summaryrefslogtreecommitdiff
path: root/help/en_US/medfilt1.xml
blob: ffa74909f75c86aa6cf65223c6e79b51ad1bd63c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from medfilt1.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="medfilt1" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>medfilt1</refname>
    <refpurpose>1D median filtering</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Description</title>
   <para>
y = medfilt1(x)
Applies a 3rd order 1-dimensional median filter to input x along the
first non-zero dimension. The function appropriately pads the signal
with zeros at the endings. For a segment, a median is calculated as
the middle value (average of two middle values) for odd number
number (even number) of data points.
y = medfilt1(x,n)
Applies a nth order 1-dimensional median filter.
y = medfilt1(x,n,dim)
Applies the median filter along the n-th dimension
y = medfilt1(__, nanflag, padding)
nanflag specifies how NaN values are treated. padding specifies the
type of filtering to be performed at the signal edges.
   </para>
   <para>
</para>
</refsection>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>x:</term>
      <listitem><para> int | double</para></listitem></varlistentry>
   <varlistentry><term>n:</term>
      <listitem><para> positive integer scalar</para></listitem></varlistentry>
   <varlistentry><term>dim:</term>
      <listitem><para> positive integer scalar</para></listitem></varlistentry>
   <varlistentry><term>nanflag:</term>
      <listitem><para> 'includenan' (default) | 'omitnan'</para></listitem></varlistentry>
   <varlistentry><term>* includenan:</term>
      <listitem><para> Filtering such that the median of any segment</para></listitem></varlistentry>
   <varlistentry><term>* omitnan:</term>
      <listitem><para> Filtering with NaNs omitted in each segment. If a segment</para></listitem></varlistentry>
   <varlistentry><term>y:</term>
      <listitem><para> int | double</para></listitem></varlistentry>
   <varlistentry><term>Examples :</term>
      <listitem><para> Noise supression using 10th order (n =10) median filtering</para></listitem></varlistentry>
   <varlistentry><term>t = 0:</term>
      <listitem><para>1/fs:1;</para></listitem></varlistentry>
   <varlistentry><term>Output :</term>
      <listitem><para> </para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>See also</title>
   <simplelist type="inline">
   <member><link linkend="filter">| hampel | median | sgolayfilt</link></member>
   </simplelist>
</refsection>

<refsection>
   <title>Authors</title>
   <simplelist type="vert">
   <member>Ayush Baid</member>
   </simplelist>
</refsection>
</refentry>