// Estimates Discrete time ARX model // A(q)y(t) = B(q)u(t) + e(t) // Current version uses random initial guess // // Authors: Ashutosh,Harpreet,Inderpreet // Updated(12-6-16) // Examples //loadmatfile("data.mat") //sys = arx(data,[2,2,1]) //sys = // // A(z) = 1 - 1.3469229 z^-1 + 0.7420890 z^-2 // // B(z) = 1.3300766 z^-1 - 0.5726208 z^-2 // // Sampling Time = 1 seconds // // MSE FPE FitPer AIC AICc nAIC BIC // 7.4091 7.4388 49.9726 9689.1801 194.2693 2.0067 9711.5838 function sys = arx(varargin) [lhs , rhs] = argn(); if ( rhs < 2 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "arx", rhs); error(errmsg) end z = varargin(1) if typeof(z) == 'iddata' then Ts = z.Ts;unit = z.TimeUnit z = [z.OutputData z.InputData] elseif typeof(z) == 'constant' then Ts = 1;unit = 'seconds' end if ((~size(z,2)==2) & (~size(z,1)==2)) then errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "arx"); error(errmsg); end if (~isreal(z)) then errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "arx"); error(errmsg); end n = varargin(2) if (size(n,"*")<2| size(n,"*")>3) then errmsg = msprintf(gettext("%s: The order and delay matrix [na nb nk] should be of size [2 3]"), "arx"); error(errmsg); end if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then errmsg = msprintf(gettext("%s: values of order and delay matrix [na nb nk] should be nonnegative integer number "), "arx"); error(errmsg); end na = n(1); nb = n(2); //nk = n(3); //nf = n(4); // if (size(n,"*") == 2) then nk = 1 else nk = n(3); end // storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively YDATA = z(:,1); UDATA = z(:,2); NDATA = size(UDATA,"*"); function e = G(p,m) e = YDATA - _objfunarx(UDATA,YDATA,p,na,nb,nk); endfunction tempSum = na+nb p0 = linspace(0.1,0.9,tempSum)'; [var,errl] = lsqrsolve(p0,G,size(UDATA,"*")); err = (norm(errl)^2); opt_err = err; resid = G(var,[]); a = 1-poly([var(nb+1:nb+na)]',"q","coeff"); b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff"); a = (poly([1,-coeff(a)],'q','coeff')) t = idpoly(coeff(a),coeff(b),1,1,1,Ts) // estimating the other parameters [temp1,temp2,temp3] = predict(z,t) [temp11,temp22,temp33] = pe(z,t) estData = calModelPara(temp1,temp1,n(1)+n(2)) //pause t.Report.Fit.MSE = estData.MSE t.Report.Fit.FPE = estData.FPE t.Report.Fit.FitPer = estData.FitPer t.Report.Fit.AIC = estData.AIC t.Report.Fit.AICc = estData.AICc t.Report.Fit.nAIC = estData.nAIC t.Report.Fit.BIC = estData.BIC t.TimeUnit = unit sys = t endfunction function yhat = _objfunarx(UDATA,YDATA,x,na,nb,nk) x=x(:) q = poly(0,'q') tempSum = nb+na // making polynomials b = poly([repmat(0,nk,1);x(1:nb)]',"q","coeff"); a = 1 - poly([x(nb+1:nb+na)]',"q","coeff") aSize = coeff(a);bSize = coeff(b) maxDelay = max([length(aSize) length(bSize)]) yhat = [YDATA(1:maxDelay)] for k=maxDelay+1:size(UDATA,"*") tempB = 0 for ii = 1:size(bSize,'*') tempB = tempB + bSize(ii)*UDATA(k-ii+1) end tempA = 0 for ii = 1:size(aSize,"*") tempA = tempA + aSize(ii)*YDATA(k-ii) end yhat = [yhat; [ tempA+tempB ]]; end endfunction