summaryrefslogtreecommitdiff
path: root/macros/intfminunc.sci
diff options
context:
space:
mode:
authorGeorgey2017-07-05 11:39:30 +0530
committerGeorgey2017-07-05 11:39:30 +0530
commit5b72577efe080c5294b32d804e4d26351fef30bc (patch)
treea68ca46815fee99cfb966296d59ac4917d37b6fb /macros/intfminunc.sci
parentf455f9b3c105292ccba94f2b5fe0f57cfe4b799c (diff)
downloadFOSSEE-Optimization-toolbox-5b72577efe080c5294b32d804e4d26351fef30bc.tar.gz
FOSSEE-Optimization-toolbox-5b72577efe080c5294b32d804e4d26351fef30bc.tar.bz2
FOSSEE-Optimization-toolbox-5b72577efe080c5294b32d804e4d26351fef30bc.zip
Added macros for int and ecos functions
Diffstat (limited to 'macros/intfminunc.sci')
-rw-r--r--macros/intfminunc.sci350
1 files changed, 350 insertions, 0 deletions
diff --git a/macros/intfminunc.sci b/macros/intfminunc.sci
new file mode 100644
index 0000000..2fe73fb
--- /dev/null
+++ b/macros/intfminunc.sci
@@ -0,0 +1,350 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
+// Organization: FOSSEE, IIT Bombay
+// Email: toolbox@scilab.in
+
+function [xopt,fopt,exitflag,gradient,hessian] = intfminunc (varargin)
+ // Solves an unconstrainted multi-variable mixed integer non linear programming optimization problem
+ //
+ // Calling Sequence
+ // xopt = intfminunc(f,x0)
+ // xopt = intfminunc(f,x0,intcon)
+ // xopt = intfminunc(f,x0,intcon,options)
+ // [xopt,fopt] = intfminunc(.....)
+ // [xopt,fopt,exitflag]= intfminunc(.....)
+ // [xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....)
+ //
+ // Parameters
+ // f : a function, representing the objective function of the problem
+ // x0 : a vector of doubles, containing the starting of variables.
+ // intcon : a vector of integers, represents which variables are constrained to be integers
+ // options: a list, containing the option for user to specify. See below for details.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a scalar of double, the function value at x.
+ // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
+ // gradient : a vector of doubles, containing the Objective's gradient of the solution.
+ // hessian : a matrix of doubles, containing the Objective's hessian of the solution.
+ //
+ // Description
+ // Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by :
+ // Find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & f(x)
+ // & x_i \in \!\, \mathbb{Z}, i \in \!\, I
+ // \end{eqnarray}
+ // </latex>
+ //
+ // The routine calls Bonmin for solving the Un-constrained Optimization problem, Bonmin is a library written in C++.
+ //
+ // The options allows the user to set various parameters of the Optimization problem.
+ // It should be defined as type "list" and contains the following fields.
+ // <itemizedlist>
+ // <listitem>Syntax : options= list("IntegerTolerance", [---], "MaxNodes", [---], "CpuTime", [---], "AllowableGap", [---], "MaxIter", [---]);</listitem>
+ // <listitem>IntegerTolerance : a Scalar, containing the Integer tolerance value that the solver should take.</listitem>
+ // <listitem>MaxNodes : a Scalar, containing the maximum nodes that the solver should make.</listitem>
+ // <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
+ // <listitem>AllowableGap : a Scalar, containing the allowable gap value that the solver should take.</listitem>
+ // <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
+ // <listitem>gradobj : a string, to turn on or off the user supplied objective gradient.</listitem>
+ // <listitem>hessian : a Scalar, to turn on or off the user supplied objective hessian.</listitem>
+ // <listitem>Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off")</listitem>
+ // </itemizedlist>
+ //
+ // The exitflag allows to know the status of the optimization which is given back by Bonmin.
+ // <itemizedlist>
+ // <listitem>exitflag=0 : Optimal Solution Found. </listitem>
+ // <listitem>exitflag=1 : InFeasible Solution.</listitem>
+ // <listitem>exitflag=2 : Output is Continuous Unbounded.</listitem>
+ // <listitem>exitflag=3 : Limit Exceeded.</listitem>
+ // <listitem>exitflag=4 : User Interrupt.</listitem>
+ // <listitem>exitflag=5 : MINLP Error.</listitem>
+ // </itemizedlist>
+ //
+ // For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin
+ //
+ // Examples
+ // //Find x in R^2 such that it minimizes the Rosenbrock function
+ // //f = 100*(x2 - x1^2)^2 + (1-x1)^2
+ // //Objective function to be minimised
+ // function y= f(x)
+ // y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
+ // endfunction
+ // //Starting point
+ // x0=[-1,2];
+ // intcon = [2]
+ // //Options
+ // options=list("MaxIter", [1500], "CpuTime", [500]);
+ // //Calling
+ // [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //Find x in R^2 such that the below function is minimum
+ // //f = x1^2 + x2^2
+ // //Objective function to be minimised
+ // function y= f(x)
+ // y= x(1)^2 + x(2)^2;
+ // endfunction
+ // //Starting point
+ // x0=[2,1];
+ // intcon = [1];
+ // [xopt,fopt]=intfminunc(f,x0,intcon)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //The below problem is an unbounded problem:
+ // //Find x in R^2 such that the below function is minimum
+ // //f = - x1^2 - x2^2
+ // //Objective function to be minimised
+ // function [y,g,h] = f(x)
+ // y = -x(1)^2 - x(2)^2;
+ // g = [-2*x(1),-2*x(2)];
+ // h = [-2,0;0,-2];
+ // endfunction
+ // //Starting point
+ // x0=[2,1];
+ // intcon = [1]
+ // options = list("gradobj","ON","hessian","on");
+ // [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options)
+
+ //To check the number of input and output arguments
+ [lhs , rhs] = argn();
+
+ //To check the number of arguments given by the user
+ if ( rhs<2 | rhs>4 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [2 3 4] "), "intfminunc", rhs);
+ error(errmsg);
+ end
+
+ //Storing the 1st and 2nd Input Parameters
+ fun = varargin(1);
+ x0 = varargin(2);
+ //To add intcon
+ intcon=[];
+ if ( rhs >=3 ) then
+ intcon = varargin(3);
+ end
+
+ param = list();
+ //To check whether options has been entered by user
+ if ( rhs>=4 ) then
+ param =varargin(4);
+ end
+
+ nbvar = size(x0,"*");
+
+ ///////////////// To check whether the Input arguments /////////////////
+ Checktype("intfminunc", fun, "fun", 1, "function");
+ Checktype("intfminunc", x0, "x0", 2, "constant");
+ Checktype("intfminunc", intcon, "intcon", 3, "constant");
+ Checktype("intfminunc", param, "options", 4, "list");
+
+ ///////////////// To check x0 /////////////////
+ Checkvector("intfminunc", x0, "x0", 2, nbvar)
+ x0 = x0(:);
+ Checkvector("intfminbnd", intcon, "intcon", 3, size(intcon,"*"))
+ intcon = intcon(:);
+
+ //Error Checks for intcon
+ for i=1:size(intcon,1)
+ if(intcon(i)>nbvar) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfminunc");
+ error(errmsg);
+ end
+
+ if (intcon(i)<0) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfminunc");
+ error(errmsg);
+ end
+
+ if(modulo(intcon(i),1)) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfminunc");
+ error(errmsg);
+ end
+ end
+
+ //If options has been entered, then check whether an even number of entires has been entered
+ if (modulo(size(param),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "intfminunc");
+ error(errmsg);
+ end
+
+ intconSize = length(intcon);
+
+ options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian', "off")
+
+ //Pushing param into default value
+
+ for i = 1:(size(param))/2
+ select convstr(param(2*i-1),'l')
+ case 'integertolerance' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
+ options(2) = param(2*i);
+ case 'maxnodes' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
+ options(4) = options(2*i);
+ case 'cputime' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
+ options(6) = options(2*i);
+ case 'allowablegap' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
+ options(8) = options(2*i);
+ case 'maxiter' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant");
+ options(10) = options(2*i);
+ case 'gradobj' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string");
+ if(convstr(param(2*i),'l') == "on") then
+ options(12) = "on"
+ elseif(convstr(param(2*i),'l') == "off") then
+ options(12) = "off"
+ else
+ error(999, 'Unknown string passed in gradobj.');
+ end
+ case 'hessian' then
+ Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string");
+ if(convstr(param(2*i),'l') == "on") then
+ options(14) = "on";
+ elseif(convstr(param(2*i),'l') == "off") then
+ options(14) = "off";
+ else
+ error(999, 'Unknown string passed in hessian.');
+ end
+ else
+ error(999, 'Unknown string argument passed.');
+ end
+ end
+
+ ///////////////// Functions Check /////////////////
+
+ //To check the match between fun (1st Parameter) and x0 (2nd Parameter)
+ if(execstr('init=fun(x0)','errcatch')==21) then
+ errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "intfminunc");
+ error(errmsg);
+ end
+
+ if(options(12) == "on") then
+
+ if(execstr('[grad_y,grad_dy]=fun(x0)','errcatch')==59) then
+ errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminunc");
+ error(errmsg);
+ end
+
+ Checkvector("intfminunc_options", grad_dy, "dy", 12, nbvar);
+ end
+
+ if(options(14) == "on") then
+
+ if(execstr('[hessian_y,hessian_dy,hessian]=fun(x0)','errcatch')==59) then
+ errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminunc");
+ error(errmsg);
+ end
+
+ if ( ~isequal(size(hessian),[nbvar nbvar]) ) then
+ errmsg = msprintf(gettext("%s: Size of hessian should be nbvar X nbvar"), "intfminunc");
+ error(errmsg);
+ end
+ end
+
+ //Converting the User defined Objective function into Required form (Error Detectable)
+ function [y,check] = _f(x)
+ try
+ y=fun(x)
+ [y,check] = checkIsreal(y)
+ catch
+ y=0;
+ check=1;
+ end
+ endfunction
+
+ //Defining an inbuilt Objective gradient function
+ function [dy,check] = _gradf(x)
+ if (options(12) =="on") then
+ try
+ [y,dy]=fun(x);
+ [dy,check] = checkIsreal(dy);
+ catch
+ dy = 0;
+ check=1;
+ end
+ else
+ try
+ dy=numderivative(fun,x);
+ [dy,check] = checkIsreal(dy);
+ catch
+ dy=0;
+ check=1;
+ end
+ end
+ endfunction
+
+ //Defining a function to calculate Hessian if the respective user entry is OFF
+ function [hessy,check]=_gradhess(x)
+ if (options(14) == "on") then
+ try
+ [obj,dy,hessy] = fun(x)
+ [hessy,check] = checkIsreal(hessy)
+ catch
+ hessy = 0;
+ check=1;
+ end
+ else
+ try
+ [dy,hessy]=numderivative(fun,x)
+ [hessy,check] = checkIsreal(hessy)
+ catch
+ hessy=0;
+ check=1;
+ end
+ end
+ endfunction
+
+ //Calling the bonmin function for solving the above problem
+ [xopt,fopt,exitflag] = inter_fminunc(_f,_gradf,_gradhess,x0,intcon,options,intconSize,nbvar);
+
+ //In the cases of the problem not being solved, return NULL to the output matrices
+ if( exitflag~=0 & exitflag~=3 ) then
+ gradient = [];
+ hessian = [];
+ else
+ [ gradient, hessian] = numderivative(_f, xopt, [], [], "blockmat");
+ end
+
+ //To print output message
+ select exitflag
+ case 0 then
+ printf("\nOptimal Solution Found.\n");
+ case 1 then
+ printf("\nInFeasible Solution.\n");
+ case 2 then
+ printf("\nObjective Function is Continuous Unbounded.\n");
+ case 3 then
+ printf("\Limit Exceeded.\n");
+ case 4 then
+ printf("\nUser Interrupt.\n");
+ case 5 then
+ printf("\nMINLP Error.\n");
+ else
+ printf("\nInvalid status returned. Notify the Toolbox authors\n");
+ break;
+ end
+endfunction
+
+function [y, check] = checkIsreal(x)
+ if ((~isreal(x))) then
+ y = 0
+ check=1;
+ else
+ y = x;
+ check=0;
+ end
+endfunction