1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
// Estimates Discrete time ARX model
// A(q)y(t) = B(q)u(t) + e(t)
// Current version uses random initial guess
//
// Authors: Ashutosh,Harpreet,Inderpreet
// Updated(12-6-16)
// Examples
//loadmatfile("data.mat")
//sys = arx(data,[2,2,1])
//sys =
//
// A(z) = 1 - 1.3469229 z^-1 + 0.7420890 z^-2
//
// B(z) = 1.3300766 z^-1 - 0.5726208 z^-2
//
// Sampling Time = 1 seconds
//
// MSE FPE FitPer AIC AICc nAIC BIC
// 7.4091 7.4388 49.9726 9689.1801 194.2693 2.0067 9711.5838
function sys = arx(varargin)
[lhs , rhs] = argn();
if ( rhs < 2 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "arx", rhs);
error(errmsg)
end
z = varargin(1)
if typeof(z) == 'iddata' then
Ts = z.Ts;unit = z.TimeUnit
z = [z.OutputData z.InputData]
elseif typeof(z) == 'constant' then
Ts = 1;unit = 'seconds'
end
if ((~size(z,2)==2) & (~size(z,1)==2)) then
errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "arx");
error(errmsg);
end
if (~isreal(z)) then
errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "arx");
error(errmsg);
end
n = varargin(2)
if (size(n,"*")<2| size(n,"*")>3) then
errmsg = msprintf(gettext("%s: The order and delay matrix [na nb nk] should be of size [2 3]"), "arx");
error(errmsg);
end
if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then
errmsg = msprintf(gettext("%s: values of order and delay matrix [na nb nk] should be nonnegative integer number "), "arx");
error(errmsg);
end
na = n(1); nb = n(2); //nk = n(3); //nf = n(4);
//
if (size(n,"*") == 2) then
nk = 1
else
nk = n(3);
end
// storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively
YDATA = z(:,1);
UDATA = z(:,2);
NDATA = size(UDATA,"*");
function e = G(p,m)
e = YDATA - _objfunarx(UDATA,YDATA,p,na,nb,nk);
endfunction
tempSum = na+nb
p0 = linspace(0.1,0.9,tempSum)';
[var,errl] = lsqrsolve(p0,G,size(UDATA,"*"));
err = (norm(errl)^2);
opt_err = err;
resid = G(var,[]);
a = 1-poly([var(nb+1:nb+na)]',"q","coeff");
b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff");
a = (poly([1,-coeff(a)],'q','coeff'))
t = idpoly(coeff(a),coeff(b),1,1,1,Ts)
// estimating the other parameters
[temp1,temp2,temp3] = predict(z,t)
[temp11,temp22,temp33] = pe(z,t)
estData = calModelPara(temp1,temp1,n(1)+n(2))
//pause
t.Report.Fit.MSE = estData.MSE
t.Report.Fit.FPE = estData.FPE
t.Report.Fit.FitPer = estData.FitPer
t.Report.Fit.AIC = estData.AIC
t.Report.Fit.AICc = estData.AICc
t.Report.Fit.nAIC = estData.nAIC
t.Report.Fit.BIC = estData.BIC
t.TimeUnit = unit
sys = t
endfunction
function yhat = _objfunarx(UDATA,YDATA,x,na,nb,nk)
x=x(:)
q = poly(0,'q')
tempSum = nb+na
// making polynomials
b = poly([repmat(0,nk,1);x(1:nb)]',"q","coeff");
a = 1 - poly([x(nb+1:nb+na)]',"q","coeff")
aSize = coeff(a);bSize = coeff(b)
maxDelay = max([length(aSize) length(bSize)])
yhat = [YDATA(1:maxDelay)]
for k=maxDelay+1:size(UDATA,"*")
tempB = 0
for ii = 1:size(bSize,'*')
tempB = tempB + bSize(ii)*UDATA(k-ii+1)
end
tempA = 0
for ii = 1:size(aSize,"*")
tempA = tempA + aSize(ii)*YDATA(k-ii)
end
yhat = [yhat; [ tempA+tempB ]];
end
endfunction
|