summaryrefslogtreecommitdiff
path: root/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce
diff options
context:
space:
mode:
Diffstat (limited to 'tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce')
-rw-r--r--tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce65
1 files changed, 65 insertions, 0 deletions
diff --git a/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce b/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce
new file mode 100644
index 0000000..3c13ff4
--- /dev/null
+++ b/tests/general_tests/lsqnonlin/lsqnonlin_maxiter.sce
@@ -0,0 +1,65 @@
+// Check for the maximum iteration
+
+function y=yth(t, x)
+y = x(1)*exp(-x(2)*t)
+endfunction
+// we have the m measures (ti, yi):
+m = 10;
+tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]';
+ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]';
+// measure weights (here all equal to 1...)
+wm = ones(m,1);
+// and we want to find the parameters x such that the model fits the given
+// data in the least square sense:
+//
+// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2
+// initial parameters guess
+x0 = [1.5; 0.8];
+// in the first examples, we define the function fun and dfun
+// in scilab language
+function y=myfun(x, tm, ym, wm)
+y = wm.*( yth(tm, x) - ym )
+endfunction
+
+options = list("MaxIter",10)
+
+//Error
+//Maximum Number of Iterations Exceeded. Output may not be optimal.
+// gradient =
+//
+// 512.91855 - 4714.171
+// lambda =
+//
+// lower: [0,0]
+// upper: [0,0]
+// output =
+//
+// Iterations: 10
+// Cpu_Time: 0.12
+// Objective_Evaluation: 11
+// Dual_Infeasibility: 4714.171
+// Message: "Maximum Number of Iterations Exceeded. Output may not be optimal"
+// exitflag =
+//
+// 1
+// residual =
+//
+// 4.8006782
+// 5.767661
+// 6.7598659
+// 7.8617282
+// 9.0596638
+// 10.40234
+// 11.920987
+// 13.599744
+// 15.516066
+// 17.701171
+// resnorm =
+//
+// 1235.2439
+// xopt =
+//
+// 4.9162235
+// - 0.5142398
+
+[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options)