summaryrefslogtreecommitdiff
path: root/day1/session4.tex
diff options
context:
space:
mode:
authorPuneeth Chaganti2009-11-05 13:13:58 +0530
committerPuneeth Chaganti2009-11-05 13:13:58 +0530
commit32089af016a0cdf42b394b6b5e55663af3b5c541 (patch)
treefb97418b4ebef6e1073f6282eabb874642a23e9a /day1/session4.tex
parentc2576a2aa7c0f6643ab59cbe7ecfdff65cba669b (diff)
downloadworkshops-32089af016a0cdf42b394b6b5e55663af3b5c541.tar.gz
workshops-32089af016a0cdf42b394b6b5e55663af3b5c541.tar.bz2
workshops-32089af016a0cdf42b394b6b5e55663af3b5c541.zip
Moved Solving Linear Equations to session 6.
Diffstat (limited to 'day1/session4.tex')
-rw-r--r--day1/session4.tex154
1 files changed, 0 insertions, 154 deletions
diff --git a/day1/session4.tex b/day1/session4.tex
index 576c759..22de88f 100644
--- a/day1/session4.tex
+++ b/day1/session4.tex
@@ -476,160 +476,6 @@ In []: plot(L, Tline)
\end{lstlisting}
\end{frame}
-\section{Solving linear equations}
-
-\begin{frame}[fragile]
-\frametitle{Solution of equations}
-Consider,
- \begin{align*}
- 3x + 2y - z & = 1 \\
- 2x - 2y + 4z & = -2 \\
- -x + \frac{1}{2}y -z & = 0
- \end{align*}
-Solution:
- \begin{align*}
- x & = 1 \\
- y & = -2 \\
- z & = -2
- \end{align*}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solving using Matrices}
-Let us now look at how to solve this using \kwrd{matrices}
- \begin{lstlisting}
- In []: A = array([[3,2,-1],
- [2,-2,4],
- [-1, 0.5, -1]])
- In []: b = array([[1], [-2], [0]])
- In []: x = solve(A, b)
- In []: Ax = dot(A,x)
- \end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solution:}
-\begin{lstlisting}
-In []: x
-Out[]:
-array([[ 1.],
- [-2.],
- [-2.]])
-\end{lstlisting}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Let's check!}
-\begin{lstlisting}
-In []: Ax
-Out[]:
-array([[ 1.00000000e+00],
- [ -2.00000000e+00],
- [ 2.22044605e-16]])
-\end{lstlisting}
-\begin{block}{}
-The last term in the matrix is actually \alert{0}!\\
-We can use \kwrd{allclose()} to check.
-\end{block}
-\begin{lstlisting}
-In []: allclose(Ax, b)
-Out[]: True
-\end{lstlisting}
-\inctime{15}
-\end{frame}
-
-\subsection{Exercises}
-
-\begin{frame}[fragile]
-\frametitle{Problem 1}
-Given the matrix:\\
-\begin{center}
-$\begin{bmatrix}
--2 & 2 & 3\\
- 2 & 1 & 6\\
--1 &-2 & 0\\
-\end{bmatrix}$
-\end{center}
-Find:
-\begin{itemize}
- \item[i] Transpose
- \item[ii]Inverse
- \item[iii]Determinant
- \item[iv] Eigenvalues and Eigen vectors
- \item[v] Singular Value decomposition
-\end{itemize}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Problem 2}
-Given
-\begin{center}
-A =
-$\begin{bmatrix}
--3 & 1 & 5 \\
-1 & 0 & -2 \\
-5 & -2 & 4 \\
-\end{bmatrix}$
-, B =
-$\begin{bmatrix}
-0 & 9 & -12 \\
--9 & 0 & 20 \\
-12 & -20 & 0 \\
-\end{bmatrix}$
-\end{center}
-Find:
-\begin{itemize}
- \item[i] Sum of A and B
- \item[ii]Elementwise Product of A and B
- \item[iii] Matrix product of A and B
-\end{itemize}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solution}
-Sum:
-$\begin{bmatrix}
--3 & 10 & 7 \\
--8 & 0 & 18 \\
-17 & -22 & 4 \\
-\end{bmatrix}$
-,\\ Elementwise Product:
-$\begin{bmatrix}
-0 & 9 & -60 \\
--9 & 0 & -40 \\
-60 & 40 & 0 \\
-\end{bmatrix}$
-,\\ Matrix product:
-$\begin{bmatrix}
-51 & -127 & 56 \\
--24 & 49 & -12 \\
-66 & -35 & -100 \\
-\end{bmatrix}$
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Problem 3}
-Solve the set of equations:
-\begin{align*}
- x + y + 2z -w & = 3\\
- 2x + 5y - z - 9w & = -3\\
- 2x + y -z + 3w & = -11 \\
- x - 3y + 2z + 7w & = -5\\
-\end{align*}
-\inctime{10}
-\end{frame}
-
-\begin{frame}[fragile]
-\frametitle{Solution}
-Use \kwrd{solve()}
-\begin{align*}
- x & = -5\\
- y & = 2\\
- z & = 3\\
- w & = 0\\
-\end{align*}
-\end{frame}
-
\section{Summary}
\begin{frame}
\frametitle{What did we learn??}