diff options
author | Puneeth Chaganti | 2009-10-14 16:34:30 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2009-10-14 16:34:30 +0530 |
commit | d1c6e8e08b0579914890f277d40cd85d65ea2684 (patch) | |
tree | c87d77f2efc3303650fd519387203f82afbb17c1 /day1/session3.tex | |
parent | 34669829a9775d2750fc2395f6e83259e37c934f (diff) | |
download | workshops-d1c6e8e08b0579914890f277d40cd85d65ea2684.tar.gz workshops-d1c6e8e08b0579914890f277d40cd85d65ea2684.tar.bz2 workshops-d1c6e8e08b0579914890f277d40cd85d65ea2684.zip |
Added Least Square Fitting to Session3.
Diffstat (limited to 'day1/session3.tex')
-rw-r--r-- | day1/session3.tex | 102 |
1 files changed, 101 insertions, 1 deletions
diff --git a/day1/session3.tex b/day1/session3.tex index 308b40a..2f23a5a 100644 --- a/day1/session3.tex +++ b/day1/session3.tex @@ -28,6 +28,7 @@ \usepackage{ae,aecompl} \usepackage{mathpazo,courier,euler} \usepackage[scaled=.95]{helvet} +\usepackage{amsmath} \definecolor{darkgreen}{rgb}{0,0.5,0} @@ -147,8 +148,107 @@ Machinery Required - \end{itemize} \end{frame} -\begin{frame} +\begin{frame}[fragile] +\frametitle{Reading pendulum.txt} +\begin{itemize} + \item The file has two columns + \item Column1 - L; Column2 - T +\end{itemize} +\begin{lstlisting} +In []: L = [] +In []: T = [] +In []: for line in open('pendulum.txt'): + .... len, t = line.split() + .... L.append(float(len)) + .... T.append(float(t)) +\end{lstlisting} +We now have two lists L and T +\end{frame} + +\begin{frame}[fragile] +\frametitle{Calculating T^2} +\begin{itemize} +\item Each element of the list T must be squared +\item Iterating over each element of the list works +\item But very slow \ldots +\item Instead, we use arrays +\end{itemize} +\begin{lstlisting} +In []: array(L) +In []: T = array(T) +In []: Tsq = T*T +In []: plot(L, Tsq, 'o') +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] \frametitle{Arrays} +\begin{itemize} +\item T is now a \typ{numpy array} +\item \typ{numpy} arrays are very efficient and powerful +\item Very easy to perform element-wise operations +\item \typ{+, -, *, /, \%} +\item More about arrays later +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Least Square Polynomial} +\begin{enumerate} +\item $T^2 = \frac{4\pi^2}{g}L$ +\item $T^2$ and $L$ have a linear relationship +\item We find an approximate solution to $Ax = y$, where A is the Van der Monde matrix to get coefficients of the least squares fit line. +\end{enumerate} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Van der Monde Matrix} +Van der Monde matrix of order M +\begin{equation*} + \begin{bmatrix} + l_1^{M-1} & \ldots & l_1 & 1 \\ + l_2^{M-1} & \ldots &l_2 & 1 \\ + \vdots & \ldots & \vdots & \vdots\\ + l_N^{M-1} & \ldots & l_N & 1 \\ + \end{bmatrix} +\end{equation*} +\begin{lstlisting} +In []: A=vander(L,2) +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Least Square Fit Line} +\begin{itemize} +\item We use the \typ{lstsq} function of pylab +\item It returns the +\begin{enumerate} +\item Least squares solution +\item Sum of residues +\item Rank of matrix A +\item Singular values of A +\end{enumerate} +\end{itemize} +\begin{lstlisting} +coeffs, res, rank, sing = lstsq(A,Tsq) +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{Least Square Fit Line \ldots} +\begin{itemize} +\item Use the poly1d function of pylab, to create a function for the line equation using the coefficients obtained +\begin{lstlisting} +p=poly1d(coeffs) +\end{lstlisting} +\item Get new T^2 values using the function \typ{p} obtained +\begin{lstlisting} +Tline = p(L) +\end{lstlisting} +\item Now plot Tline vs. L, to get the Least squares fit line. +\begin{lstlisting} +plot(L, Tline) +\end{lstlisting} \end{frame} \end{document} |