diff options
author | harpreet | 2016-04-16 12:12:15 +0530 |
---|---|---|
committer | harpreet | 2016-04-16 12:12:15 +0530 |
commit | 10e2e4d8b4a7592a8631ddac8e8d1664d6f0b9e3 (patch) | |
tree | 087af3ca1853d01afef58684b09b537597317023 /tests/general_tests/lsqnonlin | |
parent | 8484c85784b84cc3a9257f8d8065b3a8a7800628 (diff) | |
download | FOSSEE-Optimization-toolbox-10e2e4d8b4a7592a8631ddac8e8d1664d6f0b9e3.tar.gz FOSSEE-Optimization-toolbox-10e2e4d8b4a7592a8631ddac8e8d1664d6f0b9e3.tar.bz2 FOSSEE-Optimization-toolbox-10e2e4d8b4a7592a8631ddac8e8d1664d6f0b9e3.zip |
fmincon examples
Diffstat (limited to 'tests/general_tests/lsqnonlin')
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_A1.sce | 19 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_input1.sce | 29 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_input2.sce | 29 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_lb1.sce | 32 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_lb2.sce | 32 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_lbub.sce | 32 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_logical1.sce | 11 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce | 65 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_param1.sce | 32 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_param2.sce | 31 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_ub1.sce | 32 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_ub2.sce | 32 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_x01.sce | 29 | ||||
-rw-r--r-- | tests/general_tests/lsqnonlin/lsqnonlin_x02.sce | 29 |
14 files changed, 411 insertions, 23 deletions
diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_A1.sce b/tests/general_tests/lsqnonlin/lsqnonlin_A1.sce deleted file mode 100644 index 1c2128b..0000000 --- a/tests/general_tests/lsqnonlin/lsqnonlin_A1.sce +++ /dev/null @@ -1,19 +0,0 @@ -// Check for elements in A -C = [2 0; - -1 1; - 0 2] -d = [1 - 0 - -1]; -A = [10 -2 0; - -2 10 0]; -b = [4 - -4]; - -//Error -//lsqlin: The number of columns in A must be the same as the number of columns in C -//at line 213 of function lsqlin called by : -//[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b) - -[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b) - diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_input1.sce b/tests/general_tests/lsqnonlin/lsqnonlin_input1.sce new file mode 100644 index 0000000..6a4ec5a --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_input1.sce @@ -0,0 +1,29 @@ +// Check for the number of input arguments + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +//Error +//lsqnonlin: Unexpected number of input arguments : 1 provided while should be in the set of [2 4 5] +//at line 139 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_input2.sce b/tests/general_tests/lsqnonlin/lsqnonlin_input2.sce new file mode 100644 index 0000000..67a0b4b --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_input2.sce @@ -0,0 +1,29 @@ +// Check for the number of input arguments + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +//Error +//lsqnonlin: Unexpected number of input arguments : 6 provided while should be in the set of [2 4 5] +//at line 139 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],[],[]) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],[],[]) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_lb1.sce b/tests/general_tests/lsqnonlin/lsqnonlin_lb1.sce new file mode 100644 index 0000000..9d24f57 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_lb1.sce @@ -0,0 +1,32 @@ +// Check for elements in lb + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +lb = [0 0 0] +ub = [10 10] + +//Error +//lsqnonlin: The Lower Bound is not equal to the number of variables +//at line 246 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_lb2.sce b/tests/general_tests/lsqnonlin/lsqnonlin_lb2.sce new file mode 100644 index 0000000..f5ea221 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_lb2.sce @@ -0,0 +1,32 @@ +// Check for elements in lb + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +lb = [0] +ub = [10 10] + +//Error +//lsqnonlin: The Lower Bound is not equal to the number of variables +//at line 246 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_lbub.sce b/tests/general_tests/lsqnonlin/lsqnonlin_lbub.sce new file mode 100644 index 0000000..eabc439 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_lbub.sce @@ -0,0 +1,32 @@ +// Check for elements in lb and ub + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +lb = [10 10] +ub = [0 0] + +//Error +//lsqnonlin: Problem has inconsistent variable bounds +//at line 270 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_logical1.sce b/tests/general_tests/lsqnonlin/lsqnonlin_logical1.sce index aef546f..ab4a7c7 100644 --- a/tests/general_tests/lsqnonlin/lsqnonlin_logical1.sce +++ b/tests/general_tests/lsqnonlin/lsqnonlin_logical1.sce @@ -1,7 +1,10 @@ -function retF = testmyfun(x) +function [y,dy] = testmyfun(x) km = [1:10]'; - retF = 2 + 2*km-exp(km*x(1))-exp(km*x(2)); + y = 2 + 2*km-exp(km*x(1))-exp(km*x(2)); endfunction -x0 = [0.3 0.4]' -[x,resnorm] = lsqnonlin(testmyfun,x0) +x0 = [0.2 0.2]' + +options = list("GradObj","off") + +[x,resnorm,residual] = lsqnonlin(testmyfun,x0,[],[],options) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce b/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce new file mode 100644 index 0000000..3c13ff4 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce @@ -0,0 +1,65 @@ +// Check for the maximum iteration + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +options = list("MaxIter",10) + +//Error +//Maximum Number of Iterations Exceeded. Output may not be optimal. +// gradient = +// +// 512.91855 - 4714.171 +// lambda = +// +// lower: [0,0] +// upper: [0,0] +// output = +// +// Iterations: 10 +// Cpu_Time: 0.12 +// Objective_Evaluation: 11 +// Dual_Infeasibility: 4714.171 +// Message: "Maximum Number of Iterations Exceeded. Output may not be optimal" +// exitflag = +// +// 1 +// residual = +// +// 4.8006782 +// 5.767661 +// 6.7598659 +// 7.8617282 +// 9.0596638 +// 10.40234 +// 11.920987 +// 13.599744 +// 15.516066 +// 17.701171 +// resnorm = +// +// 1235.2439 +// xopt = +// +// 4.9162235 +// - 0.5142398 + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_param1.sce b/tests/general_tests/lsqnonlin/lsqnonlin_param1.sce new file mode 100644 index 0000000..e303099 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_param1.sce @@ -0,0 +1,32 @@ +// Check for the params + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +options = 0; + +//Error +//lsqnonlin: Expected type ["list"] for input argument param at input #5, but got "constant" instead. +//at line 56 of function Checktype called by : +//at line 186 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_param2.sce b/tests/general_tests/lsqnonlin/lsqnonlin_param2.sce new file mode 100644 index 0000000..659294a --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_param2.sce @@ -0,0 +1,31 @@ +// Check for the params + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +options = list("Maxiter") + +//Error +//lsqnonlin: Size of parameters should be even +//at line 190 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_ub1.sce b/tests/general_tests/lsqnonlin/lsqnonlin_ub1.sce new file mode 100644 index 0000000..37ca056 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_ub1.sce @@ -0,0 +1,32 @@ +// Check for elements in ub + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +lb = [0 0] +ub = [10 10 10] + +//Error +//lsqnonlin: The Upper Bound is not equal to the number of variables +//at line 252 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_ub2.sce b/tests/general_tests/lsqnonlin/lsqnonlin_ub2.sce new file mode 100644 index 0000000..2206b2f --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_ub2.sce @@ -0,0 +1,32 @@ +// Check for elements in ub + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5; 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +lb = [0 0] +ub = [10] + +//Error +//lsqnonlin: The Upper Bound is not equal to the number of variables +//at line 252 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_x01.sce b/tests/general_tests/lsqnonlin/lsqnonlin_x01.sce new file mode 100644 index 0000000..41dfb26 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_x01.sce @@ -0,0 +1,29 @@ +// Check if the x0 is column matrix + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5 0.8]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +//Error +//lsqcurvefit: Initial Guess should be a column matrix +//at line 156 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0') + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0) diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_x02.sce b/tests/general_tests/lsqnonlin/lsqnonlin_x02.sce new file mode 100644 index 0000000..00df3d4 --- /dev/null +++ b/tests/general_tests/lsqnonlin/lsqnonlin_x02.sce @@ -0,0 +1,29 @@ +// Check for elements in x0 + +function y=yth(t, x) +y = x(1)*exp(-x(2)*t) +endfunction +// we have the m measures (ti, yi): +m = 10; +tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]'; +ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]'; +// measure weights (here all equal to 1...) +wm = ones(m,1); +// and we want to find the parameters x such that the model fits the given +// data in the least square sense: +// +// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2 +// initial parameters guess +x0 = [1.5]; +// in the first examples, we define the function fun and dfun +// in scilab language +function y=myfun(x, tm, ym, wm) +y = wm.*( yth(tm, x) - ym ) +endfunction + +//Error +//lsqnonlin: Objective function and x0 did not match +//at line 233 of function lsqnonlin called by : +//[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0) + +[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0) |