1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from lsqlin.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="lsqlin" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>lsqlin</refname>
<refpurpose>Solves a linear quadratic problem.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = lsqlin(C,d,A,b)
xopt = lsqlin(C,d,A,b,Aeq,beq)
xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>C :</term>
<listitem><para> a matrix of double, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x.</para></listitem></varlistentry>
<varlistentry><term>d :</term>
<listitem><para> a vector of double, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> a vector of double, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
<varlistentry><term>b :</term>
<listitem><para> a vector of double, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
<varlistentry><term>Aeq :</term>
<listitem><para> a matrix of double, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
<varlistentry><term>beq :</term>
<listitem><para> a vector of double, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
<varlistentry><term>LB :</term>
<listitem><para> a vector of double, contains lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>UB :</term>
<listitem><para> a vector of double, contains upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> a vector of double, contains initial guess of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> a list containing the the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>resnorm :</term>
<listitem><para> a double, objective value returned as the scalar value norm(C*x-d)^2.</para></listitem></varlistentry>
<varlistentry><term>residual :</term>
<listitem><para> a vector of double, solution residuals returned as the vector C*x-d.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> Structure containing information about the optimization. Right now it contains number of iteration.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a constrained linear least square problem specified by :
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& 1/2||C*x - d||_2^2 \\
& \text{subject to} & A*x \leq b \\
& & Aeq*x = beq \\
& & lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++.
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//A simple linear least square example
C = [0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354
0.6068 0.0185 0.9218 0.9169
0.4859 0.8214 0.7382 0.4102
0.8912 0.4447 0.1762 0.8936];
d = [0.0578
0.3528
0.8131
0.0098
0.1388];
A = [0.2027 0.2721 0.7467 0.4659
0.1987 0.1988 0.4450 0.4186
0.6037 0.0152 0.9318 0.8462];
b = [0.5251
0.2026
0.6721];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//A basic example for equality, inequality and bounds
C = [0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354
0.6068 0.0185 0.9218 0.9169
0.4859 0.8214 0.7382 0.4102
0.8912 0.4447 0.1762 0.8936];
d = [0.0578
0.3528
0.8131
0.0098
0.1388];
A =[0.2027 0.2721 0.7467 0.4659
0.1987 0.1988 0.4450 0.4186
0.6037 0.0152 0.9318 0.8462];
b =[0.5251
0.2026
0.6721];
Aeq = [3 5 7 9];
beq = 4;
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|