diff options
author | Puneeth Chaganti | 2009-10-15 23:10:03 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2009-10-15 23:10:03 +0530 |
commit | 9820e6b8890228b0a464a14828633e672efd395d (patch) | |
tree | cd209be9386bb188579cc074ed5928aad82e2c3d /day1/session3.tex | |
parent | 57963cae59bb03d43371e600065d520f956b30fc (diff) | |
download | workshops-9820e6b8890228b0a464a14828633e672efd395d.tar.gz workshops-9820e6b8890228b0a464a14828633e672efd395d.tar.bz2 workshops-9820e6b8890228b0a464a14828633e672efd395d.zip |
Minor edits to day1 session4.
Diffstat (limited to 'day1/session3.tex')
-rw-r--r-- | day1/session3.tex | 34 |
1 files changed, 5 insertions, 29 deletions
diff --git a/day1/session3.tex b/day1/session3.tex index 2b4eb9e..7168f72 100644 --- a/day1/session3.tex +++ b/day1/session3.tex @@ -78,7 +78,7 @@ \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} -\date[] {31, October 2009} +\date[] {31, October 2009\\Day 1, Session 3} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} @@ -230,7 +230,7 @@ In []: A=vander(L,2) \end{enumerate} \end{itemize} \begin{lstlisting} -coeffs, res, rank, sing = lstsq(A,Tsq) +In []: coef, res, r, s = lstsq(A,Tsq) \end{lstlisting} \end{frame} @@ -239,15 +239,15 @@ coeffs, res, rank, sing = lstsq(A,Tsq) \begin{itemize} \item Use the poly1d function of pylab, to create a function for the line equation using the coefficients obtained \begin{lstlisting} -p=poly1d(coeffs) +In []: p=poly1d(coef) \end{lstlisting} \item Get new $T^2$ values using the function \typ{p} obtained \begin{lstlisting} -Tline = p(L) +In []: Tline = p(L) \end{lstlisting} \item Now plot Tline vs. L, to get the Least squares fit line. \begin{lstlisting} -plot(L, Tline) +In []: plot(L, Tline) \end{lstlisting} \end{itemize} \end{frame} @@ -417,27 +417,3 @@ for k in data: \end{document} -Least squares: Smooth curve fit. -Array Operations: Mean, average (etc region wise like district wise and state wise from SSLC.txt) -Subject wise average. Introduce idea of dictionary. - -Session 3 - -import scipy -from scipy import linalg. - -choose some meaningful plot. ?? -Newton's law of cooling. -u, v, f - optics -hooke's law -Least fit curves. - - -Choose a named problem. -ODE - first order. Whatever. - - -arrays, etc etc. -sum, average, mean. whatever. statistical -sslc data -numpy load text?? |