diff options
author | prashantsinalkar | 2019-03-06 11:49:41 +0530 |
---|---|---|
committer | prashantsinalkar | 2019-03-06 11:49:41 +0530 |
commit | 6ab23e3ee8972e2e5bbb40ad2fa32e19c7b13702 (patch) | |
tree | 00a4161da26a48d984b2ea545bc03280d0466403 | |
parent | ceb2aae7af9263016f51c0a073a9233922e9ac3d (diff) | |
download | Scilab-TBC-Uploads-1-6ab23e3ee8972e2e5bbb40ad2fa32e19c7b13702.tar.gz Scilab-TBC-Uploads-1-6ab23e3ee8972e2e5bbb40ad2fa32e19c7b13702.tar.bz2 Scilab-TBC-Uploads-1-6ab23e3ee8972e2e5bbb40ad2fa32e19c7b13702.zip |
initial commit / add all books
97 files changed, 645 insertions, 418 deletions
diff --git a/3876/CH10/EX10.1/Ex10_1.sce b/3876/CH10/EX10.1/Ex10_1.sce index 1f501a5a2..f9ca36487 100644 --- a/3876/CH10/EX10.1/Ex10_1.sce +++ b/3876/CH10/EX10.1/Ex10_1.sce @@ -1,17 +1,21 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -T= 25 //C -M= 0.08 //m -P= 1 //atm -F= 96500 //coloumbs -R= 8.31 //J/mol K +T= 25 //temperature in Celsius +M= 0.08 //activity of hydronium ions in m +P= 1 //pressure in atm +F= 96500 //charge in coloumbs +R= 8.31 //in electrical units J/mol K //CALCULATIONS -E= -R*(273+T)*2.3*log10(M)/F +E_e1= -R*(273+T)*2.3*log10(M)/F //RESULTS -mprintf("Oxidation potential of hydrogen electrode = %.3f v",E) +mprintf("Oxidation potential of hydrogen electrode = %.3f v",E_e1) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH10/EX10.2/Ex10_2.sce b/3876/CH10/EX10.2/Ex10_2.sce index f04006099..cdbf2dcea 100644 --- a/3876/CH10/EX10.2/Ex10_2.sce +++ b/3876/CH10/EX10.2/Ex10_2.sce @@ -1,17 +1,19 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -E= -0.337 //v -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums -M= 0.12 //m +E_Cu_Cu2_plus= -0.337 //voltage of electrode +R= 8.31 //in electrical units J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums +M= 0.12 //m in cupric ions //CALCULATIONS -E1= E-(R*(273+T)*2.3*log10(M)/(2*F)) +E_e1= E_Cu_Cu2_plus-(R*(273+T)*2.3*log10(M)/(2*F)) //RESULTS -mprintf("Oxidation potential of copper electrode = %.3f v",E1) +mprintf("Oxidation potential of copper electrode = %.3f v",E_e1) diff --git a/3876/CH10/EX10.3/Ex10_3.sce b/3876/CH10/EX10.3/Ex10_3.sce index 81d074e04..0ef8a9fd3 100644 --- a/3876/CH10/EX10.3/Ex10_3.sce +++ b/3876/CH10/EX10.3/Ex10_3.sce @@ -1,18 +1,20 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -E= -0.771 //v -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums -M= 0.02 //m -M1= 0.1 //m +E_e1= -0.771 //voltage +R= 8.31 //in electrical units J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums +M= 0.02 //ferric ion activity in m +M1= 0.1 //ferrous ion activity in m //CALCULATIONS -E1= E-(R*(273+T)*2.3*log10(M/M1)/F) +E1= E_e1-(R*(273+T)*2.3*log10(M/M1)/F) //RESULTS mprintf("Oxidation potential of copper electrode = %.2f v",E1) diff --git a/3876/CH10/EX10.4/Ex10_4.sce b/3876/CH10/EX10.4/Ex10_4.sce index c65ca17c1..7597a3ca4 100644 --- a/3876/CH10/EX10.4/Ex10_4.sce +++ b/3876/CH10/EX10.4/Ex10_4.sce @@ -1,18 +1,20 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -E= 0.763 //v -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums -M= 0.1 //m -M1= 0.01 //m +E= 0.763 //voltage in v +R= 8.31 //in electrical unit J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums +M= 0.1 //ion activity in m +M1= 0.01 //ion activity in m //CALCULATIONS -E1= E-(R*(273+T)*2.3*log10(M)/(2*F))+R*(273+T)*2.3*log10(M1)/F +E_cell= E-(R*(273+T)*2.3*log10(M)/(2*F))+R*(273+T)*2.3*log10(M1)/F //RESULTS -mprintf("Oxidation potential of copper electrode = %.2f v",E1) +mprintf("Oxidation potential of copper electrode = %.2f v",E_cell) diff --git a/3876/CH10/EX10.5/Ex10_5.sce b/3876/CH10/EX10.5/Ex10_5.sce index 31107e6cd..063e8e768 100644 --- a/3876/CH10/EX10.5/Ex10_5.sce +++ b/3876/CH10/EX10.5/Ex10_5.sce @@ -1,19 +1,21 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -E1= 0.126 //v -E2= -1.360 //v -M= 0.02 //m -M1= 1/0.1 //m -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums +E_Pb_Pb2_plus= 0.126 //voltage in v +E_Cl2_Cl_minus= -1.360 //voltage in v +M= 0.02 //ion activity in m +M1= 1/0.1 //ion activity in m +R= 8.31 //in electrical units J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums //CALCULATIONS -E= (E1-R*(273+T)*2.3*log10(M)/(2*F))-(E2-R*(273+T)*2.3*log10(M1)/(F)) +E_cell= (E_Pb_Pb2_plus-R*(273+T)*2.3*log10(M)/(2*F))-(E_Cl2_Cl_minus-R*(273+T)*2.3*log10(M1)/(F)) //RESULTS -mprintf("Oxidation potential of copper electrode = %.3f v",E) +mprintf("Oxidation potential of copper electrode = %.3f v",E_cell) diff --git a/3876/CH10/EX10.6/Ex10_6.sce b/3876/CH10/EX10.6/Ex10_6.sce index d384c46f1..a6c42d8b5 100644 --- a/3876/CH10/EX10.6/Ex10_6.sce +++ b/3876/CH10/EX10.6/Ex10_6.sce @@ -1,20 +1,22 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -E1= 0.763 //v +E1= 0.763 //voltage c= 0.1 //mol/lit c1= 0.01 //mol/lit -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums +R= 8.31 //in electrical unit J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums c2= 1 //molar c3= 1 //molar //CALCULATIONS -E= E1-(log10(c*c2/(c1**2*c3))*R*(273+T)*2.3/(2*F)) +E_cell= E1-(log10(c*c2/(c1**2*c3))*R*(273+T)*2.3/(2*F)) //RESULTS -mprintf("Potential of the cell = %.3f v",E) +mprintf("Potential of the cell = %.3f v",E_cell) diff --git a/3876/CH10/EX10.7/Ex10_7.sce b/3876/CH10/EX10.7/Ex10_7.sce index d78aa1eae..145c9977b 100644 --- a/3876/CH10/EX10.7/Ex10_7.sce +++ b/3876/CH10/EX10.7/Ex10_7.sce @@ -1,20 +1,22 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums +R= 8.31 //electrical unit J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums c= 0.02 //molar c1= 0.1 //molar c2= 1 //molar c3= 1 //molar -E1= 1.486 //v +E_cell_0= 1.486 //voltage //CALCULATIONS -E= E1-R*(273+T)*2.3*log10(c*c1**2/(c2*c3))/(2*F) +E_cell= E_cell_0-R*(273+T)*2.3*log10(c*c1**2/(c2*c3))/(2*F) //RESULTS -mprintf("Potential of the cell = %.3f v",E) +mprintf("Potential of the cell = %.3f v",E_cell) diff --git a/3876/CH10/EX10.8/Ex10_8.sce b/3876/CH10/EX10.8/Ex10_8.sce index 597eadb0c..e5628727c 100644 --- a/3876/CH10/EX10.8/Ex10_8.sce +++ b/3876/CH10/EX10.8/Ex10_8.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 10 Electmotive Force clc; clear; //Initialisation of Variables -R= 8.31 //J/mol K -T= 25 //C -F= 96500 //coloums +R= 8.31 //electrical unit J/mol K +T= 25 //temperature in Celsius +F= 96500 //charge in coloums c= 0.08 //molar c1= 0.04 //molar @@ -15,5 +17,5 @@ E= R*(T+273)*log(c/c1)/(2*F) E1= 2*E //RESULTS -mprintf("Potential of the cell = %.3f v",E) -mprintf("\nPotential of the cell = %.3f v",E1) +mprintf("Potential of the cell = %.4f v",E) +mprintf("\nPotential of the cell = %.4f v",E1) diff --git a/3876/CH11/EX11.1/Ex11_1.sce b/3876/CH11/EX11.1/Ex11_1.sce index afe3e664b..ca6989f8e 100644 --- a/3876/CH11/EX11.1/Ex11_1.sce +++ b/3876/CH11/EX11.1/Ex11_1.sce @@ -1,16 +1,18 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 11 Thermodynamics Some Basic Concepts clc; clear; //Initialisation of Variables -T= 25 //C -T1= 75 //C -k= 6.45 //cal per mole per degree -k1= 1.41*10**-3 //cal per mole per degree k^-1 -k2= -8.1*10**-8 //cal per mole per degree k^-2 -m= 14 //gms -M= 28 //gms +T= 25 //temperature in Celsius +T1= 75 //temperature in Celsius +k= 6.45 //cal per mole per degree - molar heat capacity +k1= 1.41*10**-3 //cal per mole per degree k^-1 - molar heat capacity +k2= -8.1*10**-8 //cal per mole per degree k^-2 - molar heat capacity +m= 14 //weight in gms +M= 28 //weight in gms //CALCULATIONS Cp= k+k1*(273+T)+k2*(273+T)**2 @@ -22,3 +24,5 @@ H1= (m/M)*(k*(T1-T)+(k1/2)*((273+T1)**2-(273+T)**2)+(k2/3)*((273+T1)**3-(273+T)* //RESULTS mprintf("Heat required= %.1f cal",H) mprintf("\nValue of dH= %.1f cal",H1) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH11/EX11.2/Ex11_2.sce b/3876/CH11/EX11.2/Ex11_2.sce index 49e6a0e70..6ad513b03 100644 --- a/3876/CH11/EX11.2/Ex11_2.sce +++ b/3876/CH11/EX11.2/Ex11_2.sce @@ -1,15 +1,17 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 11 Thermodynamics Some Basic Concepts clc; clear; //Initialisation of Variables -m= 64 //gms -M= 32 //gms -T= 100 //C -T1= 0 //C -cp= 7.05 //cal per mole per degree -cp1= 5.06 //cal per mole per degree +m= 64 //weight in gms +M= 32 //weight in gms +T= 100 //temperature in Celsius +T1= 0 //temperature in Celsius +cp= 7.05 //cal per mole per degree - avg heat capacity +cp1= 5.06 //cal per mole per degree - avg heat capacity //CALCULATIONS H= cp*(m/M)*(T-T1) diff --git a/3876/CH11/EX11.3/Ex11_3.sce b/3876/CH11/EX11.3/Ex11_3.sce index 2b03af345..01b796851 100644 --- a/3876/CH11/EX11.3/Ex11_3.sce +++ b/3876/CH11/EX11.3/Ex11_3.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 11 Thermodynamics Some Basic Concepts clc; @@ -5,10 +7,10 @@ clear; //Initialisation of Variables n= 2 //moles -R= 1.99 //cal er mole per degree -T= 80 //C -H1= 94.3 //cal per gram -M= 78 //gms per mole +R= 1.99 //cal per mole per degree +T= 80 //temperature in Celsius +H1= 94.3 //cal per gram - heat of vaporization +M= 78 //weight of benzene in gms per mole //CALCULATIONS w= n*R*(273+T) diff --git a/3876/CH11/EX11.4/Ex11_4.sce b/3876/CH11/EX11.4/Ex11_4.sce index 20d75e37f..f800fa9a5 100644 --- a/3876/CH11/EX11.4/Ex11_4.sce +++ b/3876/CH11/EX11.4/Ex11_4.sce @@ -1,28 +1,30 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 11 Thermodynamics Some Basic Concepts clc; clear; //Initialisation of Variables -m= 9 //gms -T= -10 //C -T1= 0 //C -R= 0.5 //cal per gram per degree -H= 79.7 //cal per gram -R1= 1 //cal per gram per degree -T2= 100 //C -H1= 539.7 //cal per gm -R2= 8.11 //cal per gram per degree -M= 18 //gms -T3= 40 //C +m= 9 //weight in gms +T= -10 //temperature in Celsius +T1= 0 //temperature in Celsius +R= 0.5 //cal per gram per degree - heat capacity +H= 79.7 //cal per gram - heat of vaporization +R1= 1 //cal per gram per degree - heat of evaporation +T2= 100 ///temperature in Celsius +H1= 539.7 //cal per gm - heat of vaporization +R2= 8.11 //cal per gram per degree - heat of evaporation +M= 18 //weight in gms +T3= 40 //temperature in Celsius //CALCULATIONS -dH= m*R*(T1-T) -dH1= m*H -dH2= m*R1*(T2-T1) -dH3= m*H1 -dH4= (m/M)*R2*(T3-T1) -dH5= dH+dH1+dH2+dH3+dH4 +dH1= m*R*(T1-T) +dH2= m*H +dH3= m*R1*(T2-T1) +dH4= m*H1 +dH5= (m/M)*R2*(T3-T1) +dH= dH1+dH2+dH3+dH4+dH5 //RESULTS -mprintf("Value of dH= %.1f cal",dH5) +mprintf("Value of dH= %.1f cal",dH) diff --git a/3876/CH12/EX12.1/Ex12_1.sce b/3876/CH12/EX12.1/Ex12_1.sce index cf4c48aff..36c58bc12 100644 --- a/3876/CH12/EX12.1/Ex12_1.sce +++ b/3876/CH12/EX12.1/Ex12_1.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 12 Thermodynamics Thermodynamic chemistry clc; clear; //Initialisation of Variables -H= -771400 //cal -n= 7 //moles -n1= 7.5 //moles -T= 25 //C +H= -771400 //heat of combustion in cal +n= 7 //moles of CO2 +n1= 7.5 //moles of O2 +T= 25 //temperature in Celsius R= 2 //cal mole per degree //CALCULATIONS diff --git a/3876/CH12/EX12.2/Ex12_2.sce b/3876/CH12/EX12.2/Ex12_2.sce index 5c8d18663..e18726acd 100644 --- a/3876/CH12/EX12.2/Ex12_2.sce +++ b/3876/CH12/EX12.2/Ex12_2.sce @@ -1,15 +1,19 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 12 Thermodynamics Thermodynamic chemistry clc; clear; //Initialisation of Variables -H= -94.052 //kcal -H1= -68.317 //kcal -H2= -780.98 //kcal +H= -94.052 //kcal heat of combustion +H1= -68.317 //kcal heat of combustion +H2= -780.98 //kcal heat of combustion //CALCULATIONS H3= 6*H+3*H1-H2 //RESULTS mprintf("Heat of formation = %.3f kcal",H3) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH12/EX12.3/Ex12_3.sce b/3876/CH12/EX12.3/Ex12_3.sce index 3f61c3fc5..8ebee0fa8 100644 --- a/3876/CH12/EX12.3/Ex12_3.sce +++ b/3876/CH12/EX12.3/Ex12_3.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 12 Thermodynamics Thermodynamic chemistry clc; clear; //Initialisation of Variables -H= -94.052 //kcal -H1= -68.32 //kcal -H2= 11.718 //kcal +H= -94.052 //kcal heat of combustion +H1= -68.32 //kcal heat of combustion +H2= 11.718 //kcal heat of combustion //CALCULATIONS H3= 6*H+3*H1-H2 diff --git a/3876/CH12/EX12.4/Ex12_4.sce b/3876/CH12/EX12.4/Ex12_4.sce index 52c396294..ec1920526 100644 --- a/3876/CH12/EX12.4/Ex12_4.sce +++ b/3876/CH12/EX12.4/Ex12_4.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 12 Thermodynamics Thermodynamic chemistry @@ -5,9 +7,9 @@ clc; clear; //Initialisation of Variables -H= -66.36 //kcal -H1= 12.5 //k cal -H2= -68.317 //kcal +H= -66.36 //kcal heat of combustion +H1= 12.5 //k cal heat of combustion +H2= -68.317 //kcal heat of combustion //CALCULATIONS H3= H-H1-H2 diff --git a/3876/CH12/EX12.5/Ex12_5.sce b/3876/CH12/EX12.5/Ex12_5.sce index 3013af0dc..f120bc572 100644 --- a/3876/CH12/EX12.5/Ex12_5.sce +++ b/3876/CH12/EX12.5/Ex12_5.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 12 Thermodynamics Thermodynamic chemistry @@ -5,12 +7,12 @@ clc; clear; //Initialisation of Variables -T= 90 //C -T1= 25 //C +T= 90//temperature in Celsius +T1= 25//temperature in Celsius Cp= 6.9 //cal per mole per degree -CP1= 7.05 //cal per mole per degree -Cp2= 18 //cal per mole per degree -H= -68370 //kcal +CP1= 7.05 //cal per mole per degree - heat capacity +Cp2= 18 //cal per mole per degree - heat capacity +H= -68370 //kcal - heat of formation //CALCULATIONS H1= H+(Cp2-Cp-0.5*CP1)*(T-T1) diff --git a/3876/CH12/EX12.6/Ex12_6.sce b/3876/CH12/EX12.6/Ex12_6.sce index be91caff2..d5af5e9f4 100644 --- a/3876/CH12/EX12.6/Ex12_6.sce +++ b/3876/CH12/EX12.6/Ex12_6.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 12 Thermodynamics Thermodynamic chemistry @@ -5,15 +7,15 @@ clc; clear; //Initialisation of Variables -Cp= 2.7 //cal per mole per degree -CP1= 6.9 //cal per mole per degree -Cp2= 15.4 //cal per mole per degree -H= -20.24 //kcal -T= 200 //C -T1= 25 //C +Cp= 2.7 //cal per mole per degree - heat capacity +CP1= 6.9 //cal per mole per degree - heat capacity +Cp2= 15.4 //cal per mole per degree - heat capacity +dH_25= -20.24 //kcal - heat of formation +T= 200 //temperature in Celsius +T1= 25 //temperature in Celsius //CALCULATIONS -H1= H+(Cp2-2*Cp-3*CP1)*((T-T1)/1000) +dH_200= dH_25+(Cp2-2*Cp-3*CP1)*((T-T1)/1000) //RESULTS -mprintf("Heat of formation= %.2f kcal",H1) +mprintf("Heat of formation= %.2f kcal",dH_200) diff --git a/3876/CH13/EX13.1/Ex13_1.sce b/3876/CH13/EX13.1/Ex13_1.sce index a59b66cd5..aaf3d7fb1 100644 --- a/3876/CH13/EX13.1/Ex13_1.sce +++ b/3876/CH13/EX13.1/Ex13_1.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -H= 540 //cal per gram -m= 9 //gms -T= 100 //C +H= 540 //cal per gram - heat of vaporization +m= 9 //weight in gms +T= 100 //temperature in Celsius //CALCULATIONS S= H*m/(273+T) diff --git a/3876/CH13/EX13.10/Ex13_10.sce b/3876/CH13/EX13.10/Ex13_10.sce index dd9d94978..5e64b1244 100644 --- a/3876/CH13/EX13.10/Ex13_10.sce +++ b/3876/CH13/EX13.10/Ex13_10.sce @@ -1,18 +1,22 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -F= 18430 //cal -F1= -31350 //cal -F2= 26224 //cal +dF_Ag_plus= 18430 //cal - free energy of formation +dF_Cl_minus= -31350 //cal - free energy of formation +dF_AgCl= 26224 //cal - free energy of formation R= 1.99 //cal/mole K -T= 25 //C +T= 25 //temperature in Celsius //CALCULATIONS -F3= F+F1+F2 -Ksp= 10**(-F3/(R*(273+T)*2.303)) +dF= dF_Ag_plus+dF_Cl_minus+dF_AgCl +Ksp= 10**(-dF/(R*(273+T)*2.303)) //RESULTS mprintf("Solubility product = %.2e",Ksp) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH13/EX13.11/Ex13_11.sce b/3876/CH13/EX13.11/Ex13_11.sce index 0eda0871f..814e2d98b 100644 --- a/3876/CH13/EX13.11/Ex13_11.sce +++ b/3876/CH13/EX13.11/Ex13_11.sce @@ -1,15 +1,17 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -F= -51108 //cal -f= 96500 //coloumbs +F= -51108 //cal - free energy of formation +f= 96500 //charge in coloumbs n= 2 //moles //CALCULATIONS E= -F*4.184/(n*f) //RESULTS -mprintf("Value of E = %.2f v",E) +mprintf("Value of E = %.3f v",E) diff --git a/3876/CH13/EX13.12/Ex13_12.sce b/3876/CH13/EX13.12/Ex13_12.sce index 845984353..46b2bbe24 100644 --- a/3876/CH13/EX13.12/Ex13_12.sce +++ b/3876/CH13/EX13.12/Ex13_12.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -F1= 31350 //cal -F2= 26224 //cal -F= 96500 //coloumbs +F1= 31350 //cal - free energy of formation +F2= 26224 //cal - free energy of formation +F= 96500 //charge in coloumbs //CALCULATIONS F3= -F1+F2 diff --git a/3876/CH13/EX13.13/Ex13_13.sce b/3876/CH13/EX13.13/Ex13_13.sce index 0c9d600f3..3df2bd183 100644 --- a/3876/CH13/EX13.13/Ex13_13.sce +++ b/3876/CH13/EX13.13/Ex13_13.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -T= 25 //C +T= 25 //temperature in Celsius a= 0.2 //molar -P= 1 //atm -F1= -5126 //cal +P= 1 //pressure in atm +F1= -5126 //cal - free energy of formation R= 2 //cal/mole K //CALCULATIONS diff --git a/3876/CH13/EX13.14/Ex13_14.sce b/3876/CH13/EX13.14/Ex13_14.sce index 1256c353d..1b4bb16a7 100644 --- a/3876/CH13/EX13.14/Ex13_14.sce +++ b/3876/CH13/EX13.14/Ex13_14.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -T= 25 //C +T= 25 //temperature in Celsius F= 1160 //cal -P= 0.1 //atm -P1= 1 //atm +P= 0.1 //pressure in atm +P1= 1 //pressure in atm R= 2 //cal/mole K //CALCULATIONS @@ -17,3 +19,5 @@ F2= F+R*(273+T)*log(P1/P**2) //RESULTS mprintf("Value of F = %.0f cal",F1) mprintf("\nValue of F = %.0f cal",F2) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH13/EX13.15/Ex13_15.sce b/3876/CH13/EX13.15/Ex13_15.sce index 3483c47fb..c535542f7 100644 --- a/3876/CH13/EX13.15/Ex13_15.sce +++ b/3876/CH13/EX13.15/Ex13_15.sce @@ -1,20 +1,25 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -T= 25 //C -H= -94.05 //kcal -H1= -26.42 //kcal -S= 51.06 //cal per degree -S1= -47.3 //cal per degree -S2= -24.5 //cal per degree +T= 25 //temperature in Celsius +H_CO2= -94.05 //kcal - enthalpy +H_CO= -26.40 //kcal - enthalpy +S1= 51.06 //cal per degree +S2= -47.3 //cal per degree +S3= -24.5 //cal per degree //CALCULATIONS -dH= (H-H1)*1000 -dS= S+S1+S2 -F= dH-(273+T)*dS +dH= (H_CO2-H_CO)*1000 +dS= S1+S2+S3 +dF= dH-(273+T)*dS //RESULTS -mprintf("Value of F = %.0f cal",F) +mprintf("Value of F = %.0f cal",dF) + +//The difference in the solution compared to textbook is due to round off error: +//dS is being taken as -20.7 in the textbook whereas it is being calculated as -20.74 in the code diff --git a/3876/CH13/EX13.2/Ex13_2.sce b/3876/CH13/EX13.2/Ex13_2.sce index df83696c8..1bd313bae 100644 --- a/3876/CH13/EX13.2/Ex13_2.sce +++ b/3876/CH13/EX13.2/Ex13_2.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -m= 9 //gms -H= 79.7 //cal per gram -T= 0 //C +m= 9 //weight in gms +H= 79.7 //cal per gram - heat of fusion +T= 0 //temperature in Celsius //CALCULATIONS S= m*H/(273+T) diff --git a/3876/CH13/EX13.3/Ex13_3.sce b/3876/CH13/EX13.3/Ex13_3.sce index 99a48673b..e85b9b4fd 100644 --- a/3876/CH13/EX13.3/Ex13_3.sce +++ b/3876/CH13/EX13.3/Ex13_3.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy @@ -5,11 +7,11 @@ clc; clear; //Initialisation of Variables -m= 14 //gms -M= 28 //gms +m= 14 //weight in gms +M= 28 //weight in gms R= 1.99 // cal per mole per degree -V= 30 //lit -v1= 10 //lit +V= 30 //volume in lit +v1= 10 //volume in lit //CALCULATIONS S1= (m/M)*R*2.303*log10(V/v1) diff --git a/3876/CH13/EX13.4/Ex13_4.sce b/3876/CH13/EX13.4/Ex13_4.sce index c1fca5842..81e3cf2c7 100644 --- a/3876/CH13/EX13.4/Ex13_4.sce +++ b/3876/CH13/EX13.4/Ex13_4.sce @@ -1,15 +1,17 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -m= 14 //gms -M= 28 //gms -S= 6.94 //cal per mole -T= 127 //C -T1= 27 //C -S1= 4.94 //cal per mole +m= 14 //weight in gms +M= 28 //weight in gms +S= 6.94 //cal per mole - heat capacity +T= 127 //temperature in Celsius +T1= 27 //temperature in Celsius +S1= 4.94 //cal per mole - heat capacity //CALCULATIONS dS= (m/M)*S*log((273+T)/(273+T1)) diff --git a/3876/CH13/EX13.5/Ex13_5.sce b/3876/CH13/EX13.5/Ex13_5.sce index fad363737..23916e5b0 100644 --- a/3876/CH13/EX13.5/Ex13_5.sce +++ b/3876/CH13/EX13.5/Ex13_5.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -Scl= 53.29 //E.U -Sag= 10.21 //E.U -Sagcl= 22.97 //E.U +Scl= 53.29 //standard entropy of formation E.U +Sag= 10.21 //standard entropy of formation E.U +Sagcl= 22.97 //standard entropy of formation E.U //CALCULATIONS dS= Sagcl-Sag-0.5*Scl diff --git a/3876/CH13/EX13.6/Ex13_6.sce b/3876/CH13/EX13.6/Ex13_6.sce index fb253cb5d..ba4f491ec 100644 --- a/3876/CH13/EX13.6/Ex13_6.sce +++ b/3876/CH13/EX13.6/Ex13_6.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -Scl= 13.17 //E.U -Sag= 17.67 //E.U -Sagcl= 22.97 //E.U +Scl= 13.17 //standard entropy of formation E.U +Sag= 17.67 //standard entropy of formation E.U +Sagcl= 22.97 //standard entropy of formation E.U //CALCULATIONS dS= Scl+Sag-Sagcl diff --git a/3876/CH13/EX13.7/Ex13_7.sce b/3876/CH13/EX13.7/Ex13_7.sce index f3467d78b..daa39321c 100644 --- a/3876/CH13/EX13.7/Ex13_7.sce +++ b/3876/CH13/EX13.7/Ex13_7.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -F1= -94260 //cal -F2= -56690 //cal -F3= -7860 //cal +F1= -94260 //cal free energy of formation +F2= -56690 //cal free energy of formation +F3= -7860 //cal free energy of formation //CALCULATIONS F= 2*F1+3*F2-F3 diff --git a/3876/CH13/EX13.8/Ex13_8.sce b/3876/CH13/EX13.8/Ex13_8.sce index 5b67de43e..03ef557b0 100644 --- a/3876/CH13/EX13.8/Ex13_8.sce +++ b/3876/CH13/EX13.8/Ex13_8.sce @@ -1,14 +1,19 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -T= 25 //C -F1= -35180 //cal +T= 25 //temperature in Celsius +F_Zn2= -35180 //standard free energy cal of Zn2 +F_H2=0 //standard free energy cal of H2 +F_Zn=0 //standard free energy cal of Zn +F_H=0 //standard free energy cal of H //CALCULATIONS -F= F1 +F= F_Zn2 + F_H2 - F_Zn - (2 * F_H) //RESULTS -mprintf("Value of dF = %.2f",F) +mprintf("Value of dF = %.2f cal",F) diff --git a/3876/CH13/EX13.9/Ex13_9.sce b/3876/CH13/EX13.9/Ex13_9.sce index 1e78d944e..b888979ff 100644 --- a/3876/CH13/EX13.9/Ex13_9.sce +++ b/3876/CH13/EX13.9/Ex13_9.sce @@ -1,15 +1,17 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 13 Thermodynamics Entropy and Free Energy clc; clear; //Initialisation of Variables -F= -51180 //cal -T= 25 //C +F= -51180 //cal ,free energy +T= 25 //temperature in Celsius R= 1.99 //cal/mole K //CALCULATIONS K= 10**(-F/(R*(273+T)*2.303)) //RESULTS -mprintf("Equilibrium constant = %.2e",K) +mprintf("Equilibrium constant = %.0e",K) diff --git a/3876/CH14/EX14.1/Ex14_1.sce b/3876/CH14/EX14.1/Ex14_1.sce index 43be88d31..1a084c5aa 100644 --- a/3876/CH14/EX14.1/Ex14_1.sce +++ b/3876/CH14/EX14.1/Ex14_1.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 14 Determination of Hydroniumion Concentrations clc; clear; //Initialisation of Variables -E= 0.232 //v -R= 0.0592 -p= 1 //atm -R1= 0.0296 -P= 740 //atm +E= 0.232 //potential in voltage +R= 0.0592 //constant +p= 1 //pressure in atm +R1= 0.0296// constant +P= 740 //pressure in atm //CALCULATIONS pH= E/R diff --git a/3876/CH14/EX14.2/Ex14_2.sce b/3876/CH14/EX14.2/Ex14_2.sce index a17e2453e..fe03bfdf1 100644 --- a/3876/CH14/EX14.2/Ex14_2.sce +++ b/3876/CH14/EX14.2/Ex14_2.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 14 Determination of Hydroniumion Concentrations clc; clear; //Initialisation of Variables -e= 0.266 //v -R= 0.0592 +e= 0.266 //potential in voltage +R= 0.0592 //constant //CALCULATIONS pH= e/R diff --git a/3876/CH14/EX14.3/Ex14_3.sce b/3876/CH14/EX14.3/Ex14_3.sce index 37eeefda7..d3211506d 100644 --- a/3876/CH14/EX14.3/Ex14_3.sce +++ b/3876/CH14/EX14.3/Ex14_3.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 14 Determination of Hydroniumion Concentrations clc; clear; //Initialisation of Variables -e= 0.323 //v -R= 0.0592 +e= 0.323 //potential in voltage +R= 0.0592 //constant c= 0.001 //molar //CALCULATIONS diff --git a/3876/CH14/EX14.4/Ex14_4.sce b/3876/CH14/EX14.4/Ex14_4.sce index e327efecd..b8904d556 100644 --- a/3876/CH14/EX14.4/Ex14_4.sce +++ b/3876/CH14/EX14.4/Ex14_4.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 14 Determination of Hydroniumion Concentrations clc; clear; //Initialisation of Variables -E= 0.527 //v -T= 25 //C -R= 0.0592 -e= -0.246 //v +E= 0.527 //potential in v +T= 25 //temperature in Celsius +R= 0.0592 //constant +e= -0.246 //potential in v //CALCULATIONS pH= -(-E-e)/R diff --git a/3876/CH14/EX14.5/Ex14_5.sce b/3876/CH14/EX14.5/Ex14_5.sce index 48e08de47..381a7283c 100644 --- a/3876/CH14/EX14.5/Ex14_5.sce +++ b/3876/CH14/EX14.5/Ex14_5.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 14 Determination of Hydroniumion Concentrations clc; clear; //Initialisation of Variables -E= 0.034 //v -E1= -0.280 //v -E2= -0.699 //v -E3= 0.0592 +E= 0.034 //potential in v +E1= -0.280 //potential in v +E2= -0.699 //potential in v +E3= 0.0592 //constant //CALCULATIONS pH= (E1-E-E2)/E3 diff --git a/3876/CH16/EX16.1/Ex16_1.sce b/3876/CH16/EX16.1/Ex16_1.sce index 7672f8477..3e6c6f6b7 100644 --- a/3876/CH16/EX16.1/Ex16_1.sce +++ b/3876/CH16/EX16.1/Ex16_1.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 16 Oxidation Reduction Potentials clc; diff --git a/3876/CH16/EX16.2/Ex16_2.sce b/3876/CH16/EX16.2/Ex16_2.sce index c26668a11..d15a3cc71 100644 --- a/3876/CH16/EX16.2/Ex16_2.sce +++ b/3876/CH16/EX16.2/Ex16_2.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 16 Oxidation Reduction Potentials clc; diff --git a/3876/CH16/EX16.3/Ex16_3.sce b/3876/CH16/EX16.3/Ex16_3.sce index 3198503b3..171175a3f 100644 --- a/3876/CH16/EX16.3/Ex16_3.sce +++ b/3876/CH16/EX16.3/Ex16_3.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 16 Oxidation Reduction Potentials clc; diff --git a/3876/CH17/EX17.1/Ex17_1.sce b/3876/CH17/EX17.1/Ex17_1.sce index 2af9bef71..5115b6d14 100644 --- a/3876/CH17/EX17.1/Ex17_1.sce +++ b/3876/CH17/EX17.1/Ex17_1.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 17 Speed of Reaction Catalysis clc; diff --git a/3876/CH17/EX17.2/Ex17_2.sce b/3876/CH17/EX17.2/Ex17_2.sce index 7a18e6893..c865f1ed0 100644 --- a/3876/CH17/EX17.2/Ex17_2.sce +++ b/3876/CH17/EX17.2/Ex17_2.sce @@ -1,17 +1,20 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 17 Speed of Reaction Catalysis +// Example 17.3 in textbook clc; clear; //Initialisation of Variables -t= 10 //min -c= 0.01 //molar -c1= 0.00464 //molar +t= 10 //time in min +a0= 0.01 //concentration in molar +a= 0.00464 //concentration of base found in molar //CALCULATIONS -k= (c-c1)/(c*c1*t) -T= 1/(k*0.01) +k= (a0-a)/(a0*a*t) +t_half= 1/(k*0.01) //RESULTS -mprintf("Velocity constant= %.1f min^-1",k) -mprintf("\nHalf-time period= %.1f min",T) +mprintf("Velocity constant= %.2f min^-1",k) +mprintf("\nHalf-time period= %.1f min",t_half) diff --git a/3876/CH2/EX2.1/Ex2_1.sce b/3876/CH2/EX2.1/Ex2_1.sce index 8f04df680..c6a2075d5 100644 --- a/3876/CH2/EX2.1/Ex2_1.sce +++ b/3876/CH2/EX2.1/Ex2_1.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -P= 730 //mm -V= 20 //litres -T= -20 //C -P1= 760 //mm -T1= 0 //C +P= 730 //pressure in mm +V= 20 //volume in litres +T= -20 //temperature in Celsius +P1= 760 //pressure in mm +T1= 0 //temperature in Celsius //CALCULATIONS V1= P*V*(273+T1)/((273+T)*760) diff --git a/3876/CH2/EX2.10/Ex2_10.sce b/3876/CH2/EX2.10/Ex2_10.sce index d3dcc972f..b0f86603a 100644 --- a/3876/CH2/EX2.10/Ex2_10.sce +++ b/3876/CH2/EX2.10/Ex2_10.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases @@ -5,12 +7,12 @@ clc; clear; //Initialisation of Variables -V= 0.5 //lit -T= 50 //C -n= 1 //mole -R= 0.0821 //lit atm mole^-1 -a= 4.28*10**-2 //litres mole^-1 -b= 3.6 //arm mole^-2 lit^2 +V= 0.5 //volume in litres +T= 50 //temperature in Celsius +n= 1 //no of moles +R= 0.0821 //gas constant in lit atm mole^-1 +a= 4.28*10**-2 //Van der Waals equation a in litres mole^-1 +b= 3.6 //Van der Waals equation b in arm mole^-2 lit^2 //CALCULATIONS P= n*R*(273+T)/V diff --git a/3876/CH2/EX2.2/Ex2_2.sce b/3876/CH2/EX2.2/Ex2_2.sce index 20e95f7f2..20e68fab9 100644 --- a/3876/CH2/EX2.2/Ex2_2.sce +++ b/3876/CH2/EX2.2/Ex2_2.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -N= 6*10**23 //molcules -R= 0.0821 //lit atm mole^-1 -V= 20 //lit -P= 730 //mm of Hg -T= -20 //C +N= 6.02*10**23 //Avogadro constant for molecules +R= 0.0821 //gas constant in lit atm mole^-1 +V= 20 //volume in lit +P= 730 //pressure in mm of Hg +T= -20 //temperature in Celsius //CALCULATIONS M= N*P*V/(760*R*(273+T)) diff --git a/3876/CH2/EX2.3/Ex2_3.sce b/3876/CH2/EX2.3/Ex2_3.sce index f5937d4ea..5d7bcfb2e 100644 --- a/3876/CH2/EX2.3/Ex2_3.sce +++ b/3876/CH2/EX2.3/Ex2_3.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -P= 100 //cm -m= 2*10**20 //molecules -N= 6*10**23 -R= 0.0821 //lit atm mole^-1 -T= 27 //C +P= 100 //pressure in cm +m= 2*10**20 //molecules of nitrogen +N= 6*10**23 //Avogadro constant for molecules +R= 0.0821 //gas constant in lit atm mole^-1 +T= 27 //temperature in Celsius //CALCULATIONS V= m*R*(T+273)*760*100/(N*P) diff --git a/3876/CH2/EX2.4/Ex2_4.sce b/3876/CH2/EX2.4/Ex2_4.sce index 9032f3e43..7367d8040 100644 --- a/3876/CH2/EX2.4/Ex2_4.sce +++ b/3876/CH2/EX2.4/Ex2_4.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -P= 752 //mm -V= 0.2 //lit -T= 21 //C -R= 0.0821 //lit atm mole^-1 -m= 0.980 //gms +P= 752 //pressure in mm +V= 0.2 //volume in litres +T= 21 //temperature in Celsius +R= 0.0821 //gas constant in lit atm mole^-1 +m= 0.980 //chloroform in gms //CALCULATIONS M= m*R*(T+273)*760/(V*P) diff --git a/3876/CH2/EX2.5/Ex2_5.sce b/3876/CH2/EX2.5/Ex2_5.sce index bdb622f8a..c9e29cbfb 100644 --- a/3876/CH2/EX2.5/Ex2_5.sce +++ b/3876/CH2/EX2.5/Ex2_5.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases @@ -37,4 +39,7 @@ mprintf("\nPO2=%.3f atm",pO2) mprintf("\nPH2=%.3f atm",pH2) mprintf("\n The total pressure is: %.3f atm",Tp) mprintf("\n The total number of moles is: %.2f moles",Tm) -mprintf("\nTotal pressure multiplied by mole fraction: %.3f",Tpc) +mprintf("\nTotal pressure multiplied by mole fraction: %.3f atm",Tpc) + +//The difference in the solution compared to textbook is due to round off error: +//PH2 is being taken as 0.498 in the textbook whereas it is being calculated as 0.497 in the code diff --git a/3876/CH2/EX2.6/Ex2_6.sce b/3876/CH2/EX2.6/Ex2_6.sce index dbb429129..26cd90e57 100644 --- a/3876/CH2/EX2.6/Ex2_6.sce +++ b/3876/CH2/EX2.6/Ex2_6.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -P= 23.8 //mm -V= 0.5 //lit -R= 0.0821 //lit atm mole^-1 -T= 25 //C +P= 23.8 //pressure in mm +V= 0.5 //volume in litres +R= 0.0821 //gas constant in lit atm mole^-1 +T= 25 //temperature in Celsius //CALCULATIONS P1= 760-P diff --git a/3876/CH2/EX2.7/Ex2_7.sce b/3876/CH2/EX2.7/Ex2_7.sce index 0869d0c99..fb9355a81 100644 --- a/3876/CH2/EX2.7/Ex2_7.sce +++ b/3876/CH2/EX2.7/Ex2_7.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -t= 20 //min -t1= 19.4 //min -M= 32 //gms +t= 20 //time for diffusion in min +t1= 19.4 //time for diffusion in min +M= 32 //weight in gms //CALCULATIONS x= M*t1**2/t**2 diff --git a/3876/CH2/EX2.8/Ex2_8.sce b/3876/CH2/EX2.8/Ex2_8.sce index c3f4eddd1..658a26a4c 100644 --- a/3876/CH2/EX2.8/Ex2_8.sce +++ b/3876/CH2/EX2.8/Ex2_8.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -R= 8.31*10**7 //ergs mole^-1 -T= 27 //C -M= 28 //gram per mole +R= 8.31*10**7 //universal gas constant in ergs mole^-1 +T= 27 //temperature in Celsius +M= 28 //weight in gram per mole //CALCULATIONS c= sqrt(3*R*(273+T)/M) diff --git a/3876/CH2/EX2.9/Ex2_9.sce b/3876/CH2/EX2.9/Ex2_9.sce index 0f432cac7..927bc6bac 100644 --- a/3876/CH2/EX2.9/Ex2_9.sce +++ b/3876/CH2/EX2.9/Ex2_9.sce @@ -1,15 +1,18 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 2 Gases clc; clear; //Initialisation of Variables -V= 5.16*10**14 //cm per sec -M2= 28 //gms -M1= 2.02 //gms +V= 5.16*10**4 //velocity in cm per sec +M2= 28 //weight in gms +M1= 2.02 //weight in gms //CALCULATIONS -c1= V*sqrt(M2/M1) +c1= sqrt(M2/M1) * V +c1=c1/10000 //cm per sec //RESULTS -mprintf("Velocity of hydrogen molecule = %.2e cm per sec",c1) +mprintf("Velocity of hydrogen molecule = %.1f*10^4 cm per sec",c1) diff --git a/3876/CH20/EX20.1/Ex20_1.sce b/3876/CH20/EX20.1/Ex20_1.sce index 60b6a72e8..78a2e7854 100644 --- a/3876/CH20/EX20.1/Ex20_1.sce +++ b/3876/CH20/EX20.1/Ex20_1.sce @@ -1,20 +1,24 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 20 Radiochemistry clc; clear; //Initialisation of Variables -t= 4.5*10**9 //years -t1= 1590 //years +U1_thalf= 4.5*10**9 //half-life period of Uranium 1 in years +Ra_thalf= 1590 //half-life period of Radium in years //CALCULATIONS -l= log10(2)/(t*0.4343) -l1= log10(2)/(t1*0.4343) -r= l1/l -r1= t/t1 +lambda_U1= log10(2)/(U1_thalf*0.4343) +lambda_Ra= log10(2)/(Ra_thalf*0.4343) +//solution from disintegration constants +r= lambda_Ra/lambda_U1 +//solution from half-life periods +r1= U1_thalf/Ra_thalf //RESULTS -mprintf("Disintegration constant= %.2e yr^-1",l) -mprintf("\nDisintegration constant= %.2e yr^-1",l1) -mprintf("\nRelative proportion= %.2e",r) -mprintf("\nRelative proportion= %.2e",r1) +mprintf("Disintegration constant for Uranium 1= %.2e yr^-1",lambda_U1) +mprintf("\nDisintegration constant for Radium= %.2e yr^-1",lambda_Ra) +mprintf("\nRelative proportion(from disintegration constants)= %.2e",r) +mprintf("\nRelative proportion(from half-life periods)= %.2e",r1) diff --git a/3876/CH3/EX3.1/Ex3_1.sce b/3876/CH3/EX3.1/Ex3_1.sce index 0605b9394..6aeebdc7e 100644 --- a/3876/CH3/EX3.1/Ex3_1.sce +++ b/3876/CH3/EX3.1/Ex3_1.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 3 Liquids diff --git a/3876/CH3/EX3.2/Ex3_2.sce b/3876/CH3/EX3.2/Ex3_2.sce index f1c13142c..280f33131 100644 --- a/3876/CH3/EX3.2/Ex3_2.sce +++ b/3876/CH3/EX3.2/Ex3_2.sce @@ -1,16 +1,18 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 3 Liquids clc; clear; //Initialisation of Variables -d= 0.789 //gram per cc -r= 0.010 //cm -h= 5.76 //cm -g= 980.7 // cm /sec^2 +d= 0.789 //density in gram per cc +r= 0.010 //radius in cm +h= 5.76 //height in cm +g= 980.7 //acceleration in cm /sec^2 //Calculations -R= d*h*r*g/2 +Gamma= d*h*r*g/2 //Results -mprintf("Surface Tension = %.1f dynes per cm",R); +mprintf("Surface Tension = %.1f dynes per cm",Gamma); diff --git a/3876/CH3/EX3.3/Ex3_3.sce b/3876/CH3/EX3.3/Ex3_3.sce index cef2edbee..0fd2d587f 100644 --- a/3876/CH3/EX3.3/Ex3_3.sce +++ b/3876/CH3/EX3.3/Ex3_3.sce @@ -1,17 +1,19 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 3 Liquids clc; clear; //Initialisation of Variables -W= 0.220 //gms -g= 980.7 //cm per sec62 -f= 0.98 -l= 4 //cm +W= 0.220 //weight in gms +g= 980.7 //acceleration in cm per sec62 +f= 0.98 //correction factor +l= 4 //circumference in cm //Calculations T= W*g/(2*l) -Tc= T*f +Tc= ceil(T)*f //Results mprintf("Apparent Surface Tension = %.1f dynes per cm",T); diff --git a/3876/CH3/EX3.4/Ex3_4.sce b/3876/CH3/EX3.4/Ex3_4.sce index fc11da87a..af0aa0a17 100644 --- a/3876/CH3/EX3.4/Ex3_4.sce +++ b/3876/CH3/EX3.4/Ex3_4.sce @@ -1,17 +1,21 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 3 Liquids clc; clear; //Initialisation of Variables -n2= 10.05*10**-3 //poise -d1= 0.879 //gms cm^-3 -t= 88 //sec -d2= 1 //gms cm^-3 -t1= 120 //sec +n2= 10.05*10**-3 //absolute viscosity of water in poise +d1= 0.879 //density in gms cm^-3 +t= 88 //time of flow in sec +d2= 1 //density in gms cm^-3 +t1= 120 //time of flow in sec //Calculations n1= d1*t/(d2*t1) //Results mprintf("Relative Viscosity= %.3f",n1); + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH4/EX4.1/Ex4_1.sce b/3876/CH4/EX4.1/Ex4_1.sce index 63fa5d075..f31705560 100644 --- a/3876/CH4/EX4.1/Ex4_1.sce +++ b/3876/CH4/EX4.1/Ex4_1.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 4 Solutions Nonelectrolytes clc; clear; //Initialisation of Variables -m= 164.2 //gms -M= 60 //gms -V= 0.8 //lit -d= 1.026 //g/cc -mw= 18.02 //gms +m= 164.2 //weight in gms +M= 60 //weight in gms +V= 0.8 //volume in litres +d= 1.026 //density in g/cc +mw= 18.02 //weight in gms //CALCULATIONS M1= m/M diff --git a/3876/CH4/EX4.2/Ex4_2.sce b/3876/CH4/EX4.2/Ex4_2.sce index 49b8d08bd..b7f744aed 100644 --- a/3876/CH4/EX4.2/Ex4_2.sce +++ b/3876/CH4/EX4.2/Ex4_2.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 4 Solutions Nonelectrolytes @@ -5,11 +7,11 @@ clc; clear; //Initialisation of Variables -m= 0.0346 //gms -V= 800 //ml -P= 742 //mm -M= 32 //gms -p= 400 //mm +m= 0.0346 //weight in gms +V= 800 //volume in ml +P= 742 //pressure in mm +M= 32 //weight in gms +p= 400 //pressure in mm //CALCULATIONS c= m*1000/V @@ -22,7 +24,7 @@ c1= k*p mprintf("Part (a)") mprintf("\nConcentration of oxygen= %.4f gram per litre",c) mprintf("\nPart (b)") -mprintf("\nMoles dissolved = %.4f moles",g) +mprintf("\nMoles dissolved = %.5f moles",g) mprintf("\nPart (c)") mprintf("\nBunsen absorption = %.4f litre",K) mprintf("\nPart (d)") @@ -30,3 +32,5 @@ mprintf("\nGrams of oxygen dissolved = %.4f gram per litre",c1) mprintf("\nHenry law can be written ") cp=c*p/P mprintf("%.4f gram per liter",cp) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH4/EX4.3/Ex4_3.sce b/3876/CH4/EX4.3/Ex4_3.sce index 7b72ce7e2..cac6823a7 100644 --- a/3876/CH4/EX4.3/Ex4_3.sce +++ b/3876/CH4/EX4.3/Ex4_3.sce @@ -1,15 +1,17 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 4 Solutions Nonelectrolytes clc; clear; //Initialisation of Variables -mn= 0.0134 //gms -mo= 0.0261 //gms -mh= 0.0081 //gms -T= 30 //C -P= 3 //atm -r= 4/5 +mn= 0.0134 //weight in gms +mo= 0.0261 //weight in gms +mh= 0.0081 //weight in gms +T= 30 //temperature in C +P= 3 //pressure in atm +r= 4/5 //ratio of nitrogen to oxygen //CALCULATIONS V= mn*(273+T)*1000/273 diff --git a/3876/CH4/EX4.4/Ex4_4.sce b/3876/CH4/EX4.4/Ex4_4.sce index d01d55177..922f535c8 100644 --- a/3876/CH4/EX4.4/Ex4_4.sce +++ b/3876/CH4/EX4.4/Ex4_4.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 4 Solutions Nonelectrolytes clc; clear; //Initialisation of Variables -p= 214 //mm -M= 112.5 //gms -m= 18 //gms -m1= 10 //gms +p= 214 //pressure in mm +M= 112.5 //weight in gms +m= 18 //weight in gms +m1= 10 //weight in gms //CALCULATIONS P= 760-p diff --git a/3876/CH4/EX4.5/Ex4_5.sce b/3876/CH4/EX4.5/Ex4_5.sce index 32c60bede..2ca1693e9 100644 --- a/3876/CH4/EX4.5/Ex4_5.sce +++ b/3876/CH4/EX4.5/Ex4_5.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 4 Solutions Nonelectrolytes @@ -5,10 +7,10 @@ clc; clear; //Initialisation of Variables -p = 17.4 //mm -m= 1000 //gms -M= 18 //gms -n= 2 //moles +p = 17.4 //pressure in mm +m= 1000 //weight in gms +M= 18 //weight in gms +n= 2 //no of moles //CALCULATIONS P= p*((m/M)/((m/M)+n)) diff --git a/3876/CH4/EX4.6/Ex4_6.sce b/3876/CH4/EX4.6/Ex4_6.sce index bf1809d48..08431346b 100644 --- a/3876/CH4/EX4.6/Ex4_6.sce +++ b/3876/CH4/EX4.6/Ex4_6.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 4 Solutions Nonelectrolytes clc; clear; //Initialisation of Variables -m= 92.13 //gms -M= 78.11 //gms -n= 1 //moles -p= 119.6 //mm -p1= 36.7 //mm +m= 92.13 //weight in gms +M= 78.11 //weight in gms +n= 1 //no of moles +p= 119.6 //pressure in mm +p1= 36.7 //pressure in mm //CALCULATIONS n1= m/M diff --git a/3876/CH5/EX5.1/Ex5_1.sce b/3876/CH5/EX5.1/Ex5_1.sce index b74f9ef17..2962f0b6d 100644 --- a/3876/CH5/EX5.1/Ex5_1.sce +++ b/3876/CH5/EX5.1/Ex5_1.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 5 Solutions Osmotic Pressure clc; clear; //Initialisation of Variables -T= 20 //C -R= 0.082 //li-atm per mole per degree -V= 2 //lit -m= 6 //gms -M= 60 //gms +T= 20 ////temperature in Celsius +R= 0.082 //gas constant in li-atm per mole per degree +V= 2 //volume in lit +m= 6 //weight in gms +M= 60 //weight in gms //CALCULATIONS P= m*R*(273+T)/(M*V) diff --git a/3876/CH5/EX5.2/Ex5_2.sce b/3876/CH5/EX5.2/Ex5_2.sce index 09a7e0cc4..344598d41 100644 --- a/3876/CH5/EX5.2/Ex5_2.sce +++ b/3876/CH5/EX5.2/Ex5_2.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 5 Solutions Osmotic Pressure clc; clear; //Initialisation of Variables -T= -0.2 //C -T1= 25 //C -T2= 1.86 //C -R= 0.082 //li-atm per mole per degree +T= -0.2 //temperature in Celsius +T1= 25 //temperature in Celsius +T2= 1.86 //temperature in Celsius +R= 0.082 //gas constant li-atm per mole per degree //CALCULATIONS P= -T*R*(T1+273)/T2 diff --git a/3876/CH6/EX6.1/Ex6_1.sce b/3876/CH6/EX6.1/Ex6_1.sce index 4d95d2f33..9b6f2a86c 100644 --- a/3876/CH6/EX6.1/Ex6_1.sce +++ b/3876/CH6/EX6.1/Ex6_1.sce @@ -1,18 +1,22 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 6 Solutions of Electrolytes clc; clear; //Initialisation of Variables -T= 25 //C -R= 0.0821 //li-atm per mole per degree -M= 0.5 //m -n= 2 -m= 0.680 -V= 1 //lit +T= 25 //temperature in Celsius +R= 0.0821 //gas constant li-atm per mole per degree +M= 0.5 //molality of solution +n= 2 //for total effective concentration +m= 0.680 //effective concentration +V= 1 //volume in litres //CALCULATIONS P= R*(273+T)*M*n*m/V //RESULTS mprintf("Osmotic pressure= %.2f atm",P) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH6/EX6.2/Ex6_2.sce b/3876/CH6/EX6.2/Ex6_2.sce index 6afd6ddf8..08f25875f 100644 --- a/3876/CH6/EX6.2/Ex6_2.sce +++ b/3876/CH6/EX6.2/Ex6_2.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 6 Solutions of Electrolytes @@ -5,13 +7,13 @@ clc; clear; //Initialisation of Variables -Na=0.001 //molar -NaCl= 0.001 //molar -BaCl= 0.002 //molar -Cl= 0.004 //molar -n= 1 //moles -n1= 2 //moles -v= 0.509 +Na=0.001 //solution molarity in Na +NaCl= 0.001 //solution molarity in NaCl +BaCl= 0.002 //solution molarity in BaCl +Cl= 0.004 //solution molarity in Cl +n= 1 //no of moles +n1= 2 //no of moles +v= 0.509 //given //CALCULATIONS Is= 0.5*(Na*n**2+NaCl*n**2+Cl*n**2+BaCl*n1**2) diff --git a/3876/CH7/EX7.1/Ex7_1.sce b/3876/CH7/EX7.1/Ex7_1.sce index c0e18cf4c..1e87bf7a4 100644 --- a/3876/CH7/EX7.1/Ex7_1.sce +++ b/3876/CH7/EX7.1/Ex7_1.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 7 Conductivity clc; clear; //Initialisation of Variables -R= 10 //ohms -V= 5 //v -t= 20 //min +R= 10 //resistance in ohms +V= 5 //potential in v +t= 20 //time in min //CALCULATIONS I= V/R diff --git a/3876/CH7/EX7.2/Ex7_2.sce b/3876/CH7/EX7.2/Ex7_2.sce index 87f1e545d..5394beff0 100644 --- a/3876/CH7/EX7.2/Ex7_2.sce +++ b/3876/CH7/EX7.2/Ex7_2.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 7 Conductivity @@ -5,16 +7,16 @@ clc; clear; //Initialisation of Variables -I= 50 //amp -t= 1 //hr -F= 96500 //amp-sec -mh= 1.01 //gms -mc= 35.46 //gms -ms= 107.88 //gms -mb= 79.9 //gms -mf= 55.85 //gms -V= 11.2 //lit -e= 8 //v +I= 50 //current in amp +t= 1 //time in hr +F= 96500 //farads in amp-sec +mh= 1.01 //weight in gms +mc= 35.46 //weight in gms +ms= 107.88 //weight in gms +mb= 79.9 //weight in gms +mf= 55.85 //weight in gms +V= 11.2 //volume in litres +e= 8 //potential in v //CALCULATIONS N= I*t*60*60/F @@ -36,3 +38,5 @@ mprintf("\nQuantity of bromine produced= %.2f grams",Mb) mprintf("\nQuantity of ferrous ion produced= %.2f grams",Mf) mprintf("\nVolume occupied by gases= %.2f lit",v) mprintf("\nEnergy expenditure= %.0f joules or %.2f kilowatt-hour",E,Ee) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH7/EX7.3/Ex7_3.sce b/3876/CH7/EX7.3/Ex7_3.sce index acb9ba301..836255647 100644 --- a/3876/CH7/EX7.3/Ex7_3.sce +++ b/3876/CH7/EX7.3/Ex7_3.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 7 Conductivity @@ -5,12 +7,12 @@ clc; clear; //Initialisation of Variables -i= 20 //amp -t= 50 ///min -F= 96500 //coloumb -we= 8 //gms -Mo= 32 ///gms -M= 27 //gms +i= 20 //current in amp +t= 50 ///time in min +F= 96500 //chage in coloumb +we= 8 //volume in litres +Mo= 32 //volume in litres +M= 27 //volume in litres n= 3 //CALCULATIONS diff --git a/3876/CH7/EX7.4/Ex7_4.sce b/3876/CH7/EX7.4/Ex7_4.sce index 6e81d9e45..9febc7d68 100644 --- a/3876/CH7/EX7.4/Ex7_4.sce +++ b/3876/CH7/EX7.4/Ex7_4.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 7 Conductivity clc; clear; //Initialisation of Variables -L= 0.025 //ohms -k= 0.0112 //ohms +L= 0.025 //resistance in ohms +k= 0.0112 //resistance in ohms //CALCULATIONS C= k/L diff --git a/3876/CH7/EX7.5/Ex7_5.sce b/3876/CH7/EX7.5/Ex7_5.sce index 403e63afb..a6e81366e 100644 --- a/3876/CH7/EX7.5/Ex7_5.sce +++ b/3876/CH7/EX7.5/Ex7_5.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 7 Conductivity @@ -5,11 +7,11 @@ clc; clear; //Initialisation of Variables -m= 0.01 //M -CB= 235 //mm -R= 426.3 //ohms -M= 265 -C= 0.448 +m= 0.01 //Molarity +CB= 235 //pressure in mm +R= 426.3 //resistance in ohms +M= 265 +C= 0.448 //cell constant //CALCULATIONS k= M*C/(R*CB) diff --git a/3876/CH8/EX8.1/Ex8_1.sce b/3876/CH8/EX8.1/Ex8_1.sce index 513ac80ca..c9e0753d8 100644 --- a/3876/CH8/EX8.1/Ex8_1.sce +++ b/3876/CH8/EX8.1/Ex8_1.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 8 Chemical Equlibrium clc; clear; //Initialisation of Variables -x= 3.33 -n= 5 //moles +x= 3.33 //no of moles of ester and water +n= 5 //no of moles //CALCULATIONS N= x**2/(n-x)**2 diff --git a/3876/CH8/EX8.2/Ex8_2.sce b/3876/CH8/EX8.2/Ex8_2.sce index 49168b979..b7aafd9d2 100644 --- a/3876/CH8/EX8.2/Ex8_2.sce +++ b/3876/CH8/EX8.2/Ex8_2.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 8 Chemical Equlibrium clc; clear; //Initialisation of Variables -n= 1 //mole -x= 3 -y= 4 +n= 1 //no of moles +x= 3 //no of moles +y= 4 //no of moles //CALCULATIONS r= x**2/n**2 diff --git a/3876/CH8/EX8.3/Ex8_3.sce b/3876/CH8/EX8.3/Ex8_3.sce index 150ddf510..7453e1c94 100644 --- a/3876/CH8/EX8.3/Ex8_3.sce +++ b/3876/CH8/EX8.3/Ex8_3.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 8 Chemical Equlibrium clc; clear; //Initialisation of Variables -k= 1.1*10**-5 -V= 600 //ml -n= 0.4 //mole +k= 1.1*10**-5 //dissociation constant +V= 600 //volume in ml +n= 0.4 //no of mole //CALCULATIONS m= n*1000/V diff --git a/3876/CH8/EX8.4/Ex8_4.sce b/3876/CH8/EX8.4/Ex8_4.sce index 8d0874e4c..0386ca125 100644 --- a/3876/CH8/EX8.4/Ex8_4.sce +++ b/3876/CH8/EX8.4/Ex8_4.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 8 Chemical Equlibrium @@ -5,9 +7,9 @@ clc; clear; //Initialisation of Variables -pno2= 0.31 //atm -pn2o2= 0.69 //atm -p= 10 //atm +pno2= 0.31 //pressure in atm +pn2o2= 0.69 //pressure in atm +p= 10 //pressure in atm //CALCULATIONS Kp= pno2**2/pn2o2 diff --git a/3876/CH8/EX8.5/Ex8_5.sce b/3876/CH8/EX8.5/Ex8_5.sce index d740feebe..539f942c9 100644 --- a/3876/CH8/EX8.5/Ex8_5.sce +++ b/3876/CH8/EX8.5/Ex8_5.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 8 Chemical Equlibrium @@ -5,11 +7,11 @@ clc; clear; //Initialisation of Variables -T= 65 //C +T= 65 //temperature in Celsius R= 1.98 //cal/mol K -kp= 2.8 -kp1= 0.141 -T1= 25 //C +kp= 2.8 //at 65 degrees clesius +kp1= 0.141 //at 25 degrees clesius +T1= 25 //temperature in Celsius //CALCULATIONS H= log10(kp/kp1)*2.303*R*(273+T1)*(273+T)/(T-T1) diff --git a/3876/CH9/EX9.1/Ex9_1.sce b/3876/CH9/EX9.1/Ex9_1.sce index e2fb10cb8..a9d607ae5 100644 --- a/3876/CH9/EX9.1/Ex9_1.sce +++ b/3876/CH9/EX9.1/Ex9_1.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 0.1 //M -p= 1.34 //per cent -T= 25 //C +c= 0.1 //Molarity of solution +p= 1.34 //per cent ionized +T= 25 //temperature in Celsius //CALCULATIONS C1= c*p/100 diff --git a/3876/CH9/EX9.10/Ex9_10.sce b/3876/CH9/EX9.10/Ex9_10.sce index 205bf5839..563817042 100644 --- a/3876/CH9/EX9.10/Ex9_10.sce +++ b/3876/CH9/EX9.10/Ex9_10.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 0.1 //M -Kb= 1.8*10**-5 -Kw= 10**-14 +c= 0.1 //Molarity of solution +Kb= 1.8*10**-5 //given +Kw= 10**-14 //from hydrolysis constant expression //CALCULATIONS C= sqrt(c*Kw/Kb) diff --git a/3876/CH9/EX9.11/Ex9_11.sce b/3876/CH9/EX9.11/Ex9_11.sce index be2d7804b..d23364e8d 100644 --- a/3876/CH9/EX9.11/Ex9_11.sce +++ b/3876/CH9/EX9.11/Ex9_11.sce @@ -1,16 +1,18 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 0.050 //M -Kb= 1.8*10**-5 -T= 25 //C -Kw= 10**-14 +c= 0.050 //Molarity of solution +Kb= 1.8*10**-5 //given +T= 25 //temperature in Celsius +Kw= 10**-14 //from hydrolysis constant expression //CALCULATIONS C= sqrt(Kw*c/Kb) //RESULTS -mprintf("Concentration of hydronium ion = %.2e mol per litre",C) +mprintf("Concentration of hydronium ion = %.1e mol per litre",C) diff --git a/3876/CH9/EX9.12/Ex9_12.sce b/3876/CH9/EX9.12/Ex9_12.sce index eebe72080..338bbd1e7 100644 --- a/3876/CH9/EX9.12/Ex9_12.sce +++ b/3876/CH9/EX9.12/Ex9_12.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -kw= 10**-14 -Ka= 1.8*10**-5 +kw= 10**-14 //from hydrolysis constant expression +Ka= 1.8*10**-5 //given //CALCULATIONS Kb= Ka diff --git a/3876/CH9/EX9.13/Ex9_13.sce b/3876/CH9/EX9.13/Ex9_13.sce index 7eb01ba6a..3217edf0e 100644 --- a/3876/CH9/EX9.13/Ex9_13.sce +++ b/3876/CH9/EX9.13/Ex9_13.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -k1= 3.5*10**-7 -k2= 4.4*10**-11 +k1= 3.5*10**-7 //given +k2= 4.4*10**-11 //given //CALCULATIONS c= sqrt(k1*k2) diff --git a/3876/CH9/EX9.14/Ex9_14.sce b/3876/CH9/EX9.14/Ex9_14.sce index fadadb780..c45653aef 100644 --- a/3876/CH9/EX9.14/Ex9_14.sce +++ b/3876/CH9/EX9.14/Ex9_14.sce @@ -1,10 +1,12 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 1.92*10**-5 //mole per litre +c= 1.92*10**-5 //concentration mole per litre //CALCULATIONS pH= -log10(c) diff --git a/3876/CH9/EX9.15/Ex9_15.sce b/3876/CH9/EX9.15/Ex9_15.sce index 3c8c017b4..13f72f114 100644 --- a/3876/CH9/EX9.15/Ex9_15.sce +++ b/3876/CH9/EX9.15/Ex9_15.sce @@ -1,10 +1,12 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -pH= 7.36 +pH= 7.36 //given //CALCULATIONS C= 10**-pH diff --git a/3876/CH9/EX9.16/Ex9_16.sce b/3876/CH9/EX9.16/Ex9_16.sce index ef63ef67d..7f1bbb1d1 100644 --- a/3876/CH9/EX9.16/Ex9_16.sce +++ b/3876/CH9/EX9.16/Ex9_16.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 1 //M -Kb= 5.3*10**-5 +c= 1 //Molarity of solution +Kb= 5.3*10**-5 //given pKw= 14 //CALCULATIONS diff --git a/3876/CH9/EX9.17/Ex9_17.sce b/3876/CH9/EX9.17/Ex9_17.sce index c8ea4479e..a937ae79c 100644 --- a/3876/CH9/EX9.17/Ex9_17.sce +++ b/3876/CH9/EX9.17/Ex9_17.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 0.1 //M -Ka= 6.3*10**-5 +c= 0.1 //Molarity of solution +Ka= 6.3*10**-5 //given pKw= 14 //CALCULATIONS pH= -0.5*log10(Ka)+0.5*pKw+0.5*log10(c) diff --git a/3876/CH9/EX9.18/Ex9_18.sce b/3876/CH9/EX9.18/Ex9_18.sce index ad0d0ade0..65d4cdf75 100644 --- a/3876/CH9/EX9.18/Ex9_18.sce +++ b/3876/CH9/EX9.18/Ex9_18.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -Ka= 1.8*10**-5 -a= 0.1 //molar +Ka= 1.8*10**-5 //given +a= 0.1 //concentration in mole per liter //CALCULATIONS pH= -log10(Ka) diff --git a/3876/CH9/EX9.19/Ex9_19.sce b/3876/CH9/EX9.19/Ex9_19.sce index f27fc7b75..484dd9179 100644 --- a/3876/CH9/EX9.19/Ex9_19.sce +++ b/3876/CH9/EX9.19/Ex9_19.sce @@ -1,14 +1,16 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -pH= 7.10 -pH1= 7.21 +pH= 7.10 //given +pKa= 7.21 //given //CALCULATIONS -r= 10**(pH-pH1) +r= 10**(pH-pKa) //RESULTS -mprintf("Ratio of salt to acid = %.2f",r) +mprintf("Ratio of salt to acid = %.3f",r) diff --git a/3876/CH9/EX9.2/Ex9_2.sce b/3876/CH9/EX9.2/Ex9_2.sce index 66f93c345..2a58c01f4 100644 --- a/3876/CH9/EX9.2/Ex9_2.sce +++ b/3876/CH9/EX9.2/Ex9_2.sce @@ -1,15 +1,17 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -k= 1.8*10**-5 -C= 0.2 //M -T= 25 //C +Ka= 1.8*10**-5 //ionization constant +C= 0.2 //Molarity of solution +T= 25 //temperature in Celsius //CALCULATIONS -x= sqrt(C*k) +x= sqrt(C*Ka) a= x/C C1= a*C diff --git a/3876/CH9/EX9.3/Ex9_3.sce b/3876/CH9/EX9.3/Ex9_3.sce index 6e0cefb21..d9aaf3cf1 100644 --- a/3876/CH9/EX9.3/Ex9_3.sce +++ b/3876/CH9/EX9.3/Ex9_3.sce @@ -1,13 +1,15 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -K= 1.8*10**-5 -V= 500 //ml -c1= 0.3 //M -c2= 0.2 //M +K= 1.8*10**-5 //ionization constant +V= 500 //volume in ml +c1= 0.3 //Molarity of solution +c2= 0.2 //Molarity of solution //CALCULATIONS x= V*c1/1000 diff --git a/3876/CH9/EX9.4/Ex9_4.sce b/3876/CH9/EX9.4/Ex9_4.sce index 8a8068362..9006187ff 100644 --- a/3876/CH9/EX9.4/Ex9_4.sce +++ b/3876/CH9/EX9.4/Ex9_4.sce @@ -1,21 +1,23 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -K= 1.4*10**-5 -T= 25 //C -V= 200 //ml -m= 3.7 //gms -m1= 4.8 //gms -M= 74 //gms -M1= 96 //gms +Ka= 1.4*10**-5 +T= 25 //temperature in Celsius +V= 200 //volume in millilitres +m= 3.7 //weight in gms +m1= 4.8 //weight in gms +M= 74 //weight in gms +M1= 96 //weight in gms //CALCULATIONS x= m*1000/(V*M) y= m1*1000/(V*M1) -X= K*x/y +X= Ka*x/y //RESULTS mprintf("hydronium-ion concentration = %.2e mole per litre",X) diff --git a/3876/CH9/EX9.5/Ex9_5.sce b/3876/CH9/EX9.5/Ex9_5.sce index 2dec9f077..04d7b1576 100644 --- a/3876/CH9/EX9.5/Ex9_5.sce +++ b/3876/CH9/EX9.5/Ex9_5.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -c= 0.050 //M -Ksp= 4.3*10**-7 +c= 0.050 //Molarity of solution +Ksp= 4.3*10**-7 //using ionization expression //CALCULATIONS C= sqrt(Ksp*c) diff --git a/3876/CH9/EX9.6/Ex9_6.sce b/3876/CH9/EX9.6/Ex9_6.sce index aa6cb2d9e..aaaf9fbab 100644 --- a/3876/CH9/EX9.6/Ex9_6.sce +++ b/3876/CH9/EX9.6/Ex9_6.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -C= 0.050 //M -K= 2.4*10**-17 -c= 0.1 //M +C= 0.050 //Molarity of solution +K= 2.4*10**-17 //constant +c= 0.1 //Molarity of solution //CALCULATIONS c1= K*C/c**2 diff --git a/3876/CH9/EX9.7/Ex9_7.sce b/3876/CH9/EX9.7/Ex9_7.sce index c1d464999..e2cacbe72 100644 --- a/3876/CH9/EX9.7/Ex9_7.sce +++ b/3876/CH9/EX9.7/Ex9_7.sce @@ -1,11 +1,13 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -n= 1.31*10**-4 //mole -T= 25 //C +n= 1.31*10**-4 //mole of silver chromate +T= 25 //temperature in Celsius //CALCULATIONS N= 2*n diff --git a/3876/CH9/EX9.8/Ex9_8.sce b/3876/CH9/EX9.8/Ex9_8.sce index 479550272..a5174d146 100644 --- a/3876/CH9/EX9.8/Ex9_8.sce +++ b/3876/CH9/EX9.8/Ex9_8.sce @@ -1,12 +1,14 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action clc; clear; //Initialisation of Variables -Ksp= 1.4*10**-11 -V= 200 //ml -M= 24.3 ///gms +Ksp= 1.4*10**-11 //given +V= 200 //volume in ml +M= 24.3 //weight in gms //CALCULATIONS x= (Ksp/4)**(1/3) @@ -14,3 +16,5 @@ m= x*M*V/1000 //RESULTS mprintf("Grams of Mg+2 present = %.1e gms per mol",m) + +//The difference in the solution compared to textbook is due to round off error diff --git a/3876/CH9/EX9.9/Ex9_9.sce b/3876/CH9/EX9.9/Ex9_9.sce index 2cce2a7c9..741e82e27 100644 --- a/3876/CH9/EX9.9/Ex9_9.sce +++ b/3876/CH9/EX9.9/Ex9_9.sce @@ -1,3 +1,5 @@ +//Windows 10 +// Scilab 6.0.0 //Chapter 9 Ionic Equilibria and Buffer Action @@ -5,10 +7,10 @@ clc; clear; //Initialisation of Variables -c= 0.010 //M -Ksp= 1.56*10**-10 -M= 108 //gms -C= 10**-3 //M +c= 0.010 //Molarity of solution +Ksp= 1.56*10**-10 //given +M= 108 //weight in gms +C= 10**-3 //Molarity of solution //CALCULATIONS K= Ksp/C |