summaryrefslogtreecommitdiff
path: root/day1/session3.tex
diff options
context:
space:
mode:
authorPuneeth Chaganti2009-10-15 23:10:03 +0530
committerPuneeth Chaganti2009-10-15 23:10:03 +0530
commit9820e6b8890228b0a464a14828633e672efd395d (patch)
treecd209be9386bb188579cc074ed5928aad82e2c3d /day1/session3.tex
parent57963cae59bb03d43371e600065d520f956b30fc (diff)
downloadworkshops-9820e6b8890228b0a464a14828633e672efd395d.tar.gz
workshops-9820e6b8890228b0a464a14828633e672efd395d.tar.bz2
workshops-9820e6b8890228b0a464a14828633e672efd395d.zip
Minor edits to day1 session4.
Diffstat (limited to 'day1/session3.tex')
-rw-r--r--day1/session3.tex34
1 files changed, 5 insertions, 29 deletions
diff --git a/day1/session3.tex b/day1/session3.tex
index 2b4eb9e..7168f72 100644
--- a/day1/session3.tex
+++ b/day1/session3.tex
@@ -78,7 +78,7 @@
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
-\date[] {31, October 2009}
+\date[] {31, October 2009\\Day 1, Session 3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
@@ -230,7 +230,7 @@ In []: A=vander(L,2)
\end{enumerate}
\end{itemize}
\begin{lstlisting}
-coeffs, res, rank, sing = lstsq(A,Tsq)
+In []: coef, res, r, s = lstsq(A,Tsq)
\end{lstlisting}
\end{frame}
@@ -239,15 +239,15 @@ coeffs, res, rank, sing = lstsq(A,Tsq)
\begin{itemize}
\item Use the poly1d function of pylab, to create a function for the line equation using the coefficients obtained
\begin{lstlisting}
-p=poly1d(coeffs)
+In []: p=poly1d(coef)
\end{lstlisting}
\item Get new $T^2$ values using the function \typ{p} obtained
\begin{lstlisting}
-Tline = p(L)
+In []: Tline = p(L)
\end{lstlisting}
\item Now plot Tline vs. L, to get the Least squares fit line.
\begin{lstlisting}
-plot(L, Tline)
+In []: plot(L, Tline)
\end{lstlisting}
\end{itemize}
\end{frame}
@@ -417,27 +417,3 @@ for k in data:
\end{document}
-Least squares: Smooth curve fit.
-Array Operations: Mean, average (etc region wise like district wise and state wise from SSLC.txt)
-Subject wise average. Introduce idea of dictionary.
-
-Session 3
-
-import scipy
-from scipy import linalg.
-
-choose some meaningful plot. ??
-Newton's law of cooling.
-u, v, f - optics
-hooke's law
-Least fit curves.
-
-
-Choose a named problem.
-ODE - first order. Whatever.
-
-
-arrays, etc etc.
-sum, average, mean. whatever. statistical
-sslc data
-numpy load text??