1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
# -*- coding: utf-8 -*-
# Copyright (c) 2012-2015 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
# Copyright (c) 2013-2014 Google, Inc.
# Copyright (c) 2014-2018 Claudiu Popa <pcmanticore@gmail.com>
# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
# Copyright (c) 2015 David Shea <dshea@redhat.com>
# Copyright (c) 2015 Philip Lorenz <philip@bithub.de>
# Copyright (c) 2016 Jakub Wilk <jwilk@jwilk.net>
# Copyright (c) 2016 Mateusz Bysiek <mb@mbdev.pl>
# Copyright (c) 2017 Hugo <hugovk@users.noreply.github.com>
# Copyright (c) 2017 Łukasz Rogalski <rogalski.91@gmail.com>
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
"""Astroid hooks for the Python standard library."""
import functools
import keyword
from textwrap import dedent
from astroid import MANAGER, UseInferenceDefault, inference_tip, InferenceError
from astroid import arguments
from astroid import exceptions
from astroid import nodes
from astroid.builder import AstroidBuilder, extract_node
from astroid import util
TYPING_NAMEDTUPLE_BASENAMES = {"NamedTuple", "typing.NamedTuple"}
ENUM_BASE_NAMES = {
"Enum",
"IntEnum",
"enum.Enum",
"enum.IntEnum",
"IntFlag",
"enum.IntFlag",
}
def _infer_first(node, context):
if node is util.Uninferable:
raise UseInferenceDefault
try:
value = next(node.infer(context=context))
if value is util.Uninferable:
raise UseInferenceDefault()
else:
return value
except StopIteration:
raise InferenceError()
def _find_func_form_arguments(node, context):
def _extract_namedtuple_arg_or_keyword(position, key_name=None):
if len(args) > position:
return _infer_first(args[position], context)
if key_name and key_name in found_keywords:
return _infer_first(found_keywords[key_name], context)
args = node.args
keywords = node.keywords
found_keywords = (
{keyword.arg: keyword.value for keyword in keywords} if keywords else {}
)
name = _extract_namedtuple_arg_or_keyword(position=0, key_name="typename")
names = _extract_namedtuple_arg_or_keyword(position=1, key_name="field_names")
if name and names:
return name.value, names
raise UseInferenceDefault()
def infer_func_form(node, base_type, context=None, enum=False):
"""Specific inference function for namedtuple or Python 3 enum. """
# node is a Call node, class name as first argument and generated class
# attributes as second argument
# namedtuple or enums list of attributes can be a list of strings or a
# whitespace-separate string
try:
name, names = _find_func_form_arguments(node, context)
try:
attributes = names.value.replace(",", " ").split()
except AttributeError:
if not enum:
attributes = [
_infer_first(const, context).value for const in names.elts
]
else:
# Enums supports either iterator of (name, value) pairs
# or mappings.
if hasattr(names, "items") and isinstance(names.items, list):
attributes = [
_infer_first(const[0], context).value
for const in names.items
if isinstance(const[0], nodes.Const)
]
elif hasattr(names, "elts"):
# Enums can support either ["a", "b", "c"]
# or [("a", 1), ("b", 2), ...], but they can't
# be mixed.
if all(isinstance(const, nodes.Tuple) for const in names.elts):
attributes = [
_infer_first(const.elts[0], context).value
for const in names.elts
if isinstance(const, nodes.Tuple)
]
else:
attributes = [
_infer_first(const, context).value for const in names.elts
]
else:
raise AttributeError
if not attributes:
raise AttributeError
except (AttributeError, exceptions.InferenceError):
raise UseInferenceDefault()
# If we can't infer the name of the class, don't crash, up to this point
# we know it is a namedtuple anyway.
name = name or "Uninferable"
# we want to return a Class node instance with proper attributes set
class_node = nodes.ClassDef(name, "docstring")
class_node.parent = node.parent
# set base class=tuple
class_node.bases.append(base_type)
# XXX add __init__(*attributes) method
for attr in attributes:
fake_node = nodes.EmptyNode()
fake_node.parent = class_node
fake_node.attrname = attr
class_node.instance_attrs[attr] = [fake_node]
return class_node, name, attributes
def _has_namedtuple_base(node):
"""Predicate for class inference tip
:type node: ClassDef
:rtype: bool
"""
return set(node.basenames) & TYPING_NAMEDTUPLE_BASENAMES
def _looks_like(node, name):
func = node.func
if isinstance(func, nodes.Attribute):
return func.attrname == name
if isinstance(func, nodes.Name):
return func.name == name
return False
_looks_like_namedtuple = functools.partial(_looks_like, name="namedtuple")
_looks_like_enum = functools.partial(_looks_like, name="Enum")
_looks_like_typing_namedtuple = functools.partial(_looks_like, name="NamedTuple")
def infer_named_tuple(node, context=None):
"""Specific inference function for namedtuple Call node"""
tuple_base_name = nodes.Name(name="tuple", parent=node.root())
class_node, name, attributes = infer_func_form(
node, tuple_base_name, context=context
)
call_site = arguments.CallSite.from_call(node)
func = next(extract_node("import collections; collections.namedtuple").infer())
try:
rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
except InferenceError:
rename = False
if rename:
attributes = _get_renamed_namedtuple_attributes(attributes)
replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
field_def = (
" {name} = property(lambda self: self[{index:d}], "
"doc='Alias for field number {index:d}')"
)
field_defs = "\n".join(
field_def.format(name=name, index=index)
for index, name in enumerate(attributes)
)
fake = AstroidBuilder(MANAGER).string_build(
"""
class %(name)s(tuple):
__slots__ = ()
_fields = %(fields)r
def _asdict(self):
return self.__dict__
@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
return new(cls, iterable)
def _replace(self, %(replace_args)s):
return self
def __getnewargs__(self):
return tuple(self)
%(field_defs)s
"""
% {
"name": name,
"fields": attributes,
"field_defs": field_defs,
"replace_args": replace_args,
}
)
class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
class_node.locals["_make"] = fake.body[0].locals["_make"]
class_node.locals["_replace"] = fake.body[0].locals["_replace"]
class_node.locals["_fields"] = fake.body[0].locals["_fields"]
for attr in attributes:
class_node.locals[attr] = fake.body[0].locals[attr]
# we use UseInferenceDefault, we can't be a generator so return an iterator
return iter([class_node])
def _get_renamed_namedtuple_attributes(field_names):
names = list(field_names)
seen = set()
for i, name in enumerate(field_names):
if (
not all(c.isalnum() or c == "_" for c in name)
or keyword.iskeyword(name)
or not name
or name[0].isdigit()
or name.startswith("_")
or name in seen
):
names[i] = "_%d" % i
seen.add(name)
return tuple(names)
def infer_enum(node, context=None):
""" Specific inference function for enum Call node. """
enum_meta = extract_node(
"""
class EnumMeta(object):
'docstring'
def __call__(self, node):
class EnumAttribute(object):
name = ''
value = 0
return EnumAttribute()
def __iter__(self):
class EnumAttribute(object):
name = ''
value = 0
return [EnumAttribute()]
def __reversed__(self):
class EnumAttribute(object):
name = ''
value = 0
return (EnumAttribute, )
def __next__(self):
return next(iter(self))
def __getitem__(self, attr):
class Value(object):
@property
def name(self):
return ''
@property
def value(self):
return attr
return Value()
__members__ = ['']
"""
)
class_node = infer_func_form(node, enum_meta, context=context, enum=True)[0]
return iter([class_node.instantiate_class()])
INT_FLAG_ADDITION_METHODS = """
def __or__(self, other):
return {name}(self.value | other.value)
def __and__(self, other):
return {name}(self.value & other.value)
def __xor__(self, other):
return {name}(self.value ^ other.value)
def __add__(self, other):
return {name}(self.value + other.value)
def __div__(self, other):
return {name}(self.value / other.value)
def __invert__(self):
return {name}(~self.value)
def __mul__(self, other):
return {name}(self.value * other.value)
"""
def infer_enum_class(node):
""" Specific inference for enums. """
for basename in node.basenames:
# TODO: doesn't handle subclasses yet. This implementation
# is a hack to support enums.
if basename not in ENUM_BASE_NAMES:
continue
if node.root().name == "enum":
# Skip if the class is directly from enum module.
break
for local, values in node.locals.items():
if any(not isinstance(value, nodes.AssignName) for value in values):
continue
targets = []
stmt = values[0].statement()
if isinstance(stmt, nodes.Assign):
if isinstance(stmt.targets[0], nodes.Tuple):
targets = stmt.targets[0].itered()
else:
targets = stmt.targets
elif isinstance(stmt, nodes.AnnAssign):
targets = [stmt.target]
inferred_return_value = None
if isinstance(stmt, nodes.Assign):
if isinstance(stmt.value, nodes.Const):
if isinstance(stmt.value.value, str):
inferred_return_value = repr(stmt.value.value)
else:
inferred_return_value = stmt.value.value
else:
inferred_return_value = stmt.value.as_string()
new_targets = []
for target in targets:
# Replace all the assignments with our mocked class.
classdef = dedent(
"""
class {name}({types}):
@property
def value(self):
return {return_value}
@property
def name(self):
return "{name}"
""".format(
name=target.name,
types=", ".join(node.basenames),
return_value=inferred_return_value,
)
)
if "IntFlag" in basename:
# Alright, we need to add some additional methods.
# Unfortunately we still can't infer the resulting objects as
# Enum members, but once we'll be able to do that, the following
# should result in some nice symbolic execution
classdef += INT_FLAG_ADDITION_METHODS.format(name=target.name)
fake = AstroidBuilder(MANAGER).string_build(classdef)[target.name]
fake.parent = target.parent
for method in node.mymethods():
fake.locals[method.name] = [method]
new_targets.append(fake.instantiate_class())
node.locals[local] = new_targets
break
return node
def infer_typing_namedtuple_class(class_node, context=None):
"""Infer a subclass of typing.NamedTuple"""
# Check if it has the corresponding bases
annassigns_fields = [
annassign.target.name
for annassign in class_node.body
if isinstance(annassign, nodes.AnnAssign)
]
code = dedent(
"""
from collections import namedtuple
namedtuple({typename!r}, {fields!r})
"""
).format(typename=class_node.name, fields=",".join(annassigns_fields))
node = extract_node(code)
generated_class_node = next(infer_named_tuple(node, context))
for method in class_node.mymethods():
generated_class_node.locals[method.name] = [method]
for assign in class_node.body:
if not isinstance(assign, nodes.Assign):
continue
for target in assign.targets:
attr = target.name
generated_class_node.locals[attr] = class_node.locals[attr]
return iter((generated_class_node,))
def infer_typing_namedtuple(node, context=None):
"""Infer a typing.NamedTuple(...) call."""
# This is essentially a namedtuple with different arguments
# so we extract the args and infer a named tuple.
try:
func = next(node.func.infer())
except InferenceError:
raise UseInferenceDefault
if func.qname() != "typing.NamedTuple":
raise UseInferenceDefault
if len(node.args) != 2:
raise UseInferenceDefault
if not isinstance(node.args[1], (nodes.List, nodes.Tuple)):
raise UseInferenceDefault
names = []
for elt in node.args[1].elts:
if not isinstance(elt, (nodes.List, nodes.Tuple)):
raise UseInferenceDefault
if len(elt.elts) != 2:
raise UseInferenceDefault
names.append(elt.elts[0].as_string())
typename = node.args[0].as_string()
if names:
field_names = "({},)".format(",".join(names))
else:
field_names = "''"
node = extract_node(
"namedtuple({typename}, {fields})".format(typename=typename, fields=field_names)
)
return infer_named_tuple(node, context)
MANAGER.register_transform(
nodes.Call, inference_tip(infer_named_tuple), _looks_like_namedtuple
)
MANAGER.register_transform(nodes.Call, inference_tip(infer_enum), _looks_like_enum)
MANAGER.register_transform(
nodes.ClassDef,
infer_enum_class,
predicate=lambda cls: any(
basename for basename in cls.basenames if basename in ENUM_BASE_NAMES
),
)
MANAGER.register_transform(
nodes.ClassDef, inference_tip(infer_typing_namedtuple_class), _has_namedtuple_base
)
MANAGER.register_transform(
nodes.Call, inference_tip(infer_typing_namedtuple), _looks_like_typing_namedtuple
)
|