diff options
author | Puneeth Chaganti | 2009-10-21 12:34:03 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2009-10-21 12:34:03 +0530 |
commit | a17100adae4358a050eccb96011444c1d2848c6c (patch) | |
tree | 4402865d70f1a99b5f92ea57d5685e57dc32d2a3 /day1/session6.tex | |
parent | ba18faec931d5a3f8fc9c2844abbf22824f2f198 (diff) | |
download | workshops-a17100adae4358a050eccb96011444c1d2848c6c.tar.gz workshops-a17100adae4358a050eccb96011444c1d2848c6c.tar.bz2 workshops-a17100adae4358a050eccb96011444c1d2848c6c.zip |
Added Day1 Session6 - Finding Roots.
Diffstat (limited to 'day1/session6.tex')
-rw-r--r-- | day1/session6.tex | 302 |
1 files changed, 302 insertions, 0 deletions
diff --git a/day1/session6.tex b/day1/session6.tex new file mode 100644 index 0000000..adc24ff --- /dev/null +++ b/day1/session6.tex @@ -0,0 +1,302 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Tutorial slides on Python. +% +% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in> +% Copyright (c) 2005-2009, Prabhu Ramachandran +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\documentclass[14pt,compress]{beamer} +%\documentclass[draft]{beamer} +%\documentclass[compress,handout]{beamer} +%\usepackage{pgfpages} +%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm] + +% Modified from: generic-ornate-15min-45min.de.tex +\mode<presentation> +{ + \usetheme{Warsaw} + \useoutertheme{split} + \setbeamercovered{transparent} +} + +\usepackage[english]{babel} +\usepackage[latin1]{inputenc} +%\usepackage{times} +\usepackage[T1]{fontenc} + +% Taken from Fernando's slides. +\usepackage{ae,aecompl} +\usepackage{mathpazo,courier,euler} +\usepackage[scaled=.95]{helvet} +\usepackage{amsmath} + +\definecolor{darkgreen}{rgb}{0,0.5,0} + +\usepackage{listings} +\lstset{language=Python, + basicstyle=\ttfamily\bfseries, + commentstyle=\color{red}\itshape, + stringstyle=\color{darkgreen}, + showstringspaces=false, + keywordstyle=\color{blue}\bfseries} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Macros +\setbeamercolor{emphbar}{bg=blue!20, fg=black} +\newcommand{\emphbar}[1] +{\begin{beamercolorbox}[rounded=true]{emphbar} + {#1} + \end{beamercolorbox} +} +\newcounter{time} +\setcounter{time}{0} +\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} + +\newcommand{\typ}[1]{\lstinline{#1}} + +\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } + +%%% This is from Fernando's setup. +% \usepackage{color} +% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2} +% % Use and configure listings package for nicely formatted code +% \usepackage{listings} +% \lstset{ +% language=Python, +% basicstyle=\small\ttfamily, +% commentstyle=\ttfamily\color{blue}, +% stringstyle=\ttfamily\color{orange}, +% showstringspaces=false, +% breaklines=true, +% postbreak = \space\dots +% } + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Title page +\title[]{Finding Roots} + +\author[FOSSEE] {FOSSEE} + +\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} +\date[] {31, October 2009\\Day 1, Session 6} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} +%\logo{\pgfuseimage{iitmlogo}} + + +%% Delete this, if you do not want the table of contents to pop up at +%% the beginning of each subsection: +\AtBeginSubsection[] +{ + \begin{frame}<beamer> + \frametitle{Outline} + \tableofcontents[currentsection,currentsubsection] + \end{frame} +} + +\AtBeginSection[] +{ + \begin{frame}<beamer> + \frametitle{Outline} + \tableofcontents[currentsection,currentsubsection] + \end{frame} +} + +% If you wish to uncover everything in a step-wise fashion, uncomment +% the following command: +%\beamerdefaultoverlayspecification{<+->} + +%\includeonlyframes{current,current1,current2,current3,current4,current5,current6} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% DOCUMENT STARTS +\begin{document} + +\begin{frame} + \maketitle +\end{frame} + +%% \begin{frame} +%% \frametitle{Outline} +%% \tableofcontents +%% % You might wish to add the option [pausesections] +%% \end{frame} + + +\begin{frame}[fragile] +\frametitle{Roots of $f(x)=0$} +\begin{itemize} +\item Roots --- values of $x$ satisfying $f(x)=0$ +\item $f(x)=0$ may have real or complex roots +\item Presently, let's look at real roots +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Initial Estimates} +\begin{itemize} +\item Find the roots of $cosx-x^2$ between $-\pi/2$ and $\pi/2$ +\item We shall use a crude method to get an initial estimate first +\end{itemize} +\begin{enumerate} +\item Check for change of signs of $f(x)$ in the given interval +\item A root lies in the interval where the sign change occurs +\end{enumerate} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Initial Estimates \ldots} +\begin{lstlisting} + In []: def our_f(x): + ....: return cos(x)-x**2 + ....: + In []: x = linspace(-pi/2, pi/2, 11) +\end{lstlisting} +\begin{itemize} +\item Get the intervals of x, where sign changes occur +\end{itemize} +\end{frame} + +%% \begin{frame}[fragile] +%% \frametitle{Initial Estimates \ldots} +%% \begin{lstlisting} +%% In []: pos = y[:-1]*y[1:] < 0 +%% In []: rpos = zeros(x.shape, dtype=bool) +%% In []: rpos[:-1] = pos +%% In []: rpos[1:] += pos +%% In []: rts = x[rpos] +%% \end{lstlisting} +%% \end{frame} + +\begin{frame}[fragile] +\frametitle{Fixed Point Method} +\begin{enumerate} +\item Convert $f(x)=0$ to the form $x=g(x)$ +\item Start with an initial value of $x$ and iterate successively +\item $x_{n+1}=g(x_n)$ and $x_0$ is our initial guess +\item Iterate until $x_{n+1}-x_n \le tolerance$ +\end{enumerate} +\end{frame} + +%% \begin{frame}[fragile] +%% \frametitle{Fixed Point \dots} +%% \begin{lstlisting} +%% In []: def our_g(x): +%% ....: return sqrt(cos(x)) +%% ....: +%% In []: tolerance = 1e-5 +%% In []: while abs(x1-x0)>tolerance: +%% ....: x0 = x1 +%% ....: x1 = our_g(x1) +%% ....: +%% In []: x0 +%% \end{lstlisting} +%% \end{frame} + +\begin{frame}[fragile] +\frametitle{Bisection Method} +\begin{enumerate} +\item Start with an interval $(a, b)$ within wphich a root exists +\item $f(a)\cdot f(b) < 0$ +\item Bisect the interval. $c = \frac{a+b}{2}$ +\item Change the interval to $(a, c)$ if $f(a)\cdot f(c) < 0$ +\item Else, change the interval to $(c, b)$ +\item Go back to 3 until $(b-a) \le$ tolerance +\end{enumerate} +\end{frame} + +%% \begin{frame}[fragile] +%% \frametitle{Bisection \dots} +%% \begin{lstlisting} +%% In []: tolerance = 1e-5 +%% In []: a = -pi/2 +%% In []: b = 0 +%% In []: while b-a > tolerance: +%% ....: c = (a+b)/2 +%% ....: if our_f(a)*our_f(c) < 0: +%% ....: b = c +%% ....: else: +%% ....: a = c +%% ....: +%% \end{lstlisting} +%% \end{frame} + +\begin{frame}[fragile] +\frametitle{Newton Raphson Method} +\begin{enumerate} +\item Start with an initial guess of x for the root +\item $\Delta x = -f(x)/f^{'}(x)$ +\item $ x \leftarrow x + \Delta x$ +\item Go back to 2 until $|\Delta x| \le$ tolerance +\end{enumerate} +\end{frame} + +%% \begin{frame}[fragile] +%% \frametitle{Newton Raphson \dots} +%% \begin{lstlisting} +%% In []: def our_df(x): +%% ....: return -sin(x)-2*x +%% ....: +%% In []: delx = 10*tolerance +%% In []: while delx > tolerance: +%% ....: delx = -our_f(x)/our_df(x) +%% ....: x = x + delx +%% ....: +%% ....: +%% \end{lstlisting} +%% \end{frame} + +\begin{frame}[fragile] +\frametitle{Newton Raphson \ldots} +\begin{itemize} +\item What if $f^{'}(x) = 0$? +\item Can you write a better version of the Newton Raphson? +\item What if the differential is not easy to calculate? +\item Look at Secant Method +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Scipy Methods - \typ{roots}} +\begin{itemize} +\item Calculates the roots of polynomials +\item Array of coefficients is the only parameter +\end{itemize} +\begin{lstlisting} + In []: coeffs = [1, 6, 13] + In []: roots(coeffs) +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Scipy Methods - \typ{fsolve}} +\begin{small} +\begin{lstlisting} + In []: from scipy.optimize import fsolve +\end{lstlisting} +\end{small} +\begin{itemize} +\item Finds the roots of a system of non-linear equations +\item Input arguments - Function and initial estimate +\item Returns the solution +\end{itemize} +\begin{lstlisting} + In []: fsolve(our_f, -pi/2) +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Scipy Methods \dots} +\small{ +\begin{lstlisting} +In []: from scipy.optimize import fixed_point + +In []: from scipy.optimize import bisect + +In []: from scipy.optimize import newton +\end{lstlisting}} +\end{frame} + + +\end{document} |