summaryrefslogtreecommitdiff
path: root/day1/session6.tex
diff options
context:
space:
mode:
Diffstat (limited to 'day1/session6.tex')
-rwxr-xr-xday1/session6.tex30
1 files changed, 27 insertions, 3 deletions
diff --git a/day1/session6.tex b/day1/session6.tex
index 0f1523e..0f2120f 100755
--- a/day1/session6.tex
+++ b/day1/session6.tex
@@ -78,7 +78,7 @@
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {7 November, 2009\\Day 1, Session 6}
+\date[] {11 January, 2010\\Day 1, Session 6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
@@ -150,7 +150,6 @@ Let us now look at how to solve this using \kwrd{matrices}
[-1, 0.5, -1]])
In []: b = array([[1], [-2], [0]])
In []: x = solve(A, b)
- In []: Ax = dot(A,x)
\end{lstlisting}
\end{frame}
@@ -168,6 +167,7 @@ array([[ 1.],
\begin{frame}[fragile]
\frametitle{Let's check!}
\begin{lstlisting}
+In []: Ax = dot(A,x)
In []: Ax
Out[]:
array([[ 1.00000000e+00],
@@ -216,11 +216,17 @@ Use \kwrd{solve()}
\frametitle{Scipy Methods - \typ{roots}}
\begin{itemize}
\item Calculates the roots of polynomials
+\item To calculate the roots of $x^2-5x+6$
\end{itemize}
\begin{lstlisting}
- In []: coeffs = [1, 6, 13]
+ In []: coeffs = [1, -5, 6]
In []: roots(coeffs)
+ Out[]: array([3., 2.])
\end{lstlisting}
+\vspace*{-.2in}
+\begin{center}
+\includegraphics[height=1.6in, interpolate=true]{data/roots}
+\end{center}
\end{frame}
\begin{frame}[fragile]
@@ -291,6 +297,9 @@ Find the root of $sin(x)+cos^2(x)$ nearest to $0$
In []: fsolve(f, 0)
Out[]: -0.66623943249251527
\end{lstlisting}
+\begin{center}
+\includegraphics[height=2in, interpolate=true]{data/fsolve}
+\end{center}
\end{frame}
%% \begin{frame}[fragile]
@@ -318,6 +327,7 @@ Out[]: -0.66623943249251527
\item Define a function as below
\end{itemize}
\begin{lstlisting}
+In []: from scipy.integrate import odeint
In []: def epid(y, t):
.... k, L = 0.00003, 25000
.... return k*y*(L-y)
@@ -338,6 +348,14 @@ In []: plot(t, y)
\end{frame}
\begin{frame}[fragile]
+\frametitle{Result}
+\begin{center}
+\includegraphics[height=2in, interpolate=true]{data/image}
+\end{center}
+\end{frame}
+
+
+\begin{frame}[fragile]
\frametitle{ODEs - Simple Pendulum}
We shall use the simple ODE of a simple pendulum.
\begin{equation*}
@@ -392,6 +410,12 @@ In []: pend_sol = odeint(pend_int,
\end{lstlisting}
\end{frame}
+\begin{frame}[fragile]
+\frametitle{Result}
+\begin{center}
+\includegraphics[height=2in, interpolate=true]{data/ode}
+\end{center}
+\end{frame}
\begin{frame}
\frametitle{Things we have learned}