diff options
author | Puneeth Chaganti | 2010-01-21 17:14:52 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2010-01-21 17:14:52 +0530 |
commit | e511cc4c6a0b04b83ff6731ee7cc113d9729e783 (patch) | |
tree | 172b1467de977efb32edb7e85a3433c4502d5954 /day1/session6.tex | |
parent | 8622ffa26f8da8ed8c4409a23a9d8d2cf2c86469 (diff) | |
download | workshops-e511cc4c6a0b04b83ff6731ee7cc113d9729e783.tar.gz workshops-e511cc4c6a0b04b83ff6731ee7cc113d9729e783.tar.bz2 workshops-e511cc4c6a0b04b83ff6731ee7cc113d9729e783.zip |
Fixed errors found during REC workshop.
Diffstat (limited to 'day1/session6.tex')
-rwxr-xr-x | day1/session6.tex | 23 |
1 files changed, 16 insertions, 7 deletions
diff --git a/day1/session6.tex b/day1/session6.tex index 71afcd3..a5c1a2c 100755 --- a/day1/session6.tex +++ b/day1/session6.tex @@ -250,10 +250,16 @@ Find the root of $sin(x)+cos^2(x)$ nearest to $0$ \frametitle{\typ{fsolve}} Root of $sin(x)+cos^2(x)$ nearest to $0$ \begin{lstlisting} -In []: fsolve(sin(x)+cos(x)**2, 0) +In []: fsolve(sin(x)+cos(x)*cos(x), 0) NameError: name 'x' is not defined +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{\typ{fsolve}} +\begin{lstlisting} In []: x = linspace(-pi, pi) -In []: fsolve(sin(x)+cos(x)**2, 0) +In []: fsolve(sin(x)+cos(x)*cos(x), 0) \end{lstlisting} \begin{small} \alert{\typ{TypeError:}} @@ -266,7 +272,7 @@ In []: fsolve(sin(x)+cos(x)**2, 0) We have been using them all along. Now let's see how to define them. \begin{lstlisting} In []: def f(x): - return sin(x)+cos(x)**2 + return sin(x)+cos(x)*cos(x) \end{lstlisting} \begin{itemize} \item \typ{def} @@ -332,7 +338,8 @@ Out[]: -0.66623943249251527 \begin{lstlisting} In []: from scipy.integrate import odeint In []: def epid(y, t): - .... k, L = 0.00003, 25000 + .... k = 0.00003 + .... L = 25000 .... return k*y*(L-y) .... \end{lstlisting} @@ -382,8 +389,10 @@ We shall use the simple ODE of a simple pendulum. \end{itemize} \begin{lstlisting} In []: def pend_int(initial, t): - .... theta, omega = initial - .... g, L = 9.81, 0.2 + .... theta = initial[0] + .... omega = initial[1] + .... g = 9.81 + .... L = 0.2 .... f=[omega, -(g/L)*sin(theta)] .... return f .... @@ -397,7 +406,7 @@ In []: def pend_int(initial, t): \item \typ{initial} has the initial values \end{itemize} \begin{lstlisting} -In []: t = linspace(0, 10, 101) +In []: t = linspace(0, 20, 101) In []: initial = [10*2*pi/360, 0] \end{lstlisting} \end{frame} |