summaryrefslogtreecommitdiff
path: root/macros/fseminf.sci
diff options
context:
space:
mode:
Diffstat (limited to 'macros/fseminf.sci')
-rw-r--r--macros/fseminf.sci322
1 files changed, 0 insertions, 322 deletions
diff --git a/macros/fseminf.sci b/macros/fseminf.sci
deleted file mode 100644
index 2ffcab5..0000000
--- a/macros/fseminf.sci
+++ /dev/null
@@ -1,322 +0,0 @@
-// Copyright (C) 2015 - IIT Bombay - FOSSEE
-//
-// This file must be used under the terms of the CeCILL.
-// This source file is licensed as described in the file COPYING, which
-// you should have received as part of this distribution. The terms
-// are also available at
-// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
-// Author: Salman Anis, Harpreet Singh
-// Organization: FOSSEE, IIT Bombay
-// Email: toolbox@scilab.in
-
-function [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fseminf (varargin)
- // Solves a multi-variable constrainted optimization problem
- //
- // Calling Sequence
- // xopt = fseminf(fun,x0,ntheta,seminfcon)
- // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b)
- // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
- // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
- // xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
- // [xopt,fopt] = fseminf(.....)
- // [xopt,fopt,exitflag]= fseminf(.....)
- // [xopt,fopt,exitflag,output]= fseminf(.....)
- // [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
- // [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
- // [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
- //
- // Parameters
- // fun : a function, representing the objective function of the problem
- // x0 : a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
- // ntheta : The number of semi-infinite constraints.
- // seminfcon : a function that calculates the vector of nonlinear inequality constraints c, a vector of nonlinear equality constraints ceq, and ntheta semi-infinite constraints. See below for details.
- // A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
- // b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
- // Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
- // beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
- // lb : a vector of double, contains lower bounds of the variables.
- // ub : a vector of double, contains upper bounds of the variables.
- // options : a list, containing the option for user to specify. See below for details.
-
- // xopt : a vector of double, the computed solution of the optimization problem.
- // fopt : a double, the value of the function at x.
- // exitflag : The exit status. See below for details.
- // output : The structure consist of statistics about the optimization. See below for details.
- // lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
- //
- // Description
- // Search the minimum of a constrained optimization problem specified by :
- // Find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & A*x \leq b \\
- // & & Aeq*x \ = beq\\
- // & & lb \leq x \leq ub \\
- // & & c(x) \leq 0\\
- // & & ceq(x) \ = 0\\
- // & & K_i(x,w_i) \leq 0, 1 \leq i \leq n.
- // \end{eqnarray}
- // </latex>
- //
- // The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
- //
- // The options allows the user to set various parameters of the Optimization problem.
- // It should be defined as type "list" and contains the following fields.
- // <itemizedlist>
- // <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---);</listitem>
- // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
- // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
- // <listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
- // <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
- // </itemizedlist>
- //
- // The exitflag allows to know the status of the optimization which is given back by Ipopt.
- // <itemizedlist>
- // <listitem>exitflag=0 : Optimal Solution Found </listitem>
- // <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
- // <listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
- // <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
- // <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
- // <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
- // </itemizedlist>
- //
- // For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
- //
- // The output data structure contains detailed informations about the optimization process.
- // It has type "struct" and contains the following fields.
- // <itemizedlist>
- // <listitem>output.Iterations: The number of iterations performed during the search</listitem>
- // <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
- // <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
- // <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
- // </itemizedlist>
- //
- // The lambda data structure contains the Lagrange multipliers at the end
- // of optimization. In the current version the values are returned only when the the solution is optimal.
- // It has type "struct" and contains the following fields.
- // <itemizedlist>
- // <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
- // <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
- // <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
- // <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
- // <listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
- // <listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
- // </itemizedlist>
- //
- // Examples
- // function [y] = obj(x)
- // y = (x-1)^2;
- // endfunction
- // function [c, ceq, K1, s] = seminfcon(x,s)
- // // No finite nonlinear inequality and equality constraints
- // c = [];
- // ceq = [];
- // // Sample set
- // if isnan(s)
- // // Initial sampling interval
- // s = [0.01 0];
- // end
- // t = 0:s(1):1;
- // // Evaluate the semi-infinite constraint
- // K1 = (x - 0.5) - (t - 0.5).^2;
- // endfunction
- // x = fseminf(obj,0.2,1,seminfcon)
- //
- // Authors
- // Salman Anis, Harpreet Singh
-
-
- //To check the number of input and output arguments
- [lhs , rhs] = argn();
-
- //To check the number of arguments given by the user
- if ( rhs<4 | rhs==5 | rhs==7 | rhs>13 ) then
- errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,10,11"), "fseminf", rhs);
- error(errmsg)
- end
-
- //Storing the Input Parameters
- _fun = varargin(1);
- x0 = varargin(2);
- ntheta = varargin(3);
- seminfcon = varargin(4);
- nbVar = size(x0,'*');
-
- if(nbVar == 0) then
- errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input initial guess is empty"), "lsqcurvefit");
- error(errmsg);
- end
-
- A = [];
- b = [];
- Aeq = [];
- beq = [];
- lb = [];
- ub = [];
- nlc = [];
- param = list();
-
- if (rhs>4) then
- A = varargin(5);
- b = varargin(6);
- end
-
- if (rhs>6) then
- Aeq = varargin(7);
- beq = varargin(8);
- end
-
- if (rhs>8) then
- lb = varargin(9);
- ub = varargin(10);
- end
-
- if (rhs>10) then
- param = varargin(10);
- end
-
- if (size(lb,2)==0) then
- lb = repmat(-%inf,nbVar,1);
- end
-
- if (size(ub,2)==0) then
- ub = repmat(%inf,nbVar,1);
- end
-
- //Check type of variables
- Checktype("fseminf", _fun, "fun", 1, "function")
- Checktype("fseminf", x0, "x0", 2, "constant")
- Checktype("fseminf", ntheta, "ntheta", 3, "constant")
- Checktype("fseminf", seminfcon, "seminfcon", 4, ["function","constant"])
- Checktype("fseminf", A, "A", 5, "constant")
- Checktype("fseminf", b, "b", 6, "constant")
- Checktype("fseminf", Aeq, "Aeq", 7, "constant")
- Checktype("fseminf", beq, "beq", 8, "constant")
- Checktype("fseminf", lb, "lb", 9, "constant")
- Checktype("fseminf", ub, "ub", 10, "constant")
- Checktype("fseminf", param, "param", 10, "list")
-
- //To check the user entry for options and storing it
- for i = 1:(size(param))/2
- select convstr(param(2*i-1),'l')
- case "maxiter" then
- Checktype("fseminf", param(2*i), "maxiter", 10, "constant")
- options(2) = param(2*i); //Setting the maximum number of iterations as per user entry
- case "cputime" then
- Checktype("fseminf", param(2*i), "cputime", 10, "constant")
- options(4) = param(2*i); //Setting the maximum CPU time as per user entry
- case "gradobj" then
- Checktype("fseminf", param(2*i), "gradobj", 10, "string")
- if(convstr(param(2*i),'l') == "on") then
- function dy = graObj(x)
-
- endfunction
- end
- else
- errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fmincon", param(2*i-1));
- error(errmsg);
- end
- end
-
- //To check and convert the 2nd Input argument (x0) to a row vector
- if((size(x0,1)~=1) & (size(x0,2)~=1)) then
- errmsg = msprintf(gettext("%s: Expected Vector for initial guess"), "fseminf");
- error(errmsg);
- end
-
- if(size(x0,2)==1) then
- x0=x0(:);
- end
-
- //To check the match between fun (1st Parameter) and x0 (2nd Parameter)
- if(execstr('init=_fun(x0)','errcatch')==21) then
- errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fseminf");
- error(errmsg);
- end
-
- //Check the size of inequality constraint which should be equal to the number of variables
- if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
- errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of x0"), "fseminf");
- error(errmsg);
- end
-
- nbConInEq = size(A,"r");
-
- //Check the size of equality constraint which should be equal to the number of variables
- if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
- errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of f"), "fseminf");
- error(errmsg);
- end
-
- b = b(:);
- beq = beq(:);
- lb = lb(:);
- ub = ub(:);
-
- //To check the contents of lb & ub
- for i = 1:nbVar
- if(ub(i)<lb(i)) then
- errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "fseminf");
- error(errmsg);
- end
- end
-
- if(typeof(seminfcon) == "function")
- sample_S = %nan
- if(execstr('[sample_c,sample_ceq,sample_K,sample_S] = seminfcon(x0,sample_S)','errcatch')==21)
- errmsg = msprintf(gettext("%s: Semi-Infinite Constraint function & x0 did not match"), "fseminf");
- error(errmsg);
- end
- [sample_c, sample_ceq, sample_K, sample_S] = seminfcon(x0,sample_S);
-
- if (size(sample_c,1)~=1 & size(sample_c,1)~=0) then
- errmsg = msprintf(gettext("%s: c in seminfcon should be a row vector or empty matrix"), "fseminf");
- error(errmsg)
- end
-
- if (size(sample_ceq,1)~=1 & size(sample_ceq,1)~=0) then
- errmsg = msprintf(gettext("%s: ceq in seminfcon should be a row vector or empty matrix"), "fseminf");
- error(errmsg)
- end
-
- if (size(sample_K,"r")~=ntheta) then
- errmsg = msprintf(gettext("%s: Number of rows in K should be equal to ntheta"), "fseminf");
- error(errmsg)
- end
-
- if (size(sample_S,"c")~=2) then
- errmsg = msprintf(gettext("%s: Number of columns in sampling interval should be equal to 2"), "fseminf");
- error(errmsg)
- end
- end
-
- ierr = execstr('init=_fun(x0)', "errcatch")
- if ierr <> 0 then
- lamsg = lasterror();
- lclmsg = "%s: Error while evaluating the function: ""%s""\n";
- error(msprintf(gettext(lclmsg), "fseminf", lamsg));
- end
-
- S = %nan;
-
- ierr = execstr('init=seminfcon(x0,S)', "errcatch")
- if ierr <> 0 then
- lamsg = lasterror();
- lclmsg = "%s: Error while evaluating the function: ""%s""\n";
- error(msprintf(gettext(lclmsg), "fseminf", lamsg));
- end
-
- function [c, ceq] = _seminfcon(x)
- [c, ceq, K, S] = seminfcon(x,S)
- K_max = max(K,"c");
- c= [c;K_max];
- ceq = ceq;
- endfunction
-
- //Calling the fmincon function for solving the above problem
- [xopt,fopt,exitflag,output,lambda,gradient] = fmincon(_fun,x0,A,b,Aeq,beq,lb,ub,_seminfcon,param)
-
-endfunction