// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: R.Vidyadhar & Vignesh Kannan
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,exitflag,output,lambda] = fminbnd (varargin)
// Solves a multi-variable optimization problem on a bounded interval
//
// Calling Sequence
// xopt = fminbnd(f,x1,x2)
// xopt = fminbnd(f,x1,x2,options)
// [xopt,fopt] = fminbnd(.....)
// [xopt,fopt,exitflag]= fminbnd(.....)
// [xopt,fopt,exitflag,output]=fminbnd(.....)
// [xopt,fopt,exitflag,output,lambda]=fminbnd(.....)
//
// Parameters
// f : a function, representing the objective function of the problem
// x1 : a vector, containing the lower bound of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables, where n is number of Variables
// x2 : a vector, containing the upper bound of the variables of size (1 X n) or (n X 1) or (0 X 0) where 'n' is the number of Variables. If x2 is empty it means upper bound is +infinity
// options : a list, containing the option for user to specify. See below for details.
// xopt : a vector of doubles, containing the the computed solution of the optimization problem.
// fopt : a scalar of double, containing the the function value at x.
// exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
// output : a structure, containing the information about the optimization. See below for details.
// lambda : a structure, containing the Lagrange multipliers of lower bound and upper bound at the optimized point. See below for details.
//
// Description
// Search the minimum of a multi-variable function on bounded interval specified by :
// Find the minimum of f(x) such that
//
//
// \begin{eqnarray}
// &\mbox{min}_{x}
// & f(x)\\
// & \text{subject to} & x1 \ < x \ < x2 \\
// \end{eqnarray}
//
//
// The routine calls Ipopt for solving the Bounded Optimization problem, Ipopt is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
//
// Syntax : options= list("MaxIter", [---], "CpuTime", [---], TolX, [----]);
// MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.
// CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.
// TolX : a Scalar, containing the Tolerance value that the solver should take.
// Default Values : options = list("MaxIter", [3000], "CpuTime", [600], TolX, [1e-4]);
//
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
//
// exitflag=0 : Optimal Solution Found
// exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.
// exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.
// exitflag=3 : Stop at Tiny Step.
// exitflag=4 : Solved To Acceptable Level.
// exitflag=5 : Converged to a point of local infeasibility.
//
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
//
// output.Iterations: The number of iterations performed during the search
// output.Cpu_Time: The total cpu-time spend during the search
// output.Objective_Evaluation: The number of Objective Evaluations performed during the search
// output.Dual_Infeasibility: The Dual Infeasiblity of the final soution
//
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
//
// lambda.lower: The Lagrange multipliers for the lower bound constraints.
// lambda.upper: The Lagrange multipliers for the upper bound constraints.
//
//
// Examples
// //Find x in R^6 such that it minimizes:
// //f(x)= sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5) + sin(x6)
// //-2 <= x1,x2,x3,x4,x5,x6 <= 2
// //Objective function to be minimised
// function y=f(x)
// y=0
// for i =1:6
// y=y+sin(x(i));
// end
// endfunction
// //Variable bounds
// x1 = [-2, -2, -2, -2, -2, -2];
// x2 = [2, 2, 2, 2, 2, 2];
// //Options
// options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
// //Calling Ipopt
// [x,fval] =fminbnd(f, x1, x2, options)
// // Press ENTER to continue
//
// Examples
// //Find x in R such that it minimizes:
// //f(x)= 1/x^2
// //0 <= x <= 1000
// //Objective function to be minimised
// function y=f(x)
// y=1/x^2
// endfunction
// //Variable bounds
// x1 = [0];
// x2 = [1000];
// //Calling Ipopt
// [x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2)
// // Press ENTER to continue
//
// Examples
// //The below problem is an unbounded problem:
// //Find x in R^2 such that it minimizes:
// //f(x)= -[(x1-1)^2 + (x2-1)^2]
// //-inf <= x1,x2 <= inf
// //Objective function to be minimised
// function y=f(x)
// y=-((x(1)-1)^2+(x(2)-1)^2);
// endfunction
// //Variable bounds
// x1 = [-%inf , -%inf];
// x2 = [];
// //Options
// options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
// //Calling Ipopt
// [x,fval,exitflag,output,lambda] =fminbnd(f, x1, x2, options)
// Authors
// R.Vidyadhar , Vignesh Kannan
//To check the number of input and output arguments
[lhs , rhs] = argn();
//To check the number of arguments given by the user
if ( rhs<3 | rhs>4 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 3 or 4"), "fminbnd", rhs);
error(errmsg)
end
//Storing the 1st and 2nd Input Parameters
fun = varargin(1);
x1 = varargin(2);
x2 = varargin(3);
//To check whether the 1st Input argument (fun) is a function or not
if (type(fun) ~= 13 & type(fun) ~= 11) then
errmsg = msprintf(gettext("%s: Expected function for Objective (1st Parameter)"), "fmincon");
error(errmsg);
end
//Converting the User defined Objective function into Required form (Error Detectable)
function [y,check] = f(x)
if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27)
y=zeros(1,1);
check=1;
else
if (isreal(y)==%F) then
y=zeros(1,1);
check=1;
else
y=fun(x);
check=0;
end
end
endfunction
//To check whether the 2nd Input argument (x1) is a vector/scalar
if (type(x1) ~= 1) then
errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Lower Bound Vector (2nd Parameter)"), "fminbnd");
error(errmsg);
end
if (size(x1,2)==0) then
errmsg = msprintf(gettext("%s: Lower Bound (2nd Parameter) cannot be empty"), "fminbnd");
error(errmsg);
end
if (size(x1,1)~=1) & (size(x1,2)~=1) then
errmsg = msprintf(gettext("%s: Lower Bound (2nd Parameter) should be a vector"), "fminbnd");
error(errmsg);
elseif (size(x1,2)==1) then
x1=x1;
elseif (size(x1,1)==1) then
x1=x1';
end
s=size(x1);
//To check whether the 3rd Input argument (x2) is a vector/scalar
if (type(x2) ~= 1) then
errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Upper Bound Vector (3rd Parameter)"), "fminbnd");
error(errmsg);
end
//To check for the correct size and data of x2 (3rd paramter) and convert it to a column vector as required by Ipopt
if (size(x2,2)==0) then
x2 = repmat(%inf,s(1),1);
end
if (size(x2,1)~=1) & (size(x2,2)~=1) then
errmsg = msprintf(gettext("%s: Upper Bound (3rd Parameter) should be a vector"), "fminbnd");
error(errmsg);
elseif(size(x2,1)~=s(1) & size(x2,2)==1) then
errmsg = msprintf(gettext("%s: Upper Bound and Lower Bound are not matching"), "fminbnd");
error(errmsg);
elseif(size(x2,1)==s(1) & size(x2,2)==1) then
x2=x2;
elseif(size(x2,1)==1 & size(x2,2)~=s(1)) then
errmsg = msprintf(gettext("%s: Upper Bound and Lower Bound are not matching"), "fminbnd");
error(errmsg);
elseif(size(x2,1)==1 & size(x2,2)==s(1)) then
x2=x2';
end
//To check the contents of x1 and x2 (2nd & 3rd Parameter)
for i = 1:s(2)
if (x1(i) == %inf) then
errmsg = msprintf(gettext("%s: Value of Lower Bound can not be infinity"), "fminbnd");
error(errmsg);
end
if (x2(i) == -%inf) then
errmsg = msprintf(gettext("%s: Value of Upper Bound can not be negative infinity"), "fminbnd");
error(errmsg);
end
if(x2(i)-x1(i)<=1e-6) then
errmsg = msprintf(gettext("%s: Difference between Upper Bound and Lower bound should be atleast > 10^6 for variable number= %d "), "fminbnd", i);
error(errmsg)
end
end
//To check, whether options has been entered by the user
if ( rhs<4 | size(varargin(4)) ==0 ) then
param = list();
else
param =varargin(4); //Storing the 3rd Input Parameter in an intermediate list named 'param'
end
options = list("MaxIter",[3000],"CpuTime",[600],"TolX", [1e-4]);
//To check the user entry for options and storing it
for i = 1:(size(param))/2
select param(2*i-1)
case "MaxIter" then
options(2*i) = param(2*i);
case "CpuTime" then
options(2*i) = param(2*i);
case "TolX" then
options(2*i) = param(2*i);
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminbnd", param(2*i-1));
error(errmsg)
end
end
//Defining a function to calculate Gradient or Hessian in an error deductable form.
function [y,check]=gradhess(x,t)
if t==1 then
if(execstr('y=numderivative(fun,x)','errcatch')==10000)
y=zeros(s(1),1);
check=1;
else
y=numderivative(fun,x);
if (isreal(y)==%F) then
y=zeros(s(1),1);
check=1;
else
check=0;
end
end
else
if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000)
y=zeros(s(1),1);
check=1;
else
[grad,y]=numderivative(fun,x);
if (isreal(y)==%F) then
y=zeros(s(1),s(1));
check=1;
else
check=0;
end
end
end
endfunction
//Calling the Ipopt function for solving the above problem
[xopt,fopt,status,iter,cpu,obj_eval,dual,zl,zu] = solveminbndp(f,gradhess,x1,x2,options);
//Calculating the values for the output
xopt = xopt';
exitflag = status;
output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[]);
output.Iterations = iter;
output.Cpu_Time = cpu;
output.Objective_Evaluation = obj_eval;
output.Dual_Infeasibility = dual;
lambda = struct("lower", zl,"upper",zu);
//In the cases of the problem not being solved, return NULL to the output matrices
if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then
xopt=[]
fopt=[]
output = struct("Iterations", [],"Cpu_Time",[]);
output.Iterations = iter;
output.Cpu_Time = cpu;
lambda = struct("lower",[],"upper",[]);
end
//To print output message
select status
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
case 2 then
printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
case 3 then
printf("\nStop at Tiny Step\n");
case 4 then
printf("\nSolved To Acceptable Level\n");
case 5 then
printf("\nConverged to a point of local infeasibility.\n");
case 6 then
printf("\nStopping optimization at current point as requested by user.\n");
case 7 then
printf("\nFeasible point for square problem found.\n");
case 8 then
printf("\nIterates diverging; problem might be unbounded.\n");
case 9 then
printf("\nRestoration Failed!\n");
case 10 then
printf("\nError in step computation (regularization becomes too large?)!\n");
case 12 then
printf("\nProblem has too few degrees of freedom.\n");
case 13 then
printf("\nInvalid option thrown back by Ipopt\n");
case 14 then
printf("\nNot enough memory.\n");
case 15 then
printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction