAN, 0x05 # operand type for STAG/DTAG
-set UNNORM, 0x06 # operand type for STAG/DTAG
-
-##################
-# FPSR/FPCR bits #
-##################
-set neg_bit, 0x3 # negative result
-set z_bit, 0x2 # zero result
-set inf_bit, 0x1 # infinite result
-set nan_bit, 0x0 # NAN result
-
-set q_sn_bit, 0x7 # sign bit of quotient byte
-
-set bsun_bit, 7 # branch on unordered
-set snan_bit, 6 # signalling NAN
-set operr_bit, 5 # operand error
-set ovfl_bit, 4 # overflow
-set unfl_bit, 3 # underflow
-set dz_bit, 2 # divide by zero
-set inex2_bit, 1 # inexact result 2
-set inex1_bit, 0 # inexact result 1
-
-set aiop_bit, 7 # accrued inexact operation bit
-set aovfl_bit, 6 # accrued overflow bit
-set aunfl_bit, 5 # accrued underflow bit
-set adz_bit, 4 # accrued dz bit
-set ainex_bit, 3 # accrued inexact bit
-
-#############################
-# FPSR individual bit masks #
-#############################
-set neg_mask, 0x08000000 # negative bit mask (lw)
-set inf_mask, 0x02000000 # infinity bit mask (lw)
-set z_mask, 0x04000000 # zero bit mask (lw)
-set nan_mask, 0x01000000 # nan bit mask (lw)
-
-set neg_bmask, 0x08 # negative bit mask (byte)
-set inf_bmask, 0x02 # infinity bit mask (byte)
-set z_bmask, 0x04 # zero bit mask (byte)
-set nan_bmask, 0x01 # nan bit mask (byte)
-
-set bsun_mask, 0x00008000 # bsun exception mask
-set snan_mask, 0x00004000 # snan exception mask
-set operr_mask, 0x00002000 # operr exception mask
-set ovfl_mask, 0x00001000 # overflow exception mask
-set unfl_mask, 0x00000800 # underflow exception mask
-set dz_mask, 0x00000400 # dz exception mask
-set inex2_mask, 0x00000200 # inex2 exception mask
-set inex1_mask, 0x00000100 # inex1 exception mask
-
-set aiop_mask, 0x00000080 # accrued illegal operation
-set aovfl_mask, 0x00000040 # accrued overflow
-set aunfl_mask, 0x00000020 # accrued underflow
-set adz_mask, 0x00000010 # accrued divide by zero
-set ainex_mask, 0x00000008 # accrued inexact
-
-######################################
-# FPSR combinations used in the FPSP #
-######################################
-set dzinf_mask, inf_mask+dz_mask+adz_mask
-set opnan_mask, nan_mask+operr_mask+aiop_mask
-set nzi_mask, 0x01ffffff #clears N, Z, and I
-set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
-set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
-set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
-set inx1a_mask, inex1_mask+ainex_mask
-set inx2a_mask, inex2_mask+ainex_mask
-set snaniop_mask, nan_mask+snan_mask+aiop_mask
-set snaniop2_mask, snan_mask+aiop_mask
-set naniop_mask, nan_mask+aiop_mask
-set neginf_mask, neg_mask+inf_mask
-set infaiop_mask, inf_mask+aiop_mask
-set negz_mask, neg_mask+z_mask
-set opaop_mask, operr_mask+aiop_mask
-set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
-set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
-
-#########
-# misc. #
-#########
-set rnd_stky_bit, 29 # stky bit pos in longword
-
-set sign_bit, 0x7 # sign bit
-set signan_bit, 0x6 # signalling nan bit
-
-set sgl_thresh, 0x3f81 # minimum sgl exponent
-set dbl_thresh, 0x3c01 # minimum dbl exponent
-
-set x_mode, 0x0 # extended precision
-set s_mode, 0x4 # single precision
-set d_mode, 0x8 # double precision
-
-set rn_mode, 0x0 # round-to-nearest
-set rz_mode, 0x1 # round-to-zero
-set rm_mode, 0x2 # round-tp-minus-infinity
-set rp_mode, 0x3 # round-to-plus-infinity
-
-set mantissalen, 64 # length of mantissa in bits
-
-set BYTE, 1 # len(byte) == 1 byte
-set WORD, 2 # len(word) == 2 bytes
-set LONG, 4 # len(longword) == 2 bytes
-
-set BSUN_VEC, 0xc0 # bsun vector offset
-set INEX_VEC, 0xc4 # inexact vector offset
-set DZ_VEC, 0xc8 # dz vector offset
-set UNFL_VEC, 0xcc # unfl vector offset
-set OPERR_VEC, 0xd0 # operr vector offset
-set OVFL_VEC, 0xd4 # ovfl vector offset
-set SNAN_VEC, 0xd8 # snan vector offset
-
-###########################
-# SPecial CONDition FLaGs #
-###########################
-set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
-set fbsun_flg, 0x02 # flag bit: bsun exception
-set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
-set mda7_flg, 0x08 # flag bit: -(a7) <ea>
-set fmovm_flg, 0x40 # flag bit: fmovm instruction
-set immed_flg, 0x80 # flag bit: &<data> <ea>
-
-set ftrapcc_bit, 0x0
-set fbsun_bit, 0x1
-set mia7_bit, 0x2
-set mda7_bit, 0x3
-set immed_bit, 0x7
-
-##################################
-# TRANSCENDENTAL "LAST-OP" FLAGS #
-##################################
-set FMUL_OP, 0x0 # fmul instr performed last
-set FDIV_OP, 0x1 # fdiv performed last
-set FADD_OP, 0x2 # fadd performed last
-set FMOV_OP, 0x3 # fmov performed last
-
-#############
-# CONSTANTS #
-#############
-T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
-T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
-
-PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
-PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
-
-TWOBYPI:
- long 0x3FE45F30,0x6DC9C883
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Overflow exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
-# _real_ovfl() - "callout" for Overflow exception enabled code #
-# _real_inex() - "callout" for Inexact exception enabled code #
-# _real_trace() - "callout" for Trace exception code #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Ovfl exception stack frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# Overflow Exception enabled: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# Overflow Exception disabled: #
-# - The system stack is unchanged #
-# - The "exception present" flag in the fsave frame is cleared #
-# #
-# ALGORITHM *********************************************************** #
-# On the 060, if an FP overflow is present as the result of any #
-# instruction, the 060 will take an overflow exception whether the #
-# exception is enabled or disabled in the FPCR. For the disabled case, #
-# This handler emulates the instruction to determine what the correct #
-# default result should be for the operation. This default result is #
-# then stored in either the FP regfile, data regfile, or memory. #
-# Finally, the handler exits through the "callout" _fpsp_done() #
-# denoting that no exceptional conditions exist within the machine. #
-# If the exception is enabled, then this handler must create the #
-# exceptional operand and plave it in the fsave state frame, and store #
-# the default result (only if the instruction is opclass 3). For #
-# exceptions enabled, this handler must exit through the "callout" #
-# _real_ovfl() so that the operating system enabled overflow handler #
-# can handle this case. #
-# Two other conditions exist. First, if overflow was disabled #
-# but the inexact exception was enabled, this handler must exit #
-# through the "callout" _real_inex() regardless of whether the result #
-# was inexact. #
-# Also, in the case of an opclass three instruction where #
-# overflow was disabled and the trace exception was enabled, this #
-# handler must exit through the "callout" _real_trace(). #
-# #
-#########################################################################
-
- global _fpsp_ovfl
-_fpsp_ovfl:
-
-#$# sub.l &24,%sp # make room for src/dst
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
- bne.w fovfl_out
-
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-# since, I believe, only NORMs and DENORMs can come through here,
-# maybe we can avoid the subroutine call.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
-
-# bit five of the fp extension word separates the monadic and dyadic operations
-# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos
-# will never take this exception.
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fovfl_extract # monadic
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fovfl_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-fovfl_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-fovfl_extract:
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
-#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
-#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
-# maybe we can make these entry points ONLY the OVFL entry points of each routine.
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-# the operation has been emulated. the result is in fp0.
-# the EXOP, if an exception occurred, is in fp1.
-# we must save the default result regardless of whether
-# traps are enabled or disabled.
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
-
-# the exceptional possibilities we have left ourselves with are ONLY overflow
-# and inexact. and, the inexact is such that overflow occurred and was disabled
-# but inexact was enabled.
- btst &ovfl_bit,FPCR_ENABLE(%a6)
- bne.b fovfl_ovfl_on
-
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.b fovfl_inex_on
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
- bra.l _fpsp_done
-
-# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
-# in fp1. now, simply jump to _real_ovfl()!
-fovfl_ovfl_on:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
-
- mov.w &0xe005,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_ovfl
-
-# overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore,
-# we must jump to real_inex().
-fovfl_inex_on:
-
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
-
- mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_inex
-
-########################################################################
-fovfl_out:
-
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-
-# the src operand is definitely a NORM(!), so tag it as such
- mov.b &NORM,STAG(%a6) # set src optype tag
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- bsr.l fout
-
- btst &ovfl_bit,FPCR_ENABLE(%a6)
- bne.w fovfl_ovfl_on
-
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.w fovfl_inex_on
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
-
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
-
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- bra.l _real_trace
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Underflow exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
-# _real_ovfl() - "callout" for Overflow exception enabled code #
-# _real_inex() - "callout" for Inexact exception enabled code #
-# _real_trace() - "callout" for Trace exception code #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Unfl exception stack frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# Underflow Exception enabled: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# Underflow Exception disabled: #
-# - The system stack is unchanged #
-# - The "exception present" flag in the fsave frame is cleared #
-# #
-# ALGORITHM *********************************************************** #
-# On the 060, if an FP underflow is present as the result of any #
-# instruction, the 060 will take an underflow exception whether the #
-# exception is enabled or disabled in the FPCR. For the disabled case, #
-# This handler emulates the instruction to determine what the correct #
-# default result should be for the operation. This default result is #
-# then stored in either the FP regfile, data regfile, or memory. #
-# Finally, the handler exits through the "callout" _fpsp_done() #
-# denoting that no exceptional conditions exist within the machine. #
-# If the exception is enabled, then this handler must create the #
-# exceptional operand and plave it in the fsave state frame, and store #
-# the default result (only if the instruction is opclass 3). For #
-# exceptions enabled, this handler must exit through the "callout" #
-# _real_unfl() so that the operating system enabled overflow handler #
-# can handle this case. #
-# Two other conditions exist. First, if underflow was disabled #
-# but the inexact exception was enabled and the result was inexact, #
-# this handler must exit through the "callout" _real_inex(). #
-# was inexact. #
-# Also, in the case of an opclass three instruction where #
-# underflow was disabled and the trace exception was enabled, this #
-# handler must exit through the "callout" _real_trace(). #
-# #
-#########################################################################
-
- global _fpsp_unfl
-_fpsp_unfl:
-
-#$# sub.l &24,%sp # make room for src/dst
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
- bne.w funfl_out
-
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
-
-# bit five of the fp ext word separates the monadic and dyadic operations
-# that can pass through fpsp_unfl(). remember that fcmp, and ftst
-# will never take this exception.
- btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic?
- beq.b funfl_extract # monadic
-
-# now, what's left that's not dyadic is fsincos. we can distinguish it
-# from all dyadics by the '0110xxx pattern
- btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos?
- bne.b funfl_extract # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b funfl_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-funfl_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-funfl_extract:
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
-#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
-#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- andi.l &0x00ff01ff,USER_FPSR(%a6)
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
-# maybe we can make these entry points ONLY the OVFL entry points of each routine.
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
-
-# The `060 FPU multiplier hardware is such that if the result of a
-# multiply operation is the smallest possible normalized number
-# (0x00000000_80000000_00000000), then the machine will take an
-# underflow exception. Since this is incorrect, we need to check
-# if our emulation, after re-doing the operation, decided that
-# no underflow was called for. We do these checks only in
-# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this
-# special case will simply exit gracefully with the correct result.
-
-# the exceptional possibilities we have left ourselves with are ONLY overflow
-# and inexact. and, the inexact is such that overflow occurred and was disabled
-# but inexact was enabled.
- btst &unfl_bit,FPCR_ENABLE(%a6)
- bne.b funfl_unfl_on
-
-funfl_chkinex:
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.b funfl_inex_on
-
-funfl_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
- bra.l _fpsp_done
-
-# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
-# in fp1 (don't forget to save fp0). what to do now?
-# well, we simply have to get to go to _real_unfl()!
-funfl_unfl_on:
-
-# The `060 FPU multiplier hardware is such that if the result of a
-# multiply operation is the smallest possible normalized number
-# (0x00000000_80000000_00000000), then the machine will take an
-# underflow exception. Since this is incorrect, we check here to see
-# if our emulation, after re-doing the operation, decided that
-# no underflow was called for.
- btst &unfl_bit,FPSR_EXCEPT(%a6)
- beq.w funfl_chkinex
-
-funfl_unfl_on2:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
-
- mov.w &0xe003,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_unfl
-
-# underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore,
-# we must jump to real_inex().
-funfl_inex_on:
-
-# The `060 FPU multiplier hardware is such that if the result of a
-# multiply operation is the smallest possible normalized number
-# (0x00000000_80000000_00000000), then the machine will take an
-# underflow exception.
-# But, whether bogus or not, if inexact is enabled AND it occurred,
-# then we have to branch to real_inex.
-
- btst &inex2_bit,FPSR_EXCEPT(%a6)
- beq.w funfl_exit
-
-funfl_inex_on2:
-
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack
-
- mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # save exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
-
- unlk %a6
-
- bra.l _real_inex
-
-#######################################################################
-funfl_out:
-
-
-#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
-#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
-#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
-
-# the src operand is definitely a NORM(!), so tag it as such
- mov.b &NORM,STAG(%a6) # set src optype tag
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- bsr.l fout
-
- btst &unfl_bit,FPCR_ENABLE(%a6)
- bne.w funfl_unfl_on2
-
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.w funfl_inex_on2
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-#$# add.l &24,%sp
-
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
-
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- bra.l _real_trace
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented #
-# Data Type" exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Unimplemented Data Type exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_{word,long}() - read instruction word/longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# load_fpn1() - load src operand from FP regfile #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _real_inex() - "callout" to operating system inexact handler #
-# _fpsp_done() - "callout" for exit; work all done #
-# _real_trace() - "callout" for Trace enabled exception #
-# funimp_skew() - adjust fsave src ops to "incorrect" value #
-# _real_snan() - "callout" for SNAN exception #
-# _real_operr() - "callout" for OPERR exception #
-# _real_ovfl() - "callout" for OVFL exception #
-# _real_unfl() - "callout" for UNFL exception #
-# get_packed() - fetch packed operand from memory #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the "Unimp Data Type" stk frame #
-# - The fsave frame contains the ssrc op (for UNNORM/DENORM) #
-# #
-# OUTPUT ************************************************************** #
-# If Inexact exception (opclass 3): #
-# - The system stack is changed to an Inexact exception stk frame #
-# If SNAN exception (opclass 3): #
-# - The system stack is changed to an SNAN exception stk frame #
-# If OPERR exception (opclass 3): #
-# - The system stack is changed to an OPERR exception stk frame #
-# If OVFL exception (opclass 3): #
-# - The system stack is changed to an OVFL exception stk frame #
-# If UNFL exception (opclass 3): #
-# - The system stack is changed to an UNFL exception stack frame #
-# If Trace exception enabled: #
-# - The system stack is changed to a Trace exception stack frame #
-# Else: (normal case) #
-# - Correct result has been stored as appropriate #
-# #
-# ALGORITHM *********************************************************** #
-# Two main instruction types can enter here: (1) DENORM or UNNORM #
-# unimplemented data types. These can be either opclass 0,2 or 3 #
-# instructions, and (2) PACKED unimplemented data format instructions #
-# also of opclasses 0,2, or 3. #
-# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src #
-# operand from the fsave state frame and the dst operand (if dyadic) #
-# from the FP register file. The instruction is then emulated by #
-# choosing an emulation routine from a table of routines indexed by #
-# instruction type. Once the instruction has been emulated and result #
-# saved, then we check to see if any enabled exceptions resulted from #
-# instruction emulation. If none, then we exit through the "callout" #
-# _fpsp_done(). If there is an enabled FP exception, then we insert #
-# this exception into the FPU in the fsave state frame and then exit #
-# through _fpsp_done(). #
-# PACKED opclass 0 and 2 is similar in how the instruction is #
-# emulated and exceptions handled. The differences occur in how the #
-# handler loads the packed op (by calling get_packed() routine) and #
-# by the fact that a Trace exception could be pending for PACKED ops. #
-# If a Trace exception is pending, then the current exception stack #
-# frame is changed to a Trace exception stack frame and an exit is #
-# made through _real_trace(). #
-# For UNNORM/DENORM opclass 3, the actual move out to memory is #
-# performed by calling the routine fout(). If no exception should occur #
-# as the result of emulation, then an exit either occurs through #
-# _fpsp_done() or through _real_trace() if a Trace exception is pending #
-# (a Trace stack frame must be created here, too). If an FP exception #
-# should occur, then we must create an exception stack frame of that #
-# type and jump to either _real_snan(), _real_operr(), _real_inex(), #
-# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 #
-# emulation is performed in a similar manner. #
-# #
-#########################################################################
-
-#
-# (1) DENORM and UNNORM (unimplemented) data types:
-#
-# post-instruction
-# *****************
-# * EA *
-# pre-instruction * *
-# ***************** *****************
-# * 0x0 * 0x0dc * * 0x3 * 0x0dc *
-# ***************** *****************
-# * Next * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-#
-# (2) PACKED format (unsupported) opclasses two and three:
-# *****************
-# * EA *
-# * *
-# *****************
-# * 0x2 * 0x0dc *
-# *****************
-# * Next *
-# * PC *
-# *****************
-# * SR *
-# *****************
-#
- global _fpsp_unsupp
-_fpsp_unsupp:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # save fp state
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
- btst &0x5,EXC_SR(%a6) # user or supervisor mode?
- bne.b fu_s
-fu_u:
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # save on stack
- bra.b fu_cont
-# if the exception is an opclass zero or two unimplemented data type
-# exception, then the a7' calculated here is wrong since it doesn't
-# stack an ea. however, we don't need an a7' for this case anyways.
-fu_s:
- lea 0x4+EXC_EA(%a6),%a0 # load old a7'
- mov.l %a0,EXC_A7(%a6) # save on stack
-
-fu_cont:
-
-# the FPIAR holds the "current PC" of the faulting instruction
-# the FPIAR should be set correctly for ALL exceptions passing through
-# this point.
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
-
-############################
-
- clr.b SPCOND_FLG(%a6) # clear special condition flag
-
-# Separate opclass three (fpn-to-mem) ops since they have a different
-# stack frame and protocol.
- btst &0x5,EXC_CMDREG(%a6) # is it an fmove out?
- bne.w fu_out # yes
-
-# Separate packed opclass two instructions.
- bfextu EXC_CMDREG(%a6){&0:&6},%d0
- cmpi.b %d0,&0x13
- beq.w fu_in_pack
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field
- andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
-# Opclass two w/ memory-to-fpn operation will have an incorrect extended
-# precision format if the src format was single or double and the
-# source data type was an INF, NAN, DENORM, or UNNORM
- lea FP_SRC(%a6),%a0 # pass ptr to input
- bsr.l fix_skewed_ops
-
-# we don't know whether the src operand or the dst operand (or both) is the
-# UNNORM or DENORM. call the function that tags the operand type. if the
-# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2 # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-
-fu_op2:
- mov.b %d0,STAG(%a6) # save src optype tag
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
-
-# bit five of the fp extension word separates the monadic and dyadic operations
-# at this point
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fu_extract # monadic
- cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
- beq.b fu_extract # yes, so it's monadic, too
-
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-fu_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-fu_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-#
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : all dyadic ops
-# OPERR : fsqrt(-NORM)
-# OVFL : all except ftst,fcmp
-# UNFL : all except ftst,fcmp
-# DZ : fdiv
-# INEX2 : all except ftst,fcmp
-# INEX1 : none (packed doesn't go through here)
-#
-
-# we determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set
- bne.b fu_in_ena # some are enabled
-
-fu_in_cont:
-# fcmp and ftst do not store any result.
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
- andi.b &0x38,%d0 # extract bits 3-5
- cmpi.b %d0,&0x38 # is instr fcmp or ftst?
- beq.b fu_in_exit # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l store_fpreg # store the result
-
-fu_in_exit:
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- bra.l _fpsp_done
-
-fu_in_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_in_exc # there is at least one set
-
-#
-# No exceptions occurred that were also enabled. Now:
-#
-# if (OVFL && ovfl_disabled && inexact_enabled) {
-# branch to _real_inex() (even if the result was exact!);
-# } else {
-# save the result in the proper fp reg (unless the op is fcmp or ftst);
-# return;
-# }
-#
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.b fu_in_cont # no
-
-fu_in_ovflchk:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.b fu_in_cont # no
- bra.w fu_in_exc_ovfl # go insert overflow frame
-
-#
-# An exception occurred and that exception was enabled:
-#
-# shift enabled exception field into lo byte of d0;
-# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
-# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
-# /*
-# * this is the case where we must call _real_inex() now or else
-# * there will be no other way to pass it the exceptional operand
-# */
-# call _real_inex();
-# } else {
-# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
-# }
-#
-fu_in_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX? (6)
- bne.b fu_in_exc_exit # no
-
-# the enabled exception was inexact
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
- bne.w fu_in_exc_unfl # yes
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
- bne.w fu_in_exc_ovfl # yes
-
-# here, we insert the correct fsave status value into the fsave frame for the
-# corresponding exception. the operand in the fsave frame should be the original
-# src operand.
-fu_in_exc_exit:
- mov.l %d0,-(%sp) # save d0
- bsr.l funimp_skew # skew sgl or dbl inputs
- mov.l (%sp)+,%d0 # restore d0
-
- mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore src op
-
- unlk %a6
-
- bra.l _fpsp_done
-
-tbl_except:
- short 0xe000,0xe006,0xe004,0xe005
- short 0xe003,0xe002,0xe001,0xe001
-
-fu_in_exc_unfl:
- mov.w &0x4,%d0
- bra.b fu_in_exc_exit
-fu_in_exc_ovfl:
- mov.w &0x03,%d0
- bra.b fu_in_exc_exit
-
-# If the input operand to this operation was opclass two and a single
-# or double precision denorm, inf, or nan, the operand needs to be
-# "corrected" in order to have the proper equivalent extended precision
-# number.
- global fix_skewed_ops
-fix_skewed_ops:
- bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt
- cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl?
- beq.b fso_sgl # yes
- cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl?
- beq.b fso_dbl # yes
- rts # no
-
-fso_sgl:
- mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&0x3f80 # is |exp| == $3f80?
- beq.b fso_sgl_dnrm_zero # yes
- cmpi.w %d0,&0x407f # no; is |exp| == $407f?
- beq.b fso_infnan # yes
- rts # no
-
-fso_sgl_dnrm_zero:
- andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
- beq.b fso_zero # it's a skewed zero
-fso_sgl_dnrm:
-# here, we count on norm not to alter a0...
- bsr.l norm # normalize mantissa
- neg.w %d0 # -shft amt
- addi.w &0x3f81,%d0 # adjust new exponent
- andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
- or.w %d0,LOCAL_EX(%a0) # insert new exponent
- rts
-
-fso_zero:
- andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent
- rts
-
-fso_infnan:
- andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit
- ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff
- rts
-
-fso_dbl:
- mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&0x3c00 # is |exp| == $3c00?
- beq.b fso_dbl_dnrm_zero # yes
- cmpi.w %d0,&0x43ff # no; is |exp| == $43ff?
- beq.b fso_infnan # yes
- rts # no
-
-fso_dbl_dnrm_zero:
- andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
- bne.b fso_dbl_dnrm # it's a skewed denorm
- tst.l LOCAL_LO(%a0) # is it a zero?
- beq.b fso_zero # yes
-fso_dbl_dnrm:
-# here, we count on norm not to alter a0...
- bsr.l norm # normalize mantissa
- neg.w %d0 # -shft amt
- addi.w &0x3c01,%d0 # adjust new exponent
- andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
- or.w %d0,LOCAL_EX(%a0) # insert new exponent
- rts
-
-#################################################################
-
-# fmove out took an unimplemented data type exception.
-# the src operand is in FP_SRC. Call _fout() to write out the result and
-# to determine which exceptions, if any, to take.
-fu_out:
-
-# Separate packed move outs from the UNNORM and DENORM move outs.
- bfextu EXC_CMDREG(%a6){&3:&3},%d0
- cmpi.b %d0,&0x3
- beq.w fu_out_pack
- cmpi.b %d0,&0x7
- beq.w fu_out_pack
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field.
-# fmove out doesn't affect ccodes.
- and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
-# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine
-# call here. just figure out what it is...
- mov.w FP_SRC_EX(%a6),%d0 # get exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b fu_out_denorm # it's a DENORM
-
- lea FP_SRC(%a6),%a0
- bsr.l unnorm_fix # yes; fix it
-
- mov.b %d0,STAG(%a6)
-
- bra.b fu_out_cont
-fu_out_denorm:
- mov.b &DENORM,STAG(%a6)
-fu_out_cont:
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- mov.l (%a6),EXC_A6(%a6) # in case a6 changes
- bsr.l fout # call fmove out routine
-
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : none
-# OPERR : fmove.{b,w,l} out of large UNNORM
-# OVFL : fmove.{s,d}
-# UNFL : fmove.{s,d,x}
-# DZ : none
-# INEX2 : all
-# INEX1 : none (packed doesn't travel through here)
-
-# determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_out_ena # some are enabled
-
-fu_out_done:
-
- mov.l EXC_A6(%a6),(%a6) # in case a6 changed
-
-# on extended precision opclass three instructions using pre-decrement or
-# post-increment addressing mode, the address register is not updated. is the
-# address register was the stack pointer used from user mode, then let's update
-# it here. if it was used from supervisor mode, then we have to handle this
-# as a special case.
- btst &0x5,EXC_SR(%a6)
- bne.b fu_out_done_s
-
- mov.l EXC_A7(%a6),%a0 # restore a7
- mov.l %a0,%usp
-
-fu_out_done_cont:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- btst &0x7,(%sp) # is trace on?
- bne.b fu_out_trace # yes
-
- bra.l _fpsp_done
-
-# is the ea mode pre-decrement of the stack pointer from supervisor mode?
-# ("fmov.x fpm,-(a7)") if so,
-fu_out_done_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.b fu_out_done_cont
-
-# the extended precision result is still in fp0. but, we need to save it
-# somewhere on the stack until we can copy it to its final resting place.
-# here, we're counting on the top of the stack to be the old place-holders
-# for fp0/fp1 which have already been restored. that way, we can write
-# over those destinations with the shifted stack frame.
- fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
-
-# now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- btst &0x7,(%sp)
- bne.b fu_out_trace
-
- bra.l _fpsp_done
-
-fu_out_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_out_exc # there is at least one set
-
-# no exceptions were set.
-# if a disabled overflow occurred and inexact was enabled but the result
-# was exact, then a branch to _real_inex() is made.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.w fu_out_done # no
-
-fu_out_ovflchk:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.w fu_out_done # no
- bra.w fu_inex # yes
-
-#
-# The fp move out that took the "Unimplemented Data Type" exception was
-# being traced. Since the stack frames are similar, get the "current" PC
-# from FPIAR and put it in the trace stack frame then jump to _real_trace().
-#
-# UNSUPP FRAME TRACE FRAME
-# ***************** *****************
-# * EA * * Current *
-# * * * PC *
-# ***************** *****************
-# * 0x3 * 0x0dc * * 0x2 * 0x024 *
-# ***************** *****************
-# * Next * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-#
-fu_out_trace:
- mov.w &0x2024,0x6(%sp)
- fmov.l %fpiar,0x8(%sp)
- bra.l _real_trace
-
-# an exception occurred and that exception was enabled.
-fu_out_exc:
- subi.l &24,%d0 # fix offset to be 0-8
-
-# we don't mess with the existing fsave frame. just re-insert it and
-# jump to the "_real_{}()" handler...
- mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0
- jmp (tbl_fu_out.b,%pc,%d0.w*1)
-
- swbeg &0x8
-tbl_fu_out:
- short tbl_fu_out - tbl_fu_out # BSUN can't happen
- short tbl_fu_out - tbl_fu_out # SNAN can't happen
- short fu_operr - tbl_fu_out # OPERR
- short fu_ovfl - tbl_fu_out # OVFL
- short fu_unfl - tbl_fu_out # UNFL
- short tbl_fu_out - tbl_fu_out # DZ can't happen
- short fu_inex - tbl_fu_out # INEX2
- short tbl_fu_out - tbl_fu_out # INEX1 won't make it here
-
-# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just
-# frestore it.
-fu_snan:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8
- mov.w &0xe006,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6)
-
- unlk %a6
-
-
- bra.l _real_snan
-
-fu_operr:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe004,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6)
-
- unlk %a6
-
-
- bra.l _real_operr
-
-fu_ovfl:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4
- mov.w &0xe005,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6) # restore EXOP
-
- unlk %a6
-
- bra.l _real_ovfl
-
-# underflow can happen for extended precision. extended precision opclass
-# three instruction exceptions don't update the stack pointer. so, if the
-# exception occurred from user mode, then simply update a7 and exit normally.
-# if the exception occurred from supervisor mode, check if
-fu_unfl:
- mov.l EXC_A6(%a6),(%a6) # restore a6
-
- btst &0x5,EXC_SR(%a6)
- bne.w fu_unfl_s
-
- mov.l EXC_A7(%a6),%a0 # restore a7 whether we need
- mov.l %a0,%usp # to or not...
-
-fu_unfl_cont:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
- mov.w &0xe003,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6) # restore EXOP
-
- unlk %a6
-
- bra.l _real_unfl
-
-fu_unfl_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)?
- bne.b fu_unfl_cont
-
-# the extended precision result is still in fp0. but, we need to save it
-# somewhere on the stack until we can copy it to its final resting place
-# (where the exc frame is currently). make sure it's not at the top of the
-# frame or it will get overwritten when the exc stack frame is shifted "down".
- fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
- fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
- mov.w &0xe003,2+FP_DST(%a6)
-
- frestore FP_DST(%a6) # restore EXOP
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- bra.l _real_unfl
-
-# fmove in and out enter here.
-fu_inex:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6)
-
- frestore FP_SRC(%a6) # restore EXOP
-
- unlk %a6
-
-
- bra.l _real_inex
-
-#########################################################################
-#########################################################################
-fu_in_pack:
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field
- andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- bsr.l get_packed # fetch packed src operand
-
- lea FP_SRC(%a6),%a0 # pass ptr to src
- bsr.l set_tag_x # set src optype tag
-
- mov.b %d0,STAG(%a6) # save src optype tag
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
-
-# bit five of the fp extension word separates the monadic and dyadic operations
-# at this point
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fu_extract_p # monadic
- cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
- beq.b fu_extract_p # yes, so it's monadic, too
-
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_done_p # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-fu_op2_done_p:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-fu_extract_p:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-#
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : all dyadic ops
-# OPERR : fsqrt(-NORM)
-# OVFL : all except ftst,fcmp
-# UNFL : all except ftst,fcmp
-# DZ : fdiv
-# INEX2 : all except ftst,fcmp
-# INEX1 : all
-#
-
-# we determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_in_ena_p # some are enabled
-
-fu_in_cont_p:
-# fcmp and ftst do not store any result.
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
- andi.b &0x38,%d0 # extract bits 3-5
- cmpi.b %d0,&0x38 # is instr fcmp or ftst?
- beq.b fu_in_exit_p # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l store_fpreg # store the result
-
-fu_in_exit_p:
-
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.w fu_in_exit_s_p # supervisor
-
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
-
-fu_in_exit_cont_p:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel stack frame
-
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-# the exception occurred in supervisor mode. check to see if the
-# addressing mode was (a7)+. if so, we'll need to shift the
-# stack frame "up".
-fu_in_exit_s_p:
- btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+
- beq.b fu_in_exit_cont_p # no
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel stack frame
-
-# shift the stack frame "up". we don't really care about the <ea> field.
- mov.l 0x4(%sp),0x10(%sp)
- mov.l 0x0(%sp),0xc(%sp)
- add.l &0xc,%sp
-
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-fu_in_ena_p:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_in_exc_p # at least one was set
-
-#
-# No exceptions occurred that were also enabled. Now:
-#
-# if (OVFL && ovfl_disabled && inexact_enabled) {
-# branch to _real_inex() (even if the result was exact!);
-# } else {
-# save the result in the proper fp reg (unless the op is fcmp or ftst);
-# return;
-# }
-#
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.w fu_in_cont_p # no
-
-fu_in_ovflchk_p:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.w fu_in_cont_p # no
- bra.w fu_in_exc_ovfl_p # do _real_inex() now
-
-#
-# An exception occurred and that exception was enabled:
-#
-# shift enabled exception field into lo byte of d0;
-# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
-# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
-# /*
-# * this is the case where we must call _real_inex() now or else
-# * there will be no other way to pass it the exceptional operand
-# */
-# call _real_inex();
-# } else {
-# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
-# }
-#
-fu_in_exc_p:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX? (6 or 7)
- blt.b fu_in_exc_exit_p # no
-
-# the enabled exception was inexact
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
- bne.w fu_in_exc_unfl_p # yes
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
- bne.w fu_in_exc_ovfl_p # yes
-
-# here, we insert the correct fsave status value into the fsave frame for the
-# corresponding exception. the operand in the fsave frame should be the original
-# src operand.
-# as a reminder for future predicted pain and agony, we are passing in fsave the
-# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs.
-# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!!
-fu_in_exc_exit_p:
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.w fu_in_exc_exit_s_p # supervisor
-
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
-
-fu_in_exc_exit_cont_p:
- mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore src op
-
- unlk %a6
-
- btst &0x7,(%sp) # is trace enabled?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done
-
-tbl_except_p:
- short 0xe000,0xe006,0xe004,0xe005
- short 0xe003,0xe002,0xe001,0xe001
-
-fu_in_exc_ovfl_p:
- mov.w &0x3,%d0
- bra.w fu_in_exc_exit_p
-
-fu_in_exc_unfl_p:
- mov.w &0x4,%d0
- bra.w fu_in_exc_exit_p
-
-fu_in_exc_exit_s_p:
- btst &mia7_bit,SPCOND_FLG(%a6)
- beq.b fu_in_exc_exit_cont_p
-
- mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore src op
-
- unlk %a6 # unravel stack frame
-
-# shift stack frame "up". who cares about <ea> field.
- mov.l 0x4(%sp),0x10(%sp)
- mov.l 0x0(%sp),0xc(%sp)
- add.l &0xc,%sp
-
- btst &0x7,(%sp) # is trace on?
- bne.b fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-#
-# The opclass two PACKED instruction that took an "Unimplemented Data Type"
-# exception was being traced. Make the "current" PC the FPIAR and put it in the
-# trace stack frame then jump to _real_trace().
-#
-# UNSUPP FRAME TRACE FRAME
-# ***************** *****************
-# * EA * * Current *
-# * * * PC *
-# ***************** *****************
-# * 0x2 * 0x0dc * * 0x2 * 0x024 *
-# ***************** *****************
-# * Next * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-fu_trace_p:
- mov.w &0x2024,0x6(%sp)
- fmov.l %fpiar,0x8(%sp)
-
- bra.l _real_trace
-
-#########################################################
-#########################################################
-fu_out_pack:
-
-
-# I'm not sure at this point what FPSR bits are valid for this instruction.
-# so, since the emulation routines re-create them anyways, zero exception field.
-# fmove out doesn't affect ccodes.
- and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l load_fpn1
-
-# unlike other opclass 3, unimplemented data type exceptions, packed must be
-# able to detect all operand types.
- lea FP_SRC(%a6),%a0
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_p # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-
-fu_op2_p:
- mov.b %d0,STAG(%a6) # save src optype tag
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- mov.l (%a6),EXC_A6(%a6) # in case a6 changes
- bsr.l fout # call fmove out routine
-
-# Exceptions in order of precedence:
-# BSUN : no
-# SNAN : yes
-# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits))
-# OVFL : no
-# UNFL : no
-# DZ : no
-# INEX2 : yes
-# INEX1 : no
-
-# determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_out_ena_p # some are enabled
-
-fu_out_exit_p:
- mov.l EXC_A6(%a6),(%a6) # restore a6
-
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.b fu_out_exit_s_p # supervisor
-
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
-
-fu_out_exit_cont_p:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel stack frame
-
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
-
- bra.l _fpsp_done # exit to os
-
-# the exception occurred in supervisor mode. check to see if the
-# addressing mode was -(a7). if so, we'll need to shift the
-# stack frame "down".
-fu_out_exit_s_p:
- btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7)
- beq.b fu_out_exit_cont_p # no
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
-
-# now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- btst &0x7,(%sp)
- bne.w fu_trace_p
-
- bra.l _fpsp_done
-
-fu_out_ena_p:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- beq.w fu_out_exit_p
-
- mov.l EXC_A6(%a6),(%a6) # restore a6
-
-# an exception occurred and that exception was enabled.
-# the only exception possible on packed move out are INEX, OPERR, and SNAN.
-fu_out_exc_p:
- cmpi.b %d0,&0x1a
- bgt.w fu_inex_p2
- beq.w fu_operr_p
-
-fu_snan_p:
- btst &0x5,EXC_SR(%a6)
- bne.b fu_snan_s_p
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_snan
-
-fu_snan_s_p:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_snan
-
-# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
-# the strategy is to move the exception frame "down" 12 bytes. then, we
-# can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe006,2+FP_SRC(%a6) # set fsave status
-
- frestore FP_SRC(%a6) # restore src operand
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
-
- bra.l _real_snan
-
-fu_operr_p:
- btst &0x5,EXC_SR(%a6)
- bne.w fu_operr_p_s
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_operr
-
-fu_operr_p_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_operr
-
-# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
-# the strategy is to move the exception frame "down" 12 bytes. then, we
-# can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe004,2+FP_SRC(%a6) # set fsave status
-
- frestore FP_SRC(%a6) # restore src operand
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
-
- bra.l _real_operr
-
-fu_inex_p2:
- btst &0x5,EXC_SR(%a6)
- bne.w fu_inex_s_p2
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_inex
-
-fu_inex_s_p2:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_inex
-
-# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
-# the strategy is to move the exception frame "down" 12 bytes. then, we
-# can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # set fsave status
-
- frestore FP_SRC(%a6) # restore src operand
-
- mov.l (%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
-# now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
-
- bra.l _real_inex
-
-#########################################################################
-
-#
-# if we're stuffing a source operand back into an fsave frame then we
-# have to make sure that for single or double source operands that the
-# format stuffed is as weird as the hardware usually makes it.
-#
- global funimp_skew
-funimp_skew:
- bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier
- cmpi.b %d0,&0x1 # was src sgl?
- beq.b funimp_skew_sgl # yes
- cmpi.b %d0,&0x5 # was src dbl?
- beq.b funimp_skew_dbl # yes
- rts
-
-funimp_skew_sgl:
- mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b funimp_skew_sgl_not
- cmpi.w %d0,&0x3f80
- bgt.b funimp_skew_sgl_not
- neg.w %d0 # make exponent negative
- addi.w &0x3f81,%d0 # find amt to shift
- mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man)
- lsr.l %d0,%d1 # shift it
- bset &31,%d1 # set j-bit
- mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man)
- andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent
- ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent
-funimp_skew_sgl_not:
- rts
-
-funimp_skew_dbl:
- mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b funimp_skew_dbl_not
- cmpi.w %d0,&0x3c00
- bgt.b funimp_skew_dbl_not
-
- tst.b FP_SRC_EX(%a6) # make "internal format"
- smi.b 0x2+FP_SRC(%a6)
- mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign
- clr.l %d0 # clear g,r,s
- lea FP_SRC(%a6),%a0 # pass ptr to src op
- mov.w &0x3c01,%d1 # pass denorm threshold
- bsr.l dnrm_lp # denorm it
- mov.w &0x3c00,%d0 # new exponent
- tst.b 0x2+FP_SRC(%a6) # is sign set?
- beq.b fss_dbl_denorm_done # no
- bset &15,%d0 # set sign
-fss_dbl_denorm_done:
- bset &0x7,FP_SRC_HI(%a6) # set j-bit
- mov.w %d0,FP_SRC_EX(%a6) # insert new exponent
-funimp_skew_dbl_not:
- rts
-
-#########################################################################
- global _mem_write2
-_mem_write2:
- btst &0x5,EXC_SR(%a6)
- beq.l _dmem_write
- mov.l 0x0(%a0),FP_DST_EX(%a6)
- mov.l 0x4(%a0),FP_DST_HI(%a6)
- mov.l 0x8(%a0),FP_DST_LO(%a6)
- clr.l %d1
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented #
-# effective address" exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Unimplemented Effective Address exception in an operating #
-# system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# decbin() - convert packed data to FP binary data #
-# _real_fpu_disabled() - "callout" for "FPU disabled" exception #
-# _real_access() - "callout" for access error exception #
-# _mem_read() - read extended immediate operand from memory #
-# _fpsp_done() - "callout" for exit; work all done #
-# _real_trace() - "callout" for Trace enabled exception #
-# fmovm_dynamic() - emulate dynamic fmovm instruction #
-# fmovm_ctrl() - emulate fmovm control instruction #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the "Unimplemented <ea>" stk frame #
-# #
-# OUTPUT ************************************************************** #
-# If access error: #
-# - The system stack is changed to an access error stack frame #
-# If FPU disabled: #
-# - The system stack is changed to an FPU disabled stack frame #
-# If Trace exception enabled: #
-# - The system stack is changed to a Trace exception stack frame #
-# Else: (normal case) #
-# - None (correct result has been stored as appropriate) #
-# #
-# ALGORITHM *********************************************************** #
-# This exception handles 3 types of operations: #
-# (1) FP Instructions using extended precision or packed immediate #
-# addressing mode. #
-# (2) The "fmovm.x" instruction w/ dynamic register specification. #
-# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. #
-# #
-# For immediate data operations, the data is read in w/ a #
-# _mem_read() "callout", converted to FP binary (if packed), and used #
-# as the source operand to the instruction specified by the instruction #
-# word. If no FP exception should be reported ads a result of the #
-# emulation, then the result is stored to the destination register and #
-# the handler exits through _fpsp_done(). If an enabled exc has been #
-# signalled as a result of emulation, then an fsave state frame #
-# corresponding to the FP exception type must be entered into the 060 #
-# FPU before exiting. In either the enabled or disabled cases, we #
-# must also check if a Trace exception is pending, in which case, we #
-# must create a Trace exception stack frame from the current exception #
-# stack frame. If no Trace is pending, we simply exit through #
-# _fpsp_done(). #
-# For "fmovm.x", call the routine fmovm_dynamic() which will #
-# decode and emulate the instruction. No FP exceptions can be pending #
-# as a result of this operation emulation. A Trace exception can be #
-# pending, though, which means the current stack frame must be changed #
-# to a Trace stack frame and an exit made through _real_trace(). #
-# For the case of "fmovm.x Dn,-(a7)", where the offending instruction #
-# was executed from supervisor mode, this handler must store the FP #
-# register file values to the system stack by itself since #
-# fmovm_dynamic() can't handle this. A normal exit is made through #
-# fpsp_done(). #
-# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. #
-# Again, a Trace exception may be pending and an exit made through #
-# _real_trace(). Else, a normal exit is made through _fpsp_done(). #
-# #
-# Before any of the above is attempted, it must be checked to #
-# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken #
-# before the "FPU disabled" exception, but the "FPU disabled" exception #
-# has higher priority, we check the disabled bit in the PCR. If set, #
-# then we must create an 8 word "FPU disabled" exception stack frame #
-# from the current 4 word exception stack frame. This includes #
-# reproducing the effective address of the instruction to put on the #
-# new stack frame. #
-# #
-# In the process of all emulation work, if a _mem_read() #
-# "callout" returns a failing result indicating an access error, then #
-# we must create an access error stack frame from the current stack #
-# frame. This information includes a faulting address and a fault- #
-# status-longword. These are created within this handler. #
-# #
-#########################################################################
-
- global _fpsp_effadd
-_fpsp_effadd:
-
-# This exception type takes priority over the "Line F Emulator"
-# exception. Therefore, the FPU could be disabled when entering here.
-# So, we must check to see if it's disabled and handle that case separately.
- mov.l %d0,-(%sp) # save d0
- movc %pcr,%d0 # load proc cr
- btst &0x1,%d0 # is FPU disabled?
- bne.w iea_disabled # yes
- mov.l (%sp)+,%d0 # restore d0
-
- link %a6,&-LOCAL_SIZE # init stack frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# PC of instruction that took the exception is the PC in the frame
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
-
-#########################################################################
-
- tst.w %d0 # is operation fmovem?
- bmi.w iea_fmovm # yes
-
-#
-# here, we will have:
-# fabs fdabs fsabs facos fmod
-# fadd fdadd fsadd fasin frem
-# fcmp fatan fscale
-# fdiv fddiv fsdiv fatanh fsin
-# fint fcos fsincos
-# fintrz fcosh fsinh
-# fmove fdmove fsmove fetox ftan
-# fmul fdmul fsmul fetoxm1 ftanh
-# fneg fdneg fsneg fgetexp ftentox
-# fsgldiv fgetman ftwotox
-# fsglmul flog10
-# fsqrt flog2
-# fsub fdsub fssub flogn
-# ftst flognp1
-# which can all use f<op>.{x,p}
-# so, now it's immediate data extended precision AND PACKED FORMAT!
-#
-iea_op:
- andi.l &0x00ff00ff,USER_FPSR(%a6)
-
- btst &0xa,%d0 # is src fmt x or p?
- bne.b iea_op_pack # packed
-
-
- mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
- lea FP_SRC(%a6),%a1 # pass: ptr to super addr
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _imem_read # read extended immediate
-
- tst.l %d1 # did ifetch fail?
- bne.w iea_iacc # yes
-
- bra.b iea_op_setsrc
-
-iea_op_pack:
-
- mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
- lea FP_SRC(%a6),%a1 # pass: ptr to super dst
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _imem_read # read packed operand
-
- tst.l %d1 # did ifetch fail?
- bne.w iea_iacc # yes
-
-# The packed operand is an INF or a NAN if the exponent field is all ones.
- bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
- cmpi.w %d0,&0x7fff # INF or NAN?
- beq.b iea_op_setsrc # operand is an INF or NAN
-
-# The packed operand is a zero if the mantissa is all zero, else it's
-# a normal packed op.
- mov.b 3+FP_SRC(%a6),%d0 # get byte 4
- andi.b &0x0f,%d0 # clear all but last nybble
- bne.b iea_op_gp_not_spec # not a zero
- tst.l FP_SRC_HI(%a6) # is lw 2 zero?
- bne.b iea_op_gp_not_spec # not a zero
- tst.l FP_SRC_LO(%a6) # is lw 3 zero?
- beq.b iea_op_setsrc # operand is a ZERO
-iea_op_gp_not_spec:
- lea FP_SRC(%a6),%a0 # pass: ptr to packed op
- bsr.l decbin # convert to extended
- fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
-
-iea_op_setsrc:
- addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer
-
-# FP_SRC now holds the src operand.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # could be ANYTHING!!!
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b iea_op_getdst # no
- bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
- mov.b %d0,STAG(%a6) # set new optype tag
-iea_op_getdst:
- clr.b STORE_FLG(%a6) # clear "store result" boolean
-
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b iea_op_extract # monadic
- btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp?
- bne.b iea_op_spec # yes
-
-iea_op_loaddst:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
- bsr.l load_fpn2 # load dst operand
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,DTAG(%a6) # could be ANYTHING!!!
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b iea_op_extract # no
- bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
- mov.b %d0,DTAG(%a6) # set new optype tag
- bra.b iea_op_extract
-
-# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic
-iea_op_spec:
- btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos?
- beq.b iea_op_extract # yes
-# now, we're left with ftst and fcmp. so, first let's tag them so that they don't
-# store a result. then, only fcmp will branch back and pick up a dst operand.
- st STORE_FLG(%a6) # don't store a final result
- btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp?
- beq.b iea_op_loaddst # yes
-
-iea_op_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- fmov.l &0x0,%fpcr
- fmov.l &0x0,%fpsr
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-#
-# Exceptions in order of precedence:
-# BSUN : none
-# SNAN : all operations
-# OPERR : all reg-reg or mem-reg operations that can normally operr
-# OVFL : same as OPERR
-# UNFL : same as OPERR
-# DZ : same as OPERR
-# INEX2 : same as OPERR
-# INEX1 : all packed immediate operations
-#
-
-# we determine the highest priority exception(if any) set by the
-# emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.b iea_op_ena # some are enabled
-
-# now, we save the result, unless, of course, the operation was ftst or fcmp.
-# these don't save results.
-iea_op_save:
- tst.b STORE_FLG(%a6) # does this op store a result?
- bne.b iea_op_exit1 # exit with no frestore
-
-iea_op_store:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
- bsr.l store_fpreg # store the result
-
-iea_op_exit1:
- mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6 # unravel the frame
-
- btst &0x7,(%sp) # is trace on?
- bne.w iea_op_trace # yes
-
- bra.l _fpsp_done # exit to os
-
-iea_op_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b iea_op_exc # at least one was set
-
-# no exception occurred. now, did a disabled, exact overflow occur with inexact
-# enabled? if so, then we have to stuff an overflow frame into the FPU.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- beq.b iea_op_save
-
-iea_op_ovfl:
- btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
- beq.b iea_op_store # no
- bra.b iea_op_exc_ovfl # yes
-
-# an enabled exception occurred. we have to insert the exception type back into
-# the machine.
-iea_op_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX?
- bne.b iea_op_exc_force # no
-
-# the enabled exception was inexact. so, if it occurs with an overflow
-# or underflow that was disabled, then we have to force an overflow or
-# underflow frame.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- bne.b iea_op_exc_ovfl # yes
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
- bne.b iea_op_exc_unfl # yes
-
-iea_op_exc_force:
- mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
- bra.b iea_op_exit2 # exit with frestore
-
-tbl_iea_except:
- short 0xe002, 0xe006, 0xe004, 0xe005
- short 0xe003, 0xe002, 0xe001, 0xe001
-
-iea_op_exc_ovfl:
- mov.w &0xe005,2+FP_SRC(%a6)
- bra.b iea_op_exit2
-
-iea_op_exc_unfl:
- mov.w &0xe003,2+FP_SRC(%a6)
-
-iea_op_exit2:
- mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6) # restore exceptional state
-
- unlk %a6 # unravel the frame
-
- btst &0x7,(%sp) # is trace on?
- bne.b iea_op_trace # yes
-
- bra.l _fpsp_done # exit to os
-
-#
-# The opclass two instruction that took an "Unimplemented Effective Address"
-# exception was being traced. Make the "current" PC the FPIAR and put it in
-# the trace stack frame then jump to _real_trace().
-#
-# UNIMP EA FRAME TRACE FRAME
-# ***************** *****************
-# * 0x0 * 0x0f0 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x024 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# *****************
-# * SR *
-# *****************
-iea_op_trace:
- mov.l (%sp),-(%sp) # shift stack frame "down"
- mov.w 0x8(%sp),0x4(%sp)
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
-
- bra.l _real_trace
-
-#########################################################################
-iea_fmovm:
- btst &14,%d0 # ctrl or data reg
- beq.w iea_fmovm_ctrl
-
-iea_fmovm_data:
-
- btst &0x5,EXC_SR(%a6) # user or supervisor mode
- bne.b iea_fmovm_data_s
-
-iea_fmovm_data_u:
- mov.l %usp,%a0
- mov.l %a0,EXC_A7(%a6) # store current a7
- bsr.l fmovm_dynamic # do dynamic fmovm
- mov.l EXC_A7(%a6),%a0 # load possibly new a7
- mov.l %a0,%usp # update usp
- bra.w iea_fmovm_exit
-
-iea_fmovm_data_s:
- clr.b SPCOND_FLG(%a6)
- lea 0x2+EXC_VOFF(%a6),%a0
- mov.l %a0,EXC_A7(%a6)
- bsr.l fmovm_dynamic # do dynamic fmovm
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.w iea_fmovm_data_predec
- cmpi.b SPCOND_FLG(%a6),&mia7_flg
- bne.w iea_fmovm_exit
-
-# right now, d0 = the size.
-# the data has been fetched from the supervisor stack, but we have not
-# incremented the stack pointer by the appropriate number of bytes.
-# do it here.
-iea_fmovm_data_postinc:
- btst &0x7,EXC_SR(%a6)
- bne.b iea_fmovm_data_pi_trace
-
- mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
- mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0)
- mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
-
- lea (EXC_SR,%a6,%d0),%a0
- mov.l %a0,EXC_SR(%a6)
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
- mov.l (%sp)+,%sp
- bra.l _fpsp_done
-
-iea_fmovm_data_pi_trace:
- mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
- mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0)
- mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
- mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0)
-
- lea (EXC_SR-0x4,%a6,%d0),%a0
- mov.l %a0,EXC_SR(%a6)
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
- mov.l (%sp)+,%sp
- bra.l _real_trace
-
-# right now, d1 = size and d0 = the strg.
-iea_fmovm_data_predec:
- mov.b %d1,EXC_VOFF(%a6) # store strg
- mov.b %d0,0x1+EXC_VOFF(%a6) # store size
-
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- mov.l (%a6),-(%sp) # make a copy of a6
- mov.l %d0,-(%sp) # save d0
- mov.l %d1,-(%sp) # save d1
- mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC
-
- clr.l %d0
- mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size
- neg.l %d0 # get negative of size
-
- btst &0x7,EXC_SR(%a6) # is trace enabled?
- beq.b iea_fmovm_data_p2
-
- mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
- mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0)
- mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0)
- mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
-
- pea (%a6,%d0) # create final sp
- bra.b iea_fmovm_data_p3
-
-iea_fmovm_data_p2:
- mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
- mov.l (%sp)+,(EXC_PC,%a6,%d0)
- mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
-
- pea (0x4,%a6,%d0) # create final sp
-
-iea_fmovm_data_p3:
- clr.l %d1
- mov.b EXC_VOFF(%a6),%d1 # fetch strg
-
- tst.b %d1
- bpl.b fm_1
- fmovm.x &0x80,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_1:
- lsl.b &0x1,%d1
- bpl.b fm_2
- fmovm.x &0x40,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_2:
- lsl.b &0x1,%d1
- bpl.b fm_3
- fmovm.x &0x20,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_3:
- lsl.b &0x1,%d1
- bpl.b fm_4
- fmovm.x &0x10,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_4:
- lsl.b &0x1,%d1
- bpl.b fm_5
- fmovm.x &0x08,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_5:
- lsl.b &0x1,%d1
- bpl.b fm_6
- fmovm.x &0x04,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_6:
- lsl.b &0x1,%d1
- bpl.b fm_7
- fmovm.x &0x02,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
-fm_7:
- lsl.b &0x1,%d1
- bpl.b fm_end
- fmovm.x &0x01,(0x4+0x8,%a6,%d0)
-fm_end:
- mov.l 0x4(%sp),%d1
- mov.l 0x8(%sp),%d0
- mov.l 0xc(%sp),%a6
- mov.l (%sp)+,%sp
-
- btst &0x7,(%sp) # is trace enabled?
- beq.l _fpsp_done
- bra.l _real_trace
-
-#########################################################################
-iea_fmovm_ctrl:
-
- bsr.l fmovm_ctrl # load ctrl regs
-
-iea_fmovm_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- btst &0x7,EXC_SR(%a6) # is trace on?
- bne.b iea_fmovm_trace # yes
-
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC
-
- unlk %a6 # unravel the frame
-
- bra.l _fpsp_done # exit to os
-
-#
-# The control reg instruction that took an "Unimplemented Effective Address"
-# exception was being traced. The "Current PC" for the trace frame is the
-# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR.
-# After fixing the stack frame, jump to _real_trace().
-#
-# UNIMP EA FRAME TRACE FRAME
-# ***************** *****************
-# * 0x0 * 0x0f0 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x024 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# *****************
-# * SR *
-# *****************
-# this ain't a pretty solution, but it works:
-# -restore a6 (not with unlk)
-# -shift stack frame down over where old a6 used to be
-# -add LOCAL_SIZE to stack pointer
-iea_fmovm_trace:
- mov.l (%a6),%a6 # restore frame pointer
- mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp)
- mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp)
- mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp)
- mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024
- add.l &LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_trace
-
-#########################################################################
-# The FPU is disabled and so we should really have taken the "Line
-# F Emulator" exception. So, here we create an 8-word stack frame
-# from our 4-word stack frame. This means we must calculate the length
-# the faulting instruction to get the "next PC". This is trivial for
-# immediate operands but requires some extra work for fmovm dynamic
-# which can use most addressing modes.
-iea_disabled:
- mov.l (%sp)+,%d0 # restore d0
-
- link %a6,&-LOCAL_SIZE # init stack frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
-
-# PC of instruction that took the exception is the PC in the frame
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
-
- tst.w %d0 # is instr fmovm?
- bmi.b iea_dis_fmovm # yes
-# instruction is using an extended precision immediate operand. Therefore,
-# the total instruction length is 16 bytes.
-iea_dis_immed:
- mov.l &0x10,%d0 # 16 bytes of instruction
- bra.b iea_dis_cont
-iea_dis_fmovm:
- btst &0xe,%d0 # is instr fmovm ctrl
- bne.b iea_dis_fmovm_data # no
-# the instruction is a fmovm.l with 2 or 3 registers.
- bfextu %d0{&19:&3},%d1
- mov.l &0xc,%d0
- cmpi.b %d1,&0x7 # move all regs?
- bne.b iea_dis_cont
- addq.l &0x4,%d0
- bra.b iea_dis_cont
-# the instruction is an fmovm.x dynamic which can use many addressing
-# modes and thus can have several different total instruction lengths.
-# call fmovm_calc_ea which will go through the ea calc process and,
-# as a by-product, will tell us how long the instruction is.
-iea_dis_fmovm_data:
- clr.l %d0
- bsr.l fmovm_calc_ea
- mov.l EXC_EXTWPTR(%a6),%d0
- sub.l EXC_PC(%a6),%d0
-iea_dis_cont:
- mov.w %d0,EXC_VOFF(%a6) # store stack shift value
-
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
-# here, we actually create the 8-word frame from the 4-word frame,
-# with the "next PC" as additional info.
-# the <ea> field is let as undefined.
- subq.l &0x8,%sp # make room for new stack
- mov.l %d0,-(%sp) # save d0
- mov.w 0xc(%sp),0x4(%sp) # move SR
- mov.l 0xe(%sp),0x6(%sp) # move Current PC
- clr.l %d0
- mov.w 0x12(%sp),%d0
- mov.l 0x6(%sp),0x10(%sp) # move Current PC
- add.l %d0,0x6(%sp) # make Next PC
- mov.w &0x402c,0xa(%sp) # insert offset,frame format
- mov.l (%sp)+,%d0 # restore d0
-
- bra.l _real_fpu_disabled
-
-##########
-
-iea_iacc:
- movc %pcr,%d0
- btst &0x1,%d0
- bne.b iea_iacc_cont
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
-iea_iacc_cont:
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- subq.w &0x8,%sp # make stack frame bigger
- mov.l 0x8(%sp),(%sp) # store SR,hi(PC)
- mov.w 0xc(%sp),0x4(%sp) # store lo(PC)
- mov.w &0x4008,0x6(%sp) # store voff
- mov.l 0x2(%sp),0x8(%sp) # store ea
- mov.l &0x09428001,0xc(%sp) # store fslw
-
-iea_acc_done:
- btst &0x5,(%sp) # user or supervisor mode?
- beq.b iea_acc_done2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-
-iea_acc_done2:
- bra.l _real_access
-
-iea_dacc:
- lea -LOCAL_SIZE(%a6),%sp
-
- movc %pcr,%d1
- btst &0x1,%d1
- bne.b iea_dacc_cont
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
- fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs
-iea_dacc_cont:
- mov.l (%a6),%a6
-
- mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp)
- mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp)
- mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp)
- mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp)
- mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp)
- mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp)
-
- movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1
- add.w &LOCAL_SIZE-0x4,%sp
-
- bra.b iea_acc_done
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_operr(): 060FPSP entry point for FP Operr exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Operand Error exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# _real_operr() - "callout" to operating system operr handler #
-# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
-# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
-# facc_out_{b,w,l}() - store to memory took access error (opcl 3) #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Operr exception frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# No access error: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the FP Operr exception is enabled, the goal #
-# is to get to the handler specified at _real_operr(). But, on the 060, #
-# for opclass zero and two instruction taking this exception, the #
-# input operand in the fsave frame may be incorrect for some cases #
-# and needs to be corrected. This handler calls fix_skewed_ops() to #
-# do just this and then exits through _real_operr(). #
-# For opclass 3 instructions, the 060 doesn't store the default #
-# operr result out to memory or data register file as it should. #
-# This code must emulate the move out before finally exiting through #
-# _real_inex(). The move out, if to memory, is performed using #
-# _mem_write() "callout" routines that may return a failing result. #
-# In this special case, the handler must exit through facc_out() #
-# which creates an access error stack frame from the current operr #
-# stack frame. #
-# #
-#########################################################################
-
- global _fpsp_operr
-_fpsp_operr:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &13,%d0 # is instr an fmove out?
- bne.b foperr_out # fmove out
-
-
-# here, we simply see if the operand in the fsave frame needs to be "unskewed".
-# this would be the case for opclass two operations with a source infinity or
-# denorm operand in the sgl or dbl format. NANs also become skewed, but can't
-# cause an operr so we don't need to check for them here.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-foperr_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_operr
-
-########################################################################
-
-#
-# the hardware does not save the default result to memory on enabled
-# operand error exceptions. we do this here before passing control to
-# the user operand error handler.
-#
-# byte, word, and long destination format operations can pass
-# through here. we simply need to test the sign of the src
-# operand and save the appropriate minimum or maximum integer value
-# to the effective address as pointed to by the stacked effective address.
-#
-# although packed opclass three operations can take operand error
-# exceptions, they won't pass through here since they are caught
-# first by the unsupported data format exception handler. that handler
-# sends them directly to _real_operr() if necessary.
-#
-foperr_out:
-
- mov.w FP_SRC_EX(%a6),%d1 # fetch exponent
- andi.w &0x7fff,%d1
- cmpi.w %d1,&0x7fff
- bne.b foperr_out_not_qnan
-# the operand is either an infinity or a QNAN.
- tst.l FP_SRC_LO(%a6)
- bne.b foperr_out_qnan
- mov.l FP_SRC_HI(%a6),%d1
- andi.l &0x7fffffff,%d1
- beq.b foperr_out_not_qnan
-foperr_out_qnan:
- mov.l FP_SRC_HI(%a6),L_SCR1(%a6)
- bra.b foperr_out_jmp
-
-foperr_out_not_qnan:
- mov.l &0x7fffffff,%d1
- tst.b FP_SRC_EX(%a6)
- bpl.b foperr_out_not_qnan2
- addq.l &0x1,%d1
-foperr_out_not_qnan2:
- mov.l %d1,L_SCR1(%a6)
-
-foperr_out_jmp:
- bfextu %d0{&19:&3},%d0 # extract dst format field
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
- mov.w (tbl_operr.b,%pc,%d0.w*2),%a0
- jmp (tbl_operr.b,%pc,%a0)
-
-tbl_operr:
- short foperr_out_l - tbl_operr # long word integer
- short tbl_operr - tbl_operr # sgl prec shouldn't happen
- short tbl_operr - tbl_operr # ext prec shouldn't happen
- short foperr_exit - tbl_operr # packed won't enter here
- short foperr_out_w - tbl_operr # word integer
- short tbl_operr - tbl_operr # dbl prec shouldn't happen
- short foperr_out_b - tbl_operr # byte integer
- short tbl_operr - tbl_operr # packed won't enter here
-
-foperr_out_b:
- mov.b L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_b_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_byte # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
-
- bra.w foperr_exit
-foperr_out_b_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_b # store result to regfile
- bra.w foperr_exit
-
-foperr_out_w:
- mov.w L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_w_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_word # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
-
- bra.w foperr_exit
-foperr_out_w_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_w # store result to regfile
- bra.w foperr_exit
-
-foperr_out_l:
- mov.l L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_l_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.w foperr_exit
-foperr_out_l_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w foperr_exit
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Signalling NAN exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# _real_snan() - "callout" to operating system SNAN handler #
-# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
-# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
-# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) #
-# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP SNAN exception frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# No access error: #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the FP SNAN exception is enabled, the goal #
-# is to get to the handler specified at _real_snan(). But, on the 060, #
-# for opclass zero and two instructions taking this exception, the #
-# input operand in the fsave frame may be incorrect for some cases #
-# and needs to be corrected. This handler calls fix_skewed_ops() to #
-# do just this and then exits through _real_snan(). #
-# For opclass 3 instructions, the 060 doesn't store the default #
-# SNAN result out to memory or data register file as it should. #
-# This code must emulate the move out before finally exiting through #
-# _real_snan(). The move out, if to memory, is performed using #
-# _mem_write() "callout" routines that may return a failing result. #
-# In this special case, the handler must exit through facc_out() #
-# which creates an access error stack frame from the current SNAN #
-# stack frame. #
-# For the case of an extended precision opclass 3 instruction, #
-# if the effective addressing mode was -() or ()+, then the address #
-# register must get updated by calling _calc_ea_fout(). If the <ea> #
-# was -(a7) from supervisor mode, then the exception frame currently #
-# on the system stack must be carefully moved "down" to make room #
-# for the operand being moved. #
-# #
-#########################################################################
-
- global _fpsp_snan
-_fpsp_snan:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &13,%d0 # is instr an fmove out?
- bne.w fsnan_out # fmove out
-
-
-# here, we simply see if the operand in the fsave frame needs to be "unskewed".
-# this would be the case for opclass two operations with a source infinity or
-# denorm operand in the sgl or dbl format. NANs also become skewed and must be
-# fixed here.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-fsnan_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_snan
-
-########################################################################
-
-#
-# the hardware does not save the default result to memory on enabled
-# snan exceptions. we do this here before passing control to
-# the user snan handler.
-#
-# byte, word, long, and packed destination format operations can pass
-# through here. since packed format operations already were handled by
-# fpsp_unsupp(), then we need to do nothing else for them here.
-# for byte, word, and long, we simply need to test the sign of the src
-# operand and save the appropriate minimum or maximum integer value
-# to the effective address as pointed to by the stacked effective address.
-#
-fsnan_out:
-
- bfextu %d0{&19:&3},%d0 # extract dst format field
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
- mov.w (tbl_snan.b,%pc,%d0.w*2),%a0
- jmp (tbl_snan.b,%pc,%a0)
-
-tbl_snan:
- short fsnan_out_l - tbl_snan # long word integer
- short fsnan_out_s - tbl_snan # sgl prec shouldn't happen
- short fsnan_out_x - tbl_snan # ext prec shouldn't happen
- short tbl_snan - tbl_snan # packed needs no help
- short fsnan_out_w - tbl_snan # word integer
- short fsnan_out_d - tbl_snan # dbl prec shouldn't happen
- short fsnan_out_b - tbl_snan # byte integer
- short tbl_snan - tbl_snan # packed needs no help
-
-fsnan_out_b:
- mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN
- bset &6,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_b_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_byte # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
-
- bra.w fsnan_exit
-fsnan_out_b_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_b # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_w:
- mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN
- bset &14,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_w_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_word # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
-
- bra.w fsnan_exit
-fsnan_out_w_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_w # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_l:
- mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN
- bset &30,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_l_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.w fsnan_exit
-fsnan_out_l_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_s:
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_d_dn # yes
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
- mov.l FP_SRC_HI(%a6),%d1 # load mantissa
- lsr.l &0x8,%d1 # shift mantissa for sgl
- or.l %d1,%d0 # create sgl SNAN
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.w fsnan_exit
-fsnan_out_d_dn:
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
- mov.l %d1,-(%sp)
- mov.l FP_SRC_HI(%a6),%d1 # load mantissa
- lsr.l &0x8,%d1 # shift mantissa for sgl
- or.l %d1,%d0 # create sgl SNAN
- mov.l (%sp)+,%d1
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w fsnan_exit
-
-fsnan_out_d:
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit
- mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
- mov.l %d0,FP_SCR0_EX(%a6) # store to temp space
- mov.l &11,%d0 # load shift amt
- lsr.l %d0,%d1
- or.l %d1,FP_SCR0_EX(%a6) # create dbl hi
- mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
- andi.l &0x000007ff,%d1
- ror.l %d0,%d1
- mov.l %d1,FP_SCR0_HI(%a6) # store to temp space
- mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa
- lsr.l %d0,%d1
- or.l %d1,FP_SCR0_HI(%a6) # create dbl lo
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- movq.l &0x8,%d0 # pass: size of 8 bytes
- bsr.l _dmem_write # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- bra.w fsnan_exit
-
-# for extended precision, if the addressing mode is pre-decrement or
-# post-increment, then the address register did not get updated.
-# in addition, for pre-decrement, the stacked <ea> is incorrect.
-fsnan_out_x:
- clr.b SPCOND_FLG(%a6) # clear special case flag
-
- mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6)
- clr.w 2+FP_SCR0(%a6)
- mov.l FP_SRC_HI(%a6),%d0
- bset &30,%d0
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6)
-
- btst &0x5,EXC_SR(%a6) # supervisor mode exception?
- bne.b fsnan_out_x_s # yes
-
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea()
- mov.l (%a6),EXC_A6(%a6)
-
- bsr.l _calc_ea_fout # find the correct ea,update An
- mov.l %a0,%a1
- mov.l %a0,EXC_EA(%a6) # stack correct <ea>
-
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp # restore user stack pointer
- mov.l EXC_A6(%a6),(%a6)
-
-fsnan_out_x_save:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- movq.l &0xc,%d0 # pass: size of extended
- bsr.l _dmem_write # write the default result
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_x # yes
-
- bra.w fsnan_exit
-
-fsnan_out_x_s:
- mov.l (%a6),EXC_A6(%a6)
-
- bsr.l _calc_ea_fout # find the correct ea,update An
- mov.l %a0,%a1
- mov.l %a0,EXC_EA(%a6) # stack correct <ea>
-
- mov.l EXC_A6(%a6),(%a6)
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
- bne.b fsnan_out_x_save # no
-
-# the operation was "fmove.x SNAN,-(a7)" from supervisor mode.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- mov.l EXC_A6(%a6),%a6 # restore frame pointer
-
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
-
- mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp)
-
- add.l &LOCAL_SIZE-0x8,%sp
-
- bra.l _real_snan
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. #
-# #
-# This handler should be the first code executed upon taking the #
-# FP Inexact exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword #
-# fix_skewed_ops() - adjust src operand in fsave frame #
-# set_tag_x() - determine optype of src/dst operands #
-# store_fpreg() - store opclass 0 or 2 result to FP regfile #
-# unnorm_fix() - change UNNORM operands to NORM or ZERO #
-# load_fpn2() - load dst operand from FP regfile #
-# smovcr() - emulate an "fmovcr" instruction #
-# fout() - emulate an opclass 3 instruction #
-# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
-# _real_inex() - "callout" to operating system inexact handler #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP Inexact exception frame #
-# - The fsave frame contains the source operand #
-# #
-# OUTPUT ************************************************************** #
-# - The system stack is unchanged #
-# - The fsave frame contains the adjusted src op for opclass 0,2 #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the FP Inexact exception is enabled, the goal #
-# is to get to the handler specified at _real_inex(). But, on the 060, #
-# for opclass zero and two instruction taking this exception, the #
-# hardware doesn't store the correct result to the destination FP #
-# register as did the '040 and '881/2. This handler must emulate the #
-# instruction in order to get this value and then store it to the #
-# correct register before calling _real_inex(). #
-# For opclass 3 instructions, the 060 doesn't store the default #
-# inexact result out to memory or data register file as it should. #
-# This code must emulate the move out by calling fout() before finally #
-# exiting through _real_inex(). #
-# #
-#########################################################################
-
- global _fpsp_inex
-_fpsp_inex:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
- btst &13,%d0 # is instr an fmove out?
- bne.w finex_out # fmove out
-
-
-# the hardware, for "fabs" and "fneg" w/ a long source format, puts the
-# longword integer directly into the upper longword of the mantissa along
-# w/ an exponent value of 0x401e. we convert this to extended precision here.
- bfextu %d0{&19:&3},%d0 # fetch instr size
- bne.b finex_cont # instr size is not long
- cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e?
- bne.b finex_cont # no
- fmov.l &0x0,%fpcr
- fmov.l FP_SRC_HI(%a6),%fp0 # load integer src
- fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision
- mov.w &0xe001,0x2+FP_SRC(%a6)
-
-finex_cont:
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-# Here, we zero the ccode and exception byte field since we're going to
-# emulate the whole instruction. Notice, though, that we don't kill the
-# INEX1 bit. This is because a packed op has long since been converted
-# to extended before arriving here. Therefore, we need to retain the
-# INEX1 bit from when the operand was first converted.
- andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
-
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
-
- bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg
- cmpi.b %d1,&0x17 # is op an fmovecr?
- beq.w finex_fmovcr # yes
-
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
-
-# bits four and five of the fp extension word separate the monadic and dyadic
-# operations that can pass through fpsp_inex(). remember that fcmp and ftst
-# will never take this exception, but fsincos will.
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b finex_extract # monadic
-
- btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos?
- bne.b finex_extract # yes
-
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
-
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b finex_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
-finex_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
-
-finex_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
-
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
-
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
-
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
-
-# the operation has been emulated. the result is in fp0.
-finex_save:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
-
-finex_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_inex
-
-finex_fmovcr:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.l &0x0000007f,%d1 # pass rom offset
- bsr.l smovcr
- bra.b finex_save
-
-########################################################################
-
-#
-# the hardware does not save the default result to memory on enabled
-# inexact exceptions. we do this here before passing control to
-# the user inexact handler.
-#
-# byte, word, and long destination format operations can pass
-# through here. so can double and single precision.
-# although packed opclass three operations can take inexact
-# exceptions, they won't pass through here since they are caught
-# first by the unsupported data format exception handler. that handler
-# sends them directly to _real_inex() if necessary.
-#
-finex_out:
-
- mov.b &NORM,STAG(%a6) # src is a NORM
-
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
-
- andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
-
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
-
- bsr.l fout # store the default result
-
- bra.b finex_exit
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_dz(): 060FPSP entry point for FP DZ exception. #
-# #
-# This handler should be the first code executed upon taking #
-# the FP DZ exception in an operating system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read instruction longword from memory #
-# fix_skewed_ops() - adjust fsave operand #
-# _real_dz() - "callout" exit point from FP DZ handler #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the FP DZ exception stack. #
-# - The fsave frame contains the source operand. #
-# #
-# OUTPUT ************************************************************** #
-# - The system stack contains the FP DZ exception stack. #
-# - The fsave frame contains the adjusted source operand. #
-# #
-# ALGORITHM *********************************************************** #
-# In a system where the DZ exception is enabled, the goal is to #
-# get to the handler specified at _real_dz(). But, on the 060, when the #
-# exception is taken, the input operand in the fsave state frame may #
-# be incorrect for some cases and need to be adjusted. So, this package #
-# adjusts the operand using fix_skewed_ops() and then branches to #
-# _real_dz(). #
-# #
-#########################################################################
-
- global _fpsp_dz
-_fpsp_dz:
-
- link.w %a6,&-LOCAL_SIZE # init stack frame
-
- fsave FP_SRC(%a6) # grab the "busy" frame
-
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
-
-# the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
-
-##############################################################################
-
-
-# here, we simply see if the operand in the fsave frame needs to be "unskewed".
-# this would be the case for opclass two operations with a source zero
-# in the sgl or dbl format.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
-
-fdz_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- frestore FP_SRC(%a6)
-
- unlk %a6
- bra.l _real_dz
-
-#########################################################################
-# XDEF **************************************************************** #
-# _fpsp_fline(): 060FPSP entry point for "Line F emulator" #
-# exception when the "reduced" version of the #
-# FPSP is implemented that does not emulate #
-# FP unimplemented instructions. #
-# #
-# This handler should be the first code executed upon taking a #
-# "Line F Emulator" exception in an operating system integrating #
-# the reduced version of 060FPSP. #
-# #
-# XREF **************************************************************** #
-# _real_fpu_disabled() - Handle "FPU disabled" exceptions #
-# _real_fline() - Handle all other cases (treated equally) #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains a "Line F Emulator" exception #
-# stack frame. #
-# #
-# OUTPUT ************************************************************** #
-# - The system stack is unchanged. #
-# #
-# ALGORITHM *********************************************************** #
-# When a "Line F Emulator" exception occurs in a system where #
-# "FPU Unimplemented" instructions will not be emulated, the exception #
-# can occur because then FPU is disabled or the instruction is to be #
-# classifed as "Line F". This module determines which case exists and #
-# calls the appropriate "callout". #
-# #
-#########################################################################
-
- global _fpsp_fline
-_fpsp_fline:
-
-# check to see if the FPU is disabled. if so, jump to the OS entry
-# point for that condition.
- cmpi.w 0x6(%sp),&0x402c
- beq.l _real_fpu_disabled
-
- bra.l _real_fline
-
-#########################################################################
-# XDEF **************************************************************** #
-# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception #
-# #
-# XREF **************************************************************** #
-# inc_areg() - increment an address register #
-# dec_areg() - decrement an address register #
-# #
-# INPUT *************************************************************** #
-# d0 = number of bytes to adjust <ea> by #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# "Dummy" CALCulate Effective Address: #
-# The stacked <ea> for FP unimplemented instructions and opclass #
-# two packed instructions is correct with the exception of... #
-# #
-# 1) -(An) : The register is not updated regardless of size. #
-# Also, for extended precision and packed, the #
-# stacked <ea> value is 8 bytes too big #
-# 2) (An)+ : The register is not updated. #
-# 3) #<data> : The upper longword of the immediate operand is #
-# stacked b,w,l and s sizes are completely stacked. #
-# d,x, and p are not. #
-# #
-#########################################################################
-
- global _dcalc_ea
-_dcalc_ea:
- mov.l %d0, %a0 # move # bytes to %a0
-
- mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word
- mov.l %d0, %d1 # make a copy
-
- andi.w &0x38, %d0 # extract mode field
- andi.l &0x7, %d1 # extract reg field
-
- cmpi.b %d0,&0x18 # is mode (An)+ ?
- beq.b dcea_pi # yes
-
- cmpi.b %d0,&0x20 # is mode -(An) ?
- beq.b dcea_pd # yes
-
- or.w %d1,%d0 # concat mode,reg
- cmpi.b %d0,&0x3c # is mode #<data>?
-
- beq.b dcea_imm # yes
-
- mov.l EXC_EA(%a6),%a0 # return <ea>
- rts
-
-# need to set immediate data flag here since we'll need to do
-# an imem_read to fetch this later.
-dcea_imm:
- mov.b &immed_flg,SPCOND_FLG(%a6)
- lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea>
- rts
-
-# here, the <ea> is stacked correctly. however, we must update the
-# address register...
-dcea_pi:
- mov.l %a0,%d0 # pass amt to inc by
- bsr.l inc_areg # inc addr register
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- rts
-
-# the <ea> is stacked correctly for all but extended and packed which
-# the <ea>s are 8 bytes too large.
-# it would make no sense to have a pre-decrement to a7 in supervisor
-# mode so we don't even worry about this tricky case here : )
-dcea_pd:
- mov.l %a0,%d0 # pass amt to dec by
- bsr.l dec_areg # dec addr register
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
-
- cmpi.b %d0,&0xc # is opsize ext or packed?
- beq.b dcea_pd2 # yes
- rts
-dcea_pd2:
- sub.l &0x8,%a0 # correct <ea>
- mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _calc_ea_fout(): calculate correct stacked <ea> for extended #
-# and packed data opclass 3 operations. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# a0 = return correct effective address #
-# #
-# ALGORITHM *********************************************************** #
-# For opclass 3 extended and packed data operations, the <ea> #
-# stacked for the exception is incorrect for -(an) and (an)+ addressing #
-# modes. Also, while we're at it, the index register itself must get #
-# updated. #
-# So, for -(an), we must subtract 8 off of the stacked <ea> value #
-# and return that value as the correct <ea> and store that value in An. #
-# For (an)+, the stacked <ea> is correct but we must adjust An by +12. #
-# #
-#########################################################################
-
-# This calc_ea is currently used to retrieve the correct <ea>
-# for fmove outs of type extended and packed.
- global _calc_ea_fout
-_calc_ea_fout:
- mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.l %d0,%d1 # make a copy
-
- andi.w &0x38,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
-
- cmpi.b %d0,&0x18 # is mode (An)+ ?
- beq.b ceaf_pi # yes
-
- cmpi.b %d0,&0x20 # is mode -(An) ?
- beq.w ceaf_pd # yes
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- rts
-
-# (An)+ : extended and packed fmove out
-# : stacked <ea> is correct
-# : "An" not updated
-ceaf_pi:
- mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1
- mov.l EXC_EA(%a6),%a0
- jmp (tbl_ceaf_pi.b,%pc,%d1.w*1)
-
- swbeg &0x8
-tbl_ceaf_pi:
- short ceaf_pi0 - tbl_ceaf_pi
- short ceaf_pi1 - tbl_ceaf_pi
- short ceaf_pi2 - tbl_ceaf_pi
- short ceaf_pi3 - tbl_ceaf_pi
- short ceaf_pi4 - tbl_ceaf_pi
- short ceaf_pi5 - tbl_ceaf_pi
- short ceaf_pi6 - tbl_ceaf_pi
- short ceaf_pi7 - tbl_ceaf_pi
-
-ceaf_pi0:
- addi.l &0xc,EXC_DREGS+0x8(%a6)
- rts
-ceaf_pi1:
- addi.l &0xc,EXC_DREGS+0xc(%a6)
- rts
-ceaf_pi2:
- add.l &0xc,%a2
- rts
-ceaf_pi3:
- add.l &0xc,%a3
- rts
-ceaf_pi4:
- add.l &0xc,%a4
- rts
-ceaf_pi5:
- add.l &0xc,%a5
- rts
-ceaf_pi6:
- addi.l &0xc,EXC_A6(%a6)
- rts
-ceaf_pi7:
- mov.b &mia7_flg,SPCOND_FLG(%a6)
- addi.l &0xc,EXC_A7(%a6)
- rts
-
-# -(An) : extended and packed fmove out
-# : stacked <ea> = actual <ea> + 8
-# : "An" not updated
-ceaf_pd:
- mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1
- mov.l EXC_EA(%a6),%a0
- sub.l &0x8,%a0
- sub.l &0x8,EXC_EA(%a6)
- jmp (tbl_ceaf_pd.b,%pc,%d1.w*1)
-
- swbeg &0x8
-tbl_ceaf_pd:
- short ceaf_pd0 - tbl_ceaf_pd
- short ceaf_pd1 - tbl_ceaf_pd
- short ceaf_pd2 - tbl_ceaf_pd
- short ceaf_pd3 - tbl_ceaf_pd
- short ceaf_pd4 - tbl_ceaf_pd
- short ceaf_pd5 - tbl_ceaf_pd
- short ceaf_pd6 - tbl_ceaf_pd
- short ceaf_pd7 - tbl_ceaf_pd
-
-ceaf_pd0:
- mov.l %a0,EXC_DREGS+0x8(%a6)
- rts
-ceaf_pd1:
- mov.l %a0,EXC_DREGS+0xc(%a6)
- rts
-ceaf_pd2:
- mov.l %a0,%a2
- rts
-ceaf_pd3:
- mov.l %a0,%a3
- rts
-ceaf_pd4:
- mov.l %a0,%a4
- rts
-ceaf_pd5:
- mov.l %a0,%a5
- rts
-ceaf_pd6:
- mov.l %a0,EXC_A6(%a6)
- rts
-ceaf_pd7:
- mov.l %a0,EXC_A7(%a6)
- mov.b &mda7_flg,SPCOND_FLG(%a6)
- rts
-
-#
-# This table holds the offsets of the emulation routines for each individual
-# math operation relative to the address of this table. Included are
-# routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because
-# this table is for the version if the 060FPSP without transcendentals.
-# The location within the table is determined by the extension bits of the
-# operation longword.
-#
-
- swbeg &109
-tbl_unsupp:
- long fin - tbl_unsupp # 00: fmove
- long fint - tbl_unsupp # 01: fint
- long tbl_unsupp - tbl_unsupp # 02: fsinh
- long fintrz - tbl_unsupp # 03: fintrz
- long fsqrt - tbl_unsupp # 04: fsqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 06: flognp1
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 08: fetoxm1
- long tbl_unsupp - tbl_unsupp # 09: ftanh
- long tbl_unsupp - tbl_unsupp # 0a: fatan
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 0c: fasin
- long tbl_unsupp - tbl_unsupp # 0d: fatanh
- long tbl_unsupp - tbl_unsupp # 0e: fsin
- long tbl_unsupp - tbl_unsupp # 0f: ftan
- long tbl_unsupp - tbl_unsupp # 10: fetox
- long tbl_unsupp - tbl_unsupp # 11: ftwotox
- long tbl_unsupp - tbl_unsupp # 12: ftentox
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 14: flogn
- long tbl_unsupp - tbl_unsupp # 15: flog10
- long tbl_unsupp - tbl_unsupp # 16: flog2
- long tbl_unsupp - tbl_unsupp
- long fabs - tbl_unsupp # 18: fabs
- long tbl_unsupp - tbl_unsupp # 19: fcosh
- long fneg - tbl_unsupp # 1a: fneg
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 1c: facos
- long tbl_unsupp - tbl_unsupp # 1d: fcos
- long tbl_unsupp - tbl_unsupp # 1e: fgetexp
- long tbl_unsupp - tbl_unsupp # 1f: fgetman
- long fdiv - tbl_unsupp # 20: fdiv
- long tbl_unsupp - tbl_unsupp # 21: fmod
- long fadd - tbl_unsupp # 22: fadd
- long fmul - tbl_unsupp # 23: fmul
- long fsgldiv - tbl_unsupp # 24: fsgldiv
- long tbl_unsupp - tbl_unsupp # 25: frem
- long tbl_unsupp - tbl_unsupp # 26: fscale
- long fsglmul - tbl_unsupp # 27: fsglmul
- long fsub - tbl_unsupp # 28: fsub
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 30: fsincos
- long tbl_unsupp - tbl_unsupp # 31: fsincos
- long tbl_unsupp - tbl_unsupp # 32: fsincos
- long tbl_unsupp - tbl_unsupp # 33: fsincos
- long tbl_unsupp - tbl_unsupp # 34: fsincos
- long tbl_unsupp - tbl_unsupp # 35: fsincos
- long tbl_unsupp - tbl_unsupp # 36: fsincos
- long tbl_unsupp - tbl_unsupp # 37: fsincos
- long fcmp - tbl_unsupp # 38: fcmp
- long tbl_unsupp - tbl_unsupp
- long ftst - tbl_unsupp # 3a: ftst
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsin - tbl_unsupp # 40: fsmove
- long fssqrt - tbl_unsupp # 41: fssqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fdin - tbl_unsupp # 44: fdmove
- long fdsqrt - tbl_unsupp # 45: fdsqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsabs - tbl_unsupp # 58: fsabs
- long tbl_unsupp - tbl_unsupp
- long fsneg - tbl_unsupp # 5a: fsneg
- long tbl_unsupp - tbl_unsupp
- long fdabs - tbl_unsupp # 5c: fdabs
- long tbl_unsupp - tbl_unsupp
- long fdneg - tbl_unsupp # 5e: fdneg
- long tbl_unsupp - tbl_unsupp
- long fsdiv - tbl_unsupp # 60: fsdiv
- long tbl_unsupp - tbl_unsupp
- long fsadd - tbl_unsupp # 62: fsadd
- long fsmul - tbl_unsupp # 63: fsmul
- long fddiv - tbl_unsupp # 64: fddiv
- long tbl_unsupp - tbl_unsupp
- long fdadd - tbl_unsupp # 66: fdadd
- long fdmul - tbl_unsupp # 67: fdmul
- long fssub - tbl_unsupp # 68: fssub
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fdsub - tbl_unsupp # 6c: fdsub
-
-#################################################
-# Add this here so non-fp modules can compile.
-# (smovcr is called from fpsp_inex.)
- global smovcr
-smovcr:
- bra.b smovcr
-
-#########################################################################
-# XDEF **************************************************************** #
-# fmovm_dynamic(): emulate "fmovm" dynamic instruction #
-# #
-# XREF **************************************************************** #
-# fetch_dreg() - fetch data register #
-# {i,d,}mem_read() - fetch data from memory #
-# _mem_write() - write data to memory #
-# iea_iacc() - instruction memory access error occurred #
-# iea_dacc() - data memory access error occurred #
-# restore() - restore An index regs if access error occurred #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If instr is "fmovm Dn,-(A7)" from supervisor mode, #
-# d0 = size of dump #
-# d1 = Dn #
-# Else if instruction access error, #
-# d0 = FSLW #
-# Else if data access error, #
-# d0 = FSLW #
-# a0 = address of fault #
-# Else #
-# none. #
-# #
-# ALGORITHM *********************************************************** #
-# The effective address must be calculated since this is entered #
-# from an "Unimplemented Effective Address" exception handler. So, we #
-# have our own fcalc_ea() routine here. If an access error is flagged #
-# by a _{i,d,}mem_read() call, we must exit through the special #
-# handler. #
-# The data register is determined and its value loaded to get the #
-# string of FP registers affected. This value is used as an index into #
-# a lookup table such that we can determine the number of bytes #
-# involved. #
-# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used #
-# to read in all FP values. Again, _mem_read() may fail and require a #
-# special exit. #
-# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used #
-# to write all FP values. _mem_write() may also fail. #
-# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, #
-# then we return the size of the dump and the string to the caller #
-# so that the move can occur outside of this routine. This special #
-# case is required so that moves to the system stack are handled #
-# correctly. #
-# #
-# DYNAMIC: #
-# fmovm.x dn, <ea> #
-# fmovm.x <ea>, dn #
-# #
-# <WORD 1> <WORD2> #
-# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 #
-# #
-# & = (0): predecrement addressing mode #
-# (1): postincrement or control addressing mode #
-# @ = (0): move listed regs from memory to the FPU #
-# (1): move listed regs from the FPU to memory #
-# $$$ : index of data register holding reg select mask #
-# #
-# NOTES: #
-# If the data register holds a zero, then the #
-# instruction is a nop. #
-# #
-#########################################################################
-
- global fmovm_dynamic
-fmovm_dynamic:
-
-# extract the data register in which the bit string resides...
- mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword
- andi.w &0x70,%d1 # extract reg bits
- lsr.b &0x4,%d1 # shift into lo bits
-
-# fetch the bit string into d0...
- bsr.l fetch_dreg # fetch reg string
-
- andi.l &0x000000ff,%d0 # keep only lo byte
-
- mov.l %d0,-(%sp) # save strg
- mov.b (tbl_fmovm_size.w,%pc,%d0),%d0
- mov.l %d0,-(%sp) # save size
- bsr.l fmovm_calc_ea # calculate <ea>
- mov.l (%sp)+,%d0 # restore size
- mov.l (%sp)+,%d1 # restore strg
-
-# if the bit string is a zero, then the operation is a no-op
-# but, make sure that we've calculated ea and advanced the opword pointer
- beq.w fmovm_data_done
-
-# separate move ins from move outs...
- btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out?
- beq.w fmovm_data_in # it's a move out
-
-#############
-# MOVE OUT: #
-#############
-fmovm_data_out:
- btst &0x4,EXC_EXTWORD(%a6) # control or predecrement?
- bne.w fmovm_out_ctrl # control
-
-############################
-fmovm_out_predec:
-# for predecrement mode, the bit string is the opposite of both control
-# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0)
-# here, we convert it to be just like the others...
- mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1
-
- btst &0x5,EXC_SR(%a6) # user or supervisor mode?
- beq.b fmovm_out_ctrl # user
-
-fmovm_out_predec_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
- bne.b fmovm_out_ctrl
-
-# the operation was unfortunately an: fmovm.x dn,-(sp)
-# called from supervisor mode.
-# we're also passing "size" and "strg" back to the calling routine
- rts
-
-############################
-fmovm_out_ctrl:
- mov.l %a0,%a1 # move <ea> to a1
-
- sub.l %d0,%sp # subtract size of dump
- lea (%sp),%a0
-
- tst.b %d1 # should FP0 be moved?
- bpl.b fmovm_out_ctrl_fp1 # no
-
- mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes
- mov.l 0x4+EXC_FP0(%a6),(%a0)+
- mov.l 0x8+EXC_FP0(%a6),(%a0)+
-
-fmovm_out_ctrl_fp1:
- lsl.b &0x1,%d1 # should FP1 be moved?
- bpl.b fmovm_out_ctrl_fp2 # no
-
- mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes
- mov.l 0x4+EXC_FP1(%a6),(%a0)+
- mov.l 0x8+EXC_FP1(%a6),(%a0)+
-
-fmovm_out_ctrl_fp2:
- lsl.b &0x1,%d1 # should FP2 be moved?
- bpl.b fmovm_out_ctrl_fp3 # no
-
- fmovm.x &0x20,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp3:
- lsl.b &0x1,%d1 # should FP3 be moved?
- bpl.b fmovm_out_ctrl_fp4 # no
-
- fmovm.x &0x10,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp4:
- lsl.b &0x1,%d1 # should FP4 be moved?
- bpl.b fmovm_out_ctrl_fp5 # no
-
- fmovm.x &0x08,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp5:
- lsl.b &0x1,%d1 # should FP5 be moved?
- bpl.b fmovm_out_ctrl_fp6 # no
-
- fmovm.x &0x04,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp6:
- lsl.b &0x1,%d1 # should FP6 be moved?
- bpl.b fmovm_out_ctrl_fp7 # no
-
- fmovm.x &0x02,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_fp7:
- lsl.b &0x1,%d1 # should FP7 be moved?
- bpl.b fmovm_out_ctrl_done # no
-
- fmovm.x &0x01,(%a0) # yes
- add.l &0xc,%a0
-
-fmovm_out_ctrl_done:
- mov.l %a1,L_SCR1(%a6)
-
- lea (%sp),%a0 # pass: supervisor src
- mov.l %d0,-(%sp) # save size
- bsr.l _dmem_write # copy data to user mem
-
- mov.l (%sp)+,%d0
- add.l %d0,%sp # clear fpreg data from stack
-
- tst.l %d1 # did dstore err?
- bne.w fmovm_out_err # yes
-
- rts
-
-############
-# MOVE IN: #
-############
-fmovm_data_in:
- mov.l %a0,L_SCR1(%a6)
-
- sub.l %d0,%sp # make room for fpregs
- lea (%sp),%a1
-
- mov.l %d1,-(%sp) # save bit string for later
- mov.l %d0,-(%sp) # save # of bytes
-
- bsr.l _dmem_read # copy data from user mem
-
- mov.l (%sp)+,%d0 # retrieve # of bytes
-
- tst.l %d1 # did dfetch fail?
- bne.w fmovm_in_err # yes
-
- mov.l (%sp)+,%d1 # load bit string
-
- lea (%sp),%a0 # addr of stack
-
- tst.b %d1 # should FP0 be moved?
- bpl.b fmovm_data_in_fp1 # no
-
- mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes
- mov.l (%a0)+,0x4+EXC_FP0(%a6)
- mov.l (%a0)+,0x8+EXC_FP0(%a6)
-
-fmovm_data_in_fp1:
- lsl.b &0x1,%d1 # should FP1 be moved?
- bpl.b fmovm_data_in_fp2 # no
-
- mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes
- mov.l (%a0)+,0x4+EXC_FP1(%a6)
- mov.l (%a0)+,0x8+EXC_FP1(%a6)
-
-fmovm_data_in_fp2:
- lsl.b &0x1,%d1 # should FP2 be moved?
- bpl.b fmovm_data_in_fp3 # no
-
- fmovm.x (%a0)+,&0x20 # yes
-
-fmovm_data_in_fp3:
- lsl.b &0x1,%d1 # should FP3 be moved?
- bpl.b fmovm_data_in_fp4 # no
-
- fmovm.x (%a0)+,&0x10 # yes
-
-fmovm_data_in_fp4:
- lsl.b &0x1,%d1 # should FP4 be moved?
- bpl.b fmovm_data_in_fp5 # no
-
- fmovm.x (%a0)+,&0x08 # yes
-
-fmovm_data_in_fp5:
- lsl.b &0x1,%d1 # should FP5 be moved?
- bpl.b fmovm_data_in_fp6 # no
-
- fmovm.x (%a0)+,&0x04 # yes
-
-fmovm_data_in_fp6:
- lsl.b &0x1,%d1 # should FP6 be moved?
- bpl.b fmovm_data_in_fp7 # no
-
- fmovm.x (%a0)+,&0x02 # yes
-
-fmovm_data_in_fp7:
- lsl.b &0x1,%d1 # should FP7 be moved?
- bpl.b fmovm_data_in_done # no
-
- fmovm.x (%a0)+,&0x01 # yes
-
-fmovm_data_in_done:
- add.l %d0,%sp # remove fpregs from stack
- rts
-
-#####################################
-
-fmovm_data_done:
- rts
-
-##############################################################################
-
-#
-# table indexed by the operation's bit string that gives the number
-# of bytes that will be moved.
-#
-# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg)
-#
-tbl_fmovm_size:
- byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60
-
-#
-# table to convert a pre-decrement bit string into a post-increment
-# or control bit string.
-# ex: 0x00 ==> 0x00
-# 0x01 ==> 0x80
-# 0x02 ==> 0x40
-# .
-# .
-# 0xfd ==> 0xbf
-# 0xfe ==> 0x7f
-# 0xff ==> 0xff
-#
-tbl_fmovm_convert:
- byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0
- byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
- byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8
- byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8
- byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4
- byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4
- byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec
- byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc
- byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2
- byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2
- byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea
- byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa
- byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6
- byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6
- byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee
- byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe
- byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1
- byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1
- byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9
- byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9
- byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5
- byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5
- byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed
- byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd
- byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3
- byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3
- byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb
- byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb
- byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7
- byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7
- byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef
- byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
-
- global fmovm_calc_ea
-###############################################
-# _fmovm_calc_ea: calculate effective address #
-###############################################
-fmovm_calc_ea:
- mov.l %d0,%a0 # move # bytes to a0
-
-# currently, MODE and REG are taken from the EXC_OPWORD. this could be
-# easily changed if they were inputs passed in registers.
- mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.w %d0,%d1 # make a copy
-
- andi.w &0x3f,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
-
-# jump to the corresponding function for each {MODE,REG} pair.
- mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance
- jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
-
- swbeg &64
-tbl_fea_mode:
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
-
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
-
- short faddr_ind_a0 - tbl_fea_mode
- short faddr_ind_a1 - tbl_fea_mode
- short faddr_ind_a2 - tbl_fea_mode
- short faddr_ind_a3 - tbl_fea_mode
- short faddr_ind_a4 - tbl_fea_mode
- short faddr_ind_a5 - tbl_fea_mode
- short faddr_ind_a6 - tbl_fea_mode
- short faddr_ind_a7 - tbl_fea_mode
-
- short faddr_ind_p_a0 - tbl_fea_mode
- short faddr_ind_p_a1 - tbl_fea_mode
- short faddr_ind_p_a2 - tbl_fea_mode
- short faddr_ind_p_a3 - tbl_fea_mode
- short faddr_ind_p_a4 - tbl_fea_mode
- short faddr_ind_p_a5 - tbl_fea_mode
- short faddr_ind_p_a6 - tbl_fea_mode
- short faddr_ind_p_a7 - tbl_fea_mode
-
- short faddr_ind_m_a0 - tbl_fea_mode
- short faddr_ind_m_a1 - tbl_fea_mode
- short faddr_ind_m_a2 - tbl_fea_mode
- short faddr_ind_m_a3 - tbl_fea_mode
- short faddr_ind_m_a4 - tbl_fea_mode
- short faddr_ind_m_a5 - tbl_fea_mode
- short faddr_ind_m_a6 - tbl_fea_mode
- short faddr_ind_m_a7 - tbl_fea_mode
-
- short faddr_ind_disp_a0 - tbl_fea_mode
- short faddr_ind_disp_a1 - tbl_fea_mode
- short faddr_ind_disp_a2 - tbl_fea_mode
- short faddr_ind_disp_a3 - tbl_fea_mode
- short faddr_ind_disp_a4 - tbl_fea_mode
- short faddr_ind_disp_a5 - tbl_fea_mode
- short faddr_ind_disp_a6 - tbl_fea_mode
- short faddr_ind_disp_a7 - tbl_fea_mode
-
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
-
- short fabs_short - tbl_fea_mode
- short fabs_long - tbl_fea_mode
- short fpc_ind - tbl_fea_mode
- short fpc_ind_ext - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
-
-###################################
-# Address register indirect: (An) #
-###################################
-faddr_ind_a0:
- mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0
- rts
-
-faddr_ind_a1:
- mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1
- rts
-
-faddr_ind_a2:
- mov.l %a2,%a0 # Get current a2
- rts
-
-faddr_ind_a3:
- mov.l %a3,%a0 # Get current a3
- rts
-
-faddr_ind_a4:
- mov.l %a4,%a0 # Get current a4
- rts
-
-faddr_ind_a5:
- mov.l %a5,%a0 # Get current a5
- rts
-
-faddr_ind_a6:
- mov.l (%a6),%a0 # Get current a6
- rts
-
-faddr_ind_a7:
- mov.l EXC_A7(%a6),%a0 # Get current a7
- rts
-
-#####################################################
-# Address register indirect w/ postincrement: (An)+ #
-#####################################################
-faddr_ind_p_a0:
- mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a1:
- mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a2:
- mov.l %a2,%d0 # Get current a2
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a2 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a3:
- mov.l %a3,%d0 # Get current a3
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a3 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a4:
- mov.l %a4,%d0 # Get current a4
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a4 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a5:
- mov.l %a5,%d0 # Get current a5
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a5 # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a6:
- mov.l (%a6),%d0 # Get current a6
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_p_a7:
- mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l EXC_A7(%a6),%d0 # Get current a7
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_A7(%a6) # Save incr value
- mov.l %d0,%a0
- rts
-
-####################################################
-# Address register indirect w/ predecrement: -(An) #
-####################################################
-faddr_ind_m_a0:
- mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a1:
- mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a2:
- mov.l %a2,%d0 # Get current a2
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a2 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a3:
- mov.l %a3,%d0 # Get current a3
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a3 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a4:
- mov.l %a4,%d0 # Get current a4
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a4 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a5:
- mov.l %a5,%d0 # Get current a5
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a5 # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a6:
- mov.l (%a6),%d0 # Get current a6
- sub.l %a0,%d0 # Decrement
- mov.l %d0,(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-faddr_ind_m_a7:
- mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l EXC_A7(%a6),%d0 # Get current a7
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A7(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-########################################################
-# Address register indirect w/ displacement: (d16, An) #
-########################################################
-faddr_ind_disp_a0:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16
- rts
-
-faddr_ind_disp_a1:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16
- rts
-
-faddr_ind_disp_a2:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a2,%a0 # a2 + d16
- rts
-
-faddr_ind_disp_a3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a3,%a0 # a3 + d16
- rts
-
-faddr_ind_disp_a4:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a4,%a0 # a4 + d16
- rts
-
-faddr_ind_disp_a5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l %a5,%a0 # a5 + d16
- rts
-
-faddr_ind_disp_a6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l (%a6),%a0 # a6 + d16
- rts
-
-faddr_ind_disp_a7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_A7(%a6),%a0 # a7 + d16
- rts
-
-########################################################################
-# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) #
-# " " " w/ " (base displacement): (bd, An, Xn) #
-# Memory indirect postindexed: ([bd, An], Xn, od) #
-# Memory indirect preindexed: ([bd, An, Xn], od) #
-########################################################################
-faddr_ind_ext:
- addq.l &0x8,%d1
- bsr.l fetch_dreg # fetch base areg
- mov.l %d0,-(%sp)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch extword in d0
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l (%sp)+,%a0
-
- btst &0x8,%d0
- bne.w fcalc_mem_ind
-
- mov.l %d0,L_SCR1(%a6) # hold opword
-
- mov.l %d0,%d1
- rol.w &0x4,%d1
- andi.w &0xf,%d1 # extract index regno
-
-# count on fetch_dreg() not to alter a0...
- bsr.l fetch_dreg # fetch index
-
- mov.l %d2,-(%sp) # save d2
- mov.l L_SCR1(%a6),%d2 # fetch opword
-
- btst &0xb,%d2 # is it word or long?
- bne.b faii8_long
- ext.l %d0 # sign extend word index
-faii8_long:
- mov.l %d2,%d1
- rol.w &0x7,%d1
- andi.l &0x3,%d1 # extract scale value
-
- lsl.l %d1,%d0 # shift index by scale
-
- extb.l %d2 # sign extend displacement
- add.l %d2,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore old d2
- rts
-
-###########################
-# Absolute short: (XXX).W #
-###########################
-fabs_short:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch short address
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # return <ea> in a0
- rts
-
-##########################
-# Absolute long: (XXX).L #
-##########################
-fabs_long:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch long address
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,%a0 # return <ea> in a0
- rts
-
-#######################################################
-# Program counter indirect w/ displacement: (d16, PC) #
-#######################################################
-fpc_ind:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch word displacement
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_EXTWPTR(%a6),%a0 # pc + d16
-
-# _imem_read_word() increased the extwptr by 2. need to adjust here.
- subq.l &0x2,%a0 # adjust <ea>
- rts
-
-##########################################################
-# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
-# " " w/ " (base displacement): (bd, PC, An) #
-# PC memory indirect postindexed: ([bd, PC], Xn, od) #
-# PC memory indirect preindexed: ([bd, PC, Xn], od) #
-##########################################################
-fpc_ind_ext:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch ext word
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0
- subq.l &0x2,%a0 # adjust base
-
- btst &0x8,%d0 # is disp only 8 bits?
- bne.w fcalc_mem_ind # calc memory indirect
-
- mov.l %d0,L_SCR1(%a6) # store opword
-
- mov.l %d0,%d1 # make extword copy
- rol.w &0x4,%d1 # rotate reg num into place
- andi.w &0xf,%d1 # extract register number
-
-# count on fetch_dreg() not to alter a0...
- bsr.l fetch_dreg # fetch index
-
- mov.l %d2,-(%sp) # save d2
- mov.l L_SCR1(%a6),%d2 # fetch opword
-
- btst &0xb,%d2 # is index word or long?
- bne.b fpii8_long # long
- ext.l %d0 # sign extend word index
-fpii8_long:
- mov.l %d2,%d1
- rol.w &0x7,%d1 # rotate scale value into place
- andi.l &0x3,%d1 # extract scale value
-
- lsl.l %d1,%d0 # shift index by scale
-
- extb.l %d2 # sign extend displacement
- add.l %d2,%d0 # disp + index
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore temp register
- rts
-
-# d2 = index
-# d3 = base
-# d4 = od
-# d5 = extword
-fcalc_mem_ind:
- btst &0x6,%d0 # is the index suppressed?
- beq.b fcalc_index
-
- movm.l &0x3c00,-(%sp) # save d2-d5
-
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
-
- clr.l %d2 # yes, so index = 0
- bra.b fbase_supp_ck
-
-# index:
-fcalc_index:
- mov.l %d0,L_SCR1(%a6) # save d0 (opword)
- bfextu %d0{&16:&4},%d1 # fetch dreg index
- bsr.l fetch_dreg
-
- movm.l &0x3c00,-(%sp) # save d2-d5
- mov.l %d0,%d2 # put index in d2
- mov.l L_SCR1(%a6),%d5
- mov.l %a0,%d3
-
- btst &0xb,%d5 # is index word or long?
- bne.b fno_ext
- ext.l %d2
-
-fno_ext:
- bfextu %d5{&21:&2},%d0
- lsl.l %d0,%d2
-
-# base address (passed as parameter in d3):
-# we clear the value here if it should actually be suppressed.
-fbase_supp_ck:
- btst &0x7,%d5 # is the bd suppressed?
- beq.b fno_base_sup
- clr.l %d3
-
-# base displacement:
-fno_base_sup:
- bfextu %d5{&26:&2},%d0 # get bd size
-# beq.l fmovm_error # if (size == 0) it's reserved
-
- cmpi.b %d0,&0x2
- blt.b fno_bd
- beq.b fget_word_bd
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- bra.b fchk_ind
-
-fget_word_bd:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- ext.l %d0 # sign extend bd
-
-fchk_ind:
- add.l %d0,%d3 # base += bd
-
-# outer displacement:
-fno_bd:
- bfextu %d5{&30:&2},%d0 # is od suppressed?
- beq.w faii_bd
-
- cmpi.b %d0,&0x2
- blt.b fnull_od
- beq.b fword_od
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- bra.b fadd_them
-
-fword_od:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
-
- ext.l %d0 # sign extend od
- bra.b fadd_them
-
-fnull_od:
- clr.l %d0
-
-fadd_them:
- mov.l %d0,%d4
-
- btst &0x2,%d5 # pre or post indexing?
- beq.b fpre_indexed
-
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # did dfetch fail?
- bne.w fcea_err # yes
-
- add.l %d2,%d0 # <ea> += index
- add.l %d4,%d0 # <ea> += od
- bra.b fdone_ea
-
-fpre_indexed:
- add.l %d2,%d3 # preindexing
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # did dfetch fail?
- bne.w fcea_err # yes
-
- add.l %d4,%d0 # ea += od
- bra.b fdone_ea
-
-faii_bd:
- add.l %d2,%d3 # ea = (base + bd) + index
- mov.l %d3,%d0
-fdone_ea:
- mov.l %d0,%a0
-
- movm.l (%sp)+,&0x003c # restore d2-d5
- rts
-
-#########################################################
-fcea_err:
- mov.l %d3,%a0
-
- movm.l (%sp)+,&0x003c # restore d2-d5
- mov.w &0x0101,%d0
- bra.l iea_dacc
-
-fcea_iacc:
- movm.l (%sp)+,&0x003c # restore d2-d5
- bra.l iea_iacc
-
-fmovm_out_err:
- bsr.l restore
- mov.w &0x00e1,%d0
- bra.b fmovm_err
-
-fmovm_in_err:
- bsr.l restore
- mov.w &0x0161,%d0
-
-fmovm_err:
- mov.l L_SCR1(%a6),%a0
- bra.l iea_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# fmovm_ctrl(): emulate fmovm.l of control registers instr #
-# #
-# XREF **************************************************************** #
-# _imem_read_long() - read longword from memory #
-# iea_iacc() - _imem_read_long() failed; error recovery #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If _imem_read_long() doesn't fail: #
-# USER_FPCR(a6) = new FPCR value #
-# USER_FPSR(a6) = new FPSR value #
-# USER_FPIAR(a6) = new FPIAR value #
-# #
-# ALGORITHM *********************************************************** #
-# Decode the instruction type by looking at the extension word #
-# in order to see how many control registers to fetch from memory. #
-# Fetch them using _imem_read_long(). If this fetch fails, exit through #
-# the special access error exit handler iea_iacc(). #
-# #
-# Instruction word decoding: #
-# #
-# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} #
-# #
-# WORD1 WORD2 #
-# 1111 0010 00 111100 100$ $$00 0000 0000 #
-# #
-# $$$ (100): FPCR #
-# (010): FPSR #
-# (001): FPIAR #
-# (000): FPIAR #
-# #
-#########################################################################
-
- global fmovm_ctrl
-fmovm_ctrl:
- mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits
- cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ?
- beq.w fctrl_in_7 # yes
- cmpi.b %d0,&0x98 # fpcr & fpsr ?
- beq.w fctrl_in_6 # yes
- cmpi.b %d0,&0x94 # fpcr & fpiar ?
- beq.b fctrl_in_5 # yes
-
-# fmovem.l #<data>, fpsr/fpiar
-fctrl_in_3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
- rts
-
-# fmovem.l #<data>, fpcr/fpiar
-fctrl_in_5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
- rts
-
-# fmovem.l #<data>, fpcr/fpsr
-fctrl_in_6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
- rts
-
-# fmovem.l #<data>, fpcr/fpsr/fpiar
-fctrl_in_7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
-
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
-
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem
- rts
-
-##########################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# addsub_scaler2(): scale inputs to fadd/fsub such that no #
-# OVFL/UNFL exceptions will result #
-# #
-# XREF **************************************************************** #
-# norm() - normalize mantissa after adjusting exponent #
-# #
-# INPUT *************************************************************** #
-# FP_SRC(a6) = fp op1(src) #
-# FP_DST(a6) = fp op2(dst) #
-# #
-# OUTPUT ************************************************************** #
-# FP_SRC(a6) = fp op1 scaled(src) #
-# FP_DST(a6) = fp op2 scaled(dst) #
-# d0 = scale amount #
-# #
-# ALGORITHM *********************************************************** #
-# If the DST exponent is > the SRC exponent, set the DST exponent #
-# equal to 0x3fff and scale the SRC exponent by the value that the #
-# DST exponent was scaled by. If the SRC exponent is greater or equal, #
-# do the opposite. Return this scale factor in d0. #
-# If the two exponents differ by > the number of mantissa bits #
-# plus two, then set the smallest exponent to a very small value as a #
-# quick shortcut. #
-# #
-#########################################################################
-
- global addsub_scaler2
-addsub_scaler2:
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- mov.w DST_EX(%a1),%d1
- mov.w %d0,FP_SCR0_EX(%a6)
- mov.w %d1,FP_SCR1_EX(%a6)
-
- andi.w &0x7fff,%d0
- andi.w &0x7fff,%d1
- mov.w %d0,L_SCR1(%a6) # store src exponent
- mov.w %d1,2+L_SCR1(%a6) # store dst exponent
-
- cmp.w %d0, %d1 # is src exp >= dst exp?
- bge.l src_exp_ge2
-
-# dst exp is > src exp; scale dst to exp = 0x3fff
-dst_exp_gt2:
- bsr.l scale_to_zero_dst
- mov.l %d0,-(%sp) # save scale factor
-
- cmpi.b STAG(%a6),&DENORM # is dst denormalized?
- bne.b cmpexp12
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the denorm; result is new exp
- neg.w %d0 # new exp = -(shft val)
- mov.w %d0,L_SCR1(%a6) # inset new exp
-
-cmpexp12:
- mov.w 2+L_SCR1(%a6),%d0
- subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
-
- cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2?
- bge.b quick_scale12
-
- mov.w L_SCR1(%a6),%d0
- add.w 0x2(%sp),%d0 # scale src exponent by scale factor
- mov.w FP_SCR0_EX(%a6),%d1
- and.w &0x8000,%d1
- or.w %d1,%d0 # concat {sgn,new exp}
- mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-quick_scale12:
- andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent
- bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-# src exp is >= dst exp; scale src to exp = 0x3fff
-src_exp_ge2:
- bsr.l scale_to_zero_src
- mov.l %d0,-(%sp) # save scale factor
-
- cmpi.b DTAG(%a6),&DENORM # is dst denormalized?
- bne.b cmpexp22
- lea FP_SCR1(%a6),%a0
- bsr.l norm # normalize the denorm; result is new exp
- neg.w %d0 # new exp = -(shft val)
- mov.w %d0,2+L_SCR1(%a6) # inset new exp
-
-cmpexp22:
- mov.w L_SCR1(%a6),%d0
- subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
-
- cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2?
- bge.b quick_scale22
-
- mov.w 2+L_SCR1(%a6),%d0
- add.w 0x2(%sp),%d0 # scale dst exponent by scale factor
- mov.w FP_SCR1_EX(%a6),%d1
- andi.w &0x8000,%d1
- or.w %d1,%d0 # concat {sgn,new exp}
- mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-quick_scale22:
- andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent
- bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1
-
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
-
-##########################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# scale_to_zero_src(): scale the exponent of extended precision #
-# value at FP_SCR0(a6). #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa if the operand was a DENORM #
-# #
-# INPUT *************************************************************** #
-# FP_SCR0(a6) = extended precision operand to be scaled #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR0(a6) = scaled extended precision operand #
-# d0 = scale value #
-# #
-# ALGORITHM *********************************************************** #
-# Set the exponent of the input operand to 0x3fff. Save the value #
-# of the difference between the original and new exponent. Then, #
-# normalize the operand if it was a DENORM. Add this normalization #
-# value to the previous value. Return the result. #
-# #
-#########################################################################
-
- global scale_to_zero_src
-scale_to_zero_src:
- mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
- mov.w %d1,%d0 # make a copy
-
- andi.l &0x7fff,%d1 # extract operand's exponent
-
- andi.w &0x8000,%d0 # extract operand's sgn
- or.w &0x3fff,%d0 # insert new operand's exponent(=0)
-
- mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent
-
- cmpi.b STAG(%a6),&DENORM # is operand normalized?
- beq.b stzs_denorm # normalize the DENORM
-
-stzs_norm:
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
-
- rts
-
-stzs_denorm:
- lea FP_SCR0(%a6),%a0 # pass ptr to src op
- bsr.l norm # normalize denorm
- neg.l %d0 # new exponent = -(shft val)
- mov.l %d0,%d1 # prepare for op_norm call
- bra.b stzs_norm # finish scaling
-
-###
-
-#########################################################################
-# XDEF **************************************************************** #
-# scale_sqrt(): scale the input operand exponent so a subsequent #
-# fsqrt operation won't take an exception. #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa if the operand was a DENORM #
-# #
-# INPUT *************************************************************** #
-# FP_SCR0(a6) = extended precision operand to be scaled #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR0(a6) = scaled extended precision operand #
-# d0 = scale value #
-# #
-# ALGORITHM *********************************************************** #
-# If the input operand is a DENORM, normalize it. #
-# If the exponent of the input operand is even, set the exponent #
-# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the #
-# exponent of the input operand is off, set the exponent to ox3fff and #
-# return a scale factor of "(exp-0x3fff)/2". #
-# #
-#########################################################################
-
- global scale_sqrt
-scale_sqrt:
- cmpi.b STAG(%a6),&DENORM # is operand normalized?
- beq.b ss_denorm # normalize the DENORM
-
- mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
- andi.l &0x7fff,%d1 # extract operand's exponent
-
- andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn
-
- btst &0x0,%d1 # is exp even or odd?
- beq.b ss_norm_even
-
- ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-ss_norm_even:
- ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- mov.l &0x3ffe,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-ss_denorm:
- lea FP_SCR0(%a6),%a0 # pass ptr to src op
- bsr.l norm # normalize denorm
-
- btst &0x0,%d0 # is exp even or odd?
- beq.b ss_denorm_even
-
- ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- add.l &0x3fff,%d0
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-ss_denorm_even:
- ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
-
- add.l &0x3ffe,%d0
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
-
-###
-
-#########################################################################
-# XDEF **************************************************************** #
-# scale_to_zero_dst(): scale the exponent of extended precision #
-# value at FP_SCR1(a6). #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa if the operand was a DENORM #
-# #
-# INPUT *************************************************************** #
-# FP_SCR1(a6) = extended precision operand to be scaled #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR1(a6) = scaled extended precision operand #
-# d0 = scale value #
-# #
-# ALGORITHM *********************************************************** #
-# Set the exponent of the input operand to 0x3fff. Save the value #
-# of the difference between the original and new exponent. Then, #
-# normalize the operand if it was a DENORM. Add this normalization #
-# value to the previous value. Return the result. #
-# #
-#########################################################################
-
- global scale_to_zero_dst
-scale_to_zero_dst:
- mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp}
- mov.w %d1,%d0 # make a copy
-
- andi.l &0x7fff,%d1 # extract operand's exponent
-
- andi.w &0x8000,%d0 # extract operand's sgn
- or.w &0x3fff,%d0 # insert new operand's exponent(=0)
-
- mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent
-
- cmpi.b DTAG(%a6),&DENORM # is operand normalized?
- beq.b stzd_denorm # normalize the DENORM
-
-stzd_norm:
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- rts
-
-stzd_denorm:
- lea FP_SCR1(%a6),%a0 # pass ptr to dst op
- bsr.l norm # normalize denorm
- neg.l %d0 # new exponent = -(shft val)
- mov.l %d0,%d1 # prepare for op_norm call
- bra.b stzd_norm # finish scaling
-
-##########################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# res_qnan(): return default result w/ QNAN operand for dyadic #
-# res_snan(): return default result w/ SNAN operand for dyadic #
-# res_qnan_1op(): return dflt result w/ QNAN operand for monadic #
-# res_snan_1op(): return dflt result w/ SNAN operand for monadic #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# FP_SRC(a6) = pointer to extended precision src operand #
-# FP_DST(a6) = pointer to extended precision dst operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default result #
-# #
-# ALGORITHM *********************************************************** #
-# If either operand (but not both operands) of an operation is a #
-# nonsignalling NAN, then that NAN is returned as the result. If both #
-# operands are nonsignalling NANs, then the destination operand #
-# nonsignalling NAN is returned as the result. #
-# If either operand to an operation is a signalling NAN (SNAN), #
-# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap #
-# enable bit is set in the FPCR, then the trap is taken and the #
-# destination is not modified. If the SNAN trap enable bit is not set, #
-# then the SNAN is converted to a nonsignalling NAN (by setting the #
-# SNAN bit in the operand to one), and the operation continues as #
-# described in the preceding paragraph, for nonsignalling NANs. #
-# Make sure the appropriate FPSR bits are set before exiting. #
-# #
-#########################################################################
-
- global res_qnan
- global res_snan
-res_qnan:
-res_snan:
- cmp.b DTAG(%a6), &SNAN # is the dst an SNAN?
- beq.b dst_snan2
- cmp.b DTAG(%a6), &QNAN # is the dst a QNAN?
- beq.b dst_qnan2
-src_nan:
- cmp.b STAG(%a6), &QNAN
- beq.b src_qnan2
- global res_snan_1op
-res_snan_1op:
-src_snan2:
- bset &0x6, FP_SRC_HI(%a6) # set SNAN bit
- or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
- lea FP_SRC(%a6), %a0
- bra.b nan_comp
- global res_qnan_1op
-res_qnan_1op:
-src_qnan2:
- or.l &nan_mask, USER_FPSR(%a6)
- lea FP_SRC(%a6), %a0
- bra.b nan_comp
-dst_snan2:
- or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
- bset &0x6, FP_DST_HI(%a6) # set SNAN bit
- lea FP_DST(%a6), %a0
- bra.b nan_comp
-dst_qnan2:
- lea FP_DST(%a6), %a0
- cmp.b STAG(%a6), &SNAN
- bne nan_done
- or.l &aiop_mask+snan_mask, USER_FPSR(%a6)
-nan_done:
- or.l &nan_mask, USER_FPSR(%a6)
-nan_comp:
- btst &0x7, FTEMP_EX(%a0) # is NAN neg?
- beq.b nan_not_neg
- or.l &neg_mask, USER_FPSR(%a6)
-nan_not_neg:
- fmovm.x (%a0), &0x80
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# res_operr(): return default result during operand error #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = default operand error result #
-# #
-# ALGORITHM *********************************************************** #
-# An nonsignalling NAN is returned as the default result when #
-# an operand error occurs for the following cases: #
-# #
-# Multiply: (Infinity x Zero) #
-# Divide : (Zero / Zero) || (Infinity / Infinity) #
-# #
-#########################################################################
-
- global res_operr
-res_operr:
- or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6)
- fmovm.x nan_return(%pc), &0x80
- rts
-
-nan_return:
- long 0x7fff0000, 0xffffffff, 0xffffffff
-
-#########################################################################
-# XDEF **************************************************************** #
-# _denorm(): denormalize an intermediate result #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = points to the operand to be denormalized #
-# (in the internal extended format) #
-# #
-# d0 = rounding precision #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to the denormalized result #
-# (in the internal extended format) #
-# #
-# d0 = guard,round,sticky #
-# #
-# ALGORITHM *********************************************************** #
-# According to the exponent underflow threshold for the given #
-# precision, shift the mantissa bits to the right in order raise the #
-# exponent of the operand to the threshold value. While shifting the #
-# mantissa bits right, maintain the value of the guard, round, and #
-# sticky bits. #
-# other notes: #
-# (1) _denorm() is called by the underflow routines #
-# (2) _denorm() does NOT affect the status register #
-# #
-#########################################################################
-
-#
-# table of exponent threshold values for each precision
-#
-tbl_thresh:
- short 0x0
- short sgl_thresh
- short dbl_thresh
-
- global _denorm
-_denorm:
-#
-# Load the exponent threshold for the precision selected and check
-# to see if (threshold - exponent) is > 65 in which case we can
-# simply calculate the sticky bit and zero the mantissa. otherwise
-# we have to call the denormalization routine.
-#
- lsr.b &0x2, %d0 # shift prec to lo bits
- mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold
- mov.w %d1, %d0 # copy d1 into d0
- sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp
- cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits)
- bpl.b denorm_set_stky # yes; just calc sticky
-
- clr.l %d0 # clear g,r,s
- btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set?
- beq.b denorm_call # no; don't change anything
- bset &29, %d0 # yes; set sticky bit
-
-denorm_call:
- bsr.l dnrm_lp # denormalize the number
- rts
-
-#
-# all bit would have been shifted off during the denorm so simply
-# calculate if the sticky should be set and clear the entire mantissa.
-#
-denorm_set_stky:
- mov.l &0x20000000, %d0 # set sticky bit in return value
- mov.w %d1, FTEMP_EX(%a0) # load exp with threshold
- clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa)
- clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa)
- rts
-
-# #
-# dnrm_lp(): normalize exponent/mantissa to specified threshold #
-# #
-# INPUT: #
-# %a0 : points to the operand to be denormalized #
-# %d0{31:29} : initial guard,round,sticky #
-# %d1{15:0} : denormalization threshold #
-# OUTPUT: #
-# %a0 : points to the denormalized operand #
-# %d0{31:29} : final guard,round,sticky #
-# #
-
-# *** Local Equates *** #
-set GRS, L_SCR2 # g,r,s temp storage
-set FTEMP_LO2, L_SCR1 # FTEMP_LO copy
-
- global dnrm_lp
-dnrm_lp:
-
-#
-# make a copy of FTEMP_LO and place the g,r,s bits directly after it
-# in memory so as to make the bitfield extraction for denormalization easier.
-#
- mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy
- mov.l %d0, GRS(%a6) # place g,r,s after it
-
-#
-# check to see how much less than the underflow threshold the operand
-# exponent is.
-#
- mov.l %d1, %d0 # copy the denorm threshold
- sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent
- ble.b dnrm_no_lp # d1 <= 0
- cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ?
- blt.b case_1 # yes
- cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ?
- blt.b case_2 # yes
- bra.w case_3 # (d1 >= 64)
-
-#
-# No normalization necessary
-#
-dnrm_no_lp:
- mov.l GRS(%a6), %d0 # restore original g,r,s
- rts
-
-#
-# case (0<d1<32)
-#
-# %d0 = denorm threshold
-# %d1 = "n" = amt to shift
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# \ \ \ \
-# <-(n)-><-(32 - n)-><------(32)-------><------(32)------->
-# ---------------------------------------------------------
-# |0.....0| NEW_HI | NEW_FTEMP_LO |grs |
-# ---------------------------------------------------------
-#
-case_1:
- mov.l %d2, -(%sp) # create temp storage
-
- mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
- mov.l &32, %d0
- sub.w %d1, %d0 # %d0 = 32 - %d1
-
- cmpi.w %d1, &29 # is shft amt >= 29
- blt.b case1_extract # no; no fix needed
- mov.b GRS(%a6), %d2
- or.b %d2, 3+FTEMP_LO2(%a6)
-
-case1_extract:
- bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI
- bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO
- bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S
-
- mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI
- mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO
-
- bftst %d0{&2:&30} # were bits shifted off?
- beq.b case1_sticky_clear # no; go finish
- bset &rnd_stky_bit, %d0 # yes; set sticky bit
-
-case1_sticky_clear:
- and.l &0xe0000000, %d0 # clear all but G,R,S
- mov.l (%sp)+, %d2 # restore temp register
- rts
-
-#
-# case (32<=d1<64)
-#
-# %d0 = denorm threshold
-# %d1 = "n" = amt to shift
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
-# \ \ \
-# \ \ \
-# \ \ -------------------
-# \ -------------------- \
-# ------------------- \ \
-# \ \ \
-# \ \ \
-# \ \ \
-# <-------(32)------><-(n)-><-(32 - n)-><------(32)------->
-# ---------------------------------------------------------
-# |0...............0|0....0| NEW_LO |grs |
-# ---------------------------------------------------------
-#
-case_2:
- mov.l %d2, -(%sp) # create temp storage
-
- mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
- subi.w &0x20, %d1 # %d1 now between 0 and 32
- mov.l &0x20, %d0
- sub.w %d1, %d0 # %d0 = 32 - %d1
-
-# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize
-# the number of bits to check for the sticky detect.
-# it only plays a role in shift amounts of 61-63.
- mov.b GRS(%a6), %d2
- or.b %d2, 3+FTEMP_LO2(%a6)
-
- bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO
- bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S
-
- bftst %d1{&2:&30} # were any bits shifted off?
- bne.b case2_set_sticky # yes; set sticky bit
- bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off?
- bne.b case2_set_sticky # yes; set sticky bit
-
- mov.l %d1, %d0 # move new G,R,S to %d0
- bra.b case2_end
-
-case2_set_sticky:
- mov.l %d1, %d0 # move new G,R,S to %d0
- bset &rnd_stky_bit, %d0 # set sticky bit
-
-case2_end:
- clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0
- mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO
- and.l &0xe0000000, %d0 # clear all but G,R,S
-
- mov.l (%sp)+,%d2 # restore temp register
- rts
-
-#
-# case (d1>=64)
-#
-# %d0 = denorm threshold
-# %d1 = amt to shift
-#
-case_3:
- mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold
-
- cmpi.w %d1, &65 # is shift amt > 65?
- blt.b case3_64 # no; it's == 64
- beq.b case3_65 # no; it's == 65
-
-#
-# case (d1>65)
-#
-# Shift value is > 65 and out of range. All bits are shifted off.
-# Return a zero mantissa with the sticky bit set
-#
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- mov.l &0x20000000, %d0 # set sticky bit
- rts
-
-#
-# case (d1 == 64)
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-------(32)------>
-# \ \
-# \ \
-# \ \
-# \ ------------------------------
-# ------------------------------- \
-# \ \
-# \ \
-# \ \
-# <-------(32)------>
-# ---------------------------------------------------------
-# |0...............0|0................0|grs |
-# ---------------------------------------------------------
-#
-case3_64:
- mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
- mov.l %d0, %d1 # make a copy
- and.l &0xc0000000, %d0 # extract G,R
- and.l &0x3fffffff, %d1 # extract other bits
-
- bra.b case3_complete
-
-#
-# case (d1 == 65)
-#
-# ---------------------------------------------------------
-# | FTEMP_HI | FTEMP_LO |grs000.........000|
-# ---------------------------------------------------------
-# <-------(32)------>
-# \ \
-# \ \
-# \ \
-# \ ------------------------------
-# -------------------------------- \
-# \ \
-# \ \
-# \ \
-# <-------(31)----->
-# ---------------------------------------------------------
-# |0...............0|0................0|0rs |
-# ---------------------------------------------------------
-#
-case3_65:
- mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
- and.l &0x80000000, %d0 # extract R bit
- lsr.l &0x1, %d0 # shift high bit into R bit
- and.l &0x7fffffff, %d1 # extract other bits
-
-case3_complete:
-# last operation done was an "and" of the bits shifted off so the condition
-# codes are already set so branch accordingly.
- bne.b case3_set_sticky # yes; go set new sticky
- tst.l FTEMP_LO(%a0) # were any bits shifted off?
- bne.b case3_set_sticky # yes; go set new sticky
- tst.b GRS(%a6) # were any bits shifted off?
- bne.b case3_set_sticky # yes; go set new sticky
-
-#
-# no bits were shifted off so don't set the sticky bit.
-# the guard and
-# the entire mantissa is zero.
-#
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- rts
-
-#
-# some bits were shifted off so set the sticky bit.
-# the entire mantissa is zero.
-#
-case3_set_sticky:
- bset &rnd_stky_bit,%d0 # set new sticky bit
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _round(): round result according to precision/mode #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = ptr to input operand in internal extended format #
-# d1(hi) = contains rounding precision: #
-# ext = $0000xxxx #
-# sgl = $0004xxxx #
-# dbl = $0008xxxx #
-# d1(lo) = contains rounding mode: #
-# RN = $xxxx0000 #
-# RZ = $xxxx0001 #
-# RM = $xxxx0002 #
-# RP = $xxxx0003 #
-# d0{31:29} = contains the g,r,s bits (extended) #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to rounded result #
-# #
-# ALGORITHM *********************************************************** #
-# On return the value pointed to by a0 is correctly rounded, #
-# a0 is preserved and the g-r-s bits in d0 are cleared. #
-# The result is not typed - the tag field is invalid. The #
-# result is still in the internal extended format. #
-# #
-# The INEX bit of USER_FPSR will be set if the rounded result was #
-# inexact (i.e. if any of the g-r-s bits were set). #
-# #
-#########################################################################
-
- global _round
-_round:
-#
-# ext_grs() looks at the rounding precision and sets the appropriate
-# G,R,S bits.
-# If (G,R,S == 0) then result is exact and round is done, else set
-# the inex flag in status reg and continue.
-#
- bsr.l ext_grs # extract G,R,S
-
- tst.l %d0 # are G,R,S zero?
- beq.w truncate # yes; round is complete
-
- or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex
-
-#
-# Use rounding mode as an index into a jump table for these modes.
-# All of the following assumes grs != 0.
-#
- mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset
- jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler
-
-tbl_mode:
- short rnd_near - tbl_mode
- short truncate - tbl_mode # RZ always truncates
- short rnd_mnus - tbl_mode
- short rnd_plus - tbl_mode
-
-#################################################################
-# ROUND PLUS INFINITY #
-# #
-# If sign of fp number = 0 (positive), then add 1 to l. #
-#################################################################
-rnd_plus:
- tst.b FTEMP_SGN(%a0) # check for sign
- bmi.w truncate # if positive then truncate
-
- mov.l &0xffffffff, %d0 # force g,r,s to be all f's
- swap %d1 # set up d1 for round prec.
-
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
-
-#################################################################
-# ROUND MINUS INFINITY #
-# #
-# If sign of fp number = 1 (negative), then add 1 to l. #
-#################################################################
-rnd_mnus:
- tst.b FTEMP_SGN(%a0) # check for sign
- bpl.w truncate # if negative then truncate
-
- mov.l &0xffffffff, %d0 # force g,r,s to be all f's
- swap %d1 # set up d1 for round prec.
-
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
-
-#################################################################
-# ROUND NEAREST #
-# #
-# If (g=1), then add 1 to l and if (r=s=0), then clear l #
-# Note that this will round to even in case of a tie. #
-#################################################################
-rnd_near:
- asl.l &0x1, %d0 # shift g-bit to c-bit
- bcc.w truncate # if (g=1) then
-
- swap %d1 # set up d1 for round prec.
-
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
-
-# *** LOCAL EQUATES ***
-set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec
-set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec
-
-#########################
-# ADD SINGLE #
-#########################
-add_sgl:
- add.l &ad_1_sgl, FTEMP_HI(%a0)
- bcc.b scc_clr # no mantissa overflow
- roxr.w FTEMP_HI(%a0) # shift v-bit back in
- roxr.w FTEMP_HI+2(%a0) # shift v-bit back in
- add.w &0x1, FTEMP_EX(%a0) # and incr exponent
-scc_clr:
- tst.l %d0 # test for rs = 0
- bne.b sgl_done
- and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit
-sgl_done:
- and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit
- clr.l FTEMP_LO(%a0) # clear d2
- rts
-
-#########################
-# ADD EXTENDED #
-#########################
-add_ext:
- addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit
- bcc.b xcc_clr # test for carry out
- addq.l &1,FTEMP_HI(%a0) # propagate carry
- bcc.b xcc_clr
- roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_LO(%a0)
- roxr.w FTEMP_LO+2(%a0)
- add.w &0x1,FTEMP_EX(%a0) # and inc exp
-xcc_clr:
- tst.l %d0 # test rs = 0
- bne.b add_ext_done
- and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit
-add_ext_done:
- rts
-
-#########################
-# ADD DOUBLE #
-#########################
-add_dbl:
- add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb
- bcc.b dcc_clr # no carry
- addq.l &0x1, FTEMP_HI(%a0) # propagate carry
- bcc.b dcc_clr # no carry
-
- roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_LO(%a0)
- roxr.w FTEMP_LO+2(%a0)
- addq.w &0x1, FTEMP_EX(%a0) # incr exponent
-dcc_clr:
- tst.l %d0 # test for rs = 0
- bne.b dbl_done
- and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit
-
-dbl_done:
- and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit
- rts
-
-###########################
-# Truncate all other bits #
-###########################
-truncate:
- swap %d1 # select rnd prec
-
- cmpi.b %d1, &s_mode # is prec sgl?
- beq.w sgl_done # yes
- bgt.b dbl_done # no; it's dbl
- rts # no; it's ext
-
-
-#
-# ext_grs(): extract guard, round and sticky bits according to
-# rounding precision.
-#
-# INPUT
-# d0 = extended precision g,r,s (in d0{31:29})
-# d1 = {PREC,ROUND}
-# OUTPUT
-# d0{31:29} = guard, round, sticky
-#
-# The ext_grs extract the guard/round/sticky bits according to the
-# selected rounding precision. It is called by the round subroutine
-# only. All registers except d0 are kept intact. d0 becomes an
-# updated guard,round,sticky in d0{31:29}
-#
-# Notes: the ext_grs uses the round PREC, and therefore has to swap d1
-# prior to usage, and needs to restore d1 to original. this
-# routine is tightly tied to the round routine and not meant to
-# uphold standard subroutine calling practices.
-#
-
-ext_grs:
- swap %d1 # have d1.w point to round precision
- tst.b %d1 # is rnd prec = extended?
- bne.b ext_grs_not_ext # no; go handle sgl or dbl
-
-#
-# %d0 actually already hold g,r,s since _round() had it before calling
-# this function. so, as long as we don't disturb it, we are "returning" it.
-#
-ext_grs_ext:
- swap %d1 # yes; return to correct positions
- rts
-
-ext_grs_not_ext:
- movm.l &0x3000, -(%sp) # make some temp registers {d2/d3}
-
- cmpi.b %d1, &s_mode # is rnd prec = sgl?
- bne.b ext_grs_dbl # no; go handle dbl
-
-#
-# sgl:
-# 96 64 40 32 0
-# -----------------------------------------------------
-# | EXP |XXXXXXX| |xx | |grs|
-# -----------------------------------------------------
-# <--(24)--->nn\ /
-# ee ---------------------
-# ww |
-# v
-# gr new sticky
-#
-ext_grs_sgl:
- bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right
- mov.l &30, %d2 # of the sgl prec. limits
- lsl.l %d2, %d3 # shift g-r bits to MSB of d3
- mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test
- and.l &0x0000003f, %d2 # s bit is the or of all other
- bne.b ext_grs_st_stky # bits to the right of g-r
- tst.l FTEMP_LO(%a0) # test lower mantissa
- bne.b ext_grs_st_stky # if any are set, set sticky
- tst.l %d0 # test original g,r,s
- bne.b ext_grs_st_stky # if any are set, set sticky
- bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit
-
-#
-# dbl:
-# 96 64 32 11 0
-# -----------------------------------------------------
-# | EXP |XXXXXXX| | |xx |grs|
-# -----------------------------------------------------
-# nn\ /
-# ee -------
-# ww |
-# v
-# gr new sticky
-#
-ext_grs_dbl:
- bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right
- mov.l &30, %d2 # of the dbl prec. limits
- lsl.l %d2, %d3 # shift g-r bits to the MSB of d3
- mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test
- and.l &0x000001ff, %d2 # s bit is the or-ing of all
- bne.b ext_grs_st_stky # other bits to the right of g-r
- tst.l %d0 # test word original g,r,s
- bne.b ext_grs_st_stky # if any are set, set sticky
- bra.b ext_grs_end_sd # if clear, exit
-
-ext_grs_st_stky:
- bset &rnd_stky_bit, %d3 # set sticky bit
-ext_grs_end_sd:
- mov.l %d3, %d0 # return grs to d0
-
- movm.l (%sp)+, &0xc # restore scratch registers {d2/d3}
-
- swap %d1 # restore d1 to original
- rts
-
-#########################################################################
-# norm(): normalize the mantissa of an extended precision input. the #
-# input operand should not be normalized already. #
-# #
-# XDEF **************************************************************** #
-# norm() #
-# #
-# XREF **************************************************************** #
-# none #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer fp extended precision operand to normalize #
-# #
-# OUTPUT ************************************************************** #
-# d0 = number of bit positions the mantissa was shifted #
-# a0 = the input operand's mantissa is normalized; the exponent #
-# is unchanged. #
-# #
-#########################################################################
- global norm
-norm:
- mov.l %d2, -(%sp) # create some temp regs
- mov.l %d3, -(%sp)
-
- mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
- mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
-
- bfffo %d0{&0:&32}, %d2 # how many places to shift?
- beq.b norm_lo # hi(man) is all zeroes!
-
-norm_hi:
- lsl.l %d2, %d0 # left shift hi(man)
- bfextu %d1{&0:%d2}, %d3 # extract lo bits
-
- or.l %d3, %d0 # create hi(man)
- lsl.l %d2, %d1 # create lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
-norm_lo:
- bfffo %d1{&0:&32}, %d2 # how many places to shift?
- lsl.l %d2, %d1 # shift lo(man)
- add.l &32, %d2 # add 32 to shft amount
-
- mov.l %d1, FTEMP_HI(%a0) # store hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) is now zero
-
- mov.l %d2, %d0 # return shift amount
-
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
-
- rts
-
-#########################################################################
-# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
-# - returns corresponding optype tag #
-# #
-# XDEF **************************************************************** #
-# unnorm_fix() #
-# #
-# XREF **************************************************************** #
-# norm() - normalize the mantissa #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to unnormalized extended precision number #
-# #
-# OUTPUT ************************************************************** #
-# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
-# a0 = input operand has been converted to a norm, denorm, or #
-# zero; both the exponent and mantissa are changed. #
-# #
-#########################################################################
-
- global unnorm_fix
-unnorm_fix:
- bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
- bne.b unnorm_shift # hi(man) is not all zeroes
-
-#
-# hi(man) is all zeroes so see if any bits in lo(man) are set
-#
-unnorm_chk_lo:
- bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
- beq.w unnorm_zero # yes
-
- add.w &32, %d0 # no; fix shift distance
-
-#
-# d0 = # shifts needed for complete normalization
-#
-unnorm_shift:
- clr.l %d1 # clear top word
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1 # strip off sgn
-
- cmp.w %d0, %d1 # will denorm push exp < 0?
- bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
-
-#
-# exponent would not go < 0. Therefore, number stays normalized
-#
- sub.w %d0, %d1 # shift exponent value
- mov.w FTEMP_EX(%a0), %d0 # load old exponent
- and.w &0x8000, %d0 # save old sign
- or.w %d0, %d1 # {sgn,new exp}
- mov.w %d1, FTEMP_EX(%a0) # insert new exponent
-
- bsr.l norm # normalize UNNORM
-
- mov.b &NORM, %d0 # return new optype tag
- rts
-
-#
-# exponent would go < 0, so only denormalize until exp = 0
-#
-unnorm_nrm_zero:
- cmp.b %d1, &32 # is exp <= 32?
- bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
-
- bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
- mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # extract new lo(man)
- mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
-#
-# only mantissa bits set are in lo(man)
-#
-unnorm_nrm_zero_lrg:
- sub.w &32, %d1 # adjust shft amt by 32
-
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # left shift lo(man)
-
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) = 0
-
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
-
- mov.b &DENORM, %d0 # return new optype tag
- rts
-
-#
-# whole mantissa is zero so this UNNORM is actually a zero
-#
-unnorm_zero:
- and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
-
- mov.b &ZERO, %d0 # fix optype tag
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# set_tag_x(): return the optype of the input ext fp number #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# If it's an unnormalized zero, alter the operand and force it #
-# to be a normal zero. #
-# #
-#########################################################################
-
- global set_tag_x
-set_tag_x:
- mov.w FTEMP_EX(%a0), %d0 # extract exponent
- andi.w &0x7fff, %d0 # strip off sign
- cmpi.w %d0, &0x7fff # is (EXP == MAX)?
- beq.b inf_or_nan_x
-not_inf_or_nan_x:
- btst &0x7,FTEMP_HI(%a0)
- beq.b not_norm_x
-is_norm_x:
- mov.b &NORM, %d0
- rts
-not_norm_x:
- tst.w %d0 # is exponent = 0?
- bne.b is_unnorm_x
-not_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_denorm_x
- tst.l FTEMP_LO(%a0)
- bne.b is_denorm_x
-is_zero_x:
- mov.b &ZERO, %d0
- rts
-is_denorm_x:
- mov.b &DENORM, %d0
- rts
-# must distinguish now "Unnormalized zeroes" which we
-# must convert to zero.
-is_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_unnorm_reg_x
- tst.l FTEMP_LO(%a0)
- bne.b is_unnorm_reg_x
-# it's an "unnormalized zero". let's convert it to an actual zero...
- andi.w &0x8000,FTEMP_EX(%a0) # clear exponent
- mov.b &ZERO, %d0
- rts
-is_unnorm_reg_x:
- mov.b &UNNORM, %d0
- rts
-inf_or_nan_x:
- tst.l FTEMP_LO(%a0)
- bne.b is_nan_x
- mov.l FTEMP_HI(%a0), %d0
- and.l &0x7fffffff, %d0 # msb is a don't care!
- bne.b is_nan_x
-is_inf_x:
- mov.b &INF, %d0
- rts
-is_nan_x:
- btst &0x6, FTEMP_HI(%a0)
- beq.b is_snan_x
- mov.b &QNAN, %d0
- rts
-is_snan_x:
- mov.b &SNAN, %d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# set_tag_d(): return the optype of the input dbl fp number #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = points to double precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# #
-#########################################################################
-
- global set_tag_d
-set_tag_d:
- mov.l FTEMP(%a0), %d0
- mov.l %d0, %d1
-
- andi.l &0x7ff00000, %d0
- beq.b zero_or_denorm_d
-
- cmpi.l %d0, &0x7ff00000
- beq.b inf_or_nan_d
-
-is_norm_d:
- mov.b &NORM, %d0
- rts
-zero_or_denorm_d:
- and.l &0x000fffff, %d1
- bne is_denorm_d
- tst.l 4+FTEMP(%a0)
- bne is_denorm_d
-is_zero_d:
- mov.b &ZERO, %d0
- rts
-is_denorm_d:
- mov.b &DENORM, %d0
- rts
-inf_or_nan_d:
- and.l &0x000fffff, %d1
- bne is_nan_d
- tst.l 4+FTEMP(%a0)
- bne is_nan_d
-is_inf_d:
- mov.b &INF, %d0
- rts
-is_nan_d:
- btst &19, %d1
- bne is_qnan_d
-is_snan_d:
- mov.b &SNAN, %d0
- rts
-is_qnan_d:
- mov.b &QNAN, %d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# set_tag_s(): return the optype of the input sgl fp number #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to single precision operand #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of type tag #
-# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
-# #
-# ALGORITHM *********************************************************** #
-# Simply test the exponent, j-bit, and mantissa values to #
-# determine the type of operand. #
-# #
-#########################################################################
-
- global set_tag_s
-set_tag_s:
- mov.l FTEMP(%a0), %d0
- mov.l %d0, %d1
-
- andi.l &0x7f800000, %d0
- beq.b zero_or_denorm_s
-
- cmpi.l %d0, &0x7f800000
- beq.b inf_or_nan_s
-
-is_norm_s:
- mov.b &NORM, %d0
- rts
-zero_or_denorm_s:
- and.l &0x007fffff, %d1
- bne is_denorm_s
-is_zero_s:
- mov.b &ZERO, %d0
- rts
-is_denorm_s:
- mov.b &DENORM, %d0
- rts
-inf_or_nan_s:
- and.l &0x007fffff, %d1
- bne is_nan_s
-is_inf_s:
- mov.b &INF, %d0
- rts
-is_nan_s:
- btst &22, %d1
- bne is_qnan_s
-is_snan_s:
- mov.b &SNAN, %d0
- rts
-is_qnan_s:
- mov.b &QNAN, %d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# unf_res(): routine to produce default underflow result of a #
-# scaled extended precision number; this is used by #
-# fadd/fdiv/fmul/etc. emulation routines. #
-# unf_res4(): same as above but for fsglmul/fsgldiv which use #
-# single round prec and extended prec mode. #
-# #
-# XREF **************************************************************** #
-# _denorm() - denormalize according to scale factor #
-# _round() - round denormalized number according to rnd prec #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precison operand #
-# d0 = scale factor #
-# d1 = rounding precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to default underflow result in extended precision #
-# d0.b = result FPSR_cc which caller may or may not want to save #
-# #
-# ALGORITHM *********************************************************** #
-# Convert the input operand to "internal format" which means the #
-# exponent is extended to 16 bits and the sign is stored in the unused #
-# portion of the extended precison operand. Denormalize the number #
-# according to the scale factor passed in d0. Then, round the #
-# denormalized result. #
-# Set the FPSR_exc bits as appropriate but return the cc bits in #
-# d0 in case the caller doesn't want to save them (as is the case for #
-# fmove out). #
-# unf_res4() for fsglmul/fsgldiv forces the denorm to extended #
-# precision and the rounding mode to single. #
-# #
-#########################################################################
- global unf_res
-unf_res:
- mov.l %d1, -(%sp) # save rnd prec,mode on stack
-
- btst &0x7, FTEMP_EX(%a0) # make "internal" format
- sne FTEMP_SGN(%a0)
-
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1
- sub.w %d0, %d1
- mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent
-
- mov.l %a0, -(%sp) # save operand ptr during calls
-
- mov.l 0x4(%sp),%d0 # pass rnd prec.
- andi.w &0x00c0,%d0
- lsr.w &0x4,%d0
- bsr.l _denorm # denorm result
-
- mov.l (%sp),%a0
- mov.w 0x6(%sp),%d1 # load prec:mode into %d1
- andi.w &0xc0,%d1 # extract rnd prec
- lsr.w &0x4,%d1
- swap %d1
- mov.w 0x6(%sp),%d1
- andi.w &0x30,%d1
- lsr.w &0x4,%d1
- bsr.l _round # round the denorm
-
- mov.l (%sp)+, %a0
-
-# result is now rounded properly. convert back to normal format
- bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue
- tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
- beq.b unf_res_chkifzero # no; result is positive
- bset &0x7, FTEMP_EX(%a0) # set result sgn
- clr.b FTEMP_SGN(%a0) # clear temp sign
-
-# the number may have become zero after rounding. set ccodes accordingly.
-unf_res_chkifzero:
- clr.l %d0
- tst.l FTEMP_HI(%a0) # is value now a zero?
- bne.b unf_res_cont # no
- tst.l FTEMP_LO(%a0)
- bne.b unf_res_cont # no
-# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit
- bset &z_bit, %d0 # yes; set zero ccode bit
-
-unf_res_cont:
-
-#
-# can inex1 also be set along with unfl and inex2???
-#
-# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
-#
- btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.b unf_res_end # no
- bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl
-
-unf_res_end:
- add.l &0x4, %sp # clear stack
- rts
-
-# unf_res() for fsglmul() and fsgldiv().
- global unf_res4
-unf_res4:
- mov.l %d1,-(%sp) # save rnd prec,mode on stack
-
- btst &0x7,FTEMP_EX(%a0) # make "internal" format
- sne FTEMP_SGN(%a0)
-
- mov.w FTEMP_EX(%a0),%d1 # extract exponent
- and.w &0x7fff,%d1
- sub.w %d0,%d1
- mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent
-
- mov.l %a0,-(%sp) # save operand ptr during calls
-
- clr.l %d0 # force rnd prec = ext
- bsr.l _denorm # denorm result
-
- mov.l (%sp),%a0
- mov.w &s_mode,%d1 # force rnd prec = sgl
- swap %d1
- mov.w 0x6(%sp),%d1 # load rnd mode
- andi.w &0x30,%d1 # extract rnd prec
- lsr.w &0x4,%d1
- bsr.l _round # round the denorm
-
- mov.l (%sp)+,%a0
-
-# result is now rounded properly. convert back to normal format
- bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue
- tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
- beq.b unf_res4_chkifzero # no; result is positive
- bset &0x7,FTEMP_EX(%a0) # set result sgn
- clr.b FTEMP_SGN(%a0) # clear temp sign
-
-# the number may have become zero after rounding. set ccodes accordingly.
-unf_res4_chkifzero:
- clr.l %d0
- tst.l FTEMP_HI(%a0) # is value now a zero?
- bne.b unf_res4_cont # no
- tst.l FTEMP_LO(%a0)
- bne.b unf_res4_cont # no
-# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit
- bset &z_bit,%d0 # yes; set zero ccode bit
-
-unf_res4_cont:
-
-#
-# can inex1 also be set along with unfl and inex2???
-#
-# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
-#
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.b unf_res4_end # no
- bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl
-
-unf_res4_end:
- add.l &0x4,%sp # clear stack
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# ovf_res(): routine to produce the default overflow result of #
-# an overflowing number. #
-# ovf_res2(): same as above but the rnd mode/prec are passed #
-# differently. #
-# #
-# XREF **************************************************************** #
-# none #
-# #
-# INPUT *************************************************************** #
-# d1.b = '-1' => (-); '0' => (+) #
-# ovf_res(): #
-# d0 = rnd mode/prec #
-# ovf_res2(): #
-# hi(d0) = rnd prec #
-# lo(d0) = rnd mode #
-# #
-# OUTPUT ************************************************************** #
-# a0 = points to extended precision result #
-# d0.b = condition code bits #
-# #
-# ALGORITHM *********************************************************** #
-# The default overflow result can be determined by the sign of #
-# the result and the rounding mode/prec in effect. These bits are #
-# concatenated together to create an index into the default result #
-# table. A pointer to the correct result is returned in a0. The #
-# resulting condition codes are returned in d0 in case the caller #
-# doesn't want FPSR_cc altered (as is the case for fmove out). #
-# #
-#########################################################################
-
- global ovf_res
-ovf_res:
- andi.w &0x10,%d1 # keep result sign
- lsr.b &0x4,%d0 # shift prec/mode
- or.b %d0,%d1 # concat the two
- mov.w %d1,%d0 # make a copy
- lsl.b &0x1,%d1 # multiply d1 by 2
- bra.b ovf_res_load
-
- global ovf_res2
-ovf_res2:
- and.w &0x10, %d1 # keep result sign
- or.b %d0, %d1 # insert rnd mode
- swap %d0
- or.b %d0, %d1 # insert rnd prec
- mov.w %d1, %d0 # make a copy
- lsl.b &0x1, %d1 # shift left by 1
-
-#
-# use the rounding mode, precision, and result sign as in index into the
-# two tables below to fetch the default result and the result ccodes.
-#
-ovf_res_load:
- mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes
- lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr
-
- rts
-
-tbl_ovfl_cc:
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x0, 0x0, 0x0, 0x0
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
-
-tbl_ovfl_result:
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ
- long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
-
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ
- long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
-
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ
- long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
-
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
-
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP
-
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP
-
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP
-
-#########################################################################
-# XDEF **************************************************************** #
-# fout(): move from fp register to memory or data register #
-# #
-# XREF **************************************************************** #
-# _round() - needed to create EXOP for sgl/dbl precision #
-# norm() - needed to create EXOP for extended precision #
-# ovf_res() - create default overflow result for sgl/dbl precision#
-# unf_res() - create default underflow result for sgl/dbl prec. #
-# dst_dbl() - create rounded dbl precision result. #
-# dst_sgl() - create rounded sgl precision result. #
-# fetch_dreg() - fetch dynamic k-factor reg for packed. #
-# bindec() - convert FP binary number to packed number. #
-# _mem_write() - write data to memory. #
-# _mem_write2() - write data to memory unless supv mode -(a7) exc.#
-# _dmem_write_{byte,word,long}() - write data to memory. #
-# store_dreg_{b,w,l}() - store data to data register file. #
-# facc_out_{b,w,l,d,x}() - data access error occurred. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 : intermediate underflow or overflow result if #
-# OVFL/UNFL occurred for a sgl or dbl operand #
-# #
-# ALGORITHM *********************************************************** #
-# This routine is accessed by many handlers that need to do an #
-# opclass three move of an operand out to memory. #
-# Decode an fmove out (opclass 3) instruction to determine if #
-# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data #
-# register or memory. The algorithm uses a standard "fmove" to create #
-# the rounded result. Also, since exceptions are disabled, this also #
-# create the correct OPERR default result if appropriate. #
-# For sgl or dbl precision, overflow or underflow can occur. If #
-# either occurs and is enabled, the EXOP. #
-# For extended precision, the stacked <ea> must be fixed along #
-# w/ the address index register as appropriate w/ _calc_ea_fout(). If #
-# the source is a denorm and if underflow is enabled, an EXOP must be #
-# created. #
-# For packed, the k-factor must be fetched from the instruction #
-# word or a data register. The <ea> must be fixed as w/ extended #
-# precision. Then, bindec() is called to create the appropriate #
-# packed result. #
-# If at any time an access error is flagged by one of the move- #
-# to-memory routines, then a special exit must be made so that the #
-# access error can be handled properly. #
-# #
-#########################################################################
-
- global fout
-fout:
- bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt
- mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index
- jmp (tbl_fout.b,%pc,%a1) # jump to routine
-
- swbeg &0x8
-tbl_fout:
- short fout_long - tbl_fout
- short fout_sgl - tbl_fout
- short fout_ext - tbl_fout
- short fout_pack - tbl_fout
- short fout_word - tbl_fout
- short fout_dbl - tbl_fout
- short fout_byte - tbl_fout
- short fout_pack - tbl_fout
-
-#################################################################
-# fmove.b out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-fout_byte:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_byte_denorm # no
-
- fmovm.x SRC(%a0),&0x80 # load value
-
-fout_byte_norm:
- fmov.l %d0,%fpcr # insert rnd prec,mode
-
- fmov.b %fp0,%d0 # exec move out w/ correct rnd mode
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_byte_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_byte # write byte
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
-
- rts
-
-fout_byte_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_b
- rts
-
-fout_byte_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_byte_norm
-
-#################################################################
-# fmove.w out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-fout_word:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_word_denorm # no
-
- fmovm.x SRC(%a0),&0x80 # load value
-
-fout_word_norm:
- fmov.l %d0,%fpcr # insert rnd prec:mode
-
- fmov.w %fp0,%d0 # exec move out w/ correct rnd mode
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_word_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_word # write word
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
-
- rts
-
-fout_word_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_w
- rts
-
-fout_word_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_word_norm
-
-#################################################################
-# fmove.l out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-fout_long:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_long_denorm # no
-
- fmovm.x SRC(%a0),&0x80 # load value
-
-fout_long_norm:
- fmov.l %d0,%fpcr # insert rnd prec:mode
-
- fmov.l %fp0,%d0 # exec move out w/ correct rnd mode
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
-
-fout_long_write:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_long_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- rts
-
-fout_long_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- rts
-
-fout_long_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_long_norm
-
-#################################################################
-# fmove.x out ###################################################
-#################################################################
-
-# Only "Unimplemented Data Type" exceptions enter here. The operand
-# is either a DENORM or a NORM.
-# The DENORM causes an Underflow exception.
-fout_ext:
-
-# we copy the extended precision result to FP_SCR0 so that the reserved
-# 16-bit field gets zeroed. we do this since we promise not to disturb
-# what's at SRC(a0).
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- clr.w 2+FP_SCR0_EX(%a6) # clear reserved field
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- fmovm.x SRC(%a0),&0x80 # return result
-
- bsr.l _calc_ea_fout # fix stacked <ea>
-
- mov.l %a0,%a1 # pass: dst addr
- lea FP_SCR0(%a6),%a0 # pass: src addr
- mov.l &0xc,%d0 # pass: opsize is 12 bytes
-
-# we must not yet write the extended precision data to the stack
-# in the pre-decrement case from supervisor mode or else we'll corrupt
-# the stack frame. so, leave it in FP_SRC for now and deal with it later...
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.b fout_ext_a7
-
- bsr.l _dmem_write # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_ext_denorm # no
- rts
-
-# the number is a DENORM. must set the underflow exception bit
-fout_ext_denorm:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit
-
- mov.b FPCR_ENABLE(%a6),%d0
- andi.b &0x0a,%d0 # is UNFL or INEX enabled?
- bne.b fout_ext_exc # yes
- rts
-
-# we don't want to do the write if the exception occurred in supervisor mode
-# so _mem_write2() handles this for us.
-fout_ext_a7:
- bsr.l _mem_write2 # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_ext_denorm # no
- rts
-
-fout_ext_exc:
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the mantissa
- neg.w %d0 # new exp = -(shft amt)
- andi.w &0x7fff,%d0
- andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign
- or.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-fout_ext_err:
- mov.l EXC_A6(%a6),(%a6) # fix stacked a6
- bra.l facc_out_x
-
-#########################################################################
-# fmove.s out ###########################################################
-#########################################################################
-fout_sgl:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
-
-#
-# operand is a normalized number. first, we check to see if the move out
-# would cause either an underflow or overflow. these cases are handled
-# separately. otherwise, set the FPCR to the proper rounding mode and
-# execute the move.
-#
- mov.w SRC_EX(%a0),%d0 # extract exponent
- andi.w &0x7fff,%d0 # strip sign
-
- cmpi.w %d0,&SGL_HI # will operand overflow?
- bgt.w fout_sgl_ovfl # yes; go handle OVFL
- beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL
- cmpi.w %d0,&SGL_LO # will operand underflow?
- blt.w fout_sgl_unfl # yes; go handle underflow
-
-#
-# NORMs(in range) can be stored out by a simple "fmov.s"
-# Unnormalized inputs can come through this point.
-#
-fout_sgl_exg:
- fmovm.x SRC(%a0),&0x80 # fetch fop from stack
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmov.s %fp0,%d0 # store does convert and round
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex
-
-fout_sgl_exg_write:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_exg_write_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- rts
-
-fout_sgl_exg_write_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- rts
-
-#
-# here, we know that the operand would UNFL if moved out to single prec,
-# so, denorm and round and then use generic store single routine to
-# write the value to memory.
-#
-fout_sgl_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l %a0,-(%sp)
-
- clr.l %d0 # pass: S.F. = 0
-
- cmpi.b STAG(%a6),&DENORM # fetch src optype tag
- bne.b fout_sgl_unfl_cont # let DENORMs fall through
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the DENORM
-
-fout_sgl_unfl_cont:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calc default underflow result
-
- lea FP_SCR0(%a6),%a0 # pass: ptr to fop
- bsr.l dst_sgl # convert to single prec
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_unfl_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.b fout_sgl_unfl_chkexc
-
-fout_sgl_unfl_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
-
-fout_sgl_unfl_chkexc:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_unfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# it's definitely an overflow so call ovf_res to get the correct answer
-#
-fout_sgl_ovfl:
- tst.b 3+SRC_HI(%a0) # is result inexact?
- bne.b fout_sgl_ovfl_inex2
- tst.l SRC_LO(%a0) # is result inexact?
- bne.b fout_sgl_ovfl_inex2
- ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- bra.b fout_sgl_ovfl_cont
-fout_sgl_ovfl_inex2:
- ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
-
-fout_sgl_ovfl_cont:
- mov.l %a0,-(%sp)
-
-# call ovf_res() w/ sgl prec and the correct rnd mode to create the default
-# overflow result. DON'T save the returned ccodes from ovf_res() since
-# fmove out doesn't alter them.
- tst.b SRC_EX(%a0) # is operand negative?
- smi %d1 # set if so
- mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode
- bsr.l ovf_res # calc OVFL result
- fmovm.x (%a0),&0x80 # load default overflow result
- fmov.s %fp0,%d0 # store to single
-
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_ovfl_dn # must save to integer regfile
-
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
-
- bra.b fout_sgl_ovfl_chkexc
-
-fout_sgl_ovfl_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
-
-fout_sgl_ovfl_chkexc:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_ovfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# move out MAY overflow:
-# (1) force the exp to 0x3fff
-# (2) do a move w/ appropriate rnd mode
-# (3) if exp still equals zero, then insert original exponent
-# for the correct result.
-# if exp now equals one, then it overflowed so call ovf_res.
-#
-fout_sgl_may_ovfl:
- mov.w SRC_EX(%a0),%d1 # fetch current sign
- andi.w &0x8000,%d1 # keep it,clear exp
- ori.w &0x3fff,%d1 # insert exp = 0
- mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # need absolute value
- fcmp.b %fp0,&0x2 # did exponent increase?
- fblt.w fout_sgl_exg # no; go finish NORM
- bra.w fout_sgl_ovfl # yes; go handle overflow
-
-################
-
-fout_sd_exc_unfl:
- mov.l (%sp)+,%a0
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- cmpi.b STAG(%a6),&DENORM # was src a DENORM?
- bne.b fout_sd_exc_cont # no
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm
- neg.l %d0
- andi.w &0x7fff,%d0
- bfins %d0,FP_SCR0_EX(%a6){&1:&15}
- bra.b fout_sd_exc_cont
-
-fout_sd_exc:
-fout_sd_exc_ovfl:
- mov.l (%sp)+,%a0 # restore a0
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
-fout_sd_exc_cont:
- bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit
- sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit
- lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM
-
- mov.b 3+L_SCR3(%a6),%d1
- lsr.b &0x4,%d1
- andi.w &0x0c,%d1
- swap %d1
- mov.b 3+L_SCR3(%a6),%d1
- lsr.b &0x4,%d1
- andi.w &0x03,%d1
- clr.l %d0 # pass: zero g,r,s
- bsr.l _round # round the DENORM
-
- tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative?
- beq.b fout_sd_exc_done # no
- bset &0x7,FP_SCR0_EX(%a6) # yes
-
-fout_sd_exc_done:
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#################################################################
-# fmove.d out ###################################################
-#################################################################
-fout_dbl:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
-
-#
-# operand is a normalized number. first, we check to see if the move out
-# would cause either an underflow or overflow. these cases are handled
-# separately. otherwise, set the FPCR to the proper rounding mode and
-# execute the move.
-#
- mov.w SRC_EX(%a0),%d0 # extract exponent
- andi.w &0x7fff,%d0 # strip sign
-
- cmpi.w %d0,&DBL_HI # will operand overflow?
- bgt.w fout_dbl_ovfl # yes; go handle OVFL
- beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL
- cmpi.w %d0,&DBL_LO # will operand underflow?
- blt.w fout_dbl_unfl # yes; go handle underflow
-
-#
-# NORMs(in range) can be stored out by a simple "fmov.d"
-# Unnormalized inputs can come through this point.
-#
-fout_dbl_exg:
- fmovm.x SRC(%a0),&0x80 # fetch fop from stack
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmov.d %fp0,L_SCR1(%a6) # store does convert and round
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d0 # save FPSR
-
- or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex
-
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- rts # no; so we're finished
-
-#
-# here, we know that the operand would UNFL if moved out to double prec,
-# so, denorm and round and then use generic store double routine to
-# write the value to memory.
-#
-fout_dbl_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l %a0,-(%sp)
-
- clr.l %d0 # pass: S.F. = 0
-
- cmpi.b STAG(%a6),&DENORM # fetch src optype tag
- bne.b fout_dbl_unfl_cont # let DENORMs fall through
-
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the DENORM
-
-fout_dbl_unfl_cont:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calc default underflow result
-
- lea FP_SCR0(%a6),%a0 # pass: ptr to fop
- bsr.l dst_dbl # convert to single prec
- mov.l %d0,L_SCR1(%a6)
- mov.l %d1,L_SCR2(%a6)
-
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_unfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# it's definitely an overflow so call ovf_res to get the correct answer
-#
-fout_dbl_ovfl:
- mov.w 2+SRC_LO(%a0),%d0
- andi.w &0x7ff,%d0
- bne.b fout_dbl_ovfl_inex2
-
- ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- bra.b fout_dbl_ovfl_cont
-fout_dbl_ovfl_inex2:
- ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
-
-fout_dbl_ovfl_cont:
- mov.l %a0,-(%sp)
-
-# call ovf_res() w/ dbl prec and the correct rnd mode to create the default
-# overflow result. DON'T save the returned ccodes from ovf_res() since
-# fmove out doesn't alter them.
- tst.b SRC_EX(%a0) # is operand negative?
- smi %d1 # set if so
- mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode
- bsr.l ovf_res # calc OVFL result
- fmovm.x (%a0),&0x80 # load default overflow result
- fmov.d %fp0,L_SCR1(%a6) # store to double
-
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
-
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_ovfl # yes
- addq.l &0x4,%sp
- rts
-
-#
-# move out MAY overflow:
-# (1) force the exp to 0x3fff
-# (2) do a move w/ appropriate rnd mode
-# (3) if exp still equals zero, then insert original exponent
-# for the correct result.
-# if exp now equals one, then it overflowed so call ovf_res.
-#
-fout_dbl_may_ovfl:
- mov.w SRC_EX(%a0),%d1 # fetch current sign
- andi.w &0x8000,%d1 # keep it,clear exp
- ori.w &0x3fff,%d1 # insert exp = 0
- mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # need absolute value
- fcmp.b %fp0,&0x2 # did exponent increase?
- fblt.w fout_dbl_exg # no; go finish NORM
- bra.w fout_dbl_ovfl # yes; go handle overflow
-
-#########################################################################
-# XDEF **************************************************************** #
-# dst_dbl(): create double precision value from extended prec. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to source operand in extended precision #
-# #
-# OUTPUT ************************************************************** #
-# d0 = hi(double precision result) #
-# d1 = lo(double precision result) #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# Changes extended precision to double precision. #
-# Note: no attempt is made to round the extended value to double. #
-# dbl_sign = ext_sign #
-# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) #
-# get rid of ext integer bit #
-# dbl_mant = ext_mant{62:12} #
-# #
-# --------------- --------------- --------------- #
-# extended -> |s| exp | |1| ms mant | | ls mant | #
-# --------------- --------------- --------------- #
-# 95 64 63 62 32 31 11 0 #
-# | | #
-# | | #
-# | | #
-# v v #
-# --------------- --------------- #
-# double -> |s|exp| mant | | mant | #
-# --------------- --------------- #
-# 63 51 32 31 0 #
-# #
-#########################################################################
-
-dst_dbl:
- clr.l %d0 # clear d0
- mov.w FTEMP_EX(%a0),%d0 # get exponent
- subi.w &EXT_BIAS,%d0 # subtract extended precision bias
- addi.w &DBL_BIAS,%d0 # add double precision bias
- tst.b FTEMP_HI(%a0) # is number a denorm?
- bmi.b dst_get_dupper # no
- subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1
-dst_get_dupper:
- swap %d0 # d0 now in upper word
- lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp
- tst.b FTEMP_EX(%a0) # test sign
- bpl.b dst_get_dman # if positive, go process mantissa
- bset &0x1f,%d0 # if negative, set sign
-dst_get_dman:
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms
- or.l %d1,%d0 # put these bits in ms word of double
- mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- mov.l &21,%d0 # load shift count
- lsl.l %d0,%d1 # put lower 11 bits in upper bits
- mov.l %d1,L_SCR2(%a6) # build lower lword in memory
- mov.l FTEMP_LO(%a0),%d1 # get ls mantissa
- bfextu %d1{&0:&21},%d0 # get ls 21 bits of double
- mov.l L_SCR2(%a6),%d1
- or.l %d0,%d1 # put them in double result
- mov.l L_SCR1(%a6),%d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# dst_sgl(): create single precision value from extended prec #
-# #
-# XREF **************************************************************** #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to source operand in extended precision #
-# #
-# OUTPUT ************************************************************** #
-# d0 = single precision result #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# Changes extended precision to single precision. #
-# sgl_sign = ext_sign #
-# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) #
-# get rid of ext integer bit #
-# sgl_mant = ext_mant{62:12} #
-# #
-# --------------- --------------- --------------- #
-# extended -> |s| exp | |1| ms mant | | ls mant | #
-# --------------- --------------- --------------- #
-# 95 64 63 62 40 32 31 12 0 #
-# | | #
-# | | #
-# | | #
-# v v #
-# --------------- #
-# single -> |s|exp| mant | #
-# --------------- #
-# 31 22 0 #
-# #
-#########################################################################
-
-dst_sgl:
- clr.l %d0
- mov.w FTEMP_EX(%a0),%d0 # get exponent
- subi.w &EXT_BIAS,%d0 # subtract extended precision bias
- addi.w &SGL_BIAS,%d0 # add single precision bias
- tst.b FTEMP_HI(%a0) # is number a denorm?
- bmi.b dst_get_supper # no
- subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1
-dst_get_supper:
- swap %d0 # put exp in upper word of d0
- lsl.l &0x7,%d0 # shift it into single exp bits
- tst.b FTEMP_EX(%a0) # test sign
- bpl.b dst_get_sman # if positive, continue
- bset &0x1f,%d0 # if negative, put in sign first
-dst_get_sman:
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- andi.l &0x7fffff00,%d1 # get upper 23 bits of ms
- lsr.l &0x8,%d1 # and put them flush right
- or.l %d1,%d0 # put these bits in ms word of single
- rts
-
-##############################################################################
-fout_pack:
- bsr.l _calc_ea_fout # fetch the <ea>
- mov.l %a0,-(%sp)
-
- mov.b STAG(%a6),%d0 # fetch input type
- bne.w fout_pack_not_norm # input is not NORM
-
-fout_pack_norm:
- btst &0x4,EXC_CMDREG(%a6) # static or dynamic?
- beq.b fout_pack_s # static
-
-fout_pack_d:
- mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg
- lsr.b &0x4,%d1
- andi.w &0x7,%d1
-
- bsr.l fetch_dreg # fetch Dn w/ k-factor
-
- bra.b fout_pack_type
-fout_pack_s:
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field
-
-fout_pack_type:
- bfexts %d0{&25:&7},%d0 # extract k-factor
- mov.l %d0,-(%sp)
-
- lea FP_SRC(%a6),%a0 # pass: ptr to input
-
-# bindec is currently scrambling FP_SRC for denorm inputs.
-# we'll have to change this, but for now, tough luck!!!
- bsr.l bindec # convert xprec to packed
-
-# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields
- andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields
-
- mov.l (%sp)+,%d0
-
- tst.b 3+FP_SCR0_EX(%a6)
- bne.b fout_pack_set
- tst.l FP_SCR0_HI(%a6)
- bne.b fout_pack_set
- tst.l FP_SCR0_LO(%a6)
- bne.b fout_pack_set
-
-# add the extra condition that only if the k-factor was zero, too, should
-# we zero the exponent
- tst.l %d0
- bne.b fout_pack_set
-# "mantissa" is all zero which means that the answer is zero. but, the '040
-# algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore,
-# if the mantissa is zero, I will zero the exponent, too.
-# the question now is whether the exponents sign bit is allowed to be non-zero
-# for a zero, also...
- andi.w &0xf000,FP_SCR0(%a6)
-
-fout_pack_set:
-
- lea FP_SCR0(%a6),%a0 # pass: src addr
-
-fout_pack_write:
- mov.l (%sp)+,%a1 # pass: dst addr
- mov.l &0xc,%d0 # pass: opsize is 12 bytes
-
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.b fout_pack_a7
-
- bsr.l _dmem_write # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- rts
-
-# we don't want to do the write if the exception occurred in supervisor mode
-# so _mem_write2() handles this for us.
-fout_pack_a7:
- bsr.l _mem_write2 # write ext prec number to memory
-
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
-
- rts
-
-fout_pack_not_norm:
- cmpi.b %d0,&DENORM # is it a DENORM?
- beq.w fout_pack_norm # yes
- lea FP_SRC(%a6),%a0
- clr.w 2+FP_SRC_EX(%a6)
- cmpi.b %d0,&SNAN # is it an SNAN?
- beq.b fout_pack_snan # yes
- bra.b fout_pack_write # no
-
-fout_pack_snan:
- ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP
- bset &0x6,FP_SRC_HI(%a6) # set snan bit
- bra.b fout_pack_write
-
-#########################################################################
-# XDEF **************************************************************** #
-# fmul(): emulates the fmul instruction #
-# fsmul(): emulates the fsmul instruction #
-# fdmul(): emulates the fdmul instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res() - return default underflow result #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a multiply #
-# instruction won't cause an exception. Use the regular fmul to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- align 0x10
-tbl_fmul_ovfl:
- long 0x3fff - 0x7ffe # ext_max
- long 0x3fff - 0x407e # sgl_max
- long 0x3fff - 0x43fe # dbl_max
-tbl_fmul_unfl:
- long 0x3fff + 0x0001 # ext_unfl
- long 0x3fff - 0x3f80 # sgl_unfl
- long 0x3fff - 0x3c00 # dbl_unfl
-
- global fsmul
-fsmul:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fmul
-
- global fdmul
-fdmul:
- andi.b &0x30,%d0
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fmul
-fmul:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fmul_not_norm # optimize on non-norm input
-
-fmul_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # scale src exponent
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # scale dst exponent
-
- add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2
-
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision
- lsr.b &0x6,%d1 # shift to lo bits
- mov.l (%sp)+,%d0 # load S.F.
- cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl?
- beq.w fmul_may_ovfl # result may rnd to overflow
- blt.w fmul_ovfl # result will overflow
-
- cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl?
- beq.w fmul_may_unfl # result may rnd to no unfl
- bgt.w fmul_unfl # result will underflow
-
-#
-# NORMAL:
-# - the result of the multiply operation will neither overflow nor underflow.
-# - do the multiply to the proper precision and rounding mode.
-# - scale the result exponent using the scale factor. if both operands were
-# normalized then we really don't need to go through this scaling. but for now,
-# this will do.
-#
-fmul_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fmul_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# OVERFLOW:
-# - the result of the multiply operation is an overflow.
-# - do the multiply to the proper precision and rounding mode in order to
-# set the inexact bits.
-# - calculate the default result and return it in fp0.
-# - if overflow or inexact is enabled, we need a multiply result rounded to
-# extended precision. if the original operation was extended, then we have this
-# result. if the original operation was single or double, we have to do another
-# multiply using extended precision and the correct rounding mode. the result
-# of this operation then has its exponent scaled by -0x6000 to create the
-# exceptional operand.
-#
-fmul_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-# save setting this until now because this is where fmul_may_ovfl may jump in
-fmul_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fmul_ovfl_ena # yes
-
-# calculate the default result
-fmul_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled; Create EXOP:
-# - if precision is extended, then we have the EXOP. simply bias the exponent
-# with an extra -0x6000. if the precision is single or double, we need to
-# calculate a result rounded to extended precision.
-#
-fmul_ovfl_ena:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # test the rnd prec
- bne.b fmul_ovfl_ena_sd # it's sgl or dbl
-
-fmul_ovfl_ena_cont:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1 # clear sign bit
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fmul_ovfl_dis
-
-fmul_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode only
- fmov.l %d1,%fpcr # set FPCR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
- bra.b fmul_ovfl_ena_cont
-
-#
-# may OVERFLOW:
-# - the result of the multiply operation MAY overflow.
-# - do the multiply to the proper precision and rounding mode in order to
-# set the inexact bits.
-# - calculate the default result and return it in fp0.
-#
-fmul_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fmul_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fmul_normal_exit
-
-#
-# UNDERFLOW:
-# - the result of the multiply operation is an underflow.
-# - do the multiply to the proper precision and rounding mode in order to
-# set the inexact bits.
-# - calculate the default result and return it in fp0.
-# - if overflow or inexact is enabled, we need a multiply result rounded to
-# extended precision. if the original operation was extended, then we have this
-# result. if the original operation was single or double, we have to do another
-# multiply using extended precision and the correct rounding mode. the result
-# of this operation then has its exponent scaled by -0x6000 to create the
-# exceptional operand.
-#
-fmul_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
-# for fun, let's use only extended precision, round to zero. then, let
-# the unf_res() routine figure out all the rest.
-# will we get the correct answer.
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fmul_unfl_ena # yes
-
-fmul_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fmul_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fmul_unfl_ena_sd # no, sgl or dbl
-
-# if the rnd mode is anything but RZ, then we have to re-do the above
-# multiplication because we used RZ for all.
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fmul_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp1 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fmul_unfl_dis
-
-fmul_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fmul_unfl_ena_cont
-
-# MAY UNDERFLOW:
-# -use the correct rounding mode and precision. this code favors operations
-# that do not underflow.
-fmul_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| > 2.b?
- fbgt.w fmul_normal_exit # no; no underflow occurred
- fblt.w fmul_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 2. but,
-# we don't know if the result was an underflow that rounded up to a 2 or
-# a normalized number that rounded down to a 2. so, redo the entire operation
-# using RZ as the rounding mode to see what the pre-rounded result is.
-# this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst operand
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fmul.x FP_SCR0(%a6),%fp1 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x2 # is |result| < 2.b?
- fbge.w fmul_normal_exit # no; no underflow occurred
- bra.w fmul_unfl # yes, underflow occurred
-
-################################################################################
-
-#
-# Multiply: inputs are not both normalized; what are they?
-#
-fmul_not_norm:
- mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fmul_op.b,%pc,%d1.w)
-
- swbeg &48
-tbl_fmul_op:
- short fmul_norm - tbl_fmul_op # NORM x NORM
- short fmul_zero - tbl_fmul_op # NORM x ZERO
- short fmul_inf_src - tbl_fmul_op # NORM x INF
- short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
- short fmul_norm - tbl_fmul_op # NORM x DENORM
- short fmul_res_snan - tbl_fmul_op # NORM x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_zero - tbl_fmul_op # ZERO x NORM
- short fmul_zero - tbl_fmul_op # ZERO x ZERO
- short fmul_res_operr - tbl_fmul_op # ZERO x INF
- short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN
- short fmul_zero - tbl_fmul_op # ZERO x DENORM
- short fmul_res_snan - tbl_fmul_op # ZERO x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_inf_dst - tbl_fmul_op # INF x NORM
- short fmul_res_operr - tbl_fmul_op # INF x ZERO
- short fmul_inf_dst - tbl_fmul_op # INF x INF
- short fmul_res_qnan - tbl_fmul_op # INF x QNAN
- short fmul_inf_dst - tbl_fmul_op # INF x DENORM
- short fmul_res_snan - tbl_fmul_op # INF x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_res_qnan - tbl_fmul_op # QNAN x NORM
- short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO
- short fmul_res_qnan - tbl_fmul_op # QNAN x INF
- short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN
- short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM
- short fmul_res_snan - tbl_fmul_op # QNAN x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_norm - tbl_fmul_op # NORM x NORM
- short fmul_zero - tbl_fmul_op # NORM x ZERO
- short fmul_inf_src - tbl_fmul_op # NORM x INF
- short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
- short fmul_norm - tbl_fmul_op # NORM x DENORM
- short fmul_res_snan - tbl_fmul_op # NORM x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
- short fmul_res_snan - tbl_fmul_op # SNAN x NORM
- short fmul_res_snan - tbl_fmul_op # SNAN x ZERO
- short fmul_res_snan - tbl_fmul_op # SNAN x INF
- short fmul_res_snan - tbl_fmul_op # SNAN x QNAN
- short fmul_res_snan - tbl_fmul_op # SNAN x DENORM
- short fmul_res_snan - tbl_fmul_op # SNAN x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
-
-fmul_res_operr:
- bra.l res_operr
-fmul_res_snan:
- bra.l res_snan
-fmul_res_qnan:
- bra.l res_qnan
-
-#
-# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm)
-#
- global fmul_zero # global for fsglmul
-fmul_zero:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_zero_p # result ZERO is pos.
-fmul_zero_n:
- fmov.s &0x80000000,%fp0 # load -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
- rts
-fmul_zero_p:
- fmov.s &0x00000000,%fp0 # load +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# Multiply: (inf x inf) || (inf x norm) || (inf x denorm)
-#
-# Note: The j-bit for an infinity is a don't-care. However, to be
-# strictly compatible w/ the 68881/882, we make sure to return an
-# INF w/ the j-bit set if the input INF j-bit was set. Destination
-# INFs take priority.
-#
- global fmul_inf_dst # global for fsglmul
-fmul_inf_dst:
- fmovm.x DST(%a1),&0x80 # return INF result in fp0
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_inf_dst_p # result INF is pos.
-fmul_inf_dst_n:
- fabs.x %fp0 # clear result sign
- fneg.x %fp0 # set result sign
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
- rts
-fmul_inf_dst_p:
- fabs.x %fp0 # clear result sign
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
- global fmul_inf_src # global for fsglmul
-fmul_inf_src:
- fmovm.x SRC(%a0),&0x80 # return INF result in fp0
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_inf_dst_p # result INF is pos.
- bra.b fmul_inf_dst_n
-
-#########################################################################
-# XDEF **************************************************************** #
-# fin(): emulates the fmove instruction #
-# fsin(): emulates the fsmove instruction #
-# fdin(): emulates the fdmove instruction #
-# #
-# XREF **************************************************************** #
-# norm() - normalize mantissa for EXOP on denorm #
-# scale_to_zero_src() - scale src exponent to zero #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan_1op() - return QNAN result #
-# res_snan_1op() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round prec/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Norms can be emulated w/ a regular fmove instruction. For #
-# sgl/dbl, must scale exponent and perform an "fmove". Check to see #
-# if the result would have overflowed/underflowed. If so, use unf_res() #
-# or ovf_res() to return the default result. Also return EXOP if #
-# exception is enabled. If no exception, return the default result. #
-# Unnorms don't pass through here. #
-# #
-#########################################################################
-
- global fsin
-fsin:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fin
-
- global fdin
-fdin:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
-
- global fin
-fin:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- mov.b STAG(%a6),%d1 # fetch src optype tag
- bne.w fin_not_norm # optimize on non-norm input
-
-#
-# FP MOVE IN: NORMs and DENORMs ONLY!
-#
-fin_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fin_not_ext # no, so go handle dbl or sgl
-
-#
-# precision selected is extended. so...we cannot get an underflow
-# or overflow because of rounding to the correct precision. so...
-# skip the scaling and unscaling...
-#
- tst.b SRC_EX(%a0) # is the operand negative?
- bpl.b fin_norm_done # no
- bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
-fin_norm_done:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- rts
-
-#
-# for an extended precision DENORM, the UNFL exception bit is set
-# the accrued bit is NOT set in this instance(no inexactness!)
-#
-fin_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fin_not_ext # no, so go handle dbl or sgl
-
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- tst.b SRC_EX(%a0) # is the operand negative?
- bpl.b fin_denorm_done # no
- bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
-fin_denorm_done:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fin_denorm_unfl_ena # yes
- rts
-
-#
-# the input is an extended DENORM and underflow is enabled in the FPCR.
-# normalize the mantissa and add the bias of 0x6000 to the resulting negative
-# exponent and insert back into the operand.
-#
-fin_denorm_unfl_ena:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat new exo,old sign
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#
-# operand is to be rounded to single or double precision
-#
-fin_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fin_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fin_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fin_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fin_sd_may_ovfl # maybe; go check
- blt.w fin_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved into the fp reg file
-#
-fin_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # perform move
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fin_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exponent
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fin_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.w fin_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fin_sd_may_ovfl # maybe; go check
- blt.w fin_sd_ovfl # yes; go handle overflow
- bra.w fin_sd_normal # no; ho handle normalized op
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fin_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- tst.b FP_SCR0_EX(%a6) # is operand negative?
- bpl.b fin_sd_unfl_tst
- bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
-
-# if underflow or inexact is enabled, then go calculate the EXOP first.
-fin_sd_unfl_tst:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fin_sd_unfl_ena # yes
-
-fin_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow or inexact is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fin_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # subtract scale factor
- andi.w &0x8000,%d2 # extract old sign
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fin_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fin_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # perform move
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fin_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fin_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fin_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fin_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- sub.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fin_sd_ovfl_dis
-
-#
-# the move in MAY overflow. so...
-#
-fin_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fmov.x FP_SCR0(%a6),%fp0 # perform the move
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fin_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fin_sd_normal_exit
-
-##########################################################################
-
-#
-# operand is not a NORM: check its optype and branch accordingly
-#
-fin_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fin_denorm
- cmpi.b %d1,&SNAN # weed out SNANs
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNANs
- beq.l res_qnan_1op
-
-#
-# do the fmove in; at this point, only possible ops are ZERO and INF.
-# use fmov to determine ccodes.
-# prec:mode should be zero at this point but it won't affect answer anyways.
-#
- fmov.x SRC(%a0),%fp0 # do fmove in
- fmov.l %fpsr,%d0 # no exceptions possible
- rol.l &0x8,%d0 # put ccodes in lo byte
- mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fdiv(): emulates the fdiv instruction #
-# fsdiv(): emulates the fsdiv instruction #
-# fddiv(): emulates the fddiv instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res() - return default underflow result #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a divide #
-# instruction won't cause an exception. Use the regular fdiv to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- align 0x10
-tbl_fdiv_unfl:
- long 0x3fff - 0x0000 # ext_unfl
- long 0x3fff - 0x3f81 # sgl_unfl
- long 0x3fff - 0x3c01 # dbl_unfl
-
-tbl_fdiv_ovfl:
- long 0x3fff - 0x7ffe # ext overflow exponent
- long 0x3fff - 0x407e # sgl overflow exponent
- long 0x3fff - 0x43fe # dbl overflow exponent
-
- global fsdiv
-fsdiv:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fdiv
-
- global fddiv
-fddiv:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fdiv
-fdiv:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fdiv_not_norm # optimize on non-norm input
-
-#
-# DIVIDE: NORMs and DENORMs ONLY!
-#
-fdiv_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # scale src exponent
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # scale dst exponent
-
- neg.l (%sp) # SCALE FACTOR = scale1 - scale2
- add.l %d0,(%sp)
-
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision
- lsr.b &0x6,%d1 # shift to lo bits
- mov.l (%sp)+,%d0 # load S.F.
- cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow?
- ble.w fdiv_may_ovfl # result will overflow
-
- cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow?
- beq.w fdiv_may_unfl # maybe
- bgt.w fdiv_unfl # yes; go handle underflow
-
-fdiv_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # save FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # perform divide
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fdiv_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
- mov.l %d2,-(%sp) # store d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-tbl_fdiv_ovfl2:
- long 0x7fff
- long 0x407f
- long 0x43ff
-
-fdiv_no_ovfl:
- mov.l (%sp)+,%d0 # restore scale factor
- bra.b fdiv_normal_exit
-
-fdiv_may_ovfl:
- mov.l %d0,-(%sp) # save scale factor
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # set FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d0
- fmov.l &0x0,%fpcr
-
- or.l %d0,USER_FPSR(%a6) # save INEX,N
-
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w (%sp),%d0 # fetch new exponent
- add.l &0xc,%sp # clear result from stack
- andi.l &0x7fff,%d0 # strip sign
- sub.l (%sp),%d0 # add scale factor
- cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4)
- blt.b fdiv_no_ovfl
- mov.l (%sp)+,%d0
-
-fdiv_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fdiv_ovfl_ena # yes
-
-fdiv_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-fdiv_ovfl_ena:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl
-
-fdiv_ovfl_ena_cont:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1 # clear sign bit
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fdiv_ovfl_dis
-
-fdiv_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l &0x0,%fpcr # clear FPCR
- bra.b fdiv_ovfl_ena_cont
-
-fdiv_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fdiv_unfl_ena # yes
-
-fdiv_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fdiv_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fdiv_unfl_ena_sd # no, sgl or dbl
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fdiv_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp1 # execute divide
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factoer
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exp
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fdiv_unfl_dis
-
-fdiv_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fdiv_unfl_ena_cont
-
-#
-# the divide operation MAY underflow:
-#
-fdiv_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| > 1.b?
- fbgt.w fdiv_normal_exit # no; no underflow occurred
- fblt.w fdiv_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 1. but,
-# we don't know if the result was an underflow that rounded up to a 1
-# or a normalized number that rounded down to a 1. so, redo the entire
-# operation using RZ as the rounding mode to see what the pre-rounded
-# result is. this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fdiv.x FP_SCR0(%a6),%fp1 # execute divide
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x1 # is |result| < 1.b?
- fbge.w fdiv_normal_exit # no; no underflow occurred
- bra.w fdiv_unfl # yes; underflow occurred
-
-############################################################################
-
-#
-# Divide: inputs are not both normalized; what are they?
-#
-fdiv_not_norm:
- mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fdiv_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fdiv_op:
- short fdiv_norm - tbl_fdiv_op # NORM / NORM
- short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO
- short fdiv_zero_load - tbl_fdiv_op # NORM / INF
- short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN
- short fdiv_norm - tbl_fdiv_op # NORM / DENORM
- short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM
- short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO
- short fdiv_zero_load - tbl_fdiv_op # ZERO / INF
- short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN
- short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM
- short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_inf_dst - tbl_fdiv_op # INF / NORM
- short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO
- short fdiv_res_operr - tbl_fdiv_op # INF / INF
- short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN
- short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM
- short fdiv_res_snan - tbl_fdiv_op # INF / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM
- short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_norm - tbl_fdiv_op # DENORM / NORM
- short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO
- short fdiv_zero_load - tbl_fdiv_op # DENORM / INF
- short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN
- short fdiv_norm - tbl_fdiv_op # DENORM / DENORM
- short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
- short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM
- short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO
- short fdiv_res_snan - tbl_fdiv_op # SNAN / INF
- short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN
- short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM
- short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
-
-fdiv_res_qnan:
- bra.l res_qnan
-fdiv_res_snan:
- bra.l res_snan
-fdiv_res_operr:
- bra.l res_operr
-
- global fdiv_zero_load # global for fsgldiv
-fdiv_zero_load:
- mov.b SRC_EX(%a0),%d0 # result sign is exclusive
- mov.b DST_EX(%a1),%d1 # or of input signs.
- eor.b %d0,%d1
- bpl.b fdiv_zero_load_p # result is positive
- fmov.s &0x80000000,%fp0 # load a -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
- rts
-fdiv_zero_load_p:
- fmov.s &0x00000000,%fp0 # load a +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# The destination was In Range and the source was a ZERO. The result,
-# Therefore, is an INF w/ the proper sign.
-# So, determine the sign and return a new INF (w/ the j-bit cleared).
-#
- global fdiv_inf_load # global for fsgldiv
-fdiv_inf_load:
- ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ
- mov.b SRC_EX(%a0),%d0 # load both signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fdiv_inf_load_p # result is positive
- fmov.s &0xff800000,%fp0 # make result -INF
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
- rts
-fdiv_inf_load_p:
- fmov.s &0x7f800000,%fp0 # make result +INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#
-# The destination was an INF w/ an In Range or ZERO source, the result is
-# an INF w/ the proper sign.
-# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the
-# dst INF is set, then then j-bit of the result INF is also set).
-#
- global fdiv_inf_dst # global for fsgldiv
-fdiv_inf_dst:
- mov.b DST_EX(%a1),%d0 # load both signs
- mov.b SRC_EX(%a0),%d1
- eor.b %d0,%d1
- bpl.b fdiv_inf_dst_p # result is positive
-
- fmovm.x DST(%a1),&0x80 # return result in fp0
- fabs.x %fp0 # clear sign bit
- fneg.x %fp0 # set sign bit
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fdiv_inf_dst_p:
- fmovm.x DST(%a1),&0x80 # return result in fp0
- fabs.x %fp0 # return positive INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fneg(): emulates the fneg instruction #
-# fsneg(): emulates the fsneg instruction #
-# fdneg(): emulates the fdneg instruction #
-# #
-# XREF **************************************************************** #
-# norm() - normalize a denorm to provide EXOP #
-# scale_to_zero_src() - scale sgl/dbl source exponent #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan_1op() - return QNAN result #
-# res_snan_1op() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, zeroes, and infinities as special cases. Separate #
-# norms/denorms into ext/sgl/dbl precisions. Extended precision can be #
-# emulated by simply setting sign bit. Sgl/dbl operands must be scaled #
-# and an actual fneg performed to see if overflow/underflow would have #
-# occurred. If so, return default underflow/overflow result. Else, #
-# scale the result exponent and return result. FPSR gets set based on #
-# the result value. #
-# #
-#########################################################################
-
- global fsneg
-fsneg:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fneg
-
- global fdneg
-fdneg:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fneg
-fneg:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1
- bne.w fneg_not_norm # optimize on non-norm input
-
-#
-# NEGATE SIGN : norms and denorms ONLY!
-#
-fneg_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fneg_not_ext # no; go handle sgl or dbl
-
-#
-# precision selected is extended. so...we can not get an underflow
-# or overflow because of rounding to the correct precision. so...
-# skip the scaling and unscaling...
-#
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- eori.w &0x8000,%d0 # negate sign
- bpl.b fneg_norm_load # sign is positive
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
-fneg_norm_load:
- mov.w %d0,FP_SCR0_EX(%a6)
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# for an extended precision DENORM, the UNFL exception bit is set
-# the accrued bit is NOT set in this instance(no inexactness!)
-#
-fneg_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fneg_not_ext # no; go handle sgl or dbl
-
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- eori.w &0x8000,%d0 # negate sign
- bpl.b fneg_denorm_done # no
- mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit
-fneg_denorm_done:
- mov.w %d0,FP_SCR0_EX(%a6)
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
-
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fneg_ext_unfl_ena # yes
- rts
-
-#
-# the input is an extended DENORM and underflow is enabled in the FPCR.
-# normalize the mantissa and add the bias of 0x6000 to the resulting negative
-# exponent and insert back into the operand.
-#
-fneg_ext_unfl_ena:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat old sign, new exponent
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#
-# operand is either single or double
-#
-fneg_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fneg_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fneg_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fneg_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fneg_sd_may_ovfl # maybe; go check
- blt.w fneg_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved in to the fp reg file
-#
-fneg_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fneg_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fneg_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.b fneg_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fneg_sd_may_ovfl # maybe; go check
- blt.w fneg_sd_ovfl # yes; go handle overflow
- bra.w fneg_sd_normal # no; ho handle normalized op
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fneg_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- eori.b &0x80,FP_SCR0_EX(%a6) # negate sign
- bpl.b fneg_sd_unfl_tst
- bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
-
-# if underflow or inexact is enabled, go calculate EXOP first.
-fneg_sd_unfl_tst:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fneg_sd_unfl_ena # yes
-
-fneg_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fneg_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fneg_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fneg_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fneg_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fneg_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fneg_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fneg_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fneg_sd_ovfl_dis
-
-#
-# the move in MAY underflow. so...
-#
-fneg_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fneg_sd_normal_exit
-
-##########################################################################
-
-#
-# input is not normalized; what is it?
-#
-fneg_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fneg_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
-
-#
-# do the fneg; at this point, only possible ops are ZERO and INF.
-# use fneg to determine ccodes.
-# prec:mode should be zero at this point but it won't affect answer anyways.
-#
- fneg.x SRC_EX(%a0),%fp0 # do fneg
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0 # put ccodes in lo byte
- mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# ftst(): emulates the ftest instruction #
-# #
-# XREF **************************************************************** #
-# res{s,q}nan_1op() - set NAN result for monadic instruction #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# #
-# OUTPUT ************************************************************** #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# Check the source operand tag (STAG) and set the FPCR according #
-# to the operand type and sign. #
-# #
-#########################################################################
-
- global ftst
-ftst:
- mov.b STAG(%a6),%d1
- bne.b ftst_not_norm # optimize on non-norm input
-
-#
-# Norm:
-#
-ftst_norm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_norm_m # yes
- rts
-ftst_norm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-#
-# input is not normalized; what is it?
-#
-ftst_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b ftst_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b ftst_inf
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
-
-#
-# Denorm:
-#
-ftst_denorm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_denorm_m # yes
- rts
-ftst_denorm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-
-#
-# Infinity:
-#
-ftst_inf:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_inf_m # yes
-ftst_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-ftst_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits
- rts
-
-#
-# Zero:
-#
-ftst_zero:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_zero_m # yes
-ftst_zero_p:
- mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
-ftst_zero_m:
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fint(): emulates the fint instruction #
-# #
-# XREF **************************************************************** #
-# res_{s,q}nan_1op() - set NAN result for monadic operation #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# #
-# ALGORITHM *********************************************************** #
-# Separate according to operand type. Unnorms don't pass through #
-# here. For norms, load the rounding mode/prec, execute a "fint", then #
-# store the resulting FPSR bits. #
-# For denorms, force the j-bit to a one and do the same as for #
-# norms. Denorms are so low that the answer will either be a zero or a #
-# one. #
-# For zeroes/infs/NANs, return the same while setting the FPSR #
-# as appropriate. #
-# #
-#########################################################################
-
- global fint
-fint:
- mov.b STAG(%a6),%d1
- bne.b fint_not_norm # optimize on non-norm input
-
-#
-# Norm:
-#
-fint_norm:
- andi.b &0x30,%d0 # set prec = ext
-
- fmov.l %d0,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fint.x SRC(%a0),%fp0 # execute fint
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d0 # save FPSR
- or.l %d0,USER_FPSR(%a6) # set exception bits
-
- rts
-
-#
-# input is not normalized; what is it?
-#
-fint_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fint_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fint_inf
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.b fint_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op # weed out QNAN
-
-#
-# Denorm:
-#
-# for DENORMs, the result will be either (+/-)ZERO or (+/-)1.
-# also, the INEX2 and AINEX exception bits will be set.
-# so, we could either set these manually or force the DENORM
-# to a very small NORM and ship it to the NORM routine.
-# I do the latter.
-#
-fint_denorm:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
- mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
- lea FP_SCR0(%a6),%a0
- bra.b fint_norm
-
-#
-# Zero:
-#
-fint_zero:
- tst.b SRC_EX(%a0) # is ZERO negative?
- bmi.b fint_zero_m # yes
-fint_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO in fp0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fint_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-#
-# Infinity:
-#
-fint_inf:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- tst.b SRC_EX(%a0) # is INF negative?
- bmi.b fint_inf_m # yes
-fint_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-fint_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fintrz(): emulates the fintrz instruction #
-# #
-# XREF **************************************************************** #
-# res_{s,q}nan_1op() - set NAN result for monadic operation #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = round precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# #
-# ALGORITHM *********************************************************** #
-# Separate according to operand type. Unnorms don't pass through #
-# here. For norms, load the rounding mode/prec, execute a "fintrz", #
-# then store the resulting FPSR bits. #
-# For denorms, force the j-bit to a one and do the same as for #
-# norms. Denorms are so low that the answer will either be a zero or a #
-# one. #
-# For zeroes/infs/NANs, return the same while setting the FPSR #
-# as appropriate. #
-# #
-#########################################################################
-
- global fintrz
-fintrz:
- mov.b STAG(%a6),%d1
- bne.b fintrz_not_norm # optimize on non-norm input
-
-#
-# Norm:
-#
-fintrz_norm:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fintrz.x SRC(%a0),%fp0 # execute fintrz
-
- fmov.l %fpsr,%d0 # save FPSR
- or.l %d0,USER_FPSR(%a6) # set exception bits
-
- rts
-
-#
-# input is not normalized; what is it?
-#
-fintrz_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fintrz_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fintrz_inf
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.b fintrz_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op # weed out QNAN
-
-#
-# Denorm:
-#
-# for DENORMs, the result will be (+/-)ZERO.
-# also, the INEX2 and AINEX exception bits will be set.
-# so, we could either set these manually or force the DENORM
-# to a very small NORM and ship it to the NORM routine.
-# I do the latter.
-#
-fintrz_denorm:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
- mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
- lea FP_SCR0(%a6),%a0
- bra.b fintrz_norm
-
-#
-# Zero:
-#
-fintrz_zero:
- tst.b SRC_EX(%a0) # is ZERO negative?
- bmi.b fintrz_zero_m # yes
-fintrz_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO in fp0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fintrz_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-#
-# Infinity:
-#
-fintrz_inf:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- tst.b SRC_EX(%a0) # is INF negative?
- bmi.b fintrz_inf_m # yes
-fintrz_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-fintrz_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fabs(): emulates the fabs instruction #
-# fsabs(): emulates the fsabs instruction #
-# fdabs(): emulates the fdabs instruction #
-# #
-# XREF **************************************************************** #
-# norm() - normalize denorm mantissa to provide EXOP #
-# scale_to_zero_src() - make exponent. = 0; get scale factor #
-# unf_res() - calculate underflow result #
-# ovf_res() - calculate overflow result #
-# res_{s,q}nan_1op() - set NAN result for monadic operation #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 = rnd precision/mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Simply clear sign for extended precision norm. Ext prec denorm #
-# gets an EXOP created for it since it's an underflow. #
-# Double and single precision can overflow and underflow. First, #
-# scale the operand such that the exponent is zero. Perform an "fabs" #
-# using the correct rnd mode/prec. Check to see if the original #
-# exponent would take an exception. If so, use unf_res() or ovf_res() #
-# to calculate the default result. Also, create the EXOP for the #
-# exceptional case. If no exception should occur, insert the correct #
-# result exponent and return. #
-# Unnorms don't pass through here. #
-# #
-#########################################################################
-
- global fsabs
-fsabs:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fabs
-
- global fdabs
-fdabs:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
-
- global fabs
-fabs:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1
- bne.w fabs_not_norm # optimize on non-norm input
-
-#
-# ABSOLUTE VALUE: norms and denorms ONLY!
-#
-fabs_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fabs_not_ext # no; go handle sgl or dbl
-
-#
-# precision selected is extended. so...we can not get an underflow
-# or overflow because of rounding to the correct precision. so...
-# skip the scaling and unscaling...
-#
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d1
- bclr &15,%d1 # force absolute value
- mov.w %d1,FP_SCR0_EX(%a6) # insert exponent
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# for an extended precision DENORM, the UNFL exception bit is set
-# the accrued bit is NOT set in this instance(no inexactness!)
-#
-fabs_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fabs_not_ext # no
-
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- bclr &15,%d0 # clear sign
- mov.w %d0,FP_SCR0_EX(%a6) # insert exponent
-
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
-
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fabs_ext_unfl_ena
- rts
-
-#
-# the input is an extended DENORM and underflow is enabled in the FPCR.
-# normalize the mantissa and add the bias of 0x6000 to the resulting negative
-# exponent and insert back into the operand.
-#
-fabs_ext_unfl_ena:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat old sign, new exponent
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
-
-#
-# operand is either single or double
-#
-fabs_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fabs_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fabs_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fabs_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fabs_sd_may_ovfl # maybe; go check
- blt.w fabs_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved in to the fp reg file
-#
-fabs_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fabs_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fabs_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.b fabs_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fabs_sd_may_ovfl # maybe; go check
- blt.w fabs_sd_ovfl # yes; go handle overflow
- bra.w fabs_sd_normal # no; ho handle normalized op
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fabs_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- bclr &0x7,FP_SCR0_EX(%a6) # force absolute value
-
-# if underflow or inexact is enabled, go calculate EXOP first.
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fabs_sd_unfl_ena # yes
-
-fabs_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fabs_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fabs_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fabs_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fabs_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fabs_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fabs_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fabs_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fabs_sd_ovfl_dis
-
-#
-# the move in MAY underflow. so...
-#
-fabs_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fabs_sd_normal_exit
-
-##########################################################################
-
-#
-# input is not normalized; what is it?
-#
-fabs_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fabs_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
-
- fabs.x SRC(%a0),%fp0 # force absolute value
-
- cmpi.b %d1,&INF # weed out INF
- beq.b fabs_inf
-fabs_zero:
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fabs_inf:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fcmp(): fp compare op routine #
-# #
-# XREF **************************************************************** #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 = round prec/mode #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs and denorms as special cases. For everything else, #
-# just use the actual fcmp instruction to produce the correct condition #
-# codes. #
-# #
-#########################################################################
-
- global fcmp
-fcmp:
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1
- bne.b fcmp_not_norm # optimize on non-norm input
-
-#
-# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs
-#
-fcmp_norm:
- fmovm.x DST(%a1),&0x80 # load dst op
-
- fcmp.x %fp0,SRC(%a0) # do compare
-
- fmov.l %fpsr,%d0 # save FPSR
- rol.l &0x8,%d0 # extract ccode bits
- mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set)
-
- rts
-
-#
-# fcmp: inputs are not both normalized; what are they?
-#
-fcmp_not_norm:
- mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fcmp_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fcmp_op:
- short fcmp_norm - tbl_fcmp_op # NORM - NORM
- short fcmp_norm - tbl_fcmp_op # NORM - ZERO
- short fcmp_norm - tbl_fcmp_op # NORM - INF
- short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN
- short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM
- short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_norm - tbl_fcmp_op # ZERO - NORM
- short fcmp_norm - tbl_fcmp_op # ZERO - ZERO
- short fcmp_norm - tbl_fcmp_op # ZERO - INF
- short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN
- short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM
- short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_norm - tbl_fcmp_op # INF - NORM
- short fcmp_norm - tbl_fcmp_op # INF - ZERO
- short fcmp_norm - tbl_fcmp_op # INF - INF
- short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN
- short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM
- short fcmp_res_snan - tbl_fcmp_op # INF - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM
- short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM
- short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO
- short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF
- short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN
- short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM
- short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
- short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM
- short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO
- short fcmp_res_snan - tbl_fcmp_op # SNAN - INF
- short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN
- short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM
- short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
-
-# unlike all other functions for QNAN and SNAN, fcmp does NOT set the
-# 'N' bit for a negative QNAN or SNAN input so we must squelch it here.
-fcmp_res_qnan:
- bsr.l res_qnan
- andi.b &0xf7,FPSR_CC(%a6)
- rts
-fcmp_res_snan:
- bsr.l res_snan
- andi.b &0xf7,FPSR_CC(%a6)
- rts
-
-#
-# DENORMs are a little more difficult.
-# If you have a 2 DENORMs, then you can just force the j-bit to a one
-# and use the fcmp_norm routine.
-# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one
-# and use the fcmp_norm routine.
-# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also.
-# But with a DENORM and a NORM of the same sign, the neg bit is set if the
-# (1) signs are (+) and the DENORM is the dst or
-# (2) signs are (-) and the DENORM is the src
-#
-
-fcmp_dnrm_s:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),%d0
- bset &31,%d0 # DENORM src; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0
- bra.w fcmp_norm
-
-fcmp_dnrm_d:
- mov.l DST_EX(%a1),FP_SCR0_EX(%a6)
- mov.l DST_HI(%a1),%d0
- bset &31,%d0 # DENORM src; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a1
- bra.w fcmp_norm
-
-fcmp_dnrm_sd:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l DST_HI(%a1),%d0
- bset &31,%d0 # DENORM dst; make into small norm
- mov.l %d0,FP_SCR1_HI(%a6)
- mov.l SRC_HI(%a0),%d0
- bset &31,%d0 # DENORM dst; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR1(%a6),%a1
- lea FP_SCR0(%a6),%a0
- bra.w fcmp_norm
-
-fcmp_nrm_dnrm:
- mov.b SRC_EX(%a0),%d0 # determine if like signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fcmp_dnrm_s
-
-# signs are the same, so must determine the answer ourselves.
- tst.b %d0 # is src op negative?
- bmi.b fcmp_nrm_dnrm_m # yes
- rts
-fcmp_nrm_dnrm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
-fcmp_dnrm_nrm:
- mov.b SRC_EX(%a0),%d0 # determine if like signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fcmp_dnrm_d
-
-# signs are the same, so must determine the answer ourselves.
- tst.b %d0 # is src op negative?
- bpl.b fcmp_dnrm_nrm_m # no
- rts
-fcmp_dnrm_nrm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsglmul(): emulates the fsglmul instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res4() - return default underflow result for sglop #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a multiply #
-# instruction won't cause an exception. Use the regular fsglmul to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- global fsglmul
-fsglmul:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1
-
- bne.w fsglmul_not_norm # optimize on non-norm input
-
-fsglmul_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # scale exponent
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # scale dst exponent
-
- add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2
-
- cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl?
- beq.w fsglmul_may_ovfl # result may rnd to overflow
- blt.w fsglmul_ovfl # result will overflow
-
- cmpi.l %d0,&0x3fff+0x0001 # would result unfl?
- beq.w fsglmul_may_unfl # result may rnd to no unfl
- bgt.w fsglmul_unfl # result will underflow
-
-fsglmul_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsglmul_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-fsglmul_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsglmul_ovfl_tst:
-
-# save setting this until now because this is where fsglmul_may_ovfl may jump in
- or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsglmul_ovfl_ena # yes
-
-fsglmul_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- andi.b &0x30,%d0 # force prec = ext
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-fsglmul_ovfl_ena:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsglmul_ovfl_dis
-
-fsglmul_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fsglmul_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fsglmul_normal_exit
-
-fsglmul_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsglmul_unfl_ena # yes
-
-fsglmul_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res4 # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fsglmul_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fsglmul_unfl_dis
-
-fsglmul_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| > 2.b?
- fbgt.w fsglmul_normal_exit # no; no underflow occurred
- fblt.w fsglmul_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 2. but,
-# we don't know if the result was an underflow that rounded up to a 2 or
-# a normalized number that rounded down to a 2. so, redo the entire operation
-# using RZ as the rounding mode to see what the pre-rounded result is.
-# this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x2 # is |result| < 2.b?
- fbge.w fsglmul_normal_exit # no; no underflow occurred
- bra.w fsglmul_unfl # yes, underflow occurred
-
-##############################################################################
-
-#
-# Single Precision Multiply: inputs are not both normalized; what are they?
-#
-fsglmul_not_norm:
- mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsglmul_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fsglmul_op:
- short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
- short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
- short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
- short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM
- short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO
- short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN
- short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM
- short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
- short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
- short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
- short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
-
-fsglmul_res_operr:
- bra.l res_operr
-fsglmul_res_snan:
- bra.l res_snan
-fsglmul_res_qnan:
- bra.l res_qnan
-fsglmul_zero:
- bra.l fmul_zero
-fsglmul_inf_src:
- bra.l fmul_inf_src
-fsglmul_inf_dst:
- bra.l fmul_inf_dst
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsgldiv(): emulates the fsgldiv instruction #
-# #
-# XREF **************************************************************** #
-# scale_to_zero_src() - scale src exponent to zero #
-# scale_to_zero_dst() - scale dst exponent to zero #
-# unf_res4() - return default underflow result for sglop #
-# ovf_res() - return default overflow result #
-# res_qnan() - return QNAN result #
-# res_snan() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a divide #
-# instruction won't cause an exception. Use the regular fsgldiv to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- global fsgldiv
-fsgldiv:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fsgldiv_not_norm # optimize on non-norm input
-
-#
-# DIVIDE: NORMs and DENORMs ONLY!
-#
-fsgldiv_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_to_zero_src # calculate scale factor 1
- mov.l %d0,-(%sp) # save scale factor 1
-
- bsr.l scale_to_zero_dst # calculate scale factor 2
-
- neg.l (%sp) # S.F. = scale1 - scale2
- add.l %d0,(%sp)
-
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode
- lsr.b &0x6,%d1
- mov.l (%sp)+,%d0
- cmpi.l %d0,&0x3fff-0x7ffe
- ble.w fsgldiv_may_ovfl
-
- cmpi.l %d0,&0x3fff-0x0000 # will result underflow?
- beq.w fsgldiv_may_unfl # maybe
- bgt.w fsgldiv_unfl # yes; go handle underflow
-
-fsgldiv_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # save FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsgldiv_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-fsgldiv_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # set FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide
-
- fmov.l %fpsr,%d1
- fmov.l &0x0,%fpcr
-
- or.l %d1,USER_FPSR(%a6) # save INEX,N
-
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w (%sp),%d1 # fetch new exponent
- add.l &0xc,%sp # clear result
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- cmp.l %d1,&0x7fff # did divide overflow?
- blt.b fsgldiv_normal_exit
-
-fsgldiv_ovfl_tst:
- or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsgldiv_ovfl_ena # yes
-
-fsgldiv_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- andi.b &0x30,%d0 # kill precision
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-fsgldiv_ovfl_ena:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
-
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract new bias
- andi.w &0x7fff,%d1 # clear ms bit
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsgldiv_ovfl_dis
-
-fsgldiv_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsgldiv_unfl_ena # yes
-
-fsgldiv_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res4 # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# UNFL is enabled.
-#
-fsgldiv_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat old sign, new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsgldiv_unfl_dis
-
-#
-# the divide operation MAY underflow:
-#
-fsgldiv_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| > 1.b?
- fbgt.w fsgldiv_normal_exit # no; no underflow occurred
- fblt.w fsgldiv_unfl # yes; underflow occurred
-
-#
-# we still don't know if underflow occurred. result is ~ equal to 1. but,
-# we don't know if the result was an underflow that rounded up to a 1
-# or a normalized number that rounded down to a 1. so, redo the entire
-# operation using RZ as the rounding mode to see what the pre-rounded
-# result is. this case should be relatively rare.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1
-
- clr.l %d1 # clear scratch register
- ori.b &rz_mode*0x10,%d1 # force RZ rnd mode
-
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
-
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x1 # is |result| < 1.b?
- fbge.w fsgldiv_normal_exit # no; no underflow occurred
- bra.w fsgldiv_unfl # yes; underflow occurred
-
-############################################################################
-
-#
-# Divide: inputs are not both normalized; what are they?
-#
-fsgldiv_not_norm:
- mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fsgldiv_op:
- short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM
- short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN
- short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM
- short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO
- short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM
- short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN
- short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
-
-fsgldiv_res_qnan:
- bra.l res_qnan
-fsgldiv_res_snan:
- bra.l res_snan
-fsgldiv_res_operr:
- bra.l res_operr
-fsgldiv_inf_load:
- bra.l fdiv_inf_load
-fsgldiv_zero_load:
- bra.l fdiv_zero_load
-fsgldiv_inf_dst:
- bra.l fdiv_inf_dst
-
-#########################################################################
-# XDEF **************************************************************** #
-# fadd(): emulates the fadd instruction #
-# fsadd(): emulates the fadd instruction #
-# fdadd(): emulates the fdadd instruction #
-# #
-# XREF **************************************************************** #
-# addsub_scaler2() - scale the operands so they won't take exc #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan() - set QNAN result #
-# res_snan() - set SNAN result #
-# res_operr() - set OPERR result #
-# scale_to_zero_src() - set src operand exponent equal to zero #
-# scale_to_zero_dst() - set dst operand exponent equal to zero #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Do addition after scaling exponents such that exception won't #
-# occur. Then, check result exponent to see if exception would have #
-# occurred. If so, return default result and maybe EXOP. Else, insert #
-# the correct result exponent and return. Set FPSR bits as appropriate. #
-# #
-#########################################################################
-
- global fsadd
-fsadd:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fadd
-
- global fdadd
-fdadd:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fadd
-fadd:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fadd_not_norm # optimize on non-norm input
-
-#
-# ADD: norms and denorms
-#
-fadd_norm:
- bsr.l addsub_scaler2 # scale exponents
-
-fadd_zero_entry:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fadd.x FP_SCR0(%a6),%fp0 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch INEX2,N,Z
-
- or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
-
- fbeq.w fadd_zero_exit # if result is zero, end now
-
- mov.l %d2,-(%sp) # save d2
-
- fmovm.x &0x01,-(%sp) # save result to stack
-
- mov.w 2+L_SCR3(%a6),%d1
- lsr.b &0x6,%d1
-
- mov.w (%sp),%d2 # fetch new sign, exp
- andi.l &0x7fff,%d2 # strip sign
- sub.l %d0,%d2 # add scale factor
-
- cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow?
- bge.b fadd_ovfl # yes
-
- cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow?
- blt.w fadd_unfl # yes
- beq.w fadd_may_unfl # maybe; go find out
-
-fadd_normal:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x80 # return result in fp0
-
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fadd_zero_exit:
-# fmov.s &0x00000000,%fp0 # return zero in fp0
- rts
-
-tbl_fadd_ovfl:
- long 0x7fff # ext ovfl
- long 0x407f # sgl ovfl
- long 0x43ff # dbl ovfl
-
-tbl_fadd_unfl:
- long 0x0000 # ext unfl
- long 0x3f81 # sgl unfl
- long 0x3c01 # dbl unfl
-
-fadd_ovfl:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fadd_ovfl_ena # yes
-
- add.l &0xc,%sp
-fadd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fadd_ovfl_ena:
- mov.b L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl
-
-fadd_ovfl_ena_cont:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- subi.l &0x6000,%d2 # add extra bias
- andi.w &0x7fff,%d2
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x40 # return EXOP in fp1
- bra.b fadd_ovfl_dis
-
-fadd_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- fadd.x FP_SCR0(%a6),%fp0 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- add.l &0xc,%sp
- fmovm.x &0x01,-(%sp)
- bra.b fadd_ovfl_ena_cont
-
-fadd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- add.l &0xc,%sp
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fadd.x FP_SCR0(%a6),%fp0 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save status
-
- or.l %d1,USER_FPSR(%a6) # save INEX,N
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fadd_unfl_ena # yes
-
-fadd_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fadd_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fadd_unfl_ena_sd # no; sgl or dbl
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fadd_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fadd.x FP_SCR0(%a6),%fp1 # execute multiply
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fadd_unfl_dis
-
-fadd_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fadd_unfl_ena_cont
-
-#
-# result is equal to the smallest normalized number in the selected precision
-# if the precision is extended, this result could not have come from an
-# underflow that rounded up.
-#
-fadd_may_unfl:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1
- beq.w fadd_normal # yes; no underflow occurred
-
- mov.l 0x4(%sp),%d1 # extract hi(man)
- cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
- bne.w fadd_normal # no; no underflow occurred
-
- tst.l 0x8(%sp) # is lo(man) = 0x0?
- bne.w fadd_normal # no; no underflow occurred
-
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.w fadd_normal # no; no underflow occurred
-
-#
-# ok, so now the result has a exponent equal to the smallest normalized
-# exponent for the selected precision. also, the mantissa is equal to
-# 0x8000000000000000 and this mantissa is the result of rounding non-zero
-# g,r,s.
-# now, we must determine whether the pre-rounded result was an underflow
-# rounded "up" or a normalized number rounded "down".
-# so, we do this be re-executing the add using RZ as the rounding mode and
-# seeing if the new result is smaller or equal to the current result.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fadd.x FP_SCR0(%a6),%fp1 # execute add
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # compare absolute values
- fabs.x %fp1
- fcmp.x %fp0,%fp1 # is first result > second?
-
- fbgt.w fadd_unfl # yes; it's an underflow
- bra.w fadd_normal # no; it's not an underflow
-
-##########################################################################
-
-#
-# Add: inputs are not both normalized; what are they?
-#
-fadd_not_norm:
- mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fadd_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fadd_op:
- short fadd_norm - tbl_fadd_op # NORM + NORM
- short fadd_zero_src - tbl_fadd_op # NORM + ZERO
- short fadd_inf_src - tbl_fadd_op # NORM + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_norm - tbl_fadd_op # NORM + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_zero_dst - tbl_fadd_op # ZERO + NORM
- short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO
- short fadd_inf_src - tbl_fadd_op # ZERO + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_inf_dst - tbl_fadd_op # INF + NORM
- short fadd_inf_dst - tbl_fadd_op # INF + ZERO
- short fadd_inf_2 - tbl_fadd_op # INF + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_inf_dst - tbl_fadd_op # INF + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_res_qnan - tbl_fadd_op # QNAN + NORM
- short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO
- short fadd_res_qnan - tbl_fadd_op # QNAN + INF
- short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN
- short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM
- short fadd_res_snan - tbl_fadd_op # QNAN + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_norm - tbl_fadd_op # DENORM + NORM
- short fadd_zero_src - tbl_fadd_op # DENORM + ZERO
- short fadd_inf_src - tbl_fadd_op # DENORM + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_norm - tbl_fadd_op # DENORM + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
- short fadd_res_snan - tbl_fadd_op # SNAN + NORM
- short fadd_res_snan - tbl_fadd_op # SNAN + ZERO
- short fadd_res_snan - tbl_fadd_op # SNAN + INF
- short fadd_res_snan - tbl_fadd_op # SNAN + QNAN
- short fadd_res_snan - tbl_fadd_op # SNAN + DENORM
- short fadd_res_snan - tbl_fadd_op # SNAN + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
-
-fadd_res_qnan:
- bra.l res_qnan
-fadd_res_snan:
- bra.l res_snan
-
-#
-# both operands are ZEROes
-#
-fadd_zero_2:
- mov.b SRC_EX(%a0),%d0 # are the signs opposite
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO)
-
-# the signs are the same. so determine whether they are positive or negative
-# and return the appropriately signed zero.
- tst.b %d0 # are ZEROes positive or negative?
- bmi.b fadd_zero_rm # negative
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# the ZEROes have opposite signs:
-# - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP.
-# - -ZERO is returned in the case of RM.
-#
-fadd_zero_2_chk_rm:
- mov.b 3+L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # extract rnd mode
- cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM?
- beq.b fadd_zero_rm # yes
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-fadd_zero_rm:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z
- rts
-
-#
-# one operand is a ZERO and the other is a DENORM or NORM. scale
-# the DENORM or NORM and jump to the regular fadd routine.
-#
-fadd_zero_dst:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale the operand
- clr.w FP_SCR1_EX(%a6)
- clr.l FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
- bra.w fadd_zero_entry # go execute fadd
-
-fadd_zero_src:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- bsr.l scale_to_zero_dst # scale the operand
- clr.w FP_SCR0_EX(%a6)
- clr.l FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
- bra.w fadd_zero_entry # go execute fadd
-
-#
-# both operands are INFs. an OPERR will result if the INFs have
-# different signs. else, an INF of the same sign is returned
-#
-fadd_inf_2:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bmi.l res_operr # weed out (-INF)+(+INF)
-
-# ok, so it's not an OPERR. but, we do have to remember to return the
-# src INF since that's where the 881/882 gets the j-bit from...
-
-#
-# operands are INF and one of {ZERO, INF, DENORM, NORM}
-#
-fadd_inf_src:
- fmovm.x SRC(%a0),&0x80 # return src INF
- tst.b SRC_EX(%a0) # is INF positive?
- bpl.b fadd_inf_done # yes; we're done
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-#
-# operands are INF and one of {ZERO, INF, DENORM, NORM}
-#
-fadd_inf_dst:
- fmovm.x DST(%a1),&0x80 # return dst INF
- tst.b DST_EX(%a1) # is INF positive?
- bpl.b fadd_inf_done # yes; we're done
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fadd_inf_done:
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsub(): emulates the fsub instruction #
-# fssub(): emulates the fssub instruction #
-# fdsub(): emulates the fdsub instruction #
-# #
-# XREF **************************************************************** #
-# addsub_scaler2() - scale the operands so they won't take exc #
-# ovf_res() - return default overflow result #
-# unf_res() - return default underflow result #
-# res_qnan() - set QNAN result #
-# res_snan() - set SNAN result #
-# res_operr() - set OPERR result #
-# scale_to_zero_src() - set src operand exponent equal to zero #
-# scale_to_zero_dst() - set dst operand exponent equal to zero #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# a1 = pointer to extended precision destination operand #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms into extended, single, and double precision. #
-# Do subtraction after scaling exponents such that exception won't#
-# occur. Then, check result exponent to see if exception would have #
-# occurred. If so, return default result and maybe EXOP. Else, insert #
-# the correct result exponent and return. Set FPSR bits as appropriate. #
-# #
-#########################################################################
-
- global fssub
-fssub:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fsub
-
- global fdsub
-fdsub:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
-
- global fsub
-fsub:
- mov.l %d0,L_SCR3(%a6) # store rnd info
-
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
-
- bne.w fsub_not_norm # optimize on non-norm input
-
-#
-# SUB: norms and denorms
-#
-fsub_norm:
- bsr.l addsub_scaler2 # scale exponents
-
-fsub_zero_entry:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch INEX2, N, Z
-
- or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
-
- fbeq.w fsub_zero_exit # if result zero, end now
-
- mov.l %d2,-(%sp) # save d2
-
- fmovm.x &0x01,-(%sp) # save result to stack
-
- mov.w 2+L_SCR3(%a6),%d1
- lsr.b &0x6,%d1
-
- mov.w (%sp),%d2 # fetch new exponent
- andi.l &0x7fff,%d2 # strip sign
- sub.l %d0,%d2 # add scale factor
-
- cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow?
- bge.b fsub_ovfl # yes
-
- cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow?
- blt.w fsub_unfl # yes
- beq.w fsub_may_unfl # maybe; go find out
-
-fsub_normal:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- or.w %d2,%d1 # insert new exponent
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x80 # return result in fp0
-
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fsub_zero_exit:
-# fmov.s &0x00000000,%fp0 # return zero in fp0
- rts
-
-tbl_fsub_ovfl:
- long 0x7fff # ext ovfl
- long 0x407f # sgl ovfl
- long 0x43ff # dbl ovfl
-
-tbl_fsub_unfl:
- long 0x0000 # ext unfl
- long 0x3f81 # sgl unfl
- long 0x3c01 # dbl unfl
-
-fsub_ovfl:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsub_ovfl_ena # yes
-
- add.l &0xc,%sp
-fsub_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fsub_ovfl_ena:
- mov.b L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fsub_ovfl_ena_sd # no
-
-fsub_ovfl_ena_cont:
- mov.w (%sp),%d1 # fetch {sgn,exp}
- andi.w &0x8000,%d1 # keep sign
- subi.l &0x6000,%d2 # subtract new bias
- andi.w &0x7fff,%d2 # clear top bit
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,(%sp) # insert new exponent
-
- fmovm.x (%sp)+,&0x40 # return EXOP in fp1
- bra.b fsub_ovfl_dis
-
-fsub_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # clear rnd prec
- fmov.l %d1,%fpcr # set FPCR
-
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- add.l &0xc,%sp
- fmovm.x &0x01,-(%sp)
- bra.b fsub_ovfl_ena_cont
-
-fsub_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- add.l &0xc,%sp
-
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save status
-
- or.l %d1,USER_FPSR(%a6)
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsub_unfl_ena # yes
-
-fsub_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
-
-fsub_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fsub_unfl_ena_sd # no
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
-fsub_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsub.x FP_SCR0(%a6),%fp1 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fmovm.x &0x40,FP_SCR0(%a6) # store result to stack
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # subtract new bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat sgn,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fsub_unfl_dis
-
-fsub_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # clear rnd prec
- fmov.l %d1,%fpcr # set FPCR
-
- bra.b fsub_unfl_ena_cont
-
-#
-# result is equal to the smallest normalized number in the selected precision
-# if the precision is extended, this result could not have come from an
-# underflow that rounded up.
-#
-fsub_may_unfl:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # fetch rnd prec
- beq.w fsub_normal # yes; no underflow occurred
-
- mov.l 0x4(%sp),%d1
- cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
- bne.w fsub_normal # no; no underflow occurred
-
- tst.l 0x8(%sp) # is lo(man) = 0x0?
- bne.w fsub_normal # no; no underflow occurred
-
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.w fsub_normal # no; no underflow occurred
-
-#
-# ok, so now the result has a exponent equal to the smallest normalized
-# exponent for the selected precision. also, the mantissa is equal to
-# 0x8000000000000000 and this mantissa is the result of rounding non-zero
-# g,r,s.
-# now, we must determine whether the pre-rounded result was an underflow
-# rounded "up" or a normalized number rounded "down".
-# so, we do this be re-executing the add using RZ as the rounding mode and
-# seeing if the new result is smaller or equal to the current result.
-#
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
-
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsub.x FP_SCR0(%a6),%fp1 # execute subtract
-
- fmov.l &0x0,%fpcr # clear FPCR
-
- fabs.x %fp0 # compare absolute values
- fabs.x %fp1
- fcmp.x %fp0,%fp1 # is first result > second?
-
- fbgt.w fsub_unfl # yes; it's an underflow
- bra.w fsub_normal # no; it's not an underflow
-
-##########################################################################
-
-#
-# Sub: inputs are not both normalized; what are they?
-#
-fsub_not_norm:
- mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsub_op.b,%pc,%d1.w*1)
-
- swbeg &48
-tbl_fsub_op:
- short fsub_norm - tbl_fsub_op # NORM - NORM
- short fsub_zero_src - tbl_fsub_op # NORM - ZERO
- short fsub_inf_src - tbl_fsub_op # NORM - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_norm - tbl_fsub_op # NORM - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_zero_dst - tbl_fsub_op # ZERO - NORM
- short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO
- short fsub_inf_src - tbl_fsub_op # ZERO - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_inf_dst - tbl_fsub_op # INF - NORM
- short fsub_inf_dst - tbl_fsub_op # INF - ZERO
- short fsub_inf_2 - tbl_fsub_op # INF - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_inf_dst - tbl_fsub_op # INF - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_res_qnan - tbl_fsub_op # QNAN - NORM
- short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO
- short fsub_res_qnan - tbl_fsub_op # QNAN - INF
- short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN
- short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM
- short fsub_res_snan - tbl_fsub_op # QNAN - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_norm - tbl_fsub_op # DENORM - NORM
- short fsub_zero_src - tbl_fsub_op # DENORM - ZERO
- short fsub_inf_src - tbl_fsub_op # DENORM - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_norm - tbl_fsub_op # DENORM - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
- short fsub_res_snan - tbl_fsub_op # SNAN - NORM
- short fsub_res_snan - tbl_fsub_op # SNAN - ZERO
- short fsub_res_snan - tbl_fsub_op # SNAN - INF
- short fsub_res_snan - tbl_fsub_op # SNAN - QNAN
- short fsub_res_snan - tbl_fsub_op # SNAN - DENORM
- short fsub_res_snan - tbl_fsub_op # SNAN - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
-
-fsub_res_qnan:
- bra.l res_qnan
-fsub_res_snan:
- bra.l res_snan
-
-#
-# both operands are ZEROes
-#
-fsub_zero_2:
- mov.b SRC_EX(%a0),%d0
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bpl.b fsub_zero_2_chk_rm
-
-# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO
- tst.b %d0 # is dst negative?
- bmi.b fsub_zero_2_rm # yes
- fmov.s &0x00000000,%fp0 # no; return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-#
-# the ZEROes have the same signs:
-# - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP
-# - -ZERO is returned in the case of RM.
-#
-fsub_zero_2_chk_rm:
- mov.b 3+L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # extract rnd mode
- cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM?
- beq.b fsub_zero_2_rm # yes
- fmov.s &0x00000000,%fp0 # no; return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
-
-fsub_zero_2_rm:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG
- rts
-
-#
-# one operand is a ZERO and the other is a DENORM or a NORM.
-# scale the DENORM or NORM and jump to the regular fsub routine.
-#
-fsub_zero_dst:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale the operand
- clr.w FP_SCR1_EX(%a6)
- clr.l FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
- bra.w fsub_zero_entry # go execute fsub
-
-fsub_zero_src:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- bsr.l scale_to_zero_dst # scale the operand
- clr.w FP_SCR0_EX(%a6)
- clr.l FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
- bra.w fsub_zero_entry # go execute fsub
-
-#
-# both operands are INFs. an OPERR will result if the INFs have the
-# same signs. else,
-#
-fsub_inf_2:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bpl.l res_operr # weed out (-INF)+(+INF)
-
-# ok, so it's not an OPERR. but we do have to remember to return
-# the src INF since that's where the 881/882 gets the j-bit.
-
-fsub_inf_src:
- fmovm.x SRC(%a0),&0x80 # return src INF
- fneg.x %fp0 # invert sign
- fbge.w fsub_inf_done # sign is now positive
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fsub_inf_dst:
- fmovm.x DST(%a1),&0x80 # return dst INF
- tst.b DST_EX(%a1) # is INF negative?
- bpl.b fsub_inf_done # no
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
-
-fsub_inf_done:
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fsqrt(): emulates the fsqrt instruction #
-# fssqrt(): emulates the fssqrt instruction #
-# fdsqrt(): emulates the fdsqrt instruction #
-# #
-# XREF **************************************************************** #
-# scale_sqrt() - scale the source operand #
-# unf_res() - return default underflow result #
-# ovf_res() - return default overflow result #
-# res_qnan_1op() - return QNAN result #
-# res_snan_1op() - return SNAN result #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to extended precision source operand #
-# d0 rnd prec,mode #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = result #
-# fp1 = EXOP (if exception occurred) #
-# #
-# ALGORITHM *********************************************************** #
-# Handle NANs, infinities, and zeroes as special cases. Divide #
-# norms/denorms into ext/sgl/dbl precision. #
-# For norms/denorms, scale the exponents such that a sqrt #
-# instruction won't cause an exception. Use the regular fsqrt to #
-# compute a result. Check if the regular operands would have taken #
-# an exception. If so, return the default overflow/underflow result #
-# and return the EXOP if exceptions are enabled. Else, scale the #
-# result operand to the proper exponent. #
-# #
-#########################################################################
-
- global fssqrt
-fssqrt:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fsqrt
-
- global fdsqrt
-fdsqrt:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
-
- global fsqrt
-fsqrt:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b STAG(%a6),%d1
- bne.w fsqrt_not_norm # optimize on non-norm input
-
-#
-# SQUARE ROOT: norms and denorms ONLY!
-#
-fsqrt_norm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.l res_operr # yes
-
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fsqrt_not_ext # no; go handle sgl or dbl
-
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsqrt.x (%a0),%fp0 # execute square root
-
- fmov.l %fpsr,%d1
- or.l %d1,USER_FPSR(%a6) # set N,INEX
-
- rts
-
-fsqrt_denorm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.l res_operr # yes
-
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fsqrt_not_ext # no; go handle sgl or dbl
-
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_sqrt # calculate scale factor
-
- bra.w fsqrt_sd_normal
-
-#
-# operand is either single or double
-#
-fsqrt_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.w fsqrt_dbl
-
-#
-# operand is to be rounded to single precision
-#
-fsqrt_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_sqrt # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow?
- beq.w fsqrt_sd_may_unfl
- bgt.w fsqrt_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407f # will move in overflow?
- beq.w fsqrt_sd_may_ovfl # maybe; go check
- blt.w fsqrt_sd_ovfl # yes; go handle overflow
-
-#
-# operand will NOT overflow or underflow when moved in to the fp reg file
-#
-fsqrt_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsqrt_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
-
-#
-# operand is to be rounded to double precision
-#
-fsqrt_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
-
- bsr.l scale_sqrt # calculate scale factor
-
- cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow?
- beq.w fsqrt_sd_may_unfl
- bgt.b fsqrt_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43ff # will move in overflow?
- beq.w fsqrt_sd_may_ovfl # maybe; go check
- blt.w fsqrt_sd_ovfl # yes; go handle overflow
- bra.w fsqrt_sd_normal # no; ho handle normalized op
-
-# we're on the line here and the distinguising characteristic is whether
-# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number
-# elsewise fall through to underflow.
-fsqrt_sd_may_unfl:
- btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
- bne.w fsqrt_sd_normal # yes, so no underflow
-
-#
-# operand WILL underflow when moved in to the fp register file
-#
-fsqrt_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
-
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # execute square root
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-# if underflow or inexact is enabled, go calculate EXOP first.
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsqrt_sd_unfl_ena # yes
-
-fsqrt_sd_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
-
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
-
-#
-# operand will underflow AND underflow is enabled.
-# Therefore, we must return the result rounded to extended precision.
-#
-fsqrt_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
-
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fsqrt_sd_unfl_dis
-
-#
-# operand WILL overflow.
-#
-fsqrt_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # perform square root
-
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
-fsqrt_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
-
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsqrt_sd_ovfl_ena # yes
-
-#
-# OVFL is not enabled; therefore, we must create the default result by
-# calling ovf_res().
-#
-fsqrt_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
-
-#
-# OVFL is enabled.
-# the INEX2 bit has already been updated by the round to the correct precision.
-# now, round to extended(and don't alter the FPSR).
-#
-fsqrt_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fsqrt_sd_ovfl_dis
-
-#
-# the move in MAY underflow. so...
-#
-fsqrt_sd_may_ovfl:
- btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
- bne.w fsqrt_sd_ovfl # yes, so overflow
-
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
-
- fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
-
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
-
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
-
- fmov.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| >= 1.b?
- fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred
-
-# no, it didn't overflow; we have correct result
- bra.w fsqrt_sd_normal_exit
-
-##########################################################################
-
-#
-# input is not normalized; what is it?
-#
-fsqrt_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fsqrt_denorm
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fsqrt_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fsqrt_inf
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op
-
-#
-# fsqrt(+0) = +0
-# fsqrt(-0) = -0
-# fsqrt(+INF) = +INF
-# fsqrt(-INF) = OPERR
-#
-fsqrt_zero:
- tst.b SRC_EX(%a0) # is ZERO positive or negative?
- bmi.b fsqrt_zero_m # negative
-fsqrt_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
-fsqrt_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
-
-fsqrt_inf:
- tst.b SRC_EX(%a0) # is INF positive or negative?
- bmi.l res_operr # negative
-fsqrt_inf_p:
- fmovm.x SRC(%a0),&0x80 # return +INF in fp0
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# fetch_dreg(): fetch register according to index in d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# d0 = value of register fetched #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1 which can range from zero #
-# to fifteen, load the corresponding register file value (where #
-# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the #
-# stack. The rest should still be in their original places. #
-# #
-#########################################################################
-
-# this routine leaves d1 intact for subsequent store_dreg calls.
- global fetch_dreg
-fetch_dreg:
- mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0
- jmp (tbl_fdreg.b,%pc,%d0.w*1)
-
-tbl_fdreg:
- short fdreg0 - tbl_fdreg
- short fdreg1 - tbl_fdreg
- short fdreg2 - tbl_fdreg
- short fdreg3 - tbl_fdreg
- short fdreg4 - tbl_fdreg
- short fdreg5 - tbl_fdreg
- short fdreg6 - tbl_fdreg
- short fdreg7 - tbl_fdreg
- short fdreg8 - tbl_fdreg
- short fdreg9 - tbl_fdreg
- short fdrega - tbl_fdreg
- short fdregb - tbl_fdreg
- short fdregc - tbl_fdreg
- short fdregd - tbl_fdreg
- short fdrege - tbl_fdreg
- short fdregf - tbl_fdreg
-
-fdreg0:
- mov.l EXC_DREGS+0x0(%a6),%d0
- rts
-fdreg1:
- mov.l EXC_DREGS+0x4(%a6),%d0
- rts
-fdreg2:
- mov.l %d2,%d0
- rts
-fdreg3:
- mov.l %d3,%d0
- rts
-fdreg4:
- mov.l %d4,%d0
- rts
-fdreg5:
- mov.l %d5,%d0
- rts
-fdreg6:
- mov.l %d6,%d0
- rts
-fdreg7:
- mov.l %d7,%d0
- rts
-fdreg8:
- mov.l EXC_DREGS+0x8(%a6),%d0
- rts
-fdreg9:
- mov.l EXC_DREGS+0xc(%a6),%d0
- rts
-fdrega:
- mov.l %a2,%d0
- rts
-fdregb:
- mov.l %a3,%d0
- rts
-fdregc:
- mov.l %a4,%d0
- rts
-fdregd:
- mov.l %a5,%d0
- rts
-fdrege:
- mov.l (%a6),%d0
- rts
-fdregf:
- mov.l EXC_A7(%a6),%d0
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_dreg_l(): store longword to data register specified by d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = longowrd value to store #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# (data register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1, store the longword value #
-# in d0 to the corresponding data register. D0/D1 are on the stack #
-# while the rest are in their initial places. #
-# #
-#########################################################################
-
- global store_dreg_l
-store_dreg_l:
- mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregl.b,%pc,%d1.w*1)
-
-tbl_sdregl:
- short sdregl0 - tbl_sdregl
- short sdregl1 - tbl_sdregl
- short sdregl2 - tbl_sdregl
- short sdregl3 - tbl_sdregl
- short sdregl4 - tbl_sdregl
- short sdregl5 - tbl_sdregl
- short sdregl6 - tbl_sdregl
- short sdregl7 - tbl_sdregl
-
-sdregl0:
- mov.l %d0,EXC_DREGS+0x0(%a6)
- rts
-sdregl1:
- mov.l %d0,EXC_DREGS+0x4(%a6)
- rts
-sdregl2:
- mov.l %d0,%d2
- rts
-sdregl3:
- mov.l %d0,%d3
- rts
-sdregl4:
- mov.l %d0,%d4
- rts
-sdregl5:
- mov.l %d0,%d5
- rts
-sdregl6:
- mov.l %d0,%d6
- rts
-sdregl7:
- mov.l %d0,%d7
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_dreg_w(): store word to data register specified by d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = word value to store #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# (data register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1, store the word value #
-# in d0 to the corresponding data register. D0/D1 are on the stack #
-# while the rest are in their initial places. #
-# #
-#########################################################################
-
- global store_dreg_w
-store_dreg_w:
- mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregw.b,%pc,%d1.w*1)
-
-tbl_sdregw:
- short sdregw0 - tbl_sdregw
- short sdregw1 - tbl_sdregw
- short sdregw2 - tbl_sdregw
- short sdregw3 - tbl_sdregw
- short sdregw4 - tbl_sdregw
- short sdregw5 - tbl_sdregw
- short sdregw6 - tbl_sdregw
- short sdregw7 - tbl_sdregw
-
-sdregw0:
- mov.w %d0,2+EXC_DREGS+0x0(%a6)
- rts
-sdregw1:
- mov.w %d0,2+EXC_DREGS+0x4(%a6)
- rts
-sdregw2:
- mov.w %d0,%d2
- rts
-sdregw3:
- mov.w %d0,%d3
- rts
-sdregw4:
- mov.w %d0,%d4
- rts
-sdregw5:
- mov.w %d0,%d5
- rts
-sdregw6:
- mov.w %d0,%d6
- rts
-sdregw7:
- mov.w %d0,%d7
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_dreg_b(): store byte to data register specified by d1 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = byte value to store #
-# d1 = index of register to fetch from #
-# #
-# OUTPUT ************************************************************** #
-# (data register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# According to the index value in d1, store the byte value #
-# in d0 to the corresponding data register. D0/D1 are on the stack #
-# while the rest are in their initial places. #
-# #
-#########################################################################
-
- global store_dreg_b
-store_dreg_b:
- mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregb.b,%pc,%d1.w*1)
-
-tbl_sdregb:
- short sdregb0 - tbl_sdregb
- short sdregb1 - tbl_sdregb
- short sdregb2 - tbl_sdregb
- short sdregb3 - tbl_sdregb
- short sdregb4 - tbl_sdregb
- short sdregb5 - tbl_sdregb
- short sdregb6 - tbl_sdregb
- short sdregb7 - tbl_sdregb
-
-sdregb0:
- mov.b %d0,3+EXC_DREGS+0x0(%a6)
- rts
-sdregb1:
- mov.b %d0,3+EXC_DREGS+0x4(%a6)
- rts
-sdregb2:
- mov.b %d0,%d2
- rts
-sdregb3:
- mov.b %d0,%d3
- rts
-sdregb4:
- mov.b %d0,%d4
- rts
-sdregb5:
- mov.b %d0,%d5
- rts
-sdregb6:
- mov.b %d0,%d6
- rts
-sdregb7:
- mov.b %d0,%d7
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# inc_areg(): increment an address register by the value in d0 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = amount to increment by #
-# d1 = index of address register to increment #
-# #
-# OUTPUT ************************************************************** #
-# (address register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# Typically used for an instruction w/ a post-increment <ea>, #
-# this routine adds the increment value in d0 to the address register #
-# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
-# in their original places. #
-# For a7, if the increment amount is one, then we have to #
-# increment by two. For any a7 update, set the mia7_flag so that if #
-# an access error exception occurs later in emulation, this address #
-# register update can be undone. #
-# #
-#########################################################################
-
- global inc_areg
-inc_areg:
- mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1
- jmp (tbl_iareg.b,%pc,%d1.w*1)
-
-tbl_iareg:
- short iareg0 - tbl_iareg
- short iareg1 - tbl_iareg
- short iareg2 - tbl_iareg
- short iareg3 - tbl_iareg
- short iareg4 - tbl_iareg
- short iareg5 - tbl_iareg
- short iareg6 - tbl_iareg
- short iareg7 - tbl_iareg
-
-iareg0: add.l %d0,EXC_DREGS+0x8(%a6)
- rts
-iareg1: add.l %d0,EXC_DREGS+0xc(%a6)
- rts
-iareg2: add.l %d0,%a2
- rts
-iareg3: add.l %d0,%a3
- rts
-iareg4: add.l %d0,%a4
- rts
-iareg5: add.l %d0,%a5
- rts
-iareg6: add.l %d0,(%a6)
- rts
-iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6)
- cmpi.b %d0,&0x1
- beq.b iareg7b
- add.l %d0,EXC_A7(%a6)
- rts
-iareg7b:
- addq.l &0x2,EXC_A7(%a6)
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# dec_areg(): decrement an address register by the value in d0 #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = amount to decrement by #
-# d1 = index of address register to decrement #
-# #
-# OUTPUT ************************************************************** #
-# (address register is updated) #
-# #
-# ALGORITHM *********************************************************** #
-# Typically used for an instruction w/ a pre-decrement <ea>, #
-# this routine adds the decrement value in d0 to the address register #
-# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
-# in their original places. #
-# For a7, if the decrement amount is one, then we have to #
-# decrement by two. For any a7 update, set the mda7_flag so that if #
-# an access error exception occurs later in emulation, this address #
-# register update can be undone. #
-# #
-#########################################################################
-
- global dec_areg
-dec_areg:
- mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1
- jmp (tbl_dareg.b,%pc,%d1.w*1)
-
-tbl_dareg:
- short dareg0 - tbl_dareg
- short dareg1 - tbl_dareg
- short dareg2 - tbl_dareg
- short dareg3 - tbl_dareg
- short dareg4 - tbl_dareg
- short dareg5 - tbl_dareg
- short dareg6 - tbl_dareg
- short dareg7 - tbl_dareg
-
-dareg0: sub.l %d0,EXC_DREGS+0x8(%a6)
- rts
-dareg1: sub.l %d0,EXC_DREGS+0xc(%a6)
- rts
-dareg2: sub.l %d0,%a2
- rts
-dareg3: sub.l %d0,%a3
- rts
-dareg4: sub.l %d0,%a4
- rts
-dareg5: sub.l %d0,%a5
- rts
-dareg6: sub.l %d0,(%a6)
- rts
-dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6)
- cmpi.b %d0,&0x1
- beq.b dareg7b
- sub.l %d0,EXC_A7(%a6)
- rts
-dareg7b:
- subq.l &0x2,EXC_A7(%a6)
- rts
-
-##############################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# load_fpn1(): load FP register value into FP_SRC(a6). #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = index of FP register to load #
-# #
-# OUTPUT ************************************************************** #
-# FP_SRC(a6) = value loaded from FP register file #
-# #
-# ALGORITHM *********************************************************** #
-# Using the index in d0, load FP_SRC(a6) with a number from the #
-# FP register file. #
-# #
-#########################################################################
-
- global load_fpn1
-load_fpn1:
- mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0
- jmp (tbl_load_fpn1.b,%pc,%d0.w*1)
-
-tbl_load_fpn1:
- short load_fpn1_0 - tbl_load_fpn1
- short load_fpn1_1 - tbl_load_fpn1
- short load_fpn1_2 - tbl_load_fpn1
- short load_fpn1_3 - tbl_load_fpn1
- short load_fpn1_4 - tbl_load_fpn1
- short load_fpn1_5 - tbl_load_fpn1
- short load_fpn1_6 - tbl_load_fpn1
- short load_fpn1_7 - tbl_load_fpn1
-
-load_fpn1_0:
- mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6)
- mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6)
- mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_1:
- mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6)
- mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6)
- mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_2:
- fmovm.x &0x20, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_3:
- fmovm.x &0x10, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_4:
- fmovm.x &0x08, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_5:
- fmovm.x &0x04, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_6:
- fmovm.x &0x02, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-load_fpn1_7:
- fmovm.x &0x01, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
-
-#############################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# load_fpn2(): load FP register value into FP_DST(a6). #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# d0 = index of FP register to load #
-# #
-# OUTPUT ************************************************************** #
-# FP_DST(a6) = value loaded from FP register file #
-# #
-# ALGORITHM *********************************************************** #
-# Using the index in d0, load FP_DST(a6) with a number from the #
-# FP register file. #
-# #
-#########################################################################
-
- global load_fpn2
-load_fpn2:
- mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0
- jmp (tbl_load_fpn2.b,%pc,%d0.w*1)
-
-tbl_load_fpn2:
- short load_fpn2_0 - tbl_load_fpn2
- short load_fpn2_1 - tbl_load_fpn2
- short load_fpn2_2 - tbl_load_fpn2
- short load_fpn2_3 - tbl_load_fpn2
- short load_fpn2_4 - tbl_load_fpn2
- short load_fpn2_5 - tbl_load_fpn2
- short load_fpn2_6 - tbl_load_fpn2
- short load_fpn2_7 - tbl_load_fpn2
-
-load_fpn2_0:
- mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6)
- mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6)
- mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_1:
- mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6)
- mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6)
- mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_2:
- fmovm.x &0x20, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_3:
- fmovm.x &0x10, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_4:
- fmovm.x &0x08, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_5:
- fmovm.x &0x04, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_6:
- fmovm.x &0x02, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-load_fpn2_7:
- fmovm.x &0x01, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
-
-#############################################################################
-
-#########################################################################
-# XDEF **************************************************************** #
-# store_fpreg(): store an fp value to the fpreg designated d0. #
-# #
-# XREF **************************************************************** #
-# None #
-# #
-# INPUT *************************************************************** #
-# fp0 = extended precision value to store #
-# d0 = index of floating-point register #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# Store the value in fp0 to the FP register designated by the #
-# value in d0. The FP number can be DENORM or SNAN so we have to be #
-# careful that we don't take an exception here. #
-# #
-#########################################################################
-
- global store_fpreg
-store_fpreg:
- mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0
- jmp (tbl_store_fpreg.b,%pc,%d0.w*1)
-
-tbl_store_fpreg:
- short store_fpreg_0 - tbl_store_fpreg
- short store_fpreg_1 - tbl_store_fpreg
- short store_fpreg_2 - tbl_store_fpreg
- short store_fpreg_3 - tbl_store_fpreg
- short store_fpreg_4 - tbl_store_fpreg
- short store_fpreg_5 - tbl_store_fpreg
- short store_fpreg_6 - tbl_store_fpreg
- short store_fpreg_7 - tbl_store_fpreg
-
-store_fpreg_0:
- fmovm.x &0x80, EXC_FP0(%a6)
- rts
-store_fpreg_1:
- fmovm.x &0x80, EXC_FP1(%a6)
- rts
-store_fpreg_2:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x20
- rts
-store_fpreg_3:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x10
- rts
-store_fpreg_4:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x08
- rts
-store_fpreg_5:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x04
- rts
-store_fpreg_6:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x02
- rts
-store_fpreg_7:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x01
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# get_packed(): fetch a packed operand from memory and then #
-# convert it to a floating-point binary number. #
-# #
-# XREF **************************************************************** #
-# _dcalc_ea() - calculate the correct <ea> #
-# _mem_read() - fetch the packed operand from memory #
-# facc_in_x() - the fetch failed so jump to special exit code #
-# decbin() - convert packed to binary extended precision #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# If no failure on _mem_read(): #
-# FP_SRC(a6) = packed operand now as a binary FP number #
-# #
-# ALGORITHM *********************************************************** #
-# Get the correct <ea> which is the value on the exception stack #
-# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. #
-# Then, fetch the operand from memory. If the fetch fails, exit #
-# through facc_in_x(). #
-# If the packed operand is a ZERO,NAN, or INF, convert it to #
-# its binary representation here. Else, call decbin() which will #
-# convert the packed value to an extended precision binary value. #
-# #
-#########################################################################
-
-# the stacked <ea> for packed is correct except for -(An).
-# the base reg must be updated for both -(An) and (An)+.
- global get_packed
-get_packed:
- mov.l &0xc,%d0 # packed is 12 bytes
- bsr.l _dcalc_ea # fetch <ea>; correct An
-
- lea FP_SRC(%a6),%a1 # pass: ptr to super dst
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _dmem_read # read packed operand
-
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_x # yes
-
-# The packed operand is an INF or a NAN if the exponent field is all ones.
- bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
- cmpi.w %d0,&0x7fff # INF or NAN?
- bne.b gp_try_zero # no
- rts # operand is an INF or NAN
-
-# The packed operand is a zero if the mantissa is all zero, else it's
-# a normal packed op.
-gp_try_zero:
- mov.b 3+FP_SRC(%a6),%d0 # get byte 4
- andi.b &0x0f,%d0 # clear all but last nybble
- bne.b gp_not_spec # not a zero
- tst.l FP_SRC_HI(%a6) # is lw 2 zero?
- bne.b gp_not_spec # not a zero
- tst.l FP_SRC_LO(%a6) # is lw 3 zero?
- bne.b gp_not_spec # not a zero
- rts # operand is a ZERO
-gp_not_spec:
- lea FP_SRC(%a6),%a0 # pass: ptr to packed op
- bsr.l decbin # convert to extended
- fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
- rts
-
-#########################################################################
-# decbin(): Converts normalized packed bcd value pointed to by register #
-# a0 to extended-precision value in fp0. #
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to normalized packed bcd value #
-# #
-# OUTPUT ************************************************************** #
-# fp0 = exact fp representation of the packed bcd value. #
-# #
-# ALGORITHM *********************************************************** #
-# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, #
-# and NaN operands are dispatched without entering this routine) #
-# value in 68881/882 format at location (a0). #
-# #
-# A1. Convert the bcd exponent to binary by successive adds and #
-# muls. Set the sign according to SE. Subtract 16 to compensate #
-# for the mantissa which is to be interpreted as 17 integer #
-# digits, rather than 1 integer and 16 fraction digits. #
-# Note: this operation can never overflow. #
-# #
-# A2. Convert the bcd mantissa to binary by successive #
-# adds and muls in FP0. Set the sign according to SM. #
-# The mantissa digits will be converted with the decimal point #
-# assumed following the least-significant digit. #
-# Note: this operation can never overflow. #
-# #
-# A3. Count the number of leading/trailing zeros in the #
-# bcd string. If SE is positive, count the leading zeros; #
-# if negative, count the trailing zeros. Set the adjusted #
-# exponent equal to the exponent from A1 and the zero count #
-# added if SM = 1 and subtracted if SM = 0. Scale the #
-# mantissa the equivalent of forcing in the bcd value: #
-# #
-# SM = 0 a non-zero digit in the integer position #
-# SM = 1 a non-zero digit in Mant0, lsd of the fraction #
-# #
-# this will insure that any value, regardless of its #
-# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted #
-# consistently. #
-# #
-# A4. Calculate the factor 10^exp in FP1 using a table of #
-# 10^(2^n) values. To reduce the error in forming factors #
-# greater than 10^27, a directed rounding scheme is used with #
-# tables rounded to RN, RM, and RP, according to the table #
-# in the comments of the pwrten section. #
-# #
-# A5. Form the final binary number by scaling the mantissa by #
-# the exponent factor. This is done by multiplying the #
-# mantissa in FP0 by the factor in FP1 if the adjusted #
-# exponent sign is positive, and dividing FP0 by FP1 if #
-# it is negative. #
-# #
-# Clean up and return. Check if the final mul or div was inexact. #
-# If so, set INEX1 in USER_FPSR. #
-# #
-#########################################################################
-
-#
-# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
-# to nearest, minus, and plus, respectively. The tables include
-# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
-# is required until the power is greater than 27, however, all
-# tables include the first 5 for ease of indexing.
-#
-RTABLE:
- byte 0,0,0,0
- byte 2,3,2,3
- byte 2,3,3,2
- byte 3,2,2,3
-
- set FNIBS,7
- set FSTRT,0
-
- set ESTRT,4
- set EDIGITS,2
-
- global decbin
-decbin:
- mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input
- mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it
- mov.l 0x8(%a0),FP_SCR0_LO(%a6)
-
- lea FP_SCR0(%a6),%a0
-
- movm.l &0x3c00,-(%sp) # save d2-d5
- fmovm.x &0x1,-(%sp) # save fp1
-#
-# Calculate exponent:
-# 1. Copy bcd value in memory for use as a working copy.
-# 2. Calculate absolute value of exponent in d1 by mul and add.
-# 3. Correct for exponent sign.
-# 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
-# (i.e., all digits assumed left of the decimal point.)
-#
-# Register usage:
-#
-# calc_e:
-# (*) d0: temp digit storage
-# (*) d1: accumulator for binary exponent
-# (*) d2: digit count
-# (*) d3: offset pointer
-# ( ) d4: first word of bcd
-# ( ) a0: pointer to working bcd value
-# ( ) a6: pointer to original bcd value
-# (*) FP_SCR1: working copy of original bcd value
-# (*) L_SCR1: copy of original exponent word
-#
-calc_e:
- mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part
- mov.l &ESTRT,%d3 # counter to pick up digits
- mov.l (%a0),%d4 # get first word of bcd
- clr.l %d1 # zero d1 for accumulator
-e_gd:
- mulu.l &0xa,%d1 # mul partial product by one digit place
- bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0
- add.l %d0,%d1 # d1 = d1 + d0
- addq.b &4,%d3 # advance d3 to the next digit
- dbf.w %d2,e_gd # if we have used all 3 digits, exit loop
- btst &30,%d4 # get SE
- beq.b e_pos # don't negate if pos
- neg.l %d1 # negate before subtracting
-e_pos:
- sub.l &16,%d1 # sub to compensate for shift of mant
- bge.b e_save # if still pos, do not neg
- neg.l %d1 # now negative, make pos and set SE
- or.l &0x40000000,%d4 # set SE in d4,
- or.l &0x40000000,(%a0) # and in working bcd
-e_save:
- mov.l %d1,-(%sp) # save exp on stack
-#
-#
-# Calculate mantissa:
-# 1. Calculate absolute value of mantissa in fp0 by mul and add.
-# 2. Correct for mantissa sign.
-# (i.e., all digits assumed left of the decimal point.)
-#
-# Register usage:
-#
-# calc_m:
-# (*) d0: temp digit storage
-# (*) d1: lword counter
-# (*) d2: digit count
-# (*) d3: offset pointer
-# ( ) d4: words 2 and 3 of bcd
-# ( ) a0: pointer to working bcd value
-# ( ) a6: pointer to original bcd value
-# (*) fp0: mantissa accumulator
-# ( ) FP_SCR1: working copy of original bcd value
-# ( ) L_SCR1: copy of original exponent word
-#
-calc_m:
- mov.l &1,%d1 # word counter, init to 1
- fmov.s &0x00000000,%fp0 # accumulator
-#
-#
-# Since the packed number has a long word between the first & second parts,
-# get the integer digit then skip down & get the rest of the
-# mantissa. We will unroll the loop once.
-#
- bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word
- fadd.b %d0,%fp0 # add digit to sum in fp0
-#
-#
-# Get the rest of the mantissa.
-#
-loadlw:
- mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4
- mov.l &FSTRT,%d3 # counter to pick up digits
- mov.l &FNIBS,%d2 # reset number of digits per a0 ptr
-md2b:
- fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10
- bfextu %d4{%d3:&4},%d0 # get the digit and zero extend
- fadd.b %d0,%fp0 # fp0 = fp0 + digit
-#
-#
-# If all the digits (8) in that long word have been converted (d2=0),
-# then inc d1 (=2) to point to the next long word and reset d3 to 0
-# to initialize the digit offset, and set d2 to 7 for the digit count;
-# else continue with this long word.
-#
- addq.b &4,%d3 # advance d3 to the next digit
- dbf.w %d2,md2b # check for last digit in this lw
-nextlw:
- addq.l &1,%d1 # inc lw pointer in mantissa
- cmp.l %d1,&2 # test for last lw
- ble.b loadlw # if not, get last one
-#
-# Check the sign of the mant and make the value in fp0 the same sign.
-#
-m_sign:
- btst &31,(%a0) # test sign of the mantissa
- beq.b ap_st_z # if clear, go to append/strip zeros
- fneg.x %fp0 # if set, negate fp0
-#
-# Append/strip zeros:
-#
-# For adjusted exponents which have an absolute value greater than 27*,
-# this routine calculates the amount needed to normalize the mantissa
-# for the adjusted exponent. That number is subtracted from the exp
-# if the exp was positive, and added if it was negative. The purpose
-# of this is to reduce the value of the exponent and the possibility
-# of error in calculation of pwrten.
-#
-# 1. Branch on the sign of the adjusted exponent.
-# 2p.(positive exp)
-# 2. Check M16 and the digits in lwords 2 and 3 in decending order.
-# 3. Add one for each zero encountered until a non-zero digit.
-# 4. Subtract the count from the exp.
-# 5. Check if the exp has crossed zero in #3 above; make the exp abs
-# and set SE.
-# 6. Multiply the mantissa by 10**count.
-# 2n.(negative exp)
-# 2. Check the digits in lwords 3 and 2 in decending order.
-# 3. Add one for each zero encountered until a non-zero digit.
-# 4. Add the count to the exp.
-# 5. Check if the exp has crossed zero in #3 above; clear SE.
-# 6. Divide the mantissa by 10**count.
-#
-# *Why 27? If the adjusted exponent is within -28 < expA < 28, than
-# any adjustment due to append/strip zeros will drive the resultane
-# exponent towards zero. Since all pwrten constants with a power
-# of 27 or less are exact, there is no need to use this routine to
-# attempt to lessen the resultant exponent.
-#
-# Register usage:
-#
-# ap_st_z:
-# (*) d0: temp digit storage
-# (*) d1: zero count
-# (*) d2: digit count
-# (*) d3: offset pointer
-# ( ) d4: first word of bcd
-# (*) d5: lword counter
-# ( ) a0: pointer to working bcd value
-# ( ) FP_SCR1: working copy of original bcd value
-# ( ) L_SCR1: copy of original exponent word
-#
-#
-# First check the absolute value of the exponent to see if this
-# routine is necessary. If so, then check the sign of the exponent
-# and do append (+) or strip (-) zeros accordingly.
-# This section handles a positive adjusted exponent.
-#
-ap_st_z:
- mov.l (%sp),%d1 # load expA for range test
- cmp.l %d1,&27 # test is with 27
- ble.w pwrten # if abs(expA) <28, skip ap/st zeros
- btst &30,(%a0) # check sign of exp
- bne.b ap_st_n # if neg, go to neg side
- clr.l %d1 # zero count reg
- mov.l (%a0),%d4 # load lword 1 to d4
- bfextu %d4{&28:&4},%d0 # get M16 in d0
- bne.b ap_p_fx # if M16 is non-zero, go fix exp
- addq.l &1,%d1 # inc zero count
- mov.l &1,%d5 # init lword counter
- mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4
- bne.b ap_p_cl # if lw 2 is zero, skip it
- addq.l &8,%d1 # and inc count by 8
- addq.l &1,%d5 # inc lword counter
- mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4
-ap_p_cl:
- clr.l %d3 # init offset reg
- mov.l &7,%d2 # init digit counter
-ap_p_gd:
- bfextu %d4{%d3:&4},%d0 # get digit
- bne.b ap_p_fx # if non-zero, go to fix exp
- addq.l &4,%d3 # point to next digit
- addq.l &1,%d1 # inc digit counter
- dbf.w %d2,ap_p_gd # get next digit
-ap_p_fx:
- mov.l %d1,%d0 # copy counter to d2
- mov.l (%sp),%d1 # get adjusted exp from memory
- sub.l %d0,%d1 # subtract count from exp
- bge.b ap_p_fm # if still pos, go to pwrten
- neg.l %d1 # now its neg; get abs
- mov.l (%a0),%d4 # load lword 1 to d4
- or.l &0x40000000,%d4 # and set SE in d4
- or.l &0x40000000,(%a0) # and in memory
-#
-# Calculate the mantissa multiplier to compensate for the striping of
-# zeros from the mantissa.
-#
-ap_p_fm:
- lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
- clr.l %d3 # init table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- mov.l &3,%d2 # init d2 to count bits in counter
-ap_p_el:
- asr.l &1,%d0 # shift lsb into carry
- bcc.b ap_p_en # if 1, mul fp1 by pwrten factor
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-ap_p_en:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b ap_p_el # if not, get next bit
- fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted)
- bra.b pwrten # go calc pwrten
-#
-# This section handles a negative adjusted exponent.
-#
-ap_st_n:
- clr.l %d1 # clr counter
- mov.l &2,%d5 # set up d5 to point to lword 3
- mov.l (%a0,%d5.L*4),%d4 # get lword 3
- bne.b ap_n_cl # if not zero, check digits
- sub.l &1,%d5 # dec d5 to point to lword 2
- addq.l &8,%d1 # inc counter by 8
- mov.l (%a0,%d5.L*4),%d4 # get lword 2
-ap_n_cl:
- mov.l &28,%d3 # point to last digit
- mov.l &7,%d2 # init digit counter
-ap_n_gd:
- bfextu %d4{%d3:&4},%d0 # get digit
- bne.b ap_n_fx # if non-zero, go to exp fix
- subq.l &4,%d3 # point to previous digit
- addq.l &1,%d1 # inc digit counter
- dbf.w %d2,ap_n_gd # get next digit
-ap_n_fx:
- mov.l %d1,%d0 # copy counter to d0
- mov.l (%sp),%d1 # get adjusted exp from memory
- sub.l %d0,%d1 # subtract count from exp
- bgt.b ap_n_fm # if still pos, go fix mantissa
- neg.l %d1 # take abs of exp and clr SE
- mov.l (%a0),%d4 # load lword 1 to d4
- and.l &0xbfffffff,%d4 # and clr SE in d4
- and.l &0xbfffffff,(%a0) # and in memory
-#
-# Calculate the mantissa multiplier to compensate for the appending of
-# zeros to the mantissa.
-#
-ap_n_fm:
- lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
- clr.l %d3 # init table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- mov.l &3,%d2 # init d2 to count bits in counter
-ap_n_el:
- asr.l &1,%d0 # shift lsb into carry
- bcc.b ap_n_en # if 1, mul fp1 by pwrten factor
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-ap_n_en:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b ap_n_el # if not, get next bit
- fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted)
-#
-#
-# Calculate power-of-ten factor from adjusted and shifted exponent.
-#
-# Register usage:
-#
-# pwrten:
-# (*) d0: temp
-# ( ) d1: exponent
-# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
-# (*) d3: FPCR work copy
-# ( ) d4: first word of bcd
-# (*) a1: RTABLE pointer
-# calc_p:
-# (*) d0: temp
-# ( ) d1: exponent
-# (*) d3: PWRTxx table index
-# ( ) a0: pointer to working copy of bcd
-# (*) a1: PWRTxx pointer
-# (*) fp1: power-of-ten accumulator
-#
-# Pwrten calculates the exponent factor in the selected rounding mode
-# according to the following table:
-#
-# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
-#
-# ANY ANY RN RN
-#
-# + + RP RP
-# - + RP RM
-# + - RP RM
-# - - RP RP
-#
-# + + RM RM
-# - + RM RP
-# + - RM RP
-# - - RM RM
-#
-# + + RZ RM
-# - + RZ RM
-# + - RZ RP
-# - - RZ RP
-#
-#
-pwrten:
- mov.l USER_FPCR(%a6),%d3 # get user's FPCR
- bfextu %d3{&26:&2},%d2 # isolate rounding mode bits
- mov.l (%a0),%d4 # reload 1st bcd word to d4
- asl.l &2,%d2 # format d2 to be
- bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE}
- add.l %d0,%d2 # in d2 as index into RTABLE
- lea.l RTABLE(%pc),%a1 # load rtable base
- mov.b (%a1,%d2),%d0 # load new rounding bits from table
- clr.l %d3 # clear d3 to force no exc and extended
- bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR
- fmov.l %d3,%fpcr # write new FPCR
- asr.l &1,%d0 # write correct PTENxx table
- bcc.b not_rp # to a1
- lea.l PTENRP(%pc),%a1 # it is RP
- bra.b calc_p # go to init section
-not_rp:
- asr.l &1,%d0 # keep checking
- bcc.b not_rm
- lea.l PTENRM(%pc),%a1 # it is RM
- bra.b calc_p # go to init section
-not_rm:
- lea.l PTENRN(%pc),%a1 # it is RN
-calc_p:
- mov.l %d1,%d0 # copy exp to d0;use d0
- bpl.b no_neg # if exp is negative,
- neg.l %d0 # invert it
- or.l &0x40000000,(%a0) # and set SE bit
-no_neg:
- clr.l %d3 # table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
-e_loop:
- asr.l &1,%d0 # shift next bit into carry
- bcc.b e_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-e_next:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b e_loop # not zero, continue shifting
-#
-#
-# Check the sign of the adjusted exp and make the value in fp0 the
-# same sign. If the exp was pos then multiply fp1*fp0;
-# else divide fp0/fp1.
-#
-# Register Usage:
-# norm:
-# ( ) a0: pointer to working bcd value
-# (*) fp0: mantissa accumulator
-# ( ) fp1: scaling factor - 10**(abs(exp))
-#
-pnorm:
- btst &30,(%a0) # test the sign of the exponent
- beq.b mul # if clear, go to multiply
-div:
- fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp
- bra.b end_dec
-mul:
- fmul.x %fp1,%fp0 # exp is positive, so multiply by exp
-#
-#
-# Clean up and return with result in fp0.
-#
-# If the final mul/div in decbin incurred an inex exception,
-# it will be inex2, but will be reported as inex1 by get_op.
-#
-end_dec:
- fmov.l %fpsr,%d0 # get status register
- bclr &inex2_bit+8,%d0 # test for inex2 and clear it
- beq.b no_exc # skip this if no exc
- ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX
-no_exc:
- add.l &0x4,%sp # clear 1 lw param
- fmovm.x (%sp)+,&0x40 # restore fp1
- movm.l (%sp)+,&0x3c # restore d2-d5
- fmov.l &0x0,%fpcr
- fmov.l &0x0,%fpsr
- rts
-
-#########################################################################
-# bindec(): Converts an input in extended precision format to bcd format#
-# #
-# INPUT *************************************************************** #
-# a0 = pointer to the input extended precision value in memory. #
-# the input may be either normalized, unnormalized, or #
-# denormalized. #
-# d0 = contains the k-factor sign-extended to 32-bits. #
-# #
-# OUTPUT ************************************************************** #
-# FP_SCR0(a6) = bcd format result on the stack. #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# A1. Set RM and size ext; Set SIGMA = sign of input. #
-# The k-factor is saved for use in d7. Clear the #
-# BINDEC_FLG for separating normalized/denormalized #
-# input. If input is unnormalized or denormalized, #
-# normalize it. #
-# #
-# A2. Set X = abs(input). #
-# #
-# A3. Compute ILOG. #
-# ILOG is the log base 10 of the input value. It is #
-# approximated by adding e + 0.f when the original #
-# value is viewed as 2^^e * 1.f in extended precision. #
-# This value is stored in d6. #
-# #
-# A4. Clr INEX bit. #
-# The operation in A3 above may have set INEX2. #
-# #
-# A5. Set ICTR = 0; #
-# ICTR is a flag used in A13. It must be set before the #
-# loop entry A6. #
-# #
-# A6. Calculate LEN. #
-# LEN is the number of digits to be displayed. The #
-# k-factor can dictate either the total number of digits, #
-# if it is a positive number, or the number of digits #
-# after the decimal point which are to be included as #
-# significant. See the 68882 manual for examples. #
-# If LEN is computed to be greater than 17, set OPERR in #
-# USER_FPSR. LEN is stored in d4. #
-# #
-# A7. Calculate SCALE. #
-# SCALE is equal to 10^ISCALE, where ISCALE is the number #
-# of decimal places needed to insure LEN integer digits #
-# in the output before conversion to bcd. LAMBDA is the #
-# sign of ISCALE, used in A9. Fp1 contains #
-# 10^^(abs(ISCALE)) using a rounding mode which is a #
-# function of the original rounding mode and the signs #
-# of ISCALE and X. A table is given in the code. #
-# #
-# A8. Clr INEX; Force RZ. #
-# The operation in A3 above may have set INEX2. #
-# RZ mode is forced for the scaling operation to insure #
-# only one rounding error. The grs bits are collected in #
-# the INEX flag for use in A10. #
-# #
-# A9. Scale X -> Y. #
-# The mantissa is scaled to the desired number of #
-# significant digits. The excess digits are collected #
-# in INEX2. #
-# #
-# A10. Or in INEX. #
-# If INEX is set, round error occurred. This is #
-# compensated for by 'or-ing' in the INEX2 flag to #
-# the lsb of Y. #
-# #
-# A11. Restore original FPCR; set size ext. #
-# Perform FINT operation in the user's rounding mode. #
-# Keep the size to extended. #
-# #
-# A12. Calculate YINT = FINT(Y) according to user's rounding #
-# mode. The FPSP routine sintd0 is used. The output #
-# is in fp0. #
-# #
-# A13. Check for LEN digits. #
-# If the int operation results in more than LEN digits, #
-# or less than LEN -1 digits, adjust ILOG and repeat from #
-# A6. This test occurs only on the first pass. If the #
-# result is exactly 10^LEN, decrement ILOG and divide #
-# the mantissa by 10. #
-# #
-# A14. Convert the mantissa to bcd. #
-# The binstr routine is used to convert the LEN digit #
-# mantissa to bcd in memory. The input to binstr is #
-# to be a fraction; i.e. (mantissa)/10^LEN and adjusted #
-# such that the decimal point is to the left of bit 63. #
-# The bcd digits are stored in the correct position in #
-# the final string area in memory. #
-# #
-# A15. Convert the exponent to bcd. #
-# As in A14 above, the exp is converted to bcd and the #
-# digits are stored in the final string. #
-# Test the length of the final exponent string. If the #
-# length is 4, set operr. #
-# #
-# A16. Write sign bits to final string. #
-# #
-#########################################################################
-
-set BINDEC_FLG, EXC_TEMP # DENORM flag
-
-# Constants in extended precision
-PLOG2:
- long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
-PLOG2UP1:
- long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
-
-# Constants in single precision
-FONE:
- long 0x3F800000,0x00000000,0x00000000,0x00000000
-FTWO:
- long 0x40000000,0x00000000,0x00000000,0x00000000
-FTEN:
- long 0x41200000,0x00000000,0x00000000,0x00000000
-F4933:
- long 0x459A2800,0x00000000,0x00000000,0x00000000
-
-RBDTBL:
- byte 0,0,0,0
- byte 3,3,2,2
- byte 3,2,2,3
- byte 2,3,3,2
-
-# Implementation Notes:
-#
-# The registers are used as follows:
-#
-# d0: scratch; LEN input to binstr
-# d1: scratch
-# d2: upper 32-bits of mantissa for binstr
-# d3: scratch;lower 32-bits of mantissa for binstr
-# d4: LEN
-# d5: LAMBDA/ICTR
-# d6: ILOG
-# d7: k-factor
-# a0: ptr for original operand/final result
-# a1: scratch pointer
-# a2: pointer to FP_X; abs(original value) in ext
-# fp0: scratch
-# fp1: scratch
-# fp2: scratch
-# F_SCR1:
-# F_SCR2:
-# L_SCR1:
-# L_SCR2:
-
- global bindec
-bindec:
- movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2}
- fmovm.x &0x7,-(%sp) # {%fp0-%fp2}
-
-# A1. Set RM and size ext. Set SIGMA = sign input;
-# The k-factor is saved for use in d7. Clear BINDEC_FLG for
-# separating normalized/denormalized input. If the input
-# is a denormalized number, set the BINDEC_FLG memory word
-# to signal denorm. If the input is unnormalized, normalize
-# the input and test for denormalized result.
-#
- fmov.l &rm_mode*0x10,%fpcr # set RM and ext
- mov.l (%a0),L_SCR2(%a6) # save exponent for sign check
- mov.l %d0,%d7 # move k-factor to d7
-
- clr.b BINDEC_FLG(%a6) # clr norm/denorm flag
- cmpi.b STAG(%a6),&DENORM # is input a DENORM?
- bne.w A2_str # no; input is a NORM
-
-#
-# Normalize the denorm
-#
-un_de_norm:
- mov.w (%a0),%d0
- and.w &0x7fff,%d0 # strip sign of normalized exp
- mov.l 4(%a0),%d1
- mov.l 8(%a0),%d2
-norm_loop:
- sub.w &1,%d0
- lsl.l &1,%d2
- roxl.l &1,%d1
- tst.l %d1
- bge.b norm_loop
-#
-# Test if the normalized input is denormalized
-#
- tst.w %d0
- bgt.b pos_exp # if greater than zero, it is a norm
- st BINDEC_FLG(%a6) # set flag for denorm
-pos_exp:
- and.w &0x7fff,%d0 # strip sign of normalized exp
- mov.w %d0,(%a0)
- mov.l %d1,4(%a0)
- mov.l %d2,8(%a0)
-
-# A2. Set X = abs(input).
-#
-A2_str:
- mov.l (%a0),FP_SCR1(%a6) # move input to work space
- mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space
- mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space
- and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X)
-
-# A3. Compute ILOG.
-# ILOG is the log base 10 of the input value. It is approx-
-# imated by adding e + 0.f when the original value is viewed
-# as 2^^e * 1.f in extended precision. This value is stored
-# in d6.
-#
-# Register usage:
-# Input/Output
-# d0: k-factor/exponent
-# d2: x/x
-# d3: x/x
-# d4: x/x
-# d5: x/x
-# d6: x/ILOG
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: x/x
-# a2: x/x
-# fp0: x/float(ILOG)
-# fp1: x/x
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X)/Abs(X) with $3fff exponent
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.b A3_cont # if clr, continue with norm
- mov.l &-4933,%d6 # force ILOG = -4933
- bra.b A4_str
-A3_cont:
- mov.w FP_SCR1(%a6),%d0 # move exp to d0
- mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff
- fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f
- sub.w &0x3fff,%d0 # strip off bias
- fadd.w %d0,%fp0 # add in exp
- fsub.s FONE(%pc),%fp0 # subtract off 1.0
- fbge.w pos_res # if pos, branch
- fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1
- fmov.l %fp0,%d6 # put ILOG in d6 as a lword
- bra.b A4_str # go move out ILOG
-pos_res:
- fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2
- fmov.l %fp0,%d6 # put ILOG in d6 as a lword
-
-
-# A4. Clr INEX bit.
-# The operation in A3 above may have set INEX2.
-
-A4_str:
- fmov.l &0,%fpsr # zero all of fpsr - nothing needed
-
-
-# A5. Set ICTR = 0;
-# ICTR is a flag used in A13. It must be set before the
-# loop entry A6. The lower word of d5 is used for ICTR.
-
- clr.w %d5 # clear ICTR
-
-# A6. Calculate LEN.
-# LEN is the number of digits to be displayed. The k-factor
-# can dictate either the total number of digits, if it is
-# a positive number, or the number of digits after the
-# original decimal point which are to be included as
-# significant. See the 68882 manual for examples.
-# If LEN is computed to be greater than 17, set OPERR in
-# USER_FPSR. LEN is stored in d4.
-#
-# Register usage:
-# Input/Output
-# d0: exponent/Unchanged
-# d2: x/x/scratch
-# d3: x/x
-# d4: exc picture/LEN
-# d5: ICTR/Unchanged
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: x/x
-# a2: x/x
-# fp0: float(ILOG)/Unchanged
-# fp1: x/x
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X) with $3fff exponent/Unchanged
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
-A6_str:
- tst.l %d7 # branch on sign of k
- ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k
- mov.l %d7,%d4 # if k > 0, LEN = k
- bra.b len_ck # skip to LEN check
-k_neg:
- mov.l %d6,%d4 # first load ILOG to d4
- sub.l %d7,%d4 # subtract off k
- addq.l &1,%d4 # add in the 1
-len_ck:
- tst.l %d4 # LEN check: branch on sign of LEN
- ble.b LEN_ng # if neg, set LEN = 1
- cmp.l %d4,&17 # test if LEN > 17
- ble.b A7_str # if not, forget it
- mov.l &17,%d4 # set max LEN = 17
- tst.l %d7 # if negative, never set OPERR
- ble.b A7_str # if positive, continue
- or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
- bra.b A7_str # finished here
-LEN_ng:
- mov.l &1,%d4 # min LEN is 1
-
-
-# A7. Calculate SCALE.
-# SCALE is equal to 10^ISCALE, where ISCALE is the number
-# of decimal places needed to insure LEN integer digits
-# in the output before conversion to bcd. LAMBDA is the sign
-# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
-# the rounding mode as given in the following table (see
-# Coonen, p. 7.23 as ref.; however, the SCALE variable is
-# of opposite sign in bindec.sa from Coonen).
-#
-# Initial USE
-# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
-# ----------------------------------------------
-# RN 00 0 0 00/0 RN
-# RN 00 0 1 00/0 RN
-# RN 00 1 0 00/0 RN
-# RN 00 1 1 00/0 RN
-# RZ 01 0 0 11/3 RP
-# RZ 01 0 1 11/3 RP
-# RZ 01 1 0 10/2 RM
-# RZ 01 1 1 10/2 RM
-# RM 10 0 0 11/3 RP
-# RM 10 0 1 10/2 RM
-# RM 10 1 0 10/2 RM
-# RM 10 1 1 11/3 RP
-# RP 11 0 0 10/2 RM
-# RP 11 0 1 11/3 RP
-# RP 11 1 0 11/3 RP
-# RP 11 1 1 10/2 RM
-#
-# Register usage:
-# Input/Output
-# d0: exponent/scratch - final is 0
-# d2: x/0 or 24 for A9
-# d3: x/scratch - offset ptr into PTENRM array
-# d4: LEN/Unchanged
-# d5: 0/ICTR:LAMBDA
-# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: x/ptr to PTENRM array
-# a2: x/x
-# fp0: float(ILOG)/Unchanged
-# fp1: x/10^ISCALE
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X) with $3fff exponent/Unchanged
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
-A7_str:
- tst.l %d7 # test sign of k
- bgt.b k_pos # if pos and > 0, skip this
- cmp.l %d7,%d6 # test k - ILOG
- blt.b k_pos # if ILOG >= k, skip this
- mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k
-k_pos:
- mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0
- addq.l &1,%d0 # add the 1
- sub.l %d4,%d0 # sub off LEN
- swap %d5 # use upper word of d5 for LAMBDA
- clr.w %d5 # set it zero initially
- clr.w %d2 # set up d2 for very small case
- tst.l %d0 # test sign of ISCALE
- bge.b iscale # if pos, skip next inst
- addq.w &1,%d5 # if neg, set LAMBDA true
- cmp.l %d0,&0xffffecd4 # test iscale <= -4908
- bgt.b no_inf # if false, skip rest
- add.l &24,%d0 # add in 24 to iscale
- mov.l &24,%d2 # put 24 in d2 for A9
-no_inf:
- neg.l %d0 # and take abs of ISCALE
-iscale:
- fmov.s FONE(%pc),%fp1 # init fp1 to 1
- bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits
- lsl.w &1,%d1 # put them in bits 2:1
- add.w %d5,%d1 # add in LAMBDA
- lsl.w &1,%d1 # put them in bits 3:1
- tst.l L_SCR2(%a6) # test sign of original x
- bge.b x_pos # if pos, don't set bit 0
- addq.l &1,%d1 # if neg, set bit 0
-x_pos:
- lea.l RBDTBL(%pc),%a2 # load rbdtbl base
- mov.b (%a2,%d1),%d3 # load d3 with new rmode
- lsl.l &4,%d3 # put bits in proper position
- fmov.l %d3,%fpcr # load bits into fpu
- lsr.l &4,%d3 # put bits in proper position
- tst.b %d3 # decode new rmode for pten table
- bne.b not_rn # if zero, it is RN
- lea.l PTENRN(%pc),%a1 # load a1 with RN table base
- bra.b rmode # exit decode
-not_rn:
- lsr.b &1,%d3 # get lsb in carry
- bcc.b not_rp2 # if carry clear, it is RM
- lea.l PTENRP(%pc),%a1 # load a1 with RP table base
- bra.b rmode # exit decode
-not_rp2:
- lea.l PTENRM(%pc),%a1 # load a1 with RM table base
-rmode:
- clr.l %d3 # clr table index
-e_loop2:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b e_next2 # if zero, skip the mul
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
-e_next2:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if ISCALE is zero
- bne.b e_loop2 # if not, loop
-
-# A8. Clr INEX; Force RZ.
-# The operation in A3 above may have set INEX2.
-# RZ mode is forced for the scaling operation to insure
-# only one rounding error. The grs bits are collected in
-# the INEX flag for use in A10.
-#
-# Register usage:
-# Input/Output
-
- fmov.l &0,%fpsr # clr INEX
- fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode
-
-# A9. Scale X -> Y.
-# The mantissa is scaled to the desired number of significant
-# digits. The excess digits are collected in INEX2. If mul,
-# Check d2 for excess 10 exponential value. If not zero,
-# the iscale value would have caused the pwrten calculation
-# to overflow. Only a negative iscale can cause this, so
-# multiply by 10^(d2), which is now only allowed to be 24,
-# with a multiply by 10^8 and 10^16, which is exact since
-# 10^24 is exact. If the input was denormalized, we must
-# create a busy stack frame with the mul command and the
-# two operands, and allow the fpu to complete the multiply.
-#
-# Register usage:
-# Input/Output
-# d0: FPCR with RZ mode/Unchanged
-# d2: 0 or 24/unchanged
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: ptr to PTENRM array/Unchanged
-# a2: x/x
-# fp0: float(ILOG)/X adjusted for SCALE (Y)
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Abs(X) with $3fff exponent/Unchanged
-# L_SCR1:x/x
-# L_SCR2:first word of X packed/Unchanged
-
-A9_str:
- fmov.x (%a0),%fp0 # load X from memory
- fabs.x %fp0 # use abs(X)
- tst.w %d5 # LAMBDA is in lower word of d5
- bne.b sc_mul # if neg (LAMBDA = 1), scale by mul
- fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0
- bra.w A10_st # branch to A10
-
-sc_mul:
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.w A9_norm # if norm, continue with mul
-
-# for DENORM, we must calculate:
-# fp0 = input_op * 10^ISCALE * 10^24
-# since the input operand is a DENORM, we can't multiply it directly.
-# so, we do the multiplication of the exponents and mantissas separately.
-# in this way, we avoid underflow on intermediate stages of the
-# multiplication and guarantee a result without exception.
- fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack
-
- mov.w (%sp),%d3 # grab exponent
- andi.w &0x7fff,%d3 # clear sign
- ori.w &0x8000,(%a0) # make DENORM exp negative
- add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp
- subi.w &0x3fff,%d3 # subtract BIAS
- add.w 36(%a1),%d3
- subi.w &0x3fff,%d3 # subtract BIAS
- add.w 48(%a1),%d3
- subi.w &0x3fff,%d3 # subtract BIAS
-
- bmi.w sc_mul_err # is result is DENORM, punt!!!
-
- andi.w &0x8000,(%sp) # keep sign
- or.w %d3,(%sp) # insert new exponent
- andi.w &0x7fff,(%a0) # clear sign bit on DENORM again
- mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk
- mov.l 0x4(%a0),-(%sp)
- mov.l &0x3fff0000,-(%sp) # force exp to zero
- fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0
- fmul.x (%sp)+,%fp0
-
-# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
-# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
- mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa
- mov.l 36+4(%a1),-(%sp)
- mov.l &0x3fff0000,-(%sp) # force exp to zero
- mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa
- mov.l 48+4(%a1),-(%sp)
- mov.l &0x3fff0000,-(%sp)# force exp to zero
- fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8
- fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16
- bra.b A10_st
-
-sc_mul_err:
- bra.b sc_mul_err
-
-A9_norm:
- tst.w %d2 # test for small exp case
- beq.b A9_con # if zero, continue as normal
- fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
- fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
-A9_con:
- fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0
-
-# A10. Or in INEX.
-# If INEX is set, round error occurred. This is compensated
-# for by 'or-ing' in the INEX2 flag to the lsb of Y.
-#
-# Register usage:
-# Input/Output
-# d0: FPCR with RZ mode/FPSR with INEX2 isolated
-# d2: x/x
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/final result
-# a1: ptr to PTENxx array/Unchanged
-# a2: x/ptr to FP_SCR1(a6)
-# fp0: Y/Y with lsb adjusted
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/x
-
-A10_st:
- fmov.l %fpsr,%d0 # get FPSR
- fmov.x %fp0,FP_SCR1(%a6) # move Y to memory
- lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1
- btst &9,%d0 # check if INEX2 set
- beq.b A11_st # if clear, skip rest
- or.l &1,8(%a2) # or in 1 to lsb of mantissa
- fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu
-
-
-# A11. Restore original FPCR; set size ext.
-# Perform FINT operation in the user's rounding mode. Keep
-# the size to extended. The sintdo entry point in the sint
-# routine expects the FPCR value to be in USER_FPCR for
-# mode and precision. The original FPCR is saved in L_SCR1.
-
-A11_st:
- mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later
- and.l &0x00000030,USER_FPCR(%a6) # set size to ext,
-# ;block exceptions
-
-
-# A12. Calculate YINT = FINT(Y) according to user's rounding mode.
-# The FPSP routine sintd0 is used. The output is in fp0.
-#
-# Register usage:
-# Input/Output
-# d0: FPSR with AINEX cleared/FPCR with size set to ext
-# d2: x/x/scratch
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/Unchanged
-# d6: ILOG/Unchanged
-# d7: k-factor/Unchanged
-# a0: ptr for original operand/src ptr for sintdo
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored
-# fp0: Y/YINT
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/x
-# F_SCR1:x/x
-# F_SCR2:Y adjusted for inex/Y with original exponent
-# L_SCR1:x/original USER_FPCR
-# L_SCR2:first word of X packed/Unchanged
-
-A12_st:
- movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1}
- mov.l L_SCR1(%a6),-(%sp)
- mov.l L_SCR2(%a6),-(%sp)
-
- lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6)
- fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6)
- tst.l L_SCR2(%a6) # test sign of original operand
- bge.b do_fint12 # if pos, use Y
- or.l &0x80000000,(%a0) # if neg, use -Y
-do_fint12:
- mov.l USER_FPSR(%a6),-(%sp)
-# bsr sintdo # sint routine returns int in fp0
-
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.l &0x0,%fpsr # clear the AEXC bits!!!
-## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode
-## andi.l &0x00000030,%d0
-## fmov.l %d0,%fpcr
- fint.x FP_SCR1(%a6),%fp0 # do fint()
- fmov.l %fpsr,%d0
- or.w %d0,FPSR_EXCEPT(%a6)
-## fmov.l &0x0,%fpcr
-## fmov.l %fpsr,%d0 # don't keep ccodes
-## or.w %d0,FPSR_EXCEPT(%a6)
-
- mov.b (%sp),USER_FPSR(%a6)
- add.l &4,%sp
-
- mov.l (%sp)+,L_SCR2(%a6)
- mov.l (%sp)+,L_SCR1(%a6)
- movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1}
-
- mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent
- mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR
-
-# A13. Check for LEN digits.
-# If the int operation results in more than LEN digits,
-# or less than LEN -1 digits, adjust ILOG and repeat from
-# A6. This test occurs only on the first pass. If the
-# result is exactly 10^LEN, decrement ILOG and divide
-# the mantissa by 10. The calculation of 10^LEN cannot
-# be inexact, since all powers of ten up to 10^27 are exact
-# in extended precision, so the use of a previous power-of-ten
-# table will introduce no error.
-#
-#
-# Register usage:
-# Input/Output
-# d0: FPCR with size set to ext/scratch final = 0
-# d2: x/x
-# d3: x/scratch final = x
-# d4: LEN/LEN adjusted
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG/ILOG adjusted
-# d7: k-factor/Unchanged
-# a0: pointer into memory for packed bcd string formation
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: int portion of Y/abs(YINT) adjusted
-# fp1: 10^ISCALE/Unchanged
-# fp2: x/10^LEN
-# F_SCR1:x/x
-# F_SCR2:Y with original exponent/Unchanged
-# L_SCR1:original USER_FPCR/Unchanged
-# L_SCR2:first word of X packed/Unchanged
-
-A13_st:
- swap %d5 # put ICTR in lower word of d5
- tst.w %d5 # check if ICTR = 0
- bne not_zr # if non-zero, go to second test
-#
-# Compute 10^(LEN-1)
-#
- fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
- mov.l %d4,%d0 # put LEN in d0
- subq.l &1,%d0 # d0 = LEN -1
- clr.l %d3 # clr table index
-l_loop:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b l_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
-l_next:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if LEN is zero
- bne.b l_loop # if not, loop
-#
-# 10^LEN-1 is computed for this test and A14. If the input was
-# denormalized, check only the case in which YINT > 10^LEN.
-#
- tst.b BINDEC_FLG(%a6) # check if input was norm
- beq.b A13_con # if norm, continue with checking
- fabs.x %fp0 # take abs of YINT
- bra test_2
-#
-# Compare abs(YINT) to 10^(LEN-1) and 10^LEN
-#
-A13_con:
- fabs.x %fp0 # take abs of YINT
- fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1)
- fbge.w test_2 # if greater, do next test
- subq.l &1,%d6 # subtract 1 from ILOG
- mov.w &1,%d5 # set ICTR
- fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
- fmul.s FTEN(%pc),%fp2 # compute 10^LEN
- bra.w A6_str # return to A6 and recompute YINT
-test_2:
- fmul.s FTEN(%pc),%fp2 # compute 10^LEN
- fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN
- fblt.w A14_st # if less, all is ok, go to A14
- fbgt.w fix_ex # if greater, fix and redo
- fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10
- addq.l &1,%d6 # and inc ILOG
- bra.b A14_st # and continue elsewhere
-fix_ex:
- addq.l &1,%d6 # increment ILOG by 1
- mov.w &1,%d5 # set ICTR
- fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
- bra.w A6_str # return to A6 and recompute YINT
-#
-# Since ICTR <> 0, we have already been through one adjustment,
-# and shouldn't have another; this is to check if abs(YINT) = 10^LEN
-# 10^LEN is again computed using whatever table is in a1 since the
-# value calculated cannot be inexact.
-#
-not_zr:
- fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
- mov.l %d4,%d0 # put LEN in d0
- clr.l %d3 # clr table index
-z_loop:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b z_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
-z_next:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if LEN is zero
- bne.b z_loop # if not, loop
- fabs.x %fp0 # get abs(YINT)
- fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN
- fbneq.w A14_st # if not, skip this
- fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10
- addq.l &1,%d6 # and inc ILOG by 1
- addq.l &1,%d4 # and inc LEN
- fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN
-
-# A14. Convert the mantissa to bcd.
-# The binstr routine is used to convert the LEN digit
-# mantissa to bcd in memory. The input to binstr is
-# to be a fraction; i.e. (mantissa)/10^LEN and adjusted
-# such that the decimal point is to the left of bit 63.
-# The bcd digits are stored in the correct position in
-# the final string area in memory.
-#
-#
-# Register usage:
-# Input/Output
-# d0: x/LEN call to binstr - final is 0
-# d1: x/0
-# d2: x/ms 32-bits of mant of abs(YINT)
-# d3: x/ls 32-bits of mant of abs(YINT)
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG
-# d7: k-factor/Unchanged
-# a0: pointer into memory for packed bcd string formation
-# /ptr to first mantissa byte in result string
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: int portion of Y/abs(YINT) adjusted
-# fp1: 10^ISCALE/Unchanged
-# fp2: 10^LEN/Unchanged
-# F_SCR1:x/Work area for final result
-# F_SCR2:Y with original exponent/Unchanged
-# L_SCR1:original USER_FPCR/Unchanged
-# L_SCR2:first word of X packed/Unchanged
-
-A14_st:
- fmov.l &rz_mode*0x10,%fpcr # force rz for conversion
- fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN
- lea.l FP_SCR0(%a6),%a0
- fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory
- mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2
- mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3
- clr.l 4(%a0) # zero word 2 of FP_RES
- clr.l 8(%a0) # zero word 3 of FP_RES
- mov.l (%a0),%d0 # move exponent to d0
- swap %d0 # put exponent in lower word
- beq.b no_sft # if zero, don't shift
- sub.l &0x3ffd,%d0 # sub bias less 2 to make fract
- tst.l %d0 # check if > 1
- bgt.b no_sft # if so, don't shift
- neg.l %d0 # make exp positive
-m_loop:
- lsr.l &1,%d2 # shift d2:d3 right, add 0s
- roxr.l &1,%d3 # the number of places
- dbf.w %d0,m_loop # given in d0
-no_sft:
- tst.l %d2 # check for mantissa of zero
- bne.b no_zr # if not, go on
- tst.l %d3 # continue zero check
- beq.b zer_m # if zero, go directly to binstr
-no_zr:
- clr.l %d1 # put zero in d1 for addx
- add.l &0x00000080,%d3 # inc at bit 7
- addx.l %d1,%d2 # continue inc
- and.l &0xffffff80,%d3 # strip off lsb not used by 882
-zer_m:
- mov.l %d4,%d0 # put LEN in d0 for binstr call
- addq.l &3,%a0 # a0 points to M16 byte in result
- bsr binstr # call binstr to convert mant
-
-
-# A15. Convert the exponent to bcd.
-# As in A14 above, the exp is converted to bcd and the
-# digits are stored in the final string.
-#
-# Digits are stored in L_SCR1(a6) on return from BINDEC as:
-#
-# 32 16 15 0
-# -----------------------------------------
-# | 0 | e3 | e2 | e1 | e4 | X | X | X |
-# -----------------------------------------
-#
-# And are moved into their proper places in FP_SCR0. If digit e4
-# is non-zero, OPERR is signaled. In all cases, all 4 digits are
-# written as specified in the 881/882 manual for packed decimal.
-#
-# Register usage:
-# Input/Output
-# d0: x/LEN call to binstr - final is 0
-# d1: x/scratch (0);shift count for final exponent packing
-# d2: x/ms 32-bits of exp fraction/scratch
-# d3: x/ls 32-bits of exp fraction
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG
-# d7: k-factor/Unchanged
-# a0: ptr to result string/ptr to L_SCR1(a6)
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: abs(YINT) adjusted/float(ILOG)
-# fp1: 10^ISCALE/Unchanged
-# fp2: 10^LEN/Unchanged
-# F_SCR1:Work area for final result/BCD result
-# F_SCR2:Y with original exponent/ILOG/10^4
-# L_SCR1:original USER_FPCR/Exponent digits on return from binstr
-# L_SCR2:first word of X packed/Unchanged
-
-A15_st:
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.b not_denorm
- ftest.x %fp0 # test for zero
- fbeq.w den_zero # if zero, use k-factor or 4933
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- bra.b convrt
-den_zero:
- tst.l %d7 # check sign of the k-factor
- blt.b use_ilog # if negative, use ILOG
- fmov.s F4933(%pc),%fp0 # force exponent to 4933
- bra.b convrt # do it
-use_ilog:
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- bra.b convrt
-not_denorm:
- ftest.x %fp0 # test for zero
- fbneq.w not_zero # if zero, force exponent
- fmov.s FONE(%pc),%fp0 # force exponent to 1
- bra.b convrt # do it
-not_zero:
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
-convrt:
- fdiv.x 24(%a1),%fp0 # compute ILOG/10^4
- fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory
- mov.l 4(%a2),%d2 # move word 2 to d2
- mov.l 8(%a2),%d3 # move word 3 to d3
- mov.w (%a2),%d0 # move exp to d0
- beq.b x_loop_fin # if zero, skip the shift
- sub.w &0x3ffd,%d0 # subtract off bias
- neg.w %d0 # make exp positive
-x_loop:
- lsr.l &1,%d2 # shift d2:d3 right
- roxr.l &1,%d3 # the number of places
- dbf.w %d0,x_loop # given in d0
-x_loop_fin:
- clr.l %d1 # put zero in d1 for addx
- add.l &0x00000080,%d3 # inc at bit 6
- addx.l %d1,%d2 # continue inc
- and.l &0xffffff80,%d3 # strip off lsb not used by 882
- mov.l &4,%d0 # put 4 in d0 for binstr call
- lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits
- bsr binstr # call binstr to convert exp
- mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0
- mov.l &12,%d1 # use d1 for shift count
- lsr.l %d1,%d0 # shift d0 right by 12
- bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0
- lsr.l %d1,%d0 # shift d0 right by 12
- bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0
- tst.b %d0 # check if e4 is zero
- beq.b A16_st # if zero, skip rest
- or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
-
-
-# A16. Write sign bits to final string.
-# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
-#
-# Register usage:
-# Input/Output
-# d0: x/scratch - final is x
-# d2: x/x
-# d3: x/x
-# d4: LEN/Unchanged
-# d5: ICTR:LAMBDA/LAMBDA:ICTR
-# d6: ILOG/ILOG adjusted
-# d7: k-factor/Unchanged
-# a0: ptr to L_SCR1(a6)/Unchanged
-# a1: ptr to PTENxx array/Unchanged
-# a2: ptr to FP_SCR1(a6)/Unchanged
-# fp0: float(ILOG)/Unchanged
-# fp1: 10^ISCALE/Unchanged
-# fp2: 10^LEN/Unchanged
-# F_SCR1:BCD result with correct signs
-# F_SCR2:ILOG/10^4
-# L_SCR1:Exponent digits on return from binstr
-# L_SCR2:first word of X packed/Unchanged
-
-A16_st:
- clr.l %d0 # clr d0 for collection of signs
- and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0
- tst.l L_SCR2(%a6) # check sign of original mantissa
- bge.b mant_p # if pos, don't set SM
- mov.l &2,%d0 # move 2 in to d0 for SM
-mant_p:
- tst.l %d6 # check sign of ILOG
- bge.b wr_sgn # if pos, don't set SE
- addq.l &1,%d0 # set bit 0 in d0 for SE
-wr_sgn:
- bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0
-
-# Clean up and restore all registers used.
-
- fmov.l &0,%fpsr # clear possible inex2/ainex bits
- fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2}
- movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2}
- rts
-
- global PTENRN
-PTENRN:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
-
- global PTENRP
-PTENRP:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
-
- global PTENRM
-PTENRM:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096
-
-#########################################################################
-# binstr(): Converts a 64-bit binary integer to bcd. #
-# #
-# INPUT *************************************************************** #
-# d2:d3 = 64-bit binary integer #
-# d0 = desired length (LEN) #
-# a0 = pointer to start in memory for bcd characters #
-# (This pointer must point to byte 4 of the first #
-# lword of the packed decimal memory string.) #
-# #
-# OUTPUT ************************************************************** #
-# a0 = pointer to LEN bcd digits representing the 64-bit integer. #
-# #
-# ALGORITHM *********************************************************** #
-# The 64-bit binary is assumed to have a decimal point before #
-# bit 63. The fraction is multiplied by 10 using a mul by 2 #
-# shift and a mul by 8 shift. The bits shifted out of the #
-# msb form a decimal digit. This process is iterated until #
-# LEN digits are formed. #
-# #
-# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the #
-# digit formed will be assumed the least significant. This is #
-# to force the first byte formed to have a 0 in the upper 4 bits. #
-# #
-# A2. Beginning of the loop: #
-# Copy the fraction in d2:d3 to d4:d5. #
-# #
-# A3. Multiply the fraction in d2:d3 by 8 using bit-field #
-# extracts and shifts. The three msbs from d2 will go into d1. #
-# #
-# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb #
-# will be collected by the carry. #
-# #
-# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 #
-# into d2:d3. D1 will contain the bcd digit formed. #
-# #
-# A6. Test d7. If zero, the digit formed is the ms digit. If non- #
-# zero, it is the ls digit. Put the digit in its place in the #
-# upper word of d0. If it is the ls digit, write the word #
-# from d0 to memory. #
-# #
-# A7. Decrement d6 (LEN counter) and repeat the loop until zero. #
-# #
-#########################################################################
-
-# Implementation Notes:
-#
-# The registers are used as follows:
-#
-# d0: LEN counter
-# d1: temp used to form the digit
-# d2: upper 32-bits of fraction for mul by 8
-# d3: lower 32-bits of fraction for mul by 8
-# d4: upper 32-bits of fraction for mul by 2
-# d5: lower 32-bits of fraction for mul by 2
-# d6: temp for bit-field extracts
-# d7: byte digit formation word;digit count {0,1}
-# a0: pointer into memory for packed bcd string formation
-#
-
- global binstr
-binstr:
- movm.l &0xff00,-(%sp) # {%d0-%d7}
-
-#
-# A1: Init d7
-#
- mov.l &1,%d7 # init d7 for second digit
- subq.l &1,%d0 # for dbf d0 would have LEN+1 passes
-#
-# A2. Copy d2:d3 to d4:d5. Start loop.
-#
-loop:
- mov.l %d2,%d4 # copy the fraction before muls
- mov.l %d3,%d5 # to d4:d5
-#
-# A3. Multiply d2:d3 by 8; extract msbs into d1.
-#
- bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1
- asl.l &3,%d2 # shift d2 left by 3 places
- bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6
- asl.l &3,%d3 # shift d3 left by 3 places
- or.l %d6,%d2 # or in msbs from d3 into d2
-#
-# A4. Multiply d4:d5 by 2; add carry out to d1.
-#
- asl.l &1,%d5 # mul d5 by 2
- roxl.l &1,%d4 # mul d4 by 2
- swap %d6 # put 0 in d6 lower word
- addx.w %d6,%d1 # add in extend from mul by 2
-#
-# A5. Add mul by 8 to mul by 2. D1 contains the digit formed.
-#
- add.l %d5,%d3 # add lower 32 bits
- nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
- addx.l %d4,%d2 # add with extend upper 32 bits
- nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
- addx.w %d6,%d1 # add in extend from add to d1
- swap %d6 # with d6 = 0; put 0 in upper word
-#
-# A6. Test d7 and branch.
-#
- tst.w %d7 # if zero, store digit & to loop
- beq.b first_d # if non-zero, form byte & write
-sec_d:
- swap %d7 # bring first digit to word d7b
- asl.w &4,%d7 # first digit in upper 4 bits d7b
- add.w %d1,%d7 # add in ls digit to d7b
- mov.b %d7,(%a0)+ # store d7b byte in memory
- swap %d7 # put LEN counter in word d7a
- clr.w %d7 # set d7a to signal no digits done
- dbf.w %d0,loop # do loop some more!
- bra.b end_bstr # finished, so exit
-first_d:
- swap %d7 # put digit word in d7b
- mov.w %d1,%d7 # put new digit in d7b
- swap %d7 # put LEN counter in word d7a
- addq.w &1,%d7 # set d7a to signal first digit done
- dbf.w %d0,loop # do loop some more!
- swap %d7 # put last digit in string
- lsl.w &4,%d7 # move it to upper 4 bits
- mov.b %d7,(%a0)+ # store it in memory string
-#
-# Clean up and return with result in fp0.
-#
-end_bstr:
- movm.l (%sp)+,&0xff # {%d0-%d7}
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# facc_in_b(): dmem_read_byte failed #
-# facc_in_w(): dmem_read_word failed #
-# facc_in_l(): dmem_read_long failed #
-# facc_in_d(): dmem_read of dbl prec failed #
-# facc_in_x(): dmem_read of ext prec failed #
-# #
-# facc_out_b(): dmem_write_byte failed #
-# facc_out_w(): dmem_write_word failed #
-# facc_out_l(): dmem_write_long failed #
-# facc_out_d(): dmem_write of dbl prec failed #
-# facc_out_x(): dmem_write of ext prec failed #
-# #
-# XREF **************************************************************** #
-# _real_access() - exit through access error handler #
-# #
-# INPUT *************************************************************** #
-# None #
-# #
-# OUTPUT ************************************************************** #
-# None #
-# #
-# ALGORITHM *********************************************************** #
-# Flow jumps here when an FP data fetch call gets an error #
-# result. This means the operating system wants an access error frame #
-# made out of the current exception stack frame. #
-# So, we first call restore() which makes sure that any updated #
-# -(an)+ register gets returned to its pre-exception value and then #
-# we change the stack to an access error stack frame. #
-# #
-#########################################################################
-
-facc_in_b:
- movq.l &0x1,%d0 # one byte
- bsr.w restore # fix An
-
- mov.w &0x0121,EXC_VOFF(%a6) # set FSLW
- bra.w facc_finish
-
-facc_in_w:
- movq.l &0x2,%d0 # two bytes
- bsr.w restore # fix An
-
- mov.w &0x0141,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_in_l:
- movq.l &0x4,%d0 # four bytes
- bsr.w restore # fix An
-
- mov.w &0x0101,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_in_d:
- movq.l &0x8,%d0 # eight bytes
- bsr.w restore # fix An
-
- mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_in_x:
- movq.l &0xc,%d0 # twelve bytes
- bsr.w restore # fix An
-
- mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-################################################################
-
-facc_out_b:
- movq.l &0x1,%d0 # one byte
- bsr.w restore # restore An
-
- mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_w:
- movq.l &0x2,%d0 # two bytes
- bsr.w restore # restore An
-
- mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_l:
- movq.l &0x4,%d0 # four bytes
- bsr.w restore # restore An
-
- mov.w &0x0081,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_d:
- movq.l &0x8,%d0 # eight bytes
- bsr.w restore # restore An
-
- mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
-
-facc_out_x:
- mov.l &0xc,%d0 # twelve bytes
- bsr.w restore # restore An
-
- mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
-
-# here's where we actually create the access error frame from the
-# current exception stack frame.
-facc_finish:
- mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
-
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
-
- unlk %a6
-
- mov.l (%sp),-(%sp) # store SR, hi(PC)
- mov.l 0x8(%sp),0x4(%sp) # store lo(PC)
- mov.l 0xc(%sp),0x8(%sp) # store EA
- mov.l &0x00000001,0xc(%sp) # store FSLW
- mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size)
- mov.w &0x4008,0x6(%sp) # store voff
-
- btst &0x5,(%sp) # supervisor or user mode?
- beq.b facc_out2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-
-facc_out2:
- bra.l _real_access
-
-##################################################################
-
-# if the effective addressing mode was predecrement or postincrement,
-# the emulation has already changed its value to the correct post-
-# instruction value. but since we're exiting to the access error
-# handler, then AN must be returned to its pre-instruction value.
-# we do that here.
-restore:
- mov.b EXC_OPWORD+0x1(%a6),%d1
- andi.b &0x38,%d1 # extract opmode
- cmpi.b %d1,&0x18 # postinc?
- beq.w rest_inc
- cmpi.b %d1,&0x20 # predec?
- beq.w rest_dec
- rts
-
-rest_inc:
- mov.b EXC_OPWORD+0x1(%a6),%d1
- andi.w &0x0007,%d1 # fetch An
-
- mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1
- jmp (tbl_rest_inc.b,%pc,%d1.w*1)
-
-tbl_rest_inc:
- short ri_a0 - tbl_rest_inc
- short ri_a1 - tbl_rest_inc
- short ri_a2 - tbl_rest_inc
- short ri_a3 - tbl_rest_inc
- short ri_a4 - tbl_rest_inc
- short ri_a5 - tbl_rest_inc
- short ri_a6 - tbl_rest_inc
- short ri_a7 - tbl_rest_inc
-
-ri_a0:
- sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0
- rts
-ri_a1:
- sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1
- rts
-ri_a2:
- sub.l %d0,%a2 # fix a2
- rts
-ri_a3:
- sub.l %d0,%a3 # fix a3
- rts
-ri_a4:
- sub.l %d0,%a4 # fix a4
- rts
-ri_a5:
- sub.l %d0,%a5 # fix a5
- rts
-ri_a6:
- sub.l %d0,(%a6) # fix stacked a6
- rts
-# if it's a fmove out instruction, we don't have to fix a7
-# because we hadn't changed it yet. if it's an opclass two
-# instruction (data moved in) and the exception was in supervisor
-# mode, then also also wasn't updated. if it was user mode, then
-# restore the correct a7 which is in the USP currently.
-ri_a7:
- cmpi.b EXC_VOFF(%a6),&0x30 # move in or out?
- bne.b ri_a7_done # out
-
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.b ri_a7_done # supervisor
- movc %usp,%a0 # restore USP
- sub.l %d0,%a0
- movc %a0,%usp
-ri_a7_done:
- rts
-
-# need to invert adjustment value if the <ea> was predec
-rest_dec:
- neg.l %d0
- bra.b rest_inc