summaryrefslogtreecommitdiff
path: root/macros/fminbnd.sci
blob: c9bf4ccdeb95e59569b11267a631109af5022a2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: R.Vidyadhar & Vignesh Kannan
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in


function [xopt,fopt,exitflag,output,lambda] = fminbnd (varargin)
  	// Solves a multi-variable optimization problem on a bounded interval
  	//
  	//   Calling Sequence
  	//   xopt = fminbnd(f,x1,x2)
  	//   xopt = fminbnd(f,x1,x2,options)
  	//   [xopt,fopt] = fminbnd(.....)
  	//   [xopt,fopt,exitflag]= fminbnd(.....)
  	//   [xopt,fopt,exitflag,output]=fminbnd(.....)
  	//   [xopt,fopt,exitflag,output,lambda]=fminbnd(.....)
  	//
  	//   Parameters
  	//   f : a function, representing the objective function of the problem 
  	//   x1 : a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables
  	//   x2 : a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity
  	//   options : a list, containing the option for user to specify. See below for details.
  	//   xopt : a vector of doubles, containing the the computed solution of the optimization problem.
  	//   fopt : a scalar of double, containing the the function value at x.
  	//   exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
  	//   output : a structure, containing the information about the optimization. See below for details.
 	//   lambda : a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details.
  	//
  	//   Description
  	//   Search the minimum of a multi-variable function on bounded interval specified by :
  	//   Find the minimum of f(x) such that 
  	//
  	//   <latex>
  	//    \begin{eqnarray}
  	//    &\mbox{min}_{x}
  	//    & f(x)\\
  	//    & \text{subject to} & x1 \ < x \ < x2 \\
  	//    \end{eqnarray}
  	//   </latex>
  	//
  	//   The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++.
  	//
  	// The options allows the user to set various parameters of the Optimization problem. 
  	// It should be defined as type "list" and contains the following fields.
	// <itemizedlist>
	//   <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], TolX, [----]);</listitem>
	//   <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
	//   <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
	//   <listitem>TolX : a Scalar, containing the Tolerance value that the solver should take.</listitem>
	//   <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600], TolX, [1e-4]);</listitem>
	// </itemizedlist>
	//
	// The exitflag allows to know the status of the optimization which is given back by Ipopt.
	// <itemizedlist>
	//   <listitem>exitflag=0 : Optimal Solution Found </listitem>
	//   <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
	//   <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
	//   <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
	//   <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
	//   <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
	// </itemizedlist>
	//
	// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
	//
	// The output data structure contains detailed informations about the optimization process. 
	// It has type "struct" and contains the following fields.
	// <itemizedlist>
	//   <listitem>output.Iterations: The number of iterations performed during the search</listitem>
	//   <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
	//   <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
	//   <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
	// </itemizedlist>
	//
	// The lambda data structure contains the Lagrange multipliers at the end 
	// of optimization. In the current version the values are returned only when the the solution is optimal. 
	// It has type "struct" and contains the following fields.
	// <itemizedlist>
	//   <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
	//   <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
	// </itemizedlist>
	//
  	// Examples
  	//	//Find x in R^6 such that it minimizes:
  	//    //f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
  	//	//-2 <= x1,x2,x3,x4,x5,x6 <= 2
  	//    //Objective function to be minimised
  	//    function y=f(x)
  	//		y=0
  	//		for i =1:6
  	//			y=y+sin(x(i));
  	//		end	
  	//	endfunction
  	//	//Variable bounds  
  	//	x1 = [-2, -2, -2, -2, -2, -2];
  	//    x2 = [2, 2, 2, 2, 2, 2];
  	//	//Options
  	//	options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
  	//    //Calling Ipopt
  	//	[x,fval] =fminbnd(f, x1, x2, options)
	// // Press ENTER to continue
  	//
  	// Examples
  	//	//Find x in R such that it minimizes:
  	//    //f(x)= 1/x^2
  	//	//0 <= x <= 1000
  	//    //Objective function to be minimised
  	//    function y=f(x)
  	//		y=1/x^2
  	//	endfunction
  	//	//Variable bounds  
  	//	x1 = [0];
  	//    x2 = [1000];
  	//    //Calling Ipopt
  	//	[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)
	// // Press ENTER to continue
  	//
  	// Examples
  	//    //The below problem is an unbounded problem:
  	//	//Find x in R^2 such that it minimizes:
  	//    //f(x)= -[(x1-1)^2 + (x2-1)^2]
  	//	//-inf <= x1,x2 <= inf
  	//    //Objective function to be minimised
  	//    function y=f(x)
  	// 		y=-((x(1)-1)^2+(x(2)-1)^2);
  	//	endfunction
  	//	//Variable bounds  
  	//	x1 = [-%inf , -%inf];
  	//    x2 = [];
  	//	//Options
  	//	options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
  	//    //Calling Ipopt
  	//	[x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options)  
  	// Authors
  	// R.Vidyadhar , Vignesh Kannan
	

   	//To check the number of input and output arguments
   	[lhs , rhs] = argn();
	
   	//To check the number of arguments given by the user
   	if ( rhs<3 | rhs>4 ) then
    		errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 3 or 4"), "fminbnd", rhs);
   		error(errmsg)
   	end
   
   	//Storing the 1st and 2nd Input Parameters  
   	fun = varargin(1);
   	x1 = varargin(2);
   	x2 = varargin(3);
	
	
	//To check whether the 1st Input argument (fun) is a function or not
   	if (type(fun) ~= 13 & type(fun) ~= 11) then
   		errmsg = msprintf(gettext("%s: Expected function for Objective (1st Parameter)"), "fmincon");
   		error(errmsg);
   	end
   	
   	//Converting the User defined Objective function into Required form (Error Detectable)
   	function [y,check] = f(x)
   		if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27)
			y=zeros(1,1);
			check=1;
		else
			if (isreal(y)==%F) then
				y=zeros(1,1);
				check=1;
  			else
				y=fun(x);
				check=0;
			end
		end
	endfunction
 
   	//To check whether the 2nd Input argument (x1) is a vector/scalar
   	if (type(x1) ~= 1) then
   		errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Lower Bound Vector (2nd Parameter)"), "fminbnd");
   		error(errmsg);
  	end
  	
  	if (size(x1,2)==0) then
        errmsg = msprintf(gettext("%s: Lower Bound (2nd Parameter) cannot be empty"), "fminbnd");
   		error(errmsg);
    end
    
   	if (size(x1,1)~=1) & (size(x1,2)~=1) then
      errmsg = msprintf(gettext("%s: Lower Bound (2nd Parameter) should be a vector"), "fminbnd");
      error(errmsg); 
   	elseif (size(x1,2)==1) then
   	 	x1=x1;
   	elseif (size(x1,1)==1) then
   		x1=x1';
   	end
   	s=size(x1);
   	
   	//To check whether the 3rd Input argument (x2) is a vector/scalar
   	if (type(x2) ~= 1) then
   		errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Upper Bound Vector (3rd Parameter)"), "fminbnd");
   		error(errmsg);
  	end
   	
   	//To check for the correct size and data of x2 (3rd paramter) and convert it to a column vector as required by Ipopt
    if (size(x2,2)==0) then
		x2 = repmat(%inf,s(1),1);
    end
    
    
    if (size(x2,1)~=1) & (size(x2,2)~=1) then
      errmsg = msprintf(gettext("%s: Upper Bound (3rd Parameter) should be a vector"), "fminbnd");
      error(errmsg); 
    elseif(size(x2,1)~=s(1) & size(x2,2)==1) then
   		errmsg = msprintf(gettext("%s: Upper Bound and Lower Bound are not matching"), "fminbnd");
   		error(errmsg);
   	elseif(size(x2,1)==s(1) & size(x2,2)==1) then
   	 	x2=x2;
   	elseif(size(x2,1)==1 & size(x2,2)~=s(1)) then
   		errmsg = msprintf(gettext("%s: Upper Bound and Lower Bound are not matching"), "fminbnd");
   		error(errmsg);
   	elseif(size(x2,1)==1 & size(x2,2)==s(1)) then
   		x2=x2';
   	end 
    
    //To check the contents of x1 and x2 (2nd & 3rd Parameter)
    
    for i = 1:s(2)
		if (x1(i) == %inf) then
		   	errmsg = msprintf(gettext("%s: Value of Lower Bound can not be infinity"), "fminbnd");
    		error(errmsg); 
  		end	
		if (x2(i) == -%inf) then
		   	errmsg = msprintf(gettext("%s: Value of Upper Bound can not be negative infinity"), "fminbnd");
    		error(errmsg); 
		end	
		if(x2(i)-x1(i)<=1e-6) then
			errmsg = msprintf(gettext("%s: Difference between Upper Bound and Lower bound should be atleast > 10^6 for variable number= %d "), "fminbnd", i);
    		error(errmsg)
    	end
	end
	
   	//To check, whether options has been entered by the user  
   	if ( rhs<4 | size(varargin(4)) ==0 ) then
      		param = list(); 
   	else
      		param =varargin(4); //Storing the 3rd Input Parameter in an intermediate list named 'param'
   	end
   
   	options = list("MaxIter",[3000],"CpuTime",[600],"TolX", [1e-4]);
      
   	//To check the user entry for options and storing it
   	for i = 1:(size(param))/2
       	select param(2*i-1)
    		case "MaxIter" then
          			options(2*i) = param(2*i);
       		case "CpuTime" then
          			options(2*i) = param(2*i);
        	case "TolX" then
          			options(2*i) = param(2*i); 
    		else
    	     	 	errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminbnd", param(2*i-1));
    	      		error(errmsg)
    	end
   	end

   	
   	//Defining a function to calculate Gradient or Hessian in an error deductable form.
   	function [y,check]=gradhess(x,t)
		if t==1 then
			if(execstr('y=numderivative(fun,x)','errcatch')==10000)
				y=zeros(s(1),1);
				check=1;
			else
				y=numderivative(fun,x);
				if (isreal(y)==%F) then
					y=zeros(s(1),1);
					check=1;
  				else
					check=0;
				end
			end
		else 
			if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000)
				y=zeros(s(1),1);
				check=1;
			else
				[grad,y]=numderivative(fun,x);
				if (isreal(y)==%F) then
					y=zeros(s(1),s(1));
					check=1;
  				else
					check=0;
				end	
			end
		end
   	endfunction
   
   	//Calling the Ipopt function for solving the above problem 
	[xopt,fopt,status,iter,cpu,obj_eval,dual,zl,zu] = solveminbndp(f,gradhess,x1,x2,options);
   
   	//Calculating the values for the output
   	xopt = xopt';
   	exitflag = status;
   	output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[]);
   	output.Iterations = iter;
    output.Cpu_Time = cpu;
    output.Objective_Evaluation = obj_eval;
    output.Dual_Infeasibility = dual;
    lambda = struct("lower", zl,"upper",zu);

	//In the cases of the problem not being solved, return NULL to the output matrices
	if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then
		xopt=[]
		fopt=[]
		output = struct("Iterations", [],"Cpu_Time",[]);
		output.Iterations = iter;
    	output.Cpu_Time = cpu;
		lambda = struct("lower",[],"upper",[]);
	end
	
    //To print output message
    select status
    
    	case 0 then
        	printf("\nOptimal Solution Found.\n");
    	case 1 then
        	printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
    	case 2 then
        	printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
    	case 3 then
        	printf("\nStop at Tiny Step\n");
    	case 4 then
        	printf("\nSolved To Acceptable Level\n");
    	case 5 then
        	printf("\nConverged to a point of local infeasibility.\n");
    	case 6 then
        	printf("\nStopping optimization at current point as requested by user.\n");
    	case 7 then
        	printf("\nFeasible point for square problem found.\n");
    	case 8 then 
        	printf("\nIterates diverging; problem might be unbounded.\n");
    	case 9 then
        	printf("\nRestoration Failed!\n");
    	case 10 then
        	printf("\nError in step computation (regularization becomes too large?)!\n");
    	case 12 then
        	printf("\nProblem has too few degrees of freedom.\n");
    	case 13 then
       		printf("\nInvalid option thrown back by Ipopt\n");
    	case 14 then
        	printf("\nNot enough memory.\n");
    	case 15 then
        	printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
    	else
        	printf("\nInvalid status returned. Notify the Toolbox authors\n");
        	break;
    	end
    

endfunction