summaryrefslogtreecommitdiff
path: root/ar.sci
diff options
context:
space:
mode:
Diffstat (limited to 'ar.sci')
-rw-r--r--ar.sci61
1 files changed, 48 insertions, 13 deletions
diff --git a/ar.sci b/ar.sci
index 4239834..1b40fab 100644
--- a/ar.sci
+++ b/ar.sci
@@ -1,11 +1,46 @@
-// Estimates Discrete time AR model
-// A(q)y(t) = e(t)
-// Current version uses random initial guess
-// Authors: Ashutosh,Harpreet,Inderpreet
-// Updated(12-6-16)
-function sys = ar(varargin)
-//
+function sys = ar(varargin)
+// Parameters Estimation of AR model using Input Output time-domain data
+//
+// Calling Sequence
+// sys = ar(ioData,[na])
+//
+// Parameters
+// ioData : iddata or [outputData inputData] ,matrix of nx2 dimensions, type plant data
+// na : non-negative integer number specified as order of the polynomial A(z^-1)
+// sys : idpoly type polynomial have estimated coefficients of A(z^-1) polynomials
+//
+// Description
+// Fit AR model on given input output data
+// The mathematical equation of the AR model
+// <latex>
+// begin{eqnarray}
+// A(q)y(t) = e(t)
+// end{eqnarray}
+// </latex>
+// It is SISO type model. It minimizes the sum of the squares of nonlinear functions using Levenberg-Marquardt algorithm.
+// sys ,an idpoly type class, have different fields that contains estimated coefficients, sampling time, time unit and other estimated data in Report object.
+//
+// Examples
+// u = idinput(1024,'PRBS',[0 1/20],[-1 1])
+// a = [1 0.5];b = [0 2 3];
+// model = idpoly(a,b,'Ts',0.1);
+// y = sim(u,model) + rand(length(u),1);
+// plantData = iddata(y,[],0.1);
+// sys = ar(plantData,[2])
+//
+// Examples
+// u = idinput(1024,'PRBS',[0 1/20],[-1 1]);
+// a = [1 0.5];b = [0 0.2 0.3];
+// model = idpoly(a,b,'Ts',0.1);
+// y = sim(u,model) + rand(length(u),1);
+// plantData = [y];
+// sys = ar(plantData,[2])
+//
+// Authors
+// Ashutosh Kumar Bhargava, Bhushan Manjarekar
+
+
[lhs , rhs] = argn();
if ( rhs < 2 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "ar", rhs);
@@ -41,7 +76,7 @@ function sys = ar(varargin)
end
na = n; nb = 0; nk = 0;
- // storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively
+ // storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively
YDATA = z(:,1);
UDATA = zeros(size(z,1),1)
NDATA = size(UDATA,"*");
@@ -59,12 +94,12 @@ function sys = ar(varargin)
a = (poly([1,-coeff(a)],'q','coeff'))
t = idpoly(coeff(a),1,1,1,1,Ts)
- // estimating the other parameters
+ // estimating the other parameters
[temp1,temp2,temp3] = predict([YDATA UDATA],t)
[temp11,temp22,temp33] = pe([YDATA UDATA],t)
estData = calModelPara(temp1,temp1,n(1))
- //pause
+ // pause
t.Report.Fit.MSE = estData.MSE
t.Report.Fit.FPE = estData.FPE
t.Report.Fit.FitPer = estData.FitPer
@@ -74,15 +109,15 @@ function sys = ar(varargin)
t.Report.Fit.BIC = estData.BIC
t.TimeUnit = unit
sys = t
- //sys = idpoly(coeff(a),1,1,1,1,Ts)
-// sys.TimeUnit = unit
+ // sys = idpoly(coeff(a),1,1,1,1,Ts)
+// sys.TimeUnit = unit
endfunction
function yhat = _objfun(UDATA,YDATA,x,na,nb,nk)
x=x(:)
q = poly(0,'q')
tempSum = nb+na
- // making polynomials
+ // making polynomials
b = poly([repmat(0,nk,1);x(1:nb)]',"q","coeff");
a = 1 - poly([x(nb+1:nb+na)]',"q","coeff")
aSize = coeff(a);bSize = coeff(b)