diff options
author | Santosh G. Vattam | 2009-10-27 11:51:21 +0530 |
---|---|---|
committer | Santosh G. Vattam | 2009-10-27 11:51:21 +0530 |
commit | 41731dee8b3c3cbf68db2697a221421910e08603 (patch) | |
tree | bd8a24ca56322887b79660c7481963a20d88269a /day1/session4.tex | |
parent | 79874f13dfffa73ab88dc0efe6cb0b5fc51871b6 (diff) | |
download | workshops-41731dee8b3c3cbf68db2697a221421910e08603.tar.gz workshops-41731dee8b3c3cbf68db2697a221421910e08603.tar.bz2 workshops-41731dee8b3c3cbf68db2697a221421910e08603.zip |
Updated session 2.tex of Day 1.
Diffstat (limited to 'day1/session4.tex')
-rw-r--r-- | day1/session4.tex | 85 |
1 files changed, 56 insertions, 29 deletions
diff --git a/day1/session4.tex b/day1/session4.tex index fb8e2e4..0fe9c7a 100644 --- a/day1/session4.tex +++ b/day1/session4.tex @@ -124,6 +124,53 @@ % \pausesections \end{frame} +\section{Solving linear equations} +\begin{frame}[fragile] +\frametitle{Solution of equations} +Consider, + \begin{align*} + 3x + 2y - z & = 1 \\ + 2x - 2y + 4z & = -2 \\ + -x + \frac{1}{2}y -z & = 0 + \end{align*} +Solution: + \begin{align*} + x & = 1 \\ + y & = -2 \\ + z & = -2 + \end{align*} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Solving using Matrices} +Let us now look at how to solve this using \kwrd{matrices} + \begin{lstlisting} + In []: A = matrix([[3,2,-1],[2,-2,4],[-1, 0.5, -1]]) + In []: b = matrix([[1], [-2], [0]]) + In []: x = linalg.solve(A, b) + In []: Ax = dot(A, x) + In []: allclose(Ax, b) + Out[]: True + \end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Solution:} +\begin{lstlisting} +In []: x +Out[]: +array([[ 1.], + [-2.], + [-2.]]) + +In []: Ax +Out[]: +matrix([[ 1.00000000e+00], + [ -2.00000000e+00], + [ 2.22044605e-16]]) +\end{lstlisting} +\end{frame} + \section{Matrices} \subsection{Initializing} \begin{frame}[fragile] @@ -144,13 +191,15 @@ \subsection{Basic Operations} \begin{frame}[fragile] \frametitle{Inverse of a Matrix} + \begin{small} \begin{lstlisting} - In []: linalg.inv(a) - Out[]: - matrix([[ 3.15221191e+15, -6.30442381e+15, 3.15221191e+15], - [ -6.30442381e+15, 1.26088476e+16, -6.30442381e+15], - [ 3.15221191e+15, -6.30442381e+15, 3.15221191e+15]]) +In []: linalg.inv(A) +Out[]: +matrix([[ 0.07734807, 0.01657459, 0.32044199], + [ 0.09944751, -0.12154696, -0.01657459], + [-0.02762431, -0.07734807, 0.17127072]]) + \end{lstlisting} \end{small} \end{frame} @@ -176,11 +225,11 @@ \begin{small} \begin{lstlisting} In []: linalg.eigvals(a) - Out[]: array([ 1.61168440e+01, -1.11684397e+00, -1.22196337e-15]) + Out[]: array([1.61168440e+01, -1.11684397e+00, -1.22196337e-15]) In []: linalg.eig(a) Out[]: - (array([ 1.61168440e+01, -1.11684397e+00, -1.22196337e-15]), + (array([ 1.61168440e+01, -1.11684397e+00, -1.22196337e-15]), matrix([[-0.23197069, -0.78583024, 0.40824829], [-0.52532209, -0.08675134, -0.81649658], [-0.8186735 , 0.61232756, 0.40824829]])) @@ -188,28 +237,6 @@ \end{small} \end{frame} -\section{Solving linear equations} -\begin{frame}[fragile] -\frametitle{Solution of equations} -Example problem: Consider the set of equations -\vspace{-0.1in} - \begin{align*} - 3x + 2y - z & = 1 \\ - 2x - 2y + 4z & = -2 \\ - -x + \frac{1}{2}y -z & = 0 - \end{align*} -\vspace{-0.08in} - To Solve this, - \begin{lstlisting} - In []: A = array([[3,2,-1],[2,-2,4],[-1, 0.5, -1]]) - In []: b = array([1, -2, 0]) - In []: x = linalg.solve(A, b) - In []: Ax = dot(A, x) - In []: allclose(Ax, b) - Out[]: True - \end{lstlisting} -\end{frame} - \section{Integration} |