summaryrefslogtreecommitdiff
path: root/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py
diff options
context:
space:
mode:
Diffstat (limited to 'venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py')
-rw-r--r--venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py449
1 files changed, 0 insertions, 449 deletions
diff --git a/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py b/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py
deleted file mode 100644
index de24067..0000000
--- a/venv/Lib/site-packages/astroid/brain/brain_namedtuple_enum.py
+++ /dev/null
@@ -1,449 +0,0 @@
-# -*- coding: utf-8 -*-
-# Copyright (c) 2012-2015 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
-# Copyright (c) 2013-2014 Google, Inc.
-# Copyright (c) 2014-2018 Claudiu Popa <pcmanticore@gmail.com>
-# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
-# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
-# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
-# Copyright (c) 2015 David Shea <dshea@redhat.com>
-# Copyright (c) 2015 Philip Lorenz <philip@bithub.de>
-# Copyright (c) 2016 Jakub Wilk <jwilk@jwilk.net>
-# Copyright (c) 2016 Mateusz Bysiek <mb@mbdev.pl>
-# Copyright (c) 2017 Hugo <hugovk@users.noreply.github.com>
-# Copyright (c) 2017 Ɓukasz Rogalski <rogalski.91@gmail.com>
-
-# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
-# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
-
-"""Astroid hooks for the Python standard library."""
-
-import functools
-import keyword
-from textwrap import dedent
-
-from astroid import MANAGER, UseInferenceDefault, inference_tip, InferenceError
-from astroid import arguments
-from astroid import exceptions
-from astroid import nodes
-from astroid.builder import AstroidBuilder, extract_node
-from astroid import util
-
-
-TYPING_NAMEDTUPLE_BASENAMES = {"NamedTuple", "typing.NamedTuple"}
-ENUM_BASE_NAMES = {
- "Enum",
- "IntEnum",
- "enum.Enum",
- "enum.IntEnum",
- "IntFlag",
- "enum.IntFlag",
-}
-
-
-def _infer_first(node, context):
- if node is util.Uninferable:
- raise UseInferenceDefault
- try:
- value = next(node.infer(context=context))
- if value is util.Uninferable:
- raise UseInferenceDefault()
- else:
- return value
- except StopIteration:
- raise InferenceError()
-
-
-def _find_func_form_arguments(node, context):
- def _extract_namedtuple_arg_or_keyword(position, key_name=None):
-
- if len(args) > position:
- return _infer_first(args[position], context)
- if key_name and key_name in found_keywords:
- return _infer_first(found_keywords[key_name], context)
-
- args = node.args
- keywords = node.keywords
- found_keywords = (
- {keyword.arg: keyword.value for keyword in keywords} if keywords else {}
- )
-
- name = _extract_namedtuple_arg_or_keyword(position=0, key_name="typename")
- names = _extract_namedtuple_arg_or_keyword(position=1, key_name="field_names")
- if name and names:
- return name.value, names
-
- raise UseInferenceDefault()
-
-
-def infer_func_form(node, base_type, context=None, enum=False):
- """Specific inference function for namedtuple or Python 3 enum. """
- # node is a Call node, class name as first argument and generated class
- # attributes as second argument
-
- # namedtuple or enums list of attributes can be a list of strings or a
- # whitespace-separate string
- try:
- name, names = _find_func_form_arguments(node, context)
- try:
- attributes = names.value.replace(",", " ").split()
- except AttributeError:
- if not enum:
- attributes = [
- _infer_first(const, context).value for const in names.elts
- ]
- else:
- # Enums supports either iterator of (name, value) pairs
- # or mappings.
- if hasattr(names, "items") and isinstance(names.items, list):
- attributes = [
- _infer_first(const[0], context).value
- for const in names.items
- if isinstance(const[0], nodes.Const)
- ]
- elif hasattr(names, "elts"):
- # Enums can support either ["a", "b", "c"]
- # or [("a", 1), ("b", 2), ...], but they can't
- # be mixed.
- if all(isinstance(const, nodes.Tuple) for const in names.elts):
- attributes = [
- _infer_first(const.elts[0], context).value
- for const in names.elts
- if isinstance(const, nodes.Tuple)
- ]
- else:
- attributes = [
- _infer_first(const, context).value for const in names.elts
- ]
- else:
- raise AttributeError
- if not attributes:
- raise AttributeError
- except (AttributeError, exceptions.InferenceError):
- raise UseInferenceDefault()
-
- # If we can't infer the name of the class, don't crash, up to this point
- # we know it is a namedtuple anyway.
- name = name or "Uninferable"
- # we want to return a Class node instance with proper attributes set
- class_node = nodes.ClassDef(name, "docstring")
- class_node.parent = node.parent
- # set base class=tuple
- class_node.bases.append(base_type)
- # XXX add __init__(*attributes) method
- for attr in attributes:
- fake_node = nodes.EmptyNode()
- fake_node.parent = class_node
- fake_node.attrname = attr
- class_node.instance_attrs[attr] = [fake_node]
- return class_node, name, attributes
-
-
-def _has_namedtuple_base(node):
- """Predicate for class inference tip
-
- :type node: ClassDef
- :rtype: bool
- """
- return set(node.basenames) & TYPING_NAMEDTUPLE_BASENAMES
-
-
-def _looks_like(node, name):
- func = node.func
- if isinstance(func, nodes.Attribute):
- return func.attrname == name
- if isinstance(func, nodes.Name):
- return func.name == name
- return False
-
-
-_looks_like_namedtuple = functools.partial(_looks_like, name="namedtuple")
-_looks_like_enum = functools.partial(_looks_like, name="Enum")
-_looks_like_typing_namedtuple = functools.partial(_looks_like, name="NamedTuple")
-
-
-def infer_named_tuple(node, context=None):
- """Specific inference function for namedtuple Call node"""
- tuple_base_name = nodes.Name(name="tuple", parent=node.root())
- class_node, name, attributes = infer_func_form(
- node, tuple_base_name, context=context
- )
- call_site = arguments.CallSite.from_call(node)
- func = next(extract_node("import collections; collections.namedtuple").infer())
- try:
- rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
- except InferenceError:
- rename = False
-
- if rename:
- attributes = _get_renamed_namedtuple_attributes(attributes)
-
- replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
- field_def = (
- " {name} = property(lambda self: self[{index:d}], "
- "doc='Alias for field number {index:d}')"
- )
- field_defs = "\n".join(
- field_def.format(name=name, index=index)
- for index, name in enumerate(attributes)
- )
- fake = AstroidBuilder(MANAGER).string_build(
- """
-class %(name)s(tuple):
- __slots__ = ()
- _fields = %(fields)r
- def _asdict(self):
- return self.__dict__
- @classmethod
- def _make(cls, iterable, new=tuple.__new__, len=len):
- return new(cls, iterable)
- def _replace(self, %(replace_args)s):
- return self
- def __getnewargs__(self):
- return tuple(self)
-%(field_defs)s
- """
- % {
- "name": name,
- "fields": attributes,
- "field_defs": field_defs,
- "replace_args": replace_args,
- }
- )
- class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
- class_node.locals["_make"] = fake.body[0].locals["_make"]
- class_node.locals["_replace"] = fake.body[0].locals["_replace"]
- class_node.locals["_fields"] = fake.body[0].locals["_fields"]
- for attr in attributes:
- class_node.locals[attr] = fake.body[0].locals[attr]
- # we use UseInferenceDefault, we can't be a generator so return an iterator
- return iter([class_node])
-
-
-def _get_renamed_namedtuple_attributes(field_names):
- names = list(field_names)
- seen = set()
- for i, name in enumerate(field_names):
- if (
- not all(c.isalnum() or c == "_" for c in name)
- or keyword.iskeyword(name)
- or not name
- or name[0].isdigit()
- or name.startswith("_")
- or name in seen
- ):
- names[i] = "_%d" % i
- seen.add(name)
- return tuple(names)
-
-
-def infer_enum(node, context=None):
- """ Specific inference function for enum Call node. """
- enum_meta = extract_node(
- """
- class EnumMeta(object):
- 'docstring'
- def __call__(self, node):
- class EnumAttribute(object):
- name = ''
- value = 0
- return EnumAttribute()
- def __iter__(self):
- class EnumAttribute(object):
- name = ''
- value = 0
- return [EnumAttribute()]
- def __reversed__(self):
- class EnumAttribute(object):
- name = ''
- value = 0
- return (EnumAttribute, )
- def __next__(self):
- return next(iter(self))
- def __getitem__(self, attr):
- class Value(object):
- @property
- def name(self):
- return ''
- @property
- def value(self):
- return attr
-
- return Value()
- __members__ = ['']
- """
- )
- class_node = infer_func_form(node, enum_meta, context=context, enum=True)[0]
- return iter([class_node.instantiate_class()])
-
-
-INT_FLAG_ADDITION_METHODS = """
- def __or__(self, other):
- return {name}(self.value | other.value)
- def __and__(self, other):
- return {name}(self.value & other.value)
- def __xor__(self, other):
- return {name}(self.value ^ other.value)
- def __add__(self, other):
- return {name}(self.value + other.value)
- def __div__(self, other):
- return {name}(self.value / other.value)
- def __invert__(self):
- return {name}(~self.value)
- def __mul__(self, other):
- return {name}(self.value * other.value)
-"""
-
-
-def infer_enum_class(node):
- """ Specific inference for enums. """
- for basename in node.basenames:
- # TODO: doesn't handle subclasses yet. This implementation
- # is a hack to support enums.
- if basename not in ENUM_BASE_NAMES:
- continue
- if node.root().name == "enum":
- # Skip if the class is directly from enum module.
- break
- for local, values in node.locals.items():
- if any(not isinstance(value, nodes.AssignName) for value in values):
- continue
-
- targets = []
- stmt = values[0].statement()
- if isinstance(stmt, nodes.Assign):
- if isinstance(stmt.targets[0], nodes.Tuple):
- targets = stmt.targets[0].itered()
- else:
- targets = stmt.targets
- elif isinstance(stmt, nodes.AnnAssign):
- targets = [stmt.target]
-
- inferred_return_value = None
- if isinstance(stmt, nodes.Assign):
- if isinstance(stmt.value, nodes.Const):
- if isinstance(stmt.value.value, str):
- inferred_return_value = repr(stmt.value.value)
- else:
- inferred_return_value = stmt.value.value
- else:
- inferred_return_value = stmt.value.as_string()
-
- new_targets = []
- for target in targets:
- # Replace all the assignments with our mocked class.
- classdef = dedent(
- """
- class {name}({types}):
- @property
- def value(self):
- return {return_value}
- @property
- def name(self):
- return "{name}"
- """.format(
- name=target.name,
- types=", ".join(node.basenames),
- return_value=inferred_return_value,
- )
- )
- if "IntFlag" in basename:
- # Alright, we need to add some additional methods.
- # Unfortunately we still can't infer the resulting objects as
- # Enum members, but once we'll be able to do that, the following
- # should result in some nice symbolic execution
- classdef += INT_FLAG_ADDITION_METHODS.format(name=target.name)
-
- fake = AstroidBuilder(MANAGER).string_build(classdef)[target.name]
- fake.parent = target.parent
- for method in node.mymethods():
- fake.locals[method.name] = [method]
- new_targets.append(fake.instantiate_class())
- node.locals[local] = new_targets
- break
- return node
-
-
-def infer_typing_namedtuple_class(class_node, context=None):
- """Infer a subclass of typing.NamedTuple"""
- # Check if it has the corresponding bases
- annassigns_fields = [
- annassign.target.name
- for annassign in class_node.body
- if isinstance(annassign, nodes.AnnAssign)
- ]
- code = dedent(
- """
- from collections import namedtuple
- namedtuple({typename!r}, {fields!r})
- """
- ).format(typename=class_node.name, fields=",".join(annassigns_fields))
- node = extract_node(code)
- generated_class_node = next(infer_named_tuple(node, context))
- for method in class_node.mymethods():
- generated_class_node.locals[method.name] = [method]
-
- for assign in class_node.body:
- if not isinstance(assign, nodes.Assign):
- continue
-
- for target in assign.targets:
- attr = target.name
- generated_class_node.locals[attr] = class_node.locals[attr]
-
- return iter((generated_class_node,))
-
-
-def infer_typing_namedtuple(node, context=None):
- """Infer a typing.NamedTuple(...) call."""
- # This is essentially a namedtuple with different arguments
- # so we extract the args and infer a named tuple.
- try:
- func = next(node.func.infer())
- except InferenceError:
- raise UseInferenceDefault
-
- if func.qname() != "typing.NamedTuple":
- raise UseInferenceDefault
-
- if len(node.args) != 2:
- raise UseInferenceDefault
-
- if not isinstance(node.args[1], (nodes.List, nodes.Tuple)):
- raise UseInferenceDefault
-
- names = []
- for elt in node.args[1].elts:
- if not isinstance(elt, (nodes.List, nodes.Tuple)):
- raise UseInferenceDefault
- if len(elt.elts) != 2:
- raise UseInferenceDefault
- names.append(elt.elts[0].as_string())
-
- typename = node.args[0].as_string()
- if names:
- field_names = "({},)".format(",".join(names))
- else:
- field_names = "''"
- node = extract_node(
- "namedtuple({typename}, {fields})".format(typename=typename, fields=field_names)
- )
- return infer_named_tuple(node, context)
-
-
-MANAGER.register_transform(
- nodes.Call, inference_tip(infer_named_tuple), _looks_like_namedtuple
-)
-MANAGER.register_transform(nodes.Call, inference_tip(infer_enum), _looks_like_enum)
-MANAGER.register_transform(
- nodes.ClassDef,
- infer_enum_class,
- predicate=lambda cls: any(
- basename for basename in cls.basenames if basename in ENUM_BASE_NAMES
- ),
-)
-MANAGER.register_transform(
- nodes.ClassDef, inference_tip(infer_typing_namedtuple_class), _has_namedtuple_base
-)
-MANAGER.register_transform(
- nodes.Call, inference_tip(infer_typing_namedtuple), _looks_like_typing_namedtuple
-)