summaryrefslogtreecommitdiff
path: root/help/en_US/pmusic.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/pmusic.xml')
-rw-r--r--help/en_US/pmusic.xml166
1 files changed, 38 insertions, 128 deletions
diff --git a/help/en_US/pmusic.xml b/help/en_US/pmusic.xml
index b445409..107a1d2 100644
--- a/help/en_US/pmusic.xml
+++ b/help/en_US/pmusic.xml
@@ -17,7 +17,7 @@
<refnamediv>
<refname>pmusic</refname>
- <refpurpose>Computes Psuedospectrum using MUSIC algorithm</refpurpose>
+ <refpurpose>Psuedospectrum using MUSIC algorithm</refpurpose>
</refnamediv>
@@ -33,144 +33,54 @@
[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap)
[...] = pmusic(...,freqrange)
[...,v,e] = pmusic(...)
-
-
-
-
-
- </synopsis>
-</refsynopsisdiv>
-
-
-<refsection>
- <title>Parameters</title>
- <variablelist>
- <varlistentry><term>x:</term>
- <listitem><para> int|double - vector|matrix</para>
-<para>Input signal. In case of a matrix, each row of x represents a
+
+ Parameters:
+ x - int|double - vector|matrix
+ Input signal. In case of a matrix, each row of x represents a
seperate observation of the signal. If 'corr' flag is specified,
then x is the correlation matrix.
If w is not specified in the input, it is determined by the
algorithm. If x is real valued, then range of w is [0, pi].
- Otherwise, the range of w is [0, 2pi)</para>
-</listitem></varlistentry>
- </variablelist>
-
-<variablelist>
- <varlistentry><term>p:</term>
- <listitem><para> int|double - scalar|vector</para>
-<para>p(1) is the dimension of the signal subspace
+ Otherwise, the range of w is [0, 2pi)
+ p - int|double - scalar|vector
+ p(1) is the dimension of the signal subspace
p(2), if specified, represents a threshold that is multiplied by
- the smallest estimated eigenvalue of the signal's correlation matrix.</para>
-
-</listitem></varlistentry>
- </variablelist>
-
-<variablelist>
-<varlistentry><term>w:</term>
- <listitem><para> int|double - vector</para>
-<para>w is the vector of normalized frequencies over which the
- pseuspectrogram is to be computed.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-
-
-<variablelist>
-<varlistentry><term>nfft:</term>
- <listitem><para> int - scalar (Default = 256)</para>
-<para>Length of the fft used to compute pseudospectrum. The length of S
+ the smallest estimated eigenvalue of the signal's correlation matrix.
+ w - int|double - vector
+ w is the vector of normalized frequencies over which the
+ pseuspectrogram is to be computed.
+ nfft - int - scalar (Default = 256)
+ Length of the fft used to compute pseudospectrum. The length of S
(and hence w/f) depends on the type of values in x and nfft.
If x is real, length of s is (nfft/2 + 1) {Range of w = [0, pi]} if
nfft is even and (nfft+1)/2 {Range of w = [0, pi)} otherwise.
- If x is complex, length of s is nfft.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-
-<variablelist>
-<varlistentry><term>fs:</term>
- <listitem><para> int|double - scalar (Default = 1)</para>
-<para>Sampling rate. Used to convert the normalized frequencies (w) to
- actual values (f) and vice-versa.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-
-<variablelist>
-<varlistentry><term>nwin:</term>
- <listitem><para> int|double - scalar (int only)|vector (Default = 2*p(1))</para>
-<para> If nwin is scalar, it is the length of the rectangular window.
+ If x is complex, length of s is nfft.
+ fs - int|double - scalar (Default = 1)
+ Sampling rate. Used to convert the normalized frequencies (w) to
+ actual values (f) and vice-versa.
+ nwin - int|double - scalar (int only)|vector (Default = 2*p(1))
+ If nwin is scalar, it is the length of the rectangular window.
Otherwise, the vector input is considered as the window coefficients.
- Not used if 'corr' flag present.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-<variablelist>
-<varlistentry><term>noverlap:</term>
- <listitem><para> int - scalar (Default = nwin-1)</para>
-<para> number of points by which successive windows overlap. noverlap not
- used if x is a matrix</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-<variablelist>
-<varlistentry><term>freqrange:</term>
- <listitem><para> string</para>
-<para>The range of frequencies over which the pseudospetrogram is
+ Not used if 'corr' flag present.
+ If x is a vector, windowing not done in nwin in scalar. If x is a
+ matrix,
+ noverlap - int - scalar (Default = nwin-1)
+ number of points by which successive windows overlap. noverlap not
+ used if x is a matrix
+ freqrange - string
+ The range of frequencies over which the pseudospetrogram is
computed. Three possible values - 'onesided', 'twosided', 'centered'
'corr' flag
Presence indicates that the primary input x is actually a
correlation matrix
- </para>
-
-</listitem></varlistentry>
-
-</variablelist>
-</refsection>
-
-<refsection>
- <title>Description</title>
-<para>[S,w] = pmusic(x,p) implements the MUSIC (Multiple Signal Classification) algorithm and returns S, the pseudospectrum estimate of the input signal x, and a vector w of normalized frequencies (in rad/sample) at which the pseudospectrum is evaluated. The pseudospectrum is calculated using estimates of the eigenvectors of a correlation matrix associated with the input data x, where x is specified as either:</para>
-
- <para> A row or column vector representing one observation of the signal
-
- </para>
-<para>A rectangular array for which each row of x represents a separate observation of the signal (for example, each row is one output of an array of sensors, as in array processing), such that x'*x is an estimate of the correlation matrix</para>
-</refsection>
-
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
- n = 0:199;
- x = cos(0.257*%pi*n) + sin(0.2*%pi*n) ;
- [S,w]=pmusic(x,2,16,1)
- ]]></programlisting>
-</refsection>
-
-
-<refsection>
- <title>See also</title>
- <simplelist type="inline">
- <member><link linkend="pburg">pburg| peig | periodogram | pmtm | prony | pwelch | rooteig | rootmusic</link></member>
- </simplelist>
-</refsection>
-
-<refsection>
- <title>Authors</title>
- <simplelist type="vert">
- <member>Ayush Baid</member>
- <member>References</member>
- <member>[1] Petre Stoica and Randolph Moses, Introduction To Spectral</member>
- <member>Analysis, Prentice-Hall, 1997, pg. 15</member>
- <member>[2] S. J. Orfanidis, Optimum Signal Processing. An Introduction.</member>
- <member>2nd Ed., Macmillan, 1988.</member>
- </simplelist>
-</refsection>
+
+ Examples:
+
+ Ex1:
+ n = 0:199;
+ x = cos(0.257*%pi*n) + sin(0.2*%pi*n) + 0.01*rand(size(n,"r"),"normal");
+ [S,w]=pmusic(x,[%inf,1.1],[],8000,2) ;//where x: [1x200 constant] p:-infinite signal space and threshold value is 1.1 window length:-7 Fs:-8000Hz........fftlength:-256
+ plot(w,S);.........to see the plot of psuedospectrum estimate of x vs frequencies w
+ </synopsis>
+</refsynopsisdiv>
</refentry>