blob: c51fd9cae3cf6d665c83539589d1b788c9d14508 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
function z=f(xx)
x=xx(1)
y=xx(2)
z=(sin(3*%pi*x))^2+((x-1)^2)*(1+(sin(3*%pi*y))^2)+((y-1)^2)*(1+(sin(3*%pi*y))^2)
endfunction
x1=[-10,-10];
x2=[10,10];
intcon=[1,2];
[x,fval] =intfminbnd(f ,intcon, x1, x2)
// NLP0012I
// Num Status Obj It time Location
// NLP0014I 1 OPT 1.9831281 5 0.008
// NLP0014I 2 OPT 19.547902 30 0.048
// NLP0014I 3 OPT 6.3807612 13 0.016
// NLP0014I 4 OPT 6.4237104 12 0.016
// NLP0014I 5 OPT 4.9797617 12 0.02
// Cbc0010I After 0 nodes, 1 on tree, 1e+50 best solution, best possible -1.7976931e+308 (0.10 seconds)
// NLP0014I 6 OPT 6.3807612 13 0.02
// NLP0014I 7 OPT 19.547902 30 0.048
// NLP0014I 8 OPT 16.807565 11 0.02
// NLP0014I 9 OPT 1.4316016 12 0.02
// NLP0014I 10 OPT 2.7537464 11 0.02
// NLP0014I 11 OPT 0.98856488 5 0.008
// NLP0014I 12 OPT 0.98856488 13 0.024
// NLP0014I 13 OPT 3.9886994 14 0.024
// NLP0014I 14 OPT 2.766458 11 0.02
// NLP0014I 15 OPT 1.3497838e-31 0 0
// NLP0012I
// Num Status Obj It time Location
// NLP0014I 1 OPT 1.3497838e-31 0 0
// Cbc0004I Integer solution of 1.3497838e-31 found after 120 iterations and 10 nodes (0.31 seconds)
// Cbc0001I Search completed - best objective 1.349783804395672e-31, took 120 iterations and 10 nodes (0.31 seconds)
// Cbc0032I Strong branching done 2 times (67 iterations), fathomed 0 nodes and fixed 0 variables
// Cbc0035I Maximum depth 5, 0 variables fixed on reduced cost
// Optimal Solution Found.
// fval =
// 1.350D-31
// x =
// 1.
// 1.
|