diff options
author | Puneeth Chaganti | 2009-10-15 15:50:55 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2009-10-15 15:50:55 +0530 |
commit | 80ed7ba1b656c11ddab75b593bda4540e63803fb (patch) | |
tree | eb0e23c4dee7a5b56399cbd24732b042237d1473 /day1/session4.tex | |
parent | e74fbe5e0add9bc16bd7fc8650031220c516d936 (diff) | |
download | workshops-80ed7ba1b656c11ddab75b593bda4540e63803fb.tar.gz workshops-80ed7ba1b656c11ddab75b593bda4540e63803fb.tar.bz2 workshops-80ed7ba1b656c11ddab75b593bda4540e63803fb.zip |
Updated Integration section in Session 4.
Diffstat (limited to 'day1/session4.tex')
-rw-r--r-- | day1/session4.tex | 69 |
1 files changed, 59 insertions, 10 deletions
diff --git a/day1/session4.tex b/day1/session4.tex index b2175ad..eec7e85 100644 --- a/day1/session4.tex +++ b/day1/session4.tex @@ -52,7 +52,7 @@ \setcounter{time}{0} \newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}} -\newcommand{\typ}[1]{\texttt{#1}} +\newcommand{\typ}[1]{\lstinline{#1}} \newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} } @@ -205,6 +205,9 @@ Example problem: Consider the set of equations \end{lstlisting} \end{frame} +\section{Integration} + +\subsection{ODEs} \begin{frame}[fragile] \frametitle{ODE Integration} @@ -214,22 +217,68 @@ We shall use the simple ODE of a simple pendulum. \end{equation*} \begin{itemize} \item This equation can be written as a system of two first order ODEs -\item $\dot{\theta} = \omega$ -\item $\dot{\omega} = -\frac{g}{L}sin(\theta)$ -\item At $t = 0$ \\ -$\theta = \theta_0$ \& -$\omega = 0$ +\end{itemize} +\begin{align} +\dot{\theta} &= \omega \\ +\dot{\omega} &= -\frac{g}{L}sin(\theta) \\ + \text{At}\ t &= 0 : \nonumber \\ + \theta = \theta_0\quad & \&\quad \omega = 0 \nonumber +\end{align} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy} +\begin{itemize} +\item We use the \typ{odeint} function from scipy to do the integration +\item Define a function as below \end{itemize} \begin{lstlisting} +In []: def pend_int(unknown, t, p): + .... theta, omega = unknown + .... g, L = p + .... f=[omega, -(g/L)*sin(theta)] + .... return f + .... \end{lstlisting} \end{frame} - - -\end{document} +\begin{frame}[fragile] +\frametitle{Solving ODEs using SciPy \ldots} +\begin{itemize} +\item \typ{t} is the time variable \\ +\item \typ{p} has the constants \\ +\item \typ{initial} has the initial values +\end{itemize} +\begin{lstlisting} +In []: t = linspace(0, 10, 101) +In []: p=(-9.81, 0.2) +In []: initial = [10*2*pi/360, 0] +\end{lstlisting} +\end{frame} \begin{frame}[fragile] -\frametitle{} +\frametitle{Solving ODEs using SciPy \ldots} + +\small{\typ{In []: from scipy.integrate import odeint}} \begin{lstlisting} +In []: pend_sol = odeint(pend_int, + initial,t, + args=(p,)) \end{lstlisting} \end{frame} + +\subsection{Quadrature} + +\begin{frame}[fragile] +\frametitle{Quadrature} +Calculate the area under $(sin(x) + x^2)$ in the range $(0,1)$ +\small{\typ{In []: from scipy.integrate import quad}} + \begin{lstlisting} +In []: f(x): + return sin(x)+x**2 +In []: integrate.quad(f, 0, 1) + \end{lstlisting} +\end{frame} + +\end{document} + |