diff options
Diffstat (limited to 'help/en_US/lsqlin.xml')
-rw-r--r-- | help/en_US/lsqlin.xml | 24 |
1 files changed, 12 insertions, 12 deletions
diff --git a/help/en_US/lsqlin.xml b/help/en_US/lsqlin.xml index 73416a9..c08905e 100644 --- a/help/en_US/lsqlin.xml +++ b/help/en_US/lsqlin.xml @@ -38,9 +38,9 @@ <title>Parameters</title> <variablelist> <varlistentry><term>C :</term> - <listitem><para> a matrix of double, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x.</para></listitem></varlistentry> + <listitem><para> a matrix of double, represents the multiplier of the solution x in the expression C*x - d. Number of columns in C is equal to the number of elements in x.</para></listitem></varlistentry> <varlistentry><term>d :</term> - <listitem><para> a vector of double, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations.</para></listitem></varlistentry> + <listitem><para> a vector of double, represents the additive constant term in the expression C*x - d. Number of elements in d is equal to the number of rows in C matrix.</para></listitem></varlistentry> <varlistentry><term>A :</term> <listitem><para> a vector of double, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry> <varlistentry><term>b :</term> @@ -49,9 +49,9 @@ <listitem><para> a matrix of double, represents the linear coefficients in the equality constraints</para></listitem></varlistentry> <varlistentry><term>beq :</term> <listitem><para> a vector of double, represents the linear coefficients in the equality constraints</para></listitem></varlistentry> - <varlistentry><term>LB :</term> + <varlistentry><term>lb :</term> <listitem><para> a vector of double, contains lower bounds of the variables.</para></listitem></varlistentry> - <varlistentry><term>UB :</term> + <varlistentry><term>ub :</term> <listitem><para> a vector of double, contains upper bounds of the variables.</para></listitem></varlistentry> <varlistentry><term>x0 :</term> <listitem><para> a vector of double, contains initial guess of variables.</para></listitem></varlistentry> @@ -64,11 +64,11 @@ <varlistentry><term>residual :</term> <listitem><para> a vector of double, solution residuals returned as the vector C*x-d.</para></listitem></varlistentry> <varlistentry><term>exitflag :</term> - <listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry> + <listitem><para> Integer identifying the reason the algorithm terminated. It could be 0, 1 or 2 etc. i.e. Optimal, Maximum Number of Iterations Exceeded, CPU time exceeded. Other flags one can see in the lsqlin macro.</para></listitem></varlistentry> <varlistentry><term>output :</term> - <listitem><para> Structure containing information about the optimization. Right now it contains number of iteration.</para></listitem></varlistentry> + <listitem><para> Structure containing information about the optimization. This version only contains number of iterations.</para></listitem></varlistentry> <varlistentry><term>lambda :</term> - <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry> + <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper bound multiplier and linear equality, inequality constraints.</para></listitem></varlistentry> </variablelist> </refsection> @@ -81,15 +81,15 @@ Search the minimum of a constrained linear least square problem specified by : <latex> \begin{eqnarray} &\mbox{min}_{x} -& 1/2||C*x - d||_2^2 \\ -& \text{subject to} & A*x \leq b \\ -& & Aeq*x = beq \\ +& 1/2||C⋅x - d||_2^2 \\ +& \text{subject to} & A⋅x \leq b \\ +& & Aeq⋅x = beq \\ & & lb \leq x \leq ub \\ \end{eqnarray} </latex> </para> <para> -We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. +The routine calls Ipopt for solving the linear least square problem, Ipopt is a library written in C++. </para> <para> </para> @@ -124,7 +124,7 @@ b = [0.5251 <refsection> <title>Examples</title> <programlisting role="example"><![CDATA[ -//A basic example for equality, inequality and bounds +//A basic example for equality, inequality constraints and variable bounds C = [0.9501 0.7620 0.6153 0.4057 0.2311 0.4564 0.7919 0.9354 0.6068 0.0185 0.9218 0.9169 |