summaryrefslogtreecommitdiff
path: root/day1/session6.tex
blob: 6b02b9a228a38c9e06848362cc094a5d47d6b51f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages} 
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]

% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
  \usetheme{Warsaw}
  \useoutertheme{infolines}
  \setbeamercovered{transparent}
}

\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}

% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\usepackage{amsmath}

\definecolor{darkgreen}{rgb}{0,0.5,0}

\usepackage{listings}
\lstset{language=Python,
    basicstyle=\ttfamily\bfseries,
    commentstyle=\color{red}\itshape,
  stringstyle=\color{darkgreen},
  showstringspaces=false,
  keywordstyle=\color{blue}\bfseries}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar} 
      {#1}
 \end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}

\newcommand{\typ}[1]{\lstinline{#1}}

\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}}  }

%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
%    language=Python,
%    basicstyle=\small\ttfamily,
%    commentstyle=\ttfamily\color{blue},
%    stringstyle=\ttfamily\color{orange},
%    showstringspaces=false,
%    breaklines=true,
%    postbreak = \space\dots
% }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[ODEs \& Root Finding]{Python for Science and Engg:\\ODEs \& Finding Roots}

\author[FOSSEE] {FOSSEE}

\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}


%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
  \begin{frame}<beamer>
    \frametitle{Outline}
    \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

\AtBeginSection[]
{
  \begin{frame}<beamer>
    \frametitle{Outline}
    \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command: 
%\beamerdefaultoverlayspecification{<+->}

%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}

\begin{frame}
  \maketitle
\end{frame}

%% \begin{frame}
%%   \frametitle{Outline}
%%   \tableofcontents
%%   % You might wish to add the option [pausesections]
%% \end{frame}

\section{ODEs}

\begin{frame}[fragile]
\frametitle{ODE Integration}
We shall use the simple ODE of a simple pendulum. 
\begin{equation*}
\ddot{\theta} = -\frac{g}{L}sin(\theta)
\end{equation*}
\begin{itemize}
\item This equation can be written as a system of two first order ODEs
\end{itemize}
\begin{align}
\dot{\theta} &= \omega \\
\dot{\omega} &= -\frac{g}{L}sin(\theta) \\
 \text{At}\ t &= 0 : \nonumber \\
 \theta = \theta_0\quad & \&\quad  \omega = 0 \nonumber
\end{align}
\end{frame}

\begin{frame}[fragile]
\frametitle{Solving ODEs using SciPy}
\begin{itemize}
\item We use the \typ{odeint} function from scipy to do the integration
\item Define a function as below
\end{itemize}
\begin{lstlisting}
In []: def pend_int(unknown, t, p):
  ....     theta, omega = unknown
  ....     g, L = p
  ....     f=[omega, -(g/L)*sin(theta)]
  ....     return f
  ....
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{Solving ODEs using SciPy \ldots}
\begin{itemize}
\item \typ{t} is the time variable \\ 
\item \typ{p} has the constants \\
\item \typ{initial} has the initial values
\end{itemize}
\begin{lstlisting}
In []: t = linspace(0, 10, 101)
In []: p=(-9.81, 0.2)
In []: initial = [10*2*pi/360, 0]
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{Solving ODEs using SciPy \ldots}
\begin{small}
  \typ{In []: from scipy.integrate import odeint}
\end{small}
\begin{lstlisting}
In []: pend_sol = odeint(pend_int, 
                         initial,t, 
                         args=(p,))
\end{lstlisting}
\end{frame}

\section{Finding Roots}

\begin{frame}[fragile]
\frametitle{Roots of $f(x)=0$}
\begin{itemize}
\item Roots --- values of $x$ satisfying $f(x)=0$
\item $f(x)=0$ may have real or complex roots
\item Presently, let's look at real roots
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Initial Estimates}
\begin{itemize}
\item Find roots of $cosx-x^2$ in $(-\pi/2, \pi/2)$
\item How to get a rough initial estimate?
\end{itemize}
\begin{enumerate}
\item Check for change of signs of $f(x)$ in the given interval
\item A root lies in the interval where the sign change occurs
\end{enumerate}
\end{frame}

\begin{frame}[fragile]
\frametitle{Initial Estimates \ldots}
\begin{lstlisting}
  In []: def our_f(x):
   ....:     return cos(x)-x**2
   ....: 
  In []: x = linspace(-pi/2, pi/2, 11)
\end{lstlisting}
\begin{itemize}
\item Get the intervals of x, where sign changes occur
\end{itemize}
\end{frame}

%% \begin{frame}[fragile]
%% \frametitle{Initial Estimates \ldots}
%% \begin{lstlisting}
%% In []: pos = y[:-1]*y[1:] < 0
%% In []: rpos = zeros(x.shape, dtype=bool)
%% In []: rpos[:-1] = pos
%% In []: rpos[1:] += pos
%% In []: rts = x[rpos]
%% \end{lstlisting}
%% \end{frame}

\begin{frame}[fragile]
\frametitle{Fixed Point Method}
\begin{enumerate}
\item Convert $f(x)=0$ to the form $x=g(x)$
\item Start with an initial value of $x$ and iterate successively
\item $x_{n+1}=g(x_n)$ and $x_0$ is our initial guess
\item Iterate until $x_{n+1}-x_n \le tolerance$
\end{enumerate}
\end{frame}

%% \begin{frame}[fragile]
%% \frametitle{Fixed Point \dots}
%% \begin{lstlisting}
%% In []: def our_g(x):
%%  ....:     return sqrt(cos(x))
%%  ....: 
%% In []: tolerance = 1e-5
%% In []: while abs(x1-x0)>tolerance:
%%  ....:     x0 = x1
%%  ....:     x1 = our_g(x1)
%%  ....:   
%% In []: x0
%% \end{lstlisting}
%% \end{frame}

\begin{frame}[fragile]
\frametitle{Bisection Method}
\begin{enumerate}
\item Start with an interval $(a, b)$ within which a root exists
\item $f(a)\cdot f(b) < 0$
\item Bisect the interval. $c = \frac{a+b}{2}$
\item Change the interval to $(a, c)$ if $f(a)\cdot f(c) < 0$
\item Else, change the interval to $(c, b)$
\item Go back to 3 until $(b-a) \le$ tolerance
\end{enumerate}
\end{frame}

%% \begin{frame}[fragile]
%% \frametitle{Bisection \dots}
%% \begin{lstlisting}
%% In []: tolerance = 1e-5
%% In []: a = -pi/2
%% In []: b = 0
%% In []: while b-a > tolerance:
%%  ....:     c = (a+b)/2
%%  ....:     if our_f(a)*our_f(c) < 0:
%%  ....:         b = c
%%  ....:     else:
%%  ....:         a = c
%%  ....:         
%% \end{lstlisting}
%% \end{frame}

\begin{frame}[fragile]
\frametitle{Newton-Raphson Method}
\begin{enumerate}
\item Start with an initial guess of x for the root
\item $\Delta x = -f(x)/f^{'}(x)$
\item $ x \leftarrow x + \Delta x$
\item Go back to 2 until $|\Delta x| \le$ tolerance
\end{enumerate}
\end{frame}

%% \begin{frame}[fragile]
%% \frametitle{Newton-Raphson \dots}
%% \begin{lstlisting}
%% In []: def our_df(x):
%%  ....:     return -sin(x)-2*x
%%  ....: 
%% In []: delx = 10*tolerance
%% In []: while delx > tolerance:
%%  ....:     delx = -our_f(x)/our_df(x)
%%  ....:     x = x + delx
%%  ....:     
%%  ....:     
%% \end{lstlisting}
%% \end{frame}

\begin{frame}[fragile]
\frametitle{Newton-Raphson \ldots}
\begin{itemize}
\item What if $f^{'}(x) = 0$?
\item Can you write a better version of the Newton-Raphson?
\item What if the differential is not easy to calculate?
\item Look at Secant Method
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Scipy Methods - \typ{roots}}
\begin{itemize}
\item Calculates the roots of polynomials
\item Array of coefficients is the only parameter
\end{itemize}
\begin{lstlisting}
  In []: coeffs = [1, 6, 13]
  In []: roots(coeffs)
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{Scipy Methods - \typ{fsolve}}
\begin{small}
\begin{lstlisting}
  In []: from scipy.optimize import fsolve
\end{lstlisting}
\end{small}
\begin{itemize}
\item Finds the roots of a system of non-linear equations
\item Input arguments - Function and initial estimate
\item Returns the solution
\end{itemize}
\begin{lstlisting}
  In []: fsolve(our_f, -pi/2)
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{Scipy Methods \dots}
\begin{small}
\begin{lstlisting}
In []: from scipy.optimize import fixed_point

In []: from scipy.optimize import bisect

In []: from scipy.optimize import newton
\end{lstlisting}
\end{small}
\end{frame}

\begin{frame}
  \frametitle{Things we have learned}
  \begin{itemize}
  \item Solving ODEs
  \item Finding Roots
    \begin{itemize}
    \item Estimating Interval
    \item Newton-Raphson
    \item Scipy methods
    \end{itemize}
  \end{itemize}
\end{frame}

\end{document}