diff options
Diffstat (limited to 'day1')
-rw-r--r-- | day1/data/filter.png | bin | 0 -> 4049 bytes | |||
-rw-r--r-- | day1/session1.tex | 31 | ||||
-rw-r--r-- | day1/session5.tex | 321 | ||||
-rw-r--r-- | day1/session6.tex | 85 |
4 files changed, 306 insertions, 131 deletions
diff --git a/day1/data/filter.png b/day1/data/filter.png Binary files differnew file mode 100644 index 0000000..1497a8e --- /dev/null +++ b/day1/data/filter.png diff --git a/day1/session1.tex b/day1/session1.tex index e19607b..b75e63d 100644 --- a/day1/session1.tex +++ b/day1/session1.tex @@ -129,15 +129,11 @@ \item[Session 2] Sat 10:05--11:05 \item[Session 3] Sat 11:20--12:20 \item[Session 4] Sat 12:25--13:25 - \item Quiz -1 Sat 14:25--14:40 + \item[Quiz -1] Sat 14:25--14:40 \item[Session 5] Sat 14:40--15:40 \item[Session 6] Sat 15:55--16:55 - \item Quiz -2 Sat 17:00--17:15 + \item[Quiz -2] Sat 17:00--17:15 \end{description} - - \begin{block}{Goal of the workshop} - At the end of this program, successful participants will be able to use python as their scripting and problem solving language. Aimed at Engg. students--focus on basic numerics and plotting-- but should serve a similar purpose for others. - \end{block} \end{frame} \begin{frame} @@ -147,13 +143,15 @@ \item[Session 2] Sun 10:05--11:05 \item[Session 3] Sun 11:20--12:20 \item[Session 4] Sun 12:25--13:25 - \item Quiz -1 Sun 14:25--14:40 + \item[Quiz -1] Sun 14:25--14:40 \item[Session 5] Sun 14:40--15:40 \item[Session 6] Sun 15:55--16:55 - \item Quiz -2 Sun 17:00--17:15 + \item[Quiz -2] Sun 17:00--17:15 \end{description} +\end{frame} -\begin{frame}{About the Workshop} +\begin{frame} + \frametitle{About the Workshop} \begin{block}{Intended Audience} \begin{itemize} \item Engg., Mathematics and Science teachers. @@ -161,7 +159,7 @@ \end{itemize} \end{block} - \begin{block}{Goal:} + \begin{block}{Goal} Successful participants will be able to \begin{itemize} \item use Python as their scripting and problem solving language. @@ -170,15 +168,18 @@ \end{block} \end{frame} -\end{frame} -\begin{frame}{Checklist} + +\begin{frame} +\frametitle{Bucketlist} \begin{block}{IPython} Type ipython at the command line. Is it available? \end{block} \begin{block}{Editor} We recommend scite. \end{block} - \end{description} + \begin{block}{Data files} + Make sure you have all data files. + \end{block} \end{frame} \begin{frame}[fragile] @@ -222,12 +223,12 @@ Breaking out of loops \includegraphics[height=2in, interpolate=true]{data/firstplot} \column{0.8\textwidth} \begin{block}{} - \small + \begin{small} \begin{lstlisting} In []: x = linspace(0, 2*pi, 51) In []: plot(x, sin(x)) \end{lstlisting} - \small + \end{small} \end{block} \end{columns} \end{frame} diff --git a/day1/session5.tex b/day1/session5.tex index 8ed3d1f..b3afaf1 100644 --- a/day1/session5.tex +++ b/day1/session5.tex @@ -79,7 +79,7 @@ \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} -\date[] {31, October 2009\\Day 1, Session 4} +\date[] {31, October 2009\\Day 1, Session 5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} @@ -96,13 +96,13 @@ \end{frame} } -%%\AtBeginSection[] -%%{ - %%\begin{frame}<beamer> -%% \frametitle{Outline} - %% \tableofcontents[currentsection,currentsubsection] - %%\end{frame} -%%} +\AtBeginSection[] +{ + \begin{frame}<beamer> + \frametitle{Outline} + \tableofcontents[currentsection,currentsubsection] + \end{frame} +} % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: @@ -124,178 +124,277 @@ % \pausesections \end{frame} -\section{Integration} - -\subsection{Quadrature} +\section{Interpolation} \begin{frame}[fragile] -\frametitle{Quadrature} -\begin{itemize} -\item We wish to find area under a curve -\item Area under $(sin(x) + x^2)$ in $(0,1)$ -\item scipy has functions to do that -\end{itemize} -\small{\typ{In []: from scipy.integrate import quad}} +\frametitle{Interpolation} \begin{itemize} -\item Inputs - function to integrate, limits +\item Let us begin with interpolation +\item Let's use the L and T arrays and interpolate this data to obtain data at new points \end{itemize} \begin{lstlisting} -In []: x = 0 -In []: quad(sin(x)+x**2, 0, 1) +In []: L = [] +In []: T = [] +In []: for line in open('pendulum.txt'): + l, t = line.split() + L.append(float(l)) + T.append(float(t)) +In []: L = array(L) +In []: T = array(T) \end{lstlisting} -\alert{\typ{error:}} -\typ{First argument must be a callable function.} \end{frame} +%% \begin{frame}[fragile] +%% \frametitle{Interpolation \ldots} +%% \begin{small} +%% \typ{In []: from scipy.interpolate import interp1d} +%% \end{small} +%% \begin{itemize} +%% \item The \typ{interp1d} function returns a function +%% \begin{lstlisting} +%% In []: f = interp1d(L, T) +%% \end{lstlisting} +%% \item Functions can be assigned to variables +%% \item This function interpolates between known data values to obtain unknown +%% \end{itemize} +%% \end{frame} + +%% \begin{frame}[fragile] +%% \frametitle{Interpolation \ldots} +%% \begin{lstlisting} +%% In []: Ln = arange(0.1,0.99,0.005) +%% # Interpolating! +%% # The new values in range of old data +%% In []: plot(L, T, 'o', Ln, f(Ln), '-') +%% In []: f = interp1d(L, T, kind='cubic') +%% # When kind not specified, it's linear +%% # Others are ... +%% # 'nearest', 'zero', +%% # 'slinear', 'quadratic' +%% \end{lstlisting} +%% \end{frame} + \begin{frame}[fragile] -\frametitle{Functions - Definition} +\frametitle{Spline Interpolation} +\begin{small} \begin{lstlisting} -In []: def f(x): - return sin(x)+x**2 -In []: quad(f, 0, 1) +In []: from scipy.interpolate import splrep +In []: from scipy.interpolate import splev \end{lstlisting} +\end{small} \begin{itemize} -\item \typ{def} -\item arguments -\item \typ{return} +\item Involves two steps + \begin{enumerate} + \item Find out the spline curve, coefficients + \item Evaluate the spline at new points + \end{enumerate} \end{itemize} \end{frame} \begin{frame}[fragile] -\frametitle{Functions - Calling them} +\frametitle{\typ{splrep}} +To find the B-spline representation \begin{lstlisting} -In [15]: f() ---------------------------------------- +In []: tck = splrep(L, T) \end{lstlisting} -\alert{\typ{TypeError:}}\typ{f() takes exactly 1 argument} -\typ{(0 given)} +Returns a tuple containing +\begin{enumerate} +\item the vector of knots, +\item the B-spline coefficients +\item the degree of the spline (default=3) +\end{enumerate} +\end{frame} + +\begin{frame}[fragile] +\frametitle{\typ{splev}} +To Evaluate a B-spline and it's derivatives \begin{lstlisting} -In []: f(0) -Out[]: 0.0 -In []: f(1) -Out[]: 1.8414709848078965 +In []: Lnew = arange(0.1,1,0.005) +In []: Tnew = splev(Lnew, tck) + +#To obtain derivatives of the spline +#use der=1, 2,.. for 1st, 2nd,.. order +In []: Tnew = splev(Lnew, tck, der=1) \end{lstlisting} \end{frame} +%% \begin{frame}[fragile] +%% \frametitle{Interpolation \ldots} +%% \begin{itemize} +%% \item +%% \end{itemize} +%% \end{frame} + +\section{Differentiation} + +\begin{frame}[fragile] +\frametitle{Numerical Differentiation} +\begin{itemize} +\item Given function $f(x)$ or data points $y=f(x)$ +\item We wish to calculate $f^{'}(x)$ at points $x$ +\item Taylor series - finite difference approximations +\end{itemize} +\begin{center} +\begin{tabular}{l l} +$f(x+h)=f(x)+h.f^{'}(x)$ &Forward \\ +$f(x-h)=f(x)-h.f^{'}(x)$ &Backward +\end{tabular} +\end{center} +\end{frame} \begin{frame}[fragile] -\frametitle{Functions - Default Arguments} +\frametitle{Forward Difference} \begin{lstlisting} -In []: def f(x=1): - return sin(x)+x**2 -In []: f(10) -Out[]: 99.455978889110625 -In []: f(1) -Out[]: 1.8414709848078965 -In []: f() -Out[]: 1.8414709848078965 +In []: x = linspace(0, 2*pi, 100) +In []: y = sin(x) +In []: deltax = x[1] - x[0] \end{lstlisting} +Obtain the finite forward difference of y \end{frame} \begin{frame}[fragile] -\frametitle{Functions - Keyword Arguments} +\frametitle{Forward Difference \ldots} \begin{lstlisting} -In []: def f(x=1, y=pi): - return sin(y)+x**2 -In []: f() -Out[]: 1.0000000000000002 -In []: f(2) -Out[]: 4.0 -In []: f(y=2) -Out[]: 1.9092974268256817 -In []: f(y=pi/2,x=0) -Out[]: 1.0 +In []: fD = (y[1:] - y[:-1]) / deltax +In []: plot(x, y, x[:-1], fD) \end{lstlisting} +\begin{center} + \includegraphics[height=2in, interpolate=true]{data/fwdDiff} +\end{center} \end{frame} \begin{frame}[fragile] - \frametitle{More on functions} - \begin{itemize} - \item Scope of variables in the function is local - \item Mutable items are \alert{passed by reference} - \item First line after definition may be a documentation string - (\alert{recommended!}) - \item Function definition and execution defines a name bound to the - function - \item You \emph{can} assign a variable to a function! - \end{itemize} +\frametitle{Example} +\begin{itemize} +\item Given x, y positions of a particle in \typ{pos.txt} +\item Find velocity \& acceleration in x, y directions +\end{itemize} +\small{ +\begin{center} +\begin{tabular}{| c | c | c |} +\hline +$X$ & $Y$ \\ \hline +0. & 0.\\ \hline +0.25 & 0.47775\\ \hline +0.5 & 0.931\\ \hline +0.75 & 1.35975\\ \hline +1. & 1.764\\ \hline +1.25 & 2.14375\\ \hline +\vdots & \vdots\\ \hline +\end{tabular} +\end{center}} \end{frame} \begin{frame}[fragile] -\frametitle{Quadrature \ldots} -\begin{lstlisting} -In []: quad(f, 0, 1) -\end{lstlisting} -Returns the integral and an estimate of the absolute error in the result. +\frametitle{Example \ldots} \begin{itemize} -\item Use \typ{dblquad} for Double integrals -\item Use \typ{tplquad} for Triple integrals +\item Read the file +\item Obtain an array of x, y +\item Obtain velocity and acceleration +\item use \typ{deltaT = 0.05} \end{itemize} +\begin{lstlisting} +In []: X = [] +In []: Y = [] +In []: for line in open('location.txt'): + .... points = line.split() + .... X.append(float(points[0])) + .... Y.append(float(points[1])) +In []: S = array([X, Y]) +\end{lstlisting} \end{frame} -\subsection{ODEs} \begin{frame}[fragile] -\frametitle{ODE Integration} -We shall use the simple ODE of a simple pendulum. -\begin{equation*} -\ddot{\theta} = -\frac{g}{L}sin(\theta) -\end{equation*} +\frametitle{Example \ldots} \begin{itemize} -\item This equation can be written as a system of two first order ODEs +\item use \typ{deltaT = 0.05} \end{itemize} -\begin{align} -\dot{\theta} &= \omega \\ -\dot{\omega} &= -\frac{g}{L}sin(\theta) \\ - \text{At}\ t &= 0 : \nonumber \\ - \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber -\end{align} +\begin{lstlisting} +In []: deltaT = 0.05 + +In []: v = (S[:,1:]-S[:,:-1])/deltaT + +In []: a = (v[:,1:]-v[:,:-1])/deltaT +\end{lstlisting} +Try Plotting the position, velocity \& acceleration. \end{frame} +\section{Quadrature} + \begin{frame}[fragile] -\frametitle{Solving ODEs using SciPy} +\frametitle{Quadrature} +\begin{itemize} +\item We wish to find area under a curve +\item Area under $(sin(x) + x^2)$ in $(0,1)$ +\item scipy has functions to do that +\end{itemize} +\begin{small} + \typ{In []: from scipy.integrate import quad} +\end{small} \begin{itemize} -\item We use the \typ{odeint} function from scipy to do the integration -\item Define a function as below +\item Inputs - function to integrate, limits \end{itemize} \begin{lstlisting} -In []: def pend_int(unknown, t, p): - .... theta, omega = unknown - .... g, L = p - .... f=[omega, -(g/L)*sin(theta)] - .... return f - .... +In []: x = 0 +In []: quad(sin(x)+x**2, 0, 1) \end{lstlisting} +\begin{small} +\alert{\typ{error:}} +\typ{First argument must be a callable function.} +\end{small} \end{frame} \begin{frame}[fragile] -\frametitle{Solving ODEs using SciPy \ldots} +\frametitle{Functions - Definition} +We have been using them all along. Now let's see how to define them. +\begin{lstlisting} +In []: def f(x): + return sin(x)+x**2 +In []: quad(f, 0, 1) +\end{lstlisting} \begin{itemize} -\item \typ{t} is the time variable \\ -\item \typ{p} has the constants \\ -\item \typ{initial} has the initial values +\item \typ{def} +\item name +\item arguments +\item \typ{return} \end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Functions - Calling them} +\begin{lstlisting} +In [15]: f() +--------------------------------------- +\end{lstlisting} +\alert{\typ{TypeError:}}\typ{f() takes exactly 1 argument} +\typ{(0 given)} \begin{lstlisting} -In []: t = linspace(0, 10, 101) -In []: p=(-9.81, 0.2) -In []: initial = [10*2*pi/360, 0] +In []: f(0) +Out[]: 0.0 +In []: f(1) +Out[]: 1.8414709848078965 \end{lstlisting} +More on Functions later \ldots \end{frame} \begin{frame}[fragile] -\frametitle{Solving ODEs using SciPy \ldots} - -\small{\typ{In []: from scipy.integrate import odeint}} +\frametitle{Quadrature \ldots} \begin{lstlisting} -In []: pend_sol = odeint(pend_int, - initial,t, - args=(p,)) +In []: quad(f, 0, 1) \end{lstlisting} +Returns the integral and an estimate of the absolute error in the result. +\begin{itemize} +\item Look at \typ{dblquad} for Double integrals +\item Use \typ{tplquad} for Triple integrals +\end{itemize} \end{frame} \begin{frame} \frametitle{Things we have learned} \begin{itemize} + \item Interpolation + \item Differentiation \item Functions \begin{itemize} \item Definition diff --git a/day1/session6.tex b/day1/session6.tex index 1fed5d3..9ee3215 100644 --- a/day1/session6.tex +++ b/day1/session6.tex @@ -73,7 +73,7 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page -\title[]{Finding Roots} +\title[]{ODEs \& Finding Roots} \author[FOSSEE] {FOSSEE} @@ -123,6 +123,68 @@ %% % You might wish to add the option [pausesections] %% \end{frame} +\section{ODEs} + +\begin{frame}[fragile] +\frametitle{ODE Integration} +We shall use the simple ODE of a simple pendulum. +\begin{equation*} +\ddot{\theta} = -\frac{g}{L}sin(\theta) +\end{equation*} +\begin{itemize} +\item This equation can be written as a system of two first order ODEs +\end{itemize} +\begin{align} +\dot{\theta} &= \omega \\ +\dot{\omega} &= -\frac{g}{L}sin(\theta) \\ + \text{At}\ t &= 0 : \nonumber \\ + \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber +\end{align} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy} +\begin{itemize} +\item We use the \typ{odeint} function from scipy to do the integration +\item Define a function as below +\end{itemize} +\begin{lstlisting} +In []: def pend_int(unknown, t, p): + .... theta, omega = unknown + .... g, L = p + .... f=[omega, -(g/L)*sin(theta)] + .... return f + .... +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy \ldots} +\begin{itemize} +\item \typ{t} is the time variable \\ +\item \typ{p} has the constants \\ +\item \typ{initial} has the initial values +\end{itemize} +\begin{lstlisting} +In []: t = linspace(0, 10, 101) +In []: p=(-9.81, 0.2) +In []: initial = [10*2*pi/360, 0] +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy \ldots} +\begin{small} + \typ{In []: from scipy.integrate import odeint} +\end{small} +\begin{lstlisting} +In []: pend_sol = odeint(pend_int, + initial,t, + args=(p,)) +\end{lstlisting} +\end{frame} + +\section{Finding Roots} \begin{frame}[fragile] \frametitle{Roots of $f(x)=0$} @@ -136,8 +198,8 @@ \begin{frame}[fragile] \frametitle{Initial Estimates} \begin{itemize} -\item Find the roots of $cosx-x^2$ between $-\pi/2$ and $\pi/2$ -\item We shall use a crude method to get an initial estimate first +\item Find roots of $cosx-x^2$ in $(-\pi/2, \pi/2)$ +\item How to get a rough initial estimate? \end{itemize} \begin{enumerate} \item Check for change of signs of $f(x)$ in the given interval @@ -288,15 +350,28 @@ \begin{frame}[fragile] \frametitle{Scipy Methods \dots} -\small{ +\begin{small} \begin{lstlisting} In []: from scipy.optimize import fixed_point In []: from scipy.optimize import bisect In []: from scipy.optimize import newton -\end{lstlisting}} +\end{lstlisting} +\end{small} \end{frame} +\begin{frame} + \frametitle{Things we have learned} + \begin{itemize} + \item Solving ODEs + \item Finding Roots + \begin{itemize} + \item Estimating Interval + \item Newton Raphson + \item Scipy methods + \end{itemize} + \end{itemize} +\end{frame} \end{document} |