diff options
author | prashantsinalkar | 2019-03-05 12:22:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2019-03-05 12:22:19 +0530 |
commit | ceb2aae7af9263016f51c0a073a9233922e9ac3d (patch) | |
tree | 001752f9216e0a9d8648870f5769db9579e04c72 | |
parent | 78393cafce80433241bec45bc8edb39602c4dfc7 (diff) | |
download | Scilab-TBC-Uploads-1-ceb2aae7af9263016f51c0a073a9233922e9ac3d.tar.gz Scilab-TBC-Uploads-1-ceb2aae7af9263016f51c0a073a9233922e9ac3d.tar.bz2 Scilab-TBC-Uploads-1-ceb2aae7af9263016f51c0a073a9233922e9ac3d.zip |
updated the code for scilab on cloud[scilab 5.5.2]
-rwxr-xr-x | 905/CH8/EX8.3/8_3.sce | 86 |
1 files changed, 43 insertions, 43 deletions
diff --git a/905/CH8/EX8.3/8_3.sce b/905/CH8/EX8.3/8_3.sce index 63c1bbace..412c1ba2e 100755 --- a/905/CH8/EX8.3/8_3.sce +++ b/905/CH8/EX8.3/8_3.sce @@ -1,44 +1,44 @@ -clear;
-clc;
-
-// Illustration 8.2
-// Page: 482
-
-printf('Illustration 8.3 - Page: 482\n\n');
-
-// solution
-// A - water vapor B - air
-//*****Data*****
-T = 328; // [dry bulb temperature, K]
-P_total = 1; // [atm]
-H = 30; // [relative humidity, %]
-//*****//
-P_vapA = 15.73; // [vapor pressure of water, kPa]
-P_total = P_total*101.325; // [kPa]
-M_A = 18; // [gram/mole]
-M_B = 29; // [gram/mole]
-
-P_A = (H/100)*P_vapA;// [partial pressure of A,kPa]
-
-printf('Illustration 8.3 (a)\n\n');
-// At dew point partial pressure is equal to vapor pressure
-// Using Antonnie equation we can find dew point temperature
-
-printf("Dew point temperature is 304.5 K\n")
-
-// From equation 8.1
-Y_s = P_A/(P_total-P_A)*(M_A/M_B);
-printf("Absolute humidity of air-water mixture at 328 K is %f kg H2O/kg dry air\n\n",Y_s);
-
-printf('Illustration 8.3 (b)\n\n');
-
-//soluton (b)
-T_ref = 273; // [K]
-C_A = 1.884; // [kJ/kg.K]
-C_B = 1.005; // [kJ/kg.K]
-lambda = 2502.3; // [Latent heat of Vaporization at 273 K, kJ/kg]
-
-// From equation 8.3
-H_s = C_B*(T-T_ref) + Y_s*(C_A*(T-T_ref) + lambda);
-
+clear; +clc; + +// Illustration 8.3 +// Page: 482 + +printf('Illustration 8.3 - Page: 482\n\n'); + +// solution +// A - water vapor B - air +//*****Data***** +T = 328; // [dry bulb temperature, K] +P_total = 1; // [atm] +H = 30; // [relative humidity, %] +//*****// +P_vapA = 15.73; // [vapor pressure of water, kPa] +P_total = P_total*101.325; // [kPa] +M_A = 18; // [gram/mole] +M_B = 29; // [gram/mole] + +P_A = (H/100)*P_vapA;// [partial pressure of A,kPa] + +printf('Illustration 8.3 (a)\n\n'); +// At dew point partial pressure is equal to vapor pressure +// Using Antonnie equation we can find dew point temperature + +printf("Dew point temperature is 304.5 K\n") + +// From equation 8.1 +Y_s = P_A/(P_total-P_A)*(M_A/M_B); +printf("Absolute humidity of air-water mixture at 328 K is %f kg H2O/kg dry air\n\n",Y_s); + +printf('Illustration 8.3 (b)\n\n'); + +//soluton (b) +T_ref = 273; // [K] +C_A = 1.884; // [kJ/kg.K] +C_B = 1.005; // [kJ/kg.K] +lambda = 2502.3; // [Latent heat of Vaporization at 273 K, kJ/kg] + +// From equation 8.3 +H_s = C_B*(T-T_ref) + Y_s*(C_A*(T-T_ref) + lambda); + printf("Enthalpy per unit mass of dry air of a saturated mixture relative to 273 K is %f kJ/kg dry air\n",H_s);
\ No newline at end of file |