diff options
author | ttt | 2018-12-06 13:42:14 +0530 |
---|---|---|
committer | ttt | 2018-12-06 13:42:14 +0530 |
commit | d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795 (patch) | |
tree | fdbe9d1a10e7c256e86d7efae276fa75615cd0ba /help/en_US/medfilt1.xml | |
parent | 3ffa5ac619587eadfdb4ffd3e2fee57fee385e21 (diff) | |
download | FOSSEE-Signal-Processing-Toolbox-d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795.tar.gz FOSSEE-Signal-Processing-Toolbox-d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795.tar.bz2 FOSSEE-Signal-Processing-Toolbox-d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795.zip |
code by jitendra and added more test4.sce
Diffstat (limited to 'help/en_US/medfilt1.xml')
-rw-r--r-- | help/en_US/medfilt1.xml | 103 |
1 files changed, 28 insertions, 75 deletions
diff --git a/help/en_US/medfilt1.xml b/help/en_US/medfilt1.xml index 2760fe9..ffa7490 100644 --- a/help/en_US/medfilt1.xml +++ b/help/en_US/medfilt1.xml @@ -18,107 +18,60 @@ <refnamediv> <refname>medfilt1</refname> <refpurpose>1D median filtering</refpurpose> - <para> </para> </refnamediv> <refsynopsisdiv> <title>Calling Sequence</title> <synopsis> - y = medfilt1(x) - y = medfilt1(x, n) - y = medfilt1(x, n, dim) - y = medfitl1(__, nanflag, padding) </synopsis> - <para> </para> </refsynopsisdiv> <refsection> <title>Description</title> <para> y = medfilt1(x) - </para> -<para>Applies a 3rd order 1-dimensional median filter to input x along the -first non-zero dimension.</para> - <para>The function appropriately pads the signal +Applies a 3rd order 1-dimensional median filter to input x along the +first non-zero dimension. The function appropriately pads the signal with zeros at the endings. For a segment, a median is calculated as the middle value (average of two middle values) for odd number -number (even number) of data points.</para> -<para> </para> -<para>y = medfilt1(x,n)</para> -<para>Applies a nth order 1-dimensional median filter.</para> -<para> </para> -<para>y = medfilt1(x,n,dim)</para> -<para>Applies the median filter along the n-th dimension</para> -<para> </para> -<para>y = medfilt1(__, nanflag, padding)</para> -<para>nanflag specifies how NaN values are treated. padding specifies the -type of filtering to be performed at the signal edges.</para> - - <para> </para> +number (even number) of data points. +y = medfilt1(x,n) +Applies a nth order 1-dimensional median filter. +y = medfilt1(x,n,dim) +Applies the median filter along the n-th dimension +y = medfilt1(__, nanflag, padding) +nanflag specifies how NaN values are treated. padding specifies the +type of filtering to be performed at the signal edges. + </para> + <para> +</para> </refsection> <refsection> <title>Parameters</title> <variablelist> <varlistentry><term>x:</term> - <listitem><para> int | double</para> <para>Input signal.</para></listitem></varlistentry> + <listitem><para> int | double</para></listitem></varlistentry> <varlistentry><term>n:</term> - <listitem><para> positive integer, scalar</para><para> - Filter order. </para> - <para> Defaults to 3.The order of the median filter. Must be less than - (length of the signal) where signals are 1D vectors along the - dimension of x to be filtered </para></listitem></varlistentry> + <listitem><para> positive integer scalar</para></listitem></varlistentry> <varlistentry><term>dim:</term> - <listitem><para> positive integer scalar</para><para> - Dimension to filter along. </para> - <para> Defaults to first non-singleton dimension of x</para></listitem></varlistentry> + <listitem><para> positive integer scalar</para></listitem></varlistentry> <varlistentry><term>nanflag:</term> - <listitem><para> 'includenan' (default) | 'omitnan'</para> <para> - NaN condition.</para> - <para> * includenan: Filtering such that the median of any segment containing a NaN is also a NaN. </para> - <para>* omitnan: Filtering with NaNs omitted in each segment. If a segment contains all NaNs, the result is NaN</para> -</listitem></varlistentry> - + <listitem><para> 'includenan' (default) | 'omitnan'</para></listitem></varlistentry> + <varlistentry><term>* includenan:</term> + <listitem><para> Filtering such that the median of any segment</para></listitem></varlistentry> + <varlistentry><term>* omitnan:</term> + <listitem><para> Filtering with NaNs omitted in each segment. If a segment</para></listitem></varlistentry> <varlistentry><term>y:</term> - <listitem><para> int | double</para><para> - The filtered signal.</para> - <para>y has the same size as x</para></listitem></varlistentry> + <listitem><para> int | double</para></listitem></varlistentry> + <varlistentry><term>Examples :</term> + <listitem><para> Noise supression using 10th order (n =10) median filtering</para></listitem></varlistentry> + <varlistentry><term>t = 0:</term> + <listitem><para>1/fs:1;</para></listitem></varlistentry> + <varlistentry><term>Output :</term> + <listitem><para> </para></listitem></varlistentry> </variablelist> - <para> </para> -</refsection> - -<refsection> - <title>Examples</title> - <programlisting role="example"><![CDATA[ -//Generate a sinusoidal signal sampled for 1 second at 100 Hz. Add a higher-frequency sinusoid to simulate noise. -fs = 100; -t = 0:1/fs:1; -x = sin(2*%pi*t*3)+0.25*sin(2*%pi*t*40); - -//Use a 10th-order median filter to smooth the signal. Plot the result. -y = medfilt1(x,10); -plot(t,x,t,y) -legend('Original','Filtered'); -y = round(y*10000)/10000; -y = y' - ]]></programlisting> - -<scilab:image> -//Generate a sinusoidal signal sampled for 1 second at 100 Hz. Add a higher-frequency sinusoid to simulate noise. -fs = 100; -t = 0:1/fs:1; -x = sin(2*%pi*t*3)+0.25*sin(2*%pi*t*40); - -//Use a 10th-order median filter to smooth the signal. Plot the result. -y = medfilt1(x,10); -plot(t,x,t,y) -legend('Original','Filtered'); -y = round(y*10000)/10000; -y = y' -</scilab:image> - - </refsection> <refsection> |