1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Salman Anis, Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fseminf (varargin)
// Solves a multi-variable constrainted optimization problem
//
// Calling Sequence
// xopt = fseminf(fun,x0,ntheta,seminfcon)
// xopt = fseminf(fun,x0,ntheta,seminfcon,A,b)
// xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
// xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
// xopt = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
// [xopt,fopt] = fseminf(.....)
// [xopt,fopt,exitflag]= fseminf(.....)
// [xopt,fopt,exitflag,output]= fseminf(.....)
// [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
// [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
// [xopt,fopt,exitflag,output,lambda]=fseminf(.....)
//
// Parameters
// fun : a function, representing the objective function of the problem
// x0 : a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
// ntheta : The number of semi-infinite constraints.
// seminfcon : a function that calculates the vector of nonlinear inequality constraints c, a vector of nonlinear equality constraints ceq, and ntheta semi-infinite constraints. See below for details.
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// options : a list, containing the option for user to specify. See below for details.
// xopt : a vector of double, the computed solution of the optimization problem.
// fopt : a double, the value of the function at x.
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// Search the minimum of a constrained optimization problem specified by :
// Find the minimum of f(x) such that
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & f(x) \\
// & \text{subject to} & A*x \leq b \\
// & & Aeq*x \ = beq\\
// & & lb \leq x \leq ub \\
// & & c(x) \leq 0\\
// & & ceq(x) \ = 0\\
// & & K_i(x,w_i) \leq 0, 1 \leq i \leq n.
// \end{eqnarray}
// </latex>
//
// The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
// <itemizedlist>
// <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---);</listitem>
// <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
// <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
// <listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
// <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
// </itemizedlist>
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>output.Iterations: The number of iterations performed during the search</listitem>
// <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
// <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
// <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
// </itemizedlist>
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
// <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
// <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
// <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
// <listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
// <listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
// </itemizedlist>
//
// Examples
// function [y] = obj(x)
// y = (x-1)^2;
// endfunction
// function [c, ceq, K1, s] = seminfcon(x,s)
// // No finite nonlinear inequality and equality constraints
// c = [];
// ceq = [];
// // Sample set
// if isnan(s)
// // Initial sampling interval
// s = [0.01 0];
// end
// t = 0:s(1):1;
// // Evaluate the semi-infinite constraint
// K1 = (x - 0.5) - (t - 0.5).^2;
// endfunction
// x = fseminf(obj,0.2,1,seminfcon)
//
// Authors
// Salman Anis, Harpreet Singh
//To check the number of input and output arguments
[lhs , rhs] = argn();
//To check the number of arguments given by the user
if ( rhs<4 | rhs==5 | rhs==7 | rhs>13 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,10,11"), "fseminf", rhs);
error(errmsg)
end
//Storing the Input Parameters
_fun = varargin(1);
x0 = varargin(2);
ntheta = varargin(3);
seminfcon = varargin(4);
nbVar = size(x0,'*');
if(nbVar == 0) then
errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input initial guess is empty"), "lsqcurvefit");
error(errmsg);
end
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nlc = [];
param = list();
if (rhs>4) then
A = varargin(5);
b = varargin(6);
end
if (rhs>6) then
Aeq = varargin(7);
beq = varargin(8);
end
if (rhs>8) then
lb = varargin(9);
ub = varargin(10);
end
if (rhs>10) then
param = varargin(10);
end
if (size(lb,2)==0) then
lb = repmat(-%inf,nbVar,1);
end
if (size(ub,2)==0) then
ub = repmat(%inf,nbVar,1);
end
//Check type of variables
Checktype("fseminf", _fun, "fun", 1, "function")
Checktype("fseminf", x0, "x0", 2, "constant")
Checktype("fseminf", ntheta, "ntheta", 3, "constant")
Checktype("fseminf", seminfcon, "seminfcon", 4, ["function","constant"])
Checktype("fseminf", A, "A", 5, "constant")
Checktype("fseminf", b, "b", 6, "constant")
Checktype("fseminf", Aeq, "Aeq", 7, "constant")
Checktype("fseminf", beq, "beq", 8, "constant")
Checktype("fseminf", lb, "lb", 9, "constant")
Checktype("fseminf", ub, "ub", 10, "constant")
Checktype("fseminf", param, "param", 10, "list")
//To check the user entry for options and storing it
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case "maxiter" then
Checktype("fseminf", param(2*i), "maxiter", 10, "constant")
options(2) = param(2*i); //Setting the maximum number of iterations as per user entry
case "cputime" then
Checktype("fseminf", param(2*i), "cputime", 10, "constant")
options(4) = param(2*i); //Setting the maximum CPU time as per user entry
case "gradobj" then
Checktype("fseminf", param(2*i), "gradobj", 10, "string")
if(convstr(param(2*i),'l') == "on") then
function dy = graObj(x)
endfunction
end
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fmincon", param(2*i-1));
error(errmsg);
end
end
//To check and convert the 2nd Input argument (x0) to a row vector
if((size(x0,1)~=1) & (size(x0,2)~=1)) then
errmsg = msprintf(gettext("%s: Expected Vector for initial guess"), "fseminf");
error(errmsg);
end
if(size(x0,2)==1) then
x0=x0(:);
end
//To check the match between fun (1st Parameter) and x0 (2nd Parameter)
if(execstr('init=_fun(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fseminf");
error(errmsg);
end
//Check the size of inequality constraint which should be equal to the number of variables
if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of x0"), "fseminf");
error(errmsg);
end
nbConInEq = size(A,"r");
//Check the size of equality constraint which should be equal to the number of variables
if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of f"), "fseminf");
error(errmsg);
end
b = b(:);
beq = beq(:);
lb = lb(:);
ub = ub(:);
//To check the contents of lb & ub
for i = 1:nbVar
if(ub(i)<lb(i)) then
errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "fseminf");
error(errmsg);
end
end
if(typeof(seminfcon) == "function")
sample_S = %nan
if(execstr('[sample_c,sample_ceq,sample_K,sample_S] = seminfcon(x0,sample_S)','errcatch')==21)
errmsg = msprintf(gettext("%s: Semi-Infinite Constraint function & x0 did not match"), "fseminf");
error(errmsg);
end
[sample_c, sample_ceq, sample_K, sample_S] = seminfcon(x0,sample_S);
if (size(sample_c,1)~=1 & size(sample_c,1)~=0) then
errmsg = msprintf(gettext("%s: c in seminfcon should be a row vector or empty matrix"), "fseminf");
error(errmsg)
end
if (size(sample_ceq,1)~=1 & size(sample_ceq,1)~=0) then
errmsg = msprintf(gettext("%s: ceq in seminfcon should be a row vector or empty matrix"), "fseminf");
error(errmsg)
end
if (size(sample_K,"r")~=ntheta) then
errmsg = msprintf(gettext("%s: Number of rows in K should be equal to ntheta"), "fseminf");
error(errmsg)
end
if (size(sample_S,"c")~=2) then
errmsg = msprintf(gettext("%s: Number of columns in sampling interval should be equal to 2"), "fseminf");
error(errmsg)
end
end
ierr = execstr('init=_fun(x0)', "errcatch")
if ierr <> 0 then
lamsg = lasterror();
lclmsg = "%s: Error while evaluating the function: ""%s""\n";
error(msprintf(gettext(lclmsg), "fseminf", lamsg));
end
S = %nan;
ierr = execstr('init=seminfcon(x0,S)', "errcatch")
if ierr <> 0 then
lamsg = lasterror();
lclmsg = "%s: Error while evaluating the function: ""%s""\n";
error(msprintf(gettext(lclmsg), "fseminf", lamsg));
end
function [c, ceq] = _seminfcon(x)
[c, ceq, K, S] = seminfcon(x,S)
K_max = max(K,"c");
c= [c;K_max];
ceq = ceq;
endfunction
//Calling the fmincon function for solving the above problem
[xopt,fopt,exitflag,output,lambda,gradient] = fmincon(_fun,x0,A,b,Aeq,beq,lb,ub,_seminfcon,param)
endfunction
|