1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tutorial slides on Python.
%
% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
% Copyright (c) 2005-2009, Prabhu Ramachandran
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{split}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[]{Numerical Computing with Numpy \& Scipy}
\author[FOSSEE Team] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {11, October 2009}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\section{Advanced Numpy}
\begin{frame}[fragile]
\frametitle{Broadcasting}
\begin{lstlisting}
>>> a = arange(4)
>>> b = arange(5)
>>> a+b #Does this work?
>>> a+3
>>> c = array([3])
>>> a+c #Works!
>>> b+c #But how?
>>> a.shape, b.shape, c.shape
\end{lstlisting}
\begin{itemize}
\item Enter Broadcasting!
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Broadcasting}
\begin{columns}
\column{0.65\textwidth}
\hspace*{-1.5in}
\begin{lstlisting}
>>> a = arange(4)
>>> a+3
array([3, 4, 5, 6])
\end{lstlisting}
\column{0.35\textwidth}
\includegraphics[height=0.7in, interpolate=true]{data/broadcast_scalar}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{Broadcasting in 3D}
\begin{lstlisting}
>>> x = ones((3, 5, 1))
>>> y = ones(8)
>>> (x + y).shape
(3, 5, 8)
\end{lstlisting}
\begin{figure}
\begin{center}
\includegraphics[height=1.5in, interpolate=true]{data/array_3x5x8}
\end{center}
\end{figure}
\end{frame}
\begin{frame}[fragile]
\frametitle{Copies \& Views}
\vspace{-0.1in}
\begin{lstlisting}
>>> a = arange(1,9); a.shape=3,3
>>> b = a
>>> b is a
>>> b[0,0]=0; print a
>>> c = a.view()
>>> c is a
>>> c.base is a
>>> c.flags.owndata
>>> d = a.copy()
>>> d.base is a
>>> d.flags.owndata
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Copies \& Views}
\vspace{-0.1in}
\begin{lstlisting}
>>> b = a[0,1:3]
>>> c = a[0::2,0::2]
>>> a.flags.owndata
>>> b.flags.owndata
>>> b.base
>>> c.base is a
\end{lstlisting}
\begin{itemize}
\item Slicing and Striding just reference the same memory
\item They produce views of the data, not copies
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Copies contd \ldots}
\begin{lstlisting}
>>> a = arange(1, 10, 2)
>>> b = a[array([0,2,3])]
>>> b.flags.owndata
>>> abool=a>5
>>> c = a[abool]
>>> c.flags.owndata
\end{lstlisting}
\begin{itemize}
\item Indexing arrays or Boolean arrays produce copies
\end{itemize}
\inctime{15}
\end{frame}
\section{SciPy}
\subsection{Introduction}
\begin{frame}
{Intro to SciPy}
\begin{itemize}
\item \url{http://www.scipy.org}
\item Open source scientific libraries for Python
\item Based on NumPy
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{SciPy}
\begin{itemize}
\item Provides:
\begin{itemize}
\item Linear algebra
\item Numerical integration
\item Fourier transforms
\item Signal processing
\item Special functions
\item Statistics
\item Optimization
\item Image processing
\item ODE solvers
\end{itemize}
\item Uses LAPACK, QUADPACK, ODEPACK, FFTPACK etc. from netlib
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{SciPy - Functions \& Submodules}
\begin{itemize}
\item All \typ{numpy} functions are in \typ{scipy} namespace
\item Domain specific functions organized into subpackages
\item Subpackages need to be imported separately
\end{itemize}
\begin{lstlisting}
>>> from scipy import linalg
\end{lstlisting}
\end{frame}
\subsection{Linear Algebra}
\begin{frame}[fragile]
\frametitle{Linear Algebra}
\begin{lstlisting}
>>> import scipy as sp
>>> from scipy import linalg
>>> A = sp.array(sp.arange(1,10))
>>> A.shape = 3,3
>>> linalg.inv(A)
>>> linalg.det(A)
>>> linalg.norm(A)
>>> linalg.expm(A) #logm
>>> linalg.sinm(A) #cosm, tanm, ...
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Linear Algebra ...}
\begin{lstlisting}
>>> A = sp.array(sp.arange(1,10))
>>> A.shape = 3,3
>>> linalg.lu(A)
>>> linalg.eig(A)
>>> linalg.eigvals(A)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Solving Linear Equations}
\vspace{-0.2in}
\begin{align*}
3x + 2y - z & = 1 \\
2x - 2y + 4z & = -2 \\
-x + \frac{1}{2}y -z & = 0
\end{align*}
To Solve this,
\begin{lstlisting}
>>> A = sp.array([[3,2,-1],[2,-2,4]
,[-1,1/2,-1]])
>>> b = sp.array([1,-2,0])
>>> x = linalg.solve(A,b)
>>> Ax = sp.dot(A,x)
>>> sp.allclose(Ax, b)
\end{lstlisting}
\inctime{15}
\end{frame}
\subsection{Integration}
\begin{frame}[fragile]
\frametitle{Integrate}
\begin{itemize}
\item Integrating Functions given function object
\item Integrating Functions given fixed samples
\item Numerical integrators of ODE systems
\end{itemize}
Calculate the area under $(sin(x) + x^2)$ in the range $(0,1)$
\begin{lstlisting}
>>> def f(x):
return sin(x)+x**2
>>> integrate.quad(f, 0, 1)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Integrate \ldots}
Numerically solve ODEs\\
\begin{align*}
\frac{dx}{dt}&=-e^{-t}x^2\\
x&=2 \quad at \ t=0
\end{align*}
\begin{lstlisting}
>>> def dx_dt(x,t):
return -exp(-t)*x**2
>>> t = linspace(0,2,100)
>>> x = integrate.odeint(dx_dt, 2, t)
>>> plt.plot(x,t)
\end{lstlisting}
\inctime{10}
\end{frame}
\subsection{Interpolation}
\begin{frame}[fragile]
\frametitle{Interpolation}
\begin{lstlisting}
>>> from scipy import interpolate
>>> interpolate.interp1d?
>>> x = arange(0,2*pi,pi/4)
>>> y = sin(x)
>>> fl = interpolate.interp1d(
x,y,kind='linear')
>>> fc = interpolate.interp1d(
x,y,kind='cubic')
>>> fl(pi/3)
>>> fc(pi/3)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Interpolation - Splines}
Plot the Cubic Spline of $sin(x)$
\begin{lstlisting}
>>> tck = interpolate.splrep(x,y)
>>> xs = arange(0,2*pi,pi/50)
>>> ys = interpolate.splev(X,tck,der=0)
>>> plt.plot(x,y,'o',x,y,xs,ys)
>>> plt.show()
\end{lstlisting}
\inctime{10}
\end{frame}
\subsection{Signal Processing}
\begin{frame}[fragile]
\frametitle{Signal \& Image Processing}
\begin{itemize}
\item Convolution
\item Filtering
\item Filter design
\item IIR filter design
\item Linear Systems
\item LTI Representations
\item Window functions
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Signal \& Image Processing}
Applying a simple median filter
\begin{lstlisting}
>>> from scipy import signal, ndimage
>>> from scipy import lena
>>> A = lena().astype('float32')
>>> B = signal.medfilt2d(A)
>>> imshow(B)
\end{lstlisting}
Zooming an array - uses spline interpolation
\begin{lstlisting}
>>> b = ndimage.zoom(A,0.5)
>>> imshow(b)
>>> b = ndimage.zoom(A,2)
\end{lstlisting}
\inctime{5}
\end{frame}
\begin{frame}[fragile]
\frametitle{Problems}
The Van der Pol oscillator is a type of nonconservative oscillator with nonlinear damping. It evolves in time according to the second order differential equation:
\begin{equation*}
\frac{d^2x}{dt^2}+\mu(x^2-1)\frac{dx}{dt}+x= 0
\end{equation*}
Make a plot of $\frac{dx}{dt}$ vs. $x$.
\inctime{30}
\end{frame}
\begin{frame}{Summary}
\begin{itemize}
\item Advanced NumPy
\item SciPy
\begin{itemize}
\item Linear Algebra
\item Integration
\item Interpolation
\item Signal and Image processing
\end{itemize}
\end{itemize}
\end{frame}
\end{document}
- Numpy arrays (30 mins)
- Matrices
- random number generation.
- Image manipulation: jigsaw puzzle.
- Monte-carlo integration.
|