function z=f(xx) x=xx(1) y=xx(2) z=(sin(3*%pi*x))^2+((x-1)^2)*(1+(sin(3*%pi*y))^2)+((y-1)^2)*(1+(sin(3*%pi*y))^2) endfunction x1=[-10,-10]; x2=[10,10]; intcon=[1,2]; [x,fval] =intfminbnd(f ,intcon, x1, x2) // NLP0012I // Num Status Obj It time Location // NLP0014I 1 OPT 1.9831281 5 0.008 // NLP0014I 2 OPT 19.547902 30 0.048 // NLP0014I 3 OPT 6.3807612 13 0.016 // NLP0014I 4 OPT 6.4237104 12 0.016 // NLP0014I 5 OPT 4.9797617 12 0.02 // Cbc0010I After 0 nodes, 1 on tree, 1e+50 best solution, best possible -1.7976931e+308 (0.10 seconds) // NLP0014I 6 OPT 6.3807612 13 0.02 // NLP0014I 7 OPT 19.547902 30 0.048 // NLP0014I 8 OPT 16.807565 11 0.02 // NLP0014I 9 OPT 1.4316016 12 0.02 // NLP0014I 10 OPT 2.7537464 11 0.02 // NLP0014I 11 OPT 0.98856488 5 0.008 // NLP0014I 12 OPT 0.98856488 13 0.024 // NLP0014I 13 OPT 3.9886994 14 0.024 // NLP0014I 14 OPT 2.766458 11 0.02 // NLP0014I 15 OPT 1.3497838e-31 0 0 // NLP0012I // Num Status Obj It time Location // NLP0014I 1 OPT 1.3497838e-31 0 0 // Cbc0004I Integer solution of 1.3497838e-31 found after 120 iterations and 10 nodes (0.31 seconds) // Cbc0001I Search completed - best objective 1.349783804395672e-31, took 120 iterations and 10 nodes (0.31 seconds) // Cbc0032I Strong branching done 2 times (67 iterations), fathomed 0 nodes and fixed 0 variables // Cbc0035I Maximum depth 5, 0 variables fixed on reduced cost // Optimal Solution Found. // fval = // 1.350D-31 // x = // 1. // 1.