From 5b72577efe080c5294b32d804e4d26351fef30bc Mon Sep 17 00:00:00 2001 From: Georgey Date: Wed, 5 Jul 2017 11:39:30 +0530 Subject: Added macros for int and ecos functions --- macros/intfminunc.sci | 350 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 350 insertions(+) create mode 100644 macros/intfminunc.sci (limited to 'macros/intfminunc.sci') diff --git a/macros/intfminunc.sci b/macros/intfminunc.sci new file mode 100644 index 0000000..2fe73fb --- /dev/null +++ b/macros/intfminunc.sci @@ -0,0 +1,350 @@ +// Copyright (C) 2015 - IIT Bombay - FOSSEE +// +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt +// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani +// Organization: FOSSEE, IIT Bombay +// Email: toolbox@scilab.in + +function [xopt,fopt,exitflag,gradient,hessian] = intfminunc (varargin) + // Solves an unconstrainted multi-variable mixed integer non linear programming optimization problem + // + // Calling Sequence + // xopt = intfminunc(f,x0) + // xopt = intfminunc(f,x0,intcon) + // xopt = intfminunc(f,x0,intcon,options) + // [xopt,fopt] = intfminunc(.....) + // [xopt,fopt,exitflag]= intfminunc(.....) + // [xopt,fopt,exitflag,gradient,hessian]= intfminunc(.....) + // + // Parameters + // f : a function, representing the objective function of the problem + // x0 : a vector of doubles, containing the starting of variables. + // intcon : a vector of integers, represents which variables are constrained to be integers + // options: a list, containing the option for user to specify. See below for details. + // xopt : a vector of doubles, the computed solution of the optimization problem. + // fopt : a scalar of double, the function value at x. + // exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details. + // gradient : a vector of doubles, containing the Objective's gradient of the solution. + // hessian : a matrix of doubles, containing the Objective's hessian of the solution. + // + // Description + // Search the minimum of a multi-variable mixed integer non linear programming unconstrained optimization problem specified by : + // Find the minimum of f(x) such that + // + // + // \begin{eqnarray} + // &\mbox{min}_{x} + // & f(x) + // & x_i \in \!\, \mathbb{Z}, i \in \!\, I + // \end{eqnarray} + // + // + // The routine calls Bonmin for solving the Un-constrained Optimization problem, Bonmin is a library written in C++. + // + // The options allows the user to set various parameters of the Optimization problem. + // It should be defined as type "list" and contains the following fields. + // + // Syntax : options= list("IntegerTolerance", [---], "MaxNodes", [---], "CpuTime", [---], "AllowableGap", [---], "MaxIter", [---]); + // IntegerTolerance : a Scalar, containing the Integer tolerance value that the solver should take. + // MaxNodes : a Scalar, containing the maximum nodes that the solver should make. + // MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take. + // AllowableGap : a Scalar, containing the allowable gap value that the solver should take. + // CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take. + // gradobj : a string, to turn on or off the user supplied objective gradient. + // hessian : a Scalar, to turn on or off the user supplied objective hessian. + // Default Values : options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian',"off") + // + // + // The exitflag allows to know the status of the optimization which is given back by Bonmin. + // + // exitflag=0 : Optimal Solution Found. + // exitflag=1 : InFeasible Solution. + // exitflag=2 : Output is Continuous Unbounded. + // exitflag=3 : Limit Exceeded. + // exitflag=4 : User Interrupt. + // exitflag=5 : MINLP Error. + // + // + // For more details on exitflag see the Bonmin page, go to http://www.coin-or.org/Bonmin + // + // Examples + // //Find x in R^2 such that it minimizes the Rosenbrock function + // //f = 100*(x2 - x1^2)^2 + (1-x1)^2 + // //Objective function to be minimised + // function y= f(x) + // y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2; + // endfunction + // //Starting point + // x0=[-1,2]; + // intcon = [2] + // //Options + // options=list("MaxIter", [1500], "CpuTime", [500]); + // //Calling + // [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options) + // // Press ENTER to continue + // + // Examples + // //Find x in R^2 such that the below function is minimum + // //f = x1^2 + x2^2 + // //Objective function to be minimised + // function y= f(x) + // y= x(1)^2 + x(2)^2; + // endfunction + // //Starting point + // x0=[2,1]; + // intcon = [1]; + // [xopt,fopt]=intfminunc(f,x0,intcon) + // // Press ENTER to continue + // + // Examples + // //The below problem is an unbounded problem: + // //Find x in R^2 such that the below function is minimum + // //f = - x1^2 - x2^2 + // //Objective function to be minimised + // function [y,g,h] = f(x) + // y = -x(1)^2 - x(2)^2; + // g = [-2*x(1),-2*x(2)]; + // h = [-2,0;0,-2]; + // endfunction + // //Starting point + // x0=[2,1]; + // intcon = [1] + // options = list("gradobj","ON","hessian","on"); + // [xopt,fopt,exitflag,gradient,hessian]=intfminunc(f,x0,intcon,options) + + //To check the number of input and output arguments + [lhs , rhs] = argn(); + + //To check the number of arguments given by the user + if ( rhs<2 | rhs>4 ) then + errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be int [2 3 4] "), "intfminunc", rhs); + error(errmsg); + end + + //Storing the 1st and 2nd Input Parameters + fun = varargin(1); + x0 = varargin(2); + //To add intcon + intcon=[]; + if ( rhs >=3 ) then + intcon = varargin(3); + end + + param = list(); + //To check whether options has been entered by user + if ( rhs>=4 ) then + param =varargin(4); + end + + nbvar = size(x0,"*"); + + ///////////////// To check whether the Input arguments ///////////////// + Checktype("intfminunc", fun, "fun", 1, "function"); + Checktype("intfminunc", x0, "x0", 2, "constant"); + Checktype("intfminunc", intcon, "intcon", 3, "constant"); + Checktype("intfminunc", param, "options", 4, "list"); + + ///////////////// To check x0 ///////////////// + Checkvector("intfminunc", x0, "x0", 2, nbvar) + x0 = x0(:); + Checkvector("intfminbnd", intcon, "intcon", 3, size(intcon,"*")) + intcon = intcon(:); + + //Error Checks for intcon + for i=1:size(intcon,1) + if(intcon(i)>nbvar) then + errmsg = msprintf(gettext("%s: The values inside intcon should be less than the number of variables"), "intfminunc"); + error(errmsg); + end + + if (intcon(i)<0) then + errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "intfminunc"); + error(errmsg); + end + + if(modulo(intcon(i),1)) then + errmsg = msprintf(gettext("%s: The values inside intcon should be an integer "), "intfminunc"); + error(errmsg); + end + end + + //If options has been entered, then check whether an even number of entires has been entered + if (modulo(size(param),2)) then + errmsg = msprintf(gettext("%s: Size of parameters should be even"), "intfminunc"); + error(errmsg); + end + + intconSize = length(intcon); + + options = list('integertolerance',1d-06,'maxnodes',2147483647,'cputime',1d10,'allowablegap',0,'maxiter',2147483647,'gradobj',"off",'hessian', "off") + + //Pushing param into default value + + for i = 1:(size(param))/2 + select convstr(param(2*i-1),'l') + case 'integertolerance' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); + options(2) = param(2*i); + case 'maxnodes' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); + options(4) = options(2*i); + case 'cputime' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); + options(6) = options(2*i); + case 'allowablegap' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); + options(8) = options(2*i); + case 'maxiter' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "constant"); + options(10) = options(2*i); + case 'gradobj' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string"); + if(convstr(param(2*i),'l') == "on") then + options(12) = "on" + elseif(convstr(param(2*i),'l') == "off") then + options(12) = "off" + else + error(999, 'Unknown string passed in gradobj.'); + end + case 'hessian' then + Checktype("intfminbnd_options", param(2*i), param(2*i-1), 2*i, "string"); + if(convstr(param(2*i),'l') == "on") then + options(14) = "on"; + elseif(convstr(param(2*i),'l') == "off") then + options(14) = "off"; + else + error(999, 'Unknown string passed in hessian.'); + end + else + error(999, 'Unknown string argument passed.'); + end + end + + ///////////////// Functions Check ///////////////// + + //To check the match between fun (1st Parameter) and x0 (2nd Parameter) + if(execstr('init=fun(x0)','errcatch')==21) then + errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "intfminunc"); + error(errmsg); + end + + if(options(12) == "on") then + + if(execstr('[grad_y,grad_dy]=fun(x0)','errcatch')==59) then + errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminunc"); + error(errmsg); + end + + Checkvector("intfminunc_options", grad_dy, "dy", 12, nbvar); + end + + if(options(14) == "on") then + + if(execstr('[hessian_y,hessian_dy,hessian]=fun(x0)','errcatch')==59) then + errmsg = msprintf(gettext("%s: Gradient of objective function is not provided"), "intfminunc"); + error(errmsg); + end + + if ( ~isequal(size(hessian),[nbvar nbvar]) ) then + errmsg = msprintf(gettext("%s: Size of hessian should be nbvar X nbvar"), "intfminunc"); + error(errmsg); + end + end + + //Converting the User defined Objective function into Required form (Error Detectable) + function [y,check] = _f(x) + try + y=fun(x) + [y,check] = checkIsreal(y) + catch + y=0; + check=1; + end + endfunction + + //Defining an inbuilt Objective gradient function + function [dy,check] = _gradf(x) + if (options(12) =="on") then + try + [y,dy]=fun(x); + [dy,check] = checkIsreal(dy); + catch + dy = 0; + check=1; + end + else + try + dy=numderivative(fun,x); + [dy,check] = checkIsreal(dy); + catch + dy=0; + check=1; + end + end + endfunction + + //Defining a function to calculate Hessian if the respective user entry is OFF + function [hessy,check]=_gradhess(x) + if (options(14) == "on") then + try + [obj,dy,hessy] = fun(x) + [hessy,check] = checkIsreal(hessy) + catch + hessy = 0; + check=1; + end + else + try + [dy,hessy]=numderivative(fun,x) + [hessy,check] = checkIsreal(hessy) + catch + hessy=0; + check=1; + end + end + endfunction + + //Calling the bonmin function for solving the above problem + [xopt,fopt,exitflag] = inter_fminunc(_f,_gradf,_gradhess,x0,intcon,options,intconSize,nbvar); + + //In the cases of the problem not being solved, return NULL to the output matrices + if( exitflag~=0 & exitflag~=3 ) then + gradient = []; + hessian = []; + else + [ gradient, hessian] = numderivative(_f, xopt, [], [], "blockmat"); + end + + //To print output message + select exitflag + case 0 then + printf("\nOptimal Solution Found.\n"); + case 1 then + printf("\nInFeasible Solution.\n"); + case 2 then + printf("\nObjective Function is Continuous Unbounded.\n"); + case 3 then + printf("\Limit Exceeded.\n"); + case 4 then + printf("\nUser Interrupt.\n"); + case 5 then + printf("\nMINLP Error.\n"); + else + printf("\nInvalid status returned. Notify the Toolbox authors\n"); + break; + end +endfunction + +function [y, check] = checkIsreal(x) + if ((~isreal(x))) then + y = 0 + check=1; + else + y = x; + check=0; + end +endfunction -- cgit