summaryrefslogtreecommitdiff
path: root/ar.sci
blob: 1b40fab24ba874d7f8f0f171945cc1e76c79af1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

function sys = ar(varargin)
// Parameters Estimation of AR model using Input Output time-domain data
// 
// Calling Sequence
// sys = ar(ioData,[na])
// 
// Parameters
// ioData : iddata or [outputData inputData] ,matrix of nx2 dimensions, type plant data
// na : non-negative integer number specified as order of the polynomial A(z^-1)
// sys : idpoly type polynomial have estimated coefficients of A(z^-1) polynomials
// 
// Description
// Fit AR model on given input output data 
// The mathematical equation of the AR model 
// <latex>   
// begin{eqnarray}
// A(q)y(t) = e(t)
// end{eqnarray}
// </latex>
// It is SISO type model. It minimizes the sum of the squares of nonlinear functions using Levenberg-Marquardt algorithm.
// sys ,an idpoly type class, have different fields that contains estimated coefficients, sampling time, time unit and other estimated data in Report object.
// 
// Examples
//  u = idinput(1024,'PRBS',[0 1/20],[-1 1])
//  a = [1 0.5];b = [0 2 3];
//  model = idpoly(a,b,'Ts',0.1);
//  y = sim(u,model) + rand(length(u),1);
//  plantData = iddata(y,[],0.1);
//  sys = ar(plantData,[2])
// 
// Examples
//  u = idinput(1024,'PRBS',[0 1/20],[-1 1]);
//  a = [1 0.5];b = [0 0.2 0.3];
//  model = idpoly(a,b,'Ts',0.1);
//  y = sim(u,model) + rand(length(u),1);
//  plantData = [y];
//  sys = ar(plantData,[2])
// 
// Authors
// Ashutosh Kumar Bhargava, Bhushan Manjarekar  


	[lhs , rhs] = argn();	
	if ( rhs < 2 ) then
			errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "ar", rhs);
			error(errmsg)
	end

	z = varargin(1)
    if typeof(z) == 'iddata' then
        Ts = z.Ts;unit = z.TimeUnit
        z = [z.OutputData z.InputData]
    elseif typeof(z) == 'constant' then
        Ts = 1;unit = 'seconds'
    end
	if ~iscolumn(z) then
		errmsg = msprintf(gettext("%s: time series output data only"), "ar");
		error(errmsg);
	end

	if (~isreal(z)) then
		errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "ar");
		error(errmsg);
	end

	n = varargin(2)
	if (size(n,"*") ~=1 )then
		errmsg = msprintf(gettext("%s: order should be nonnegative integer number "), "ar");
		error(errmsg);
	end

	if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then
		errmsg = msprintf(gettext("%s: values of order and delay matrix [na] should be nonnegative integer number "), "ar");
		error(errmsg);
	end

	na = n; nb = 0; nk = 0; 
    //  storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively 
    YDATA = z(:,1);
    UDATA = zeros(size(z,1),1)
    NDATA = size(UDATA,"*");
    function e = G(p,m)
        e = YDATA - _objfun(UDATA,YDATA,p,na,nb,nk);
    endfunction
    tempSum = na+nb
    p0 = linspace(0.1,0.9,tempSum)';
    [var,errl] = lsqrsolve(p0,G,size(UDATA,"*"));
    err = (norm(errl)^2);
    opt_err = err;
	resid = G(var,[]);
    a = 1-poly([var(nb+1:nb+na)]',"q","coeff");
    b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff");
    a = (poly([1,-coeff(a)],'q','coeff'))
    t = idpoly(coeff(a),1,1,1,1,Ts)
    
    //  estimating the other parameters
    [temp1,temp2,temp3] = predict([YDATA UDATA],t)
    [temp11,temp22,temp33] = pe([YDATA UDATA],t)
    
    estData = calModelPara(temp1,temp1,n(1))
    // pause
       t.Report.Fit.MSE = estData.MSE 
       t.Report.Fit.FPE = estData.FPE
    t.Report.Fit.FitPer = estData.FitPer
       t.Report.Fit.AIC = estData.AIC
      t.Report.Fit.AICc = estData.AICc
      t.Report.Fit.nAIC = estData.nAIC
       t.Report.Fit.BIC = estData.BIC
             t.TimeUnit = unit
                    sys = t
    // sys = idpoly(coeff(a),1,1,1,1,Ts)
//     sys.TimeUnit = unit
endfunction

function yhat = _objfun(UDATA,YDATA,x,na,nb,nk)
    x=x(:)
     q = poly(0,'q')
    tempSum = nb+na
    //  making polynomials
    b = poly([repmat(0,nk,1);x(1:nb)]',"q","coeff");
    a = 1 - poly([x(nb+1:nb+na)]',"q","coeff")
    aSize = coeff(a);bSize = coeff(b)
    maxDelay = max([length(aSize) length(bSize)])
    yhat = [YDATA(1:maxDelay)]
    for k=maxDelay+1:size(UDATA,"*")
        tempB = 0
        for ii = 1:size(bSize,'*')
            tempB = tempB + bSize(ii)*UDATA(k-ii+1)
        end
        tempA = 0
        for ii = 1:size(aSize,"*")
            tempA = tempA + aSize(ii)*YDATA(k-ii)
        end
        yhat = [yhat; [ tempA+tempB ]];
    end
endfunction