1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from pmusic.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="pmusic" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>pmusic</refname>
<refpurpose>Computes Psuedospectrum using MUSIC algorithm</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
[S,w] = pmusic(x,p)
[S,w] = pmusic(x,p,w)
[S,w] = pmusic(x,p,nfft)
[S,w] = pmusic(x,p,nfft,fs)
[S,w] = pmusic(x,p,f,fs)
[S,f] = pmusic(...,'corr')
[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap)
[...] = pmusic(...,freqrange)
[...,v,e] = pmusic(...)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>x:</term>
<listitem><para> int|double - vector|matrix</para>
<para>Input signal. In case of a matrix, each row of x represents a
seperate observation of the signal. If 'corr' flag is specified,
then x is the correlation matrix.
If w is not specified in the input, it is determined by the
algorithm. If x is real valued, then range of w is [0, pi].
Otherwise, the range of w is [0, 2pi)</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>p:</term>
<listitem><para> int|double - scalar|vector</para>
<para>p(1) is the dimension of the signal subspace
p(2), if specified, represents a threshold that is multiplied by
the smallest estimated eigenvalue of the signal's correlation matrix.</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>w:</term>
<listitem><para> int|double - vector</para>
<para>w is the vector of normalized frequencies over which the
pseuspectrogram is to be computed.</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>nfft:</term>
<listitem><para> int - scalar (Default = 256)</para>
<para>Length of the fft used to compute pseudospectrum. The length of S
(and hence w/f) depends on the type of values in x and nfft.
If x is real, length of s is (nfft/2 + 1) {Range of w = [0, pi]} if
nfft is even and (nfft+1)/2 {Range of w = [0, pi)} otherwise.
If x is complex, length of s is nfft.</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>fs:</term>
<listitem><para> int|double - scalar (Default = 1)</para>
<para>Sampling rate. Used to convert the normalized frequencies (w) to
actual values (f) and vice-versa.</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>nwin:</term>
<listitem><para> int|double - scalar (int only)|vector (Default = 2*p(1))</para>
<para> If nwin is scalar, it is the length of the rectangular window.
Otherwise, the vector input is considered as the window coefficients.
Not used if 'corr' flag present.</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>noverlap:</term>
<listitem><para> int - scalar (Default = nwin-1)</para>
<para> number of points by which successive windows overlap. noverlap not
used if x is a matrix</para>
</listitem></varlistentry>
</variablelist>
<variablelist>
<varlistentry><term>freqrange:</term>
<listitem><para> string</para>
<para>The range of frequencies over which the pseudospetrogram is
computed. Three possible values - 'onesided', 'twosided', 'centered'
'corr' flag
Presence indicates that the primary input x is actually a
correlation matrix
</para>
</listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>[S,w] = pmusic(x,p) implements the MUSIC (Multiple Signal Classification) algorithm and returns S, the pseudospectrum estimate of the input signal x, and a vector w of normalized frequencies (in rad/sample) at which the pseudospectrum is evaluated. The pseudospectrum is calculated using estimates of the eigenvectors of a correlation matrix associated with the input data x, where x is specified as either:</para>
<para> A row or column vector representing one observation of the signal
</para>
<para>A rectangular array for which each row of x represents a separate observation of the signal (for example, each row is one output of an array of sensors, as in array processing), such that x'*x is an estimate of the correlation matrix</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
n = 0:199;
x = cos(0.257*%pi*n) + sin(0.2*%pi*n) ;
[S,w]=pmusic(x,2,16,1)
]]></programlisting>
</refsection>
<refsection>
<title>See also</title>
<simplelist type="inline">
<member><link linkend="pburg">pburg| peig | periodogram | pmtm | prony | pwelch | rooteig | rootmusic</link></member>
</simplelist>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Ayush Baid</member>
<member>References</member>
<member>[1] Petre Stoica and Randolph Moses, Introduction To Spectral</member>
<member>Analysis, Prentice-Hall, 1997, pg. 15</member>
<member>[2] S. J. Orfanidis, Optimum Signal Processing. An Introduction.</member>
<member>2nd Ed., Macmillan, 1988.</member>
</simplelist>
</refsection>
</refentry>
|