diff options
author | Santosh G. Vattam | 2009-11-06 18:40:13 +0530 |
---|---|---|
committer | Santosh G. Vattam | 2009-11-06 18:40:13 +0530 |
commit | bc7a047ae7879d594a9e8817097889e3368a4641 (patch) | |
tree | 76384e2c988a895d270e92c5094d502a3b941db5 /day1 | |
parent | 359e82a186e0c7c99752e9c881b0820d8f0d9bfc (diff) | |
parent | c3a3cd07a73949eb2aed0f833a741d9534c52bf8 (diff) | |
download | workshops-bc7a047ae7879d594a9e8817097889e3368a4641.tar.gz workshops-bc7a047ae7879d594a9e8817097889e3368a4641.tar.bz2 workshops-bc7a047ae7879d594a9e8817097889e3368a4641.zip |
Branches merged.
Diffstat (limited to 'day1')
-rwxr-xr-x | day1/data/smoothing.gif | bin | 0 -> 58279 bytes | |||
-rw-r--r-- | day1/session3.tex | 402 |
2 files changed, 162 insertions, 240 deletions
diff --git a/day1/data/smoothing.gif b/day1/data/smoothing.gif Binary files differnew file mode 100755 index 0000000..bb779fb --- /dev/null +++ b/day1/data/smoothing.gif diff --git a/day1/session3.tex b/day1/session3.tex index 0cb68b5..b64c55b 100644 --- a/day1/session3.tex +++ b/day1/session3.tex @@ -78,6 +78,7 @@ \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} + \date[] {7 November, 2009\\Day 1, Session 3} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -126,67 +127,88 @@ %% % You might wish to add the option [pausesections] %% \end{frame} -\section{Processing voluminous data} +\section{Computing mean} \begin{frame} - \frametitle{More on data processing} - \begin{block}{} - We have a huge--1m records--data file.\\How do we do \emph{efficient} statistical computations, that is find mean, median, mode, standard deveiation etc; draw pie charts? - \end{block} + \frametitle{Value of acceleration due to gravity?} + \begin{itemize} + \item We already have pendulum.txt + \item We know that $ T = 2\pi \sqrt{\frac{L}{g}} $ + \item So $ g = \frac{4 \pi^2 L}{T^2} $ + \item Calculate ``g'' - acceleration due to gravity for each pair of L and T + \item Hence calculate mean ``g'' + \end{itemize} \end{frame} +\begin{frame}[fragile] + \frametitle{Acceleration due to gravity - ``g''\ldots} + \begin{lstlisting} +In []: G = [] +In []: for line in open('pendulum.txt'): + .... points = line.split() + .... l = float(points[0]) + .... t = float(points[1]) + .... g = 4 * pi * pi * l / t * t + .... G.append(g) + \end{lstlisting} +\end{frame} \begin{frame} - \frametitle{Statistical Analysis: Problem statement} - Read the data supplied in \emph{sslc1.txt} and carry out the following: - \begin{enumerate} - \item Draw a pie chart representing the proportion of students who scored more than 90\% in each region in Science. - \item Draw a pie chart representing the proportion of students who scored more than 90\% in each subject across regions. - \item Print mean, median, mode and standard deviation of math scores for all regions combined. - \end{enumerate} + \frametitle{Computing mean ``g''} + \begin{block}{Exercise} + Obtain the mean of ``g'' + \end{block} \end{frame} -\begin{frame} - \frametitle{Problem statement: explanation} - \emphbar{Draw a pie chart representing the proportion of students who scored more than 90\% in each region in Science.} - \begin{enumerate} - \item Complete(100\%) data - Number of students who scored more than 90\% in Science - \item Each slice - Number of students who scored more than 90\% in Science in one region - \end{enumerate} +\begin{frame}[fragile] + \frametitle{Mean ``g''} + \begin{lstlisting} +total = 0 +for g in G: + total += g + +mean_g = total / len(g) +print "Mean: ", mean_g + \end{lstlisting} \end{frame} -\begin{frame} - \frametitle{Problem statement: explanation} - \emphbar{Draw a pie chart representing the proportion of students who scored more than 90\% in each subject across regions.} - \begin{enumerate} - \item Complete(100\%) data - Number of students who scored more than 90\% across all regions - \item Each slice - Number of students who scored more than 90\% in each subject across all regions - \end{enumerate} +\begin{frame}[fragile] + \frametitle{Mean ``g''} + \begin{lstlisting} +mean_g = sum(G) / len(G) +print "Mean: ", mean_g + \end{lstlisting} \end{frame} +\begin{frame}[fragile] + \frametitle{Mean ``g''} + \begin{lstlisting} +mean_g = mean(G) +print "Mean: ", mean_g + \end{lstlisting} + \inctime{10} +\end{frame} + +\section{Processing voluminous data} \begin{frame} - \frametitle{Statistical Analysis and Parsing \ldots} - Machinery Required - - \begin{itemize} - \item File reading - \item Parsing - \item Dictionaries - \item NumPy arrays - \item Statistical operations - \end{itemize} + \frametitle{More on data processing} + \begin{block}{} + We have a huge data file--180,000 records.\\How do we do \emph{efficient} statistical computations, i.e. find mean, median, standard deviation etc; draw pie charts? + \end{block} \end{frame} \begin{frame} - \frametitle{File reading and parsing} + \frametitle{Structure of the file} Understanding the structure of sslc1.txt \begin{itemize} - \item One line in file corresponds to a student's details - \item aka record + \item Each line in the file has a student's details(record) \item Each record consists of fields separated by ';' \end{itemize} +\emphbar{A;015162;JENIL T P;081;060;77;41;74;333;P;;} \end{frame} \begin{frame} - \frametitle{File reading and parsing \ldots} + \frametitle{Structure of the file \ldots} +\emphbar{A;015163;JOSEPH RAJ S;083;042;47;AA;72;244;;;} Each record consists of: \begin{itemize} \item Region Code @@ -195,11 +217,43 @@ \item Marks of 5 subjects: English, Hindi, Maths, Science, Social \item Total marks \item Pass/Fail (P/F) - \item Withdrawn (W) + \item Withheld (W) \end{itemize} \inctime{5} \end{frame} +\begin{frame} + \frametitle{Statistical Analysis: Problem statement} + 1. Read the data supplied in the file \emph{sslc1.txt} and carry out the following: + \begin{itemize} + \item[a] Draw a pie chart representing proportion of students who scored more than 90\% in each region in Science. + \item[b] Print mean, median and standard deviation of math scores for all regions combined. + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Problem statement: explanation} + \emphbar{a. Draw a pie chart representing proportion of students who scored more than 90\% in each region in Science.} +\begin{columns} + \column{5.25\textwidth} + \hspace*{.5in} +\includegraphics[height=2.6in, interpolate=true]{data/science} + \column{0.8\textwidth} +\end{columns} +\end{frame} + +\begin{frame} + \frametitle{Machinery Required} + \begin{itemize} + \item File reading + \item Parsing + \item Dictionaries + \item List enumeration + \item Arrays + \item Statistical operations + \end{itemize} +\end{frame} + \subsection{Data processing} \begin{frame}[fragile] \frametitle{File reading and parsing \ldots} @@ -207,100 +261,71 @@ for record in open('sslc1.txt'): fields = record.split(';') \end{lstlisting} +\begin{block}{} +\centerline{Recall pendulum example!} +\end{block} \end{frame} -\subsection{Dictionary} +\subsection{Dictionaries} \begin{frame}[fragile] - \frametitle{Dictionary: Introduction} + \frametitle{Dictionaries: Introduction} \begin{itemize} \item lists index: 0 \ldots n \item dictionaries index using strings \end{itemize} - \begin{block}{Example} -d = \{ ``Hitchhiker's guide'' : 42, - ``Terminator'' : ``I'll be back''\}\\ -d[``Terminator''] => ``I'll be back'' - \end{block} \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary: Introduction} + \frametitle{Dictionaries \ldots} \begin{lstlisting} -In [1]: d = {"Hitchhiker's guide" : 42, - "Terminator" : "I'll be back"} - -In [2]: d["Hitchhiker's guide"] -Out[2]: 42 +In []: d = {"jpg" : "image file", + "txt" : "text file", + "py" : "python code"} -In [3]: "Hitchhiker's guide" in d -Out[3]: True - -In [4]: "Guido" in d -Out[4]: False +In []: d["txt"] +Out[]: 'text file' \end{lstlisting} \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary: Introduction} + \frametitle{Dictionaries \ldots} \begin{lstlisting} -In [5]: d.keys() -Out[5]: ['Terminator', "Hitchhiker's - guide"] +In []: "py" in d +Out[]: True -In [6]: d.values() -Out[6]: ["I'll be back", 42] +In []: "cpp" in d +Out[]: False \end{lstlisting} \end{frame} \begin{frame}[fragile] - \frametitle{Back to lists: Iterating} - \begin{itemize} - \item Python's \kwrd{for} loop iterates through list items - \item In other languages (C/C++) we run through indices and pick items from the array using these indices - \item In Python, while iterating through list items current position is not available - \end{itemize} - \begin{block}{Iterating through indices} - What if we want the index of an item of a list? - \end{block} - -\end{frame} - -\begin{frame}[fragile] - \frametitle{enumerate: Iterating through list indices} + \frametitle{Dictionaries \ldots} \begin{lstlisting} -In [1]: names = ["Guido","Alex", "Tim"] - -In [2]: for i, name in enumerate(names): - ...: print i, name - ...: -0 Guido -1 Alex -2 Tim +In []: d.keys() +Out[]: ['py', 'txt', 'jpg'] + +In []: d.values() +Out[]: ['python code', 'text file', + 'image file'] \end{lstlisting} - \inctime{5} + \inctime{10} \end{frame} \begin{frame}[fragile] - \frametitle{Continuing with our Dictionary} + \frametitle{Getting back to the problem} Let our dictionary be: \begin{lstlisting} -science = {} # is an empty dictionary +science = {} \end{lstlisting} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Dictionary - Building parsed data} - \begin{itemize} - \item \emph{Keys} of \emph{science} will be region codes - \item Value of a \emph{science} will be the number students who scored more than 90\% in that region +\begin{itemize} + \item Keys will be region codes + \item Values will be the number students who scored more than 90\% in that region \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Building parsed data \ldots} \begin{lstlisting} -from pylab import pie - science = {} for record in open('sslc1.txt'): @@ -317,9 +342,9 @@ for record in open('sslc1.txt'): if region_code not in science: science[region_code] = 0 -score_str = fields[4].strip() +score_str = fields[6].strip() -score = int(score_str) if +score = int(score_str) if \ score_str != 'AA' else 0 if score > 90: @@ -327,17 +352,25 @@ if score > 90: \end{lstlisting} \end{frame} +\begin{frame}[fragile] + \frametitle{Building parsed data \ldots} + \begin{lstlisting} +print science +print science.keys() +print science.values() + \end{lstlisting} +\end{frame} + \subsection{Visualizing data} \begin{frame}[fragile] - \frametitle{Pie charts} + \frametitle{Pie chart} \small \begin{lstlisting} -figure(1) pie(science.values(), - labels=science.keys()) + labels = science.keys()) title('Students scoring 90% and above in science by region') -savefig('/tmp/science.png') +savefig('science.png') \end{lstlisting} \begin{columns} \column{5.25\textwidth} @@ -345,148 +378,65 @@ savefig('/tmp/science.png') \includegraphics[height=2in, interpolate=true]{data/science} \column{0.8\textwidth} \end{columns} - \inctime{5} + \inctime{10} \end{frame} -\begin{frame}[fragile] - \frametitle{Building data for all subjects \ldots} - \begin{lstlisting} -from pylab import pie -from scipy import mean, median, std -from scipy import stats - -scores = [[], [], [], [], []] -ninety_percents = [{}, {}, {}, {}, {}] - \end{lstlisting} +\begin{frame} + \frametitle{Problem statement} + \emphbar{b. Print mean, median and standard deviation of math scores for all regions combined.} \end{frame} \begin{frame}[fragile] - \frametitle{Building data for all subjects \ldots} + \frametitle{Building data for statistics} \begin{lstlisting} +math_scores = [] + for record in open('sslc1.txt'): record = record.strip() fields = record.split(';') - region_code = fields[0].strip() - \end{lstlisting} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Building data for all subjects \ldots} - \small - \begin{lstlisting} -for i, field in enumerate(fields[3:8]): - if region_code not in ninety_percents[i]: - ninety_percents[i][region_code] = 0 - - score_str = field.strip() - score = int(score_str) if + score_str = fields[5].strip() + score = int(score_str) if \ score_str != 'AA' else 0 - scores[i].append(score) - - if score > 90: - ninety_percents[i][region_code] += 1 - \end{lstlisting} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Consolidating data} - \begin{lstlisting} -subj_total = [] -for subject in ninety_percents: - subj_total.append(sum( - subject.values())) - \end{lstlisting} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Pie charts} - \begin{lstlisting} -figure(2) -pie(subj_total, labels=['English', - 'Hindi', 'Maths', 'Science', - 'Social']) -title('Students scoring more than - 90% by subject(All regions - combined).') -savefig('/tmp/all_regions.png') + math_scores.append(score) \end{lstlisting} \end{frame} -\begin{frame}[fragile] - \frametitle{Pie charts} - \includegraphics[height=3in, interpolate=true]{data/all_regions} -\end{frame} - \subsection{Obtaining statistics} \begin{frame}[fragile] \frametitle{Obtaining statistics} - \begin{block}{Statistics: Mean} + \begin{block}{Exercise} Obtain the mean of Math scores \end{block} \end{frame} \begin{frame}[fragile] - \frametitle{Obtaining statistics: Solution} - \begin{block}{Statistics: Mean} - Obtain the mean of Math scores - \end{block} + \frametitle{Obtaining statistics} \begin{lstlisting} -math_scores = scores[2] -total = 0 -for i, score in enumerate(math_scores): - total += score +print "Mean: ", mean(math_scores) -mean = total / (i + 1) -print "Mean: ", mean - \end{lstlisting} -\end{frame} +print "Median: ", median(math_scores) -\begin{frame}[fragile] - \frametitle{Obtaining statistics: Another solution} - \begin{block}{Statistics: Mean} - Obtain the mean of Math scores - \end{block} - \begin{lstlisting} -math_scores = scores[2] -mean = sum(math_scores) / - len(math_scores) +print "Standard Deviation: ", + std(math_scores) \end{lstlisting} + \inctime{10} \end{frame} \begin{frame}[fragile] -\frametitle{NumPy arrays} - \begin{itemize} - \item NumPy provides arrays - \item arrays are very efficient and powerful - \item Very easy to perform element-wise operations - \typ{+, -, *, /, \%} - \begin{lstlisting} -In [1]: a = array([1, 2, 3]) -In [2]: b = array([4, 5, 6]) - -In [3]: a + b -Out[3]: array([5, 7, 9]) - \end{lstlisting} - \item Very easy to compute statistics - \end{itemize} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Obtaining statistics} + \frametitle{Obtaining statistics: efficiently!} \begin{lstlisting} -math_scores = array(scores[2]) +math_array = array(math_scores) -print "Mean: ", mean(math_scores) - -print "Median: ", median(math_scores) +print "Mean: ", mean(math_array) -print "Mode: ", stats.mode(math_scores) +print "Median: ", median(math_array) print "Standard Deviation: ", - std(math_scores) + std(math_array) \end{lstlisting} - \inctime{15} + \inctime{5} \end{frame} \begin{frame}[fragile] @@ -494,37 +444,9 @@ print "Standard Deviation: ", \begin{itemize} \item Dictionaries for storing data \item Facilities for drawing pie charts - \item NumPy arrays for efficient array manipulations - \item Functions for statistical computations - mean, median, mode, standard deviation + \item Efficient array manipulations + \item Functions for statistical computations - mean, median, standard deviation \end{itemize} \end{frame} -\section{Least square fit} -\begin{frame} -\frametitle{L vs $T^2$ \ldots} -Let's go back to the L vs $T^2$ plot -\begin{itemize} -\item We first look at obtaining $T^2$ from T -\item Then, we look at plotting a Least Squares fit -\end{itemize} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Dealing with data whole-sale} -\begin{lstlisting} -In []: for t in T: - ....: TSq.append(t*t) -\end{lstlisting} -\begin{itemize} -\item This is not very efficient -\item We are squaring element after element -\item We use arrays to make this efficient -\end{itemize} -\begin{lstlisting} -In []: L = array(L) -In []: T = array(T) -In []: TSq = T*T -\end{lstlisting} -\end{frame} - \end{document} |