diff options
author | Prabhu Ramachandran | 2010-06-21 03:40:59 -0400 |
---|---|---|
committer | Prabhu Ramachandran | 2010-06-21 03:40:59 -0400 |
commit | f3fa1e2f31ac2265501861632d8e1c3051ec0218 (patch) | |
tree | cf65571cd020382a89fc3c8e0a06f7d7df476098 | |
parent | 94cac05e57096ebb81cd1a8c96f957621f04f854 (diff) | |
download | workshops-f3fa1e2f31ac2265501861632d8e1c3051ec0218.tar.gz workshops-f3fa1e2f31ac2265501861632d8e1c3051ec0218.tar.bz2 workshops-f3fa1e2f31ac2265501861632d8e1c3051ec0218.zip |
ENH: Added slides for FFT and basic signal processing, wherein we
introduce some random number generation also. Misc. cleanup for
tutorial.
--HG--
branch : scipy2010
-rwxr-xr-x | day1/session6.tex | 107 |
1 files changed, 86 insertions, 21 deletions
diff --git a/day1/session6.tex b/day1/session6.tex index 0c89b20..165957e 100755 --- a/day1/session6.tex +++ b/day1/session6.tex @@ -78,7 +78,7 @@ \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} -\date[] {30 April, 2010\\Day 1, Session 6} +\date[] {SciPy 2010, Introductory tutorials\\Day 1, Session 6} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} @@ -145,11 +145,11 @@ Solution: \frametitle{Solving using Matrices} Let us now look at how to solve this using \kwrd{matrices} \begin{lstlisting} - In []: A = array([[3,2,-1], - [2,-2,4], - [-1, 0.5, -1]]) - In []: b = array([1, -2, 0]) - In []: x = solve(A, b) +In []: A = array([[3,2,-1], + [2,-2,4], + [-1, 0.5, -1]]) +In []: b = array([1, -2, 0]) +In []: x = solve(A, b) \end{lstlisting} \end{frame} @@ -178,11 +178,9 @@ We can use \kwrd{allclose()} to check. In []: allclose(Ax, b) Out[]: True \end{lstlisting} -\inctime{15} +\inctime{10} \end{frame} -\subsection{Exercises} - \begin{frame}[fragile] \frametitle{Problem} Solve the set of equations: @@ -192,7 +190,7 @@ Solve the set of equations: 2x + y -z + 3w & = -11 \\ x - 3y + 2z + 7w & = -5\\ \end{align*} -\inctime{10} +\inctime{5} \end{frame} \begin{frame}[fragile] @@ -209,7 +207,7 @@ Use \kwrd{solve()} \section{Finding Roots} \begin{frame}[fragile] -\frametitle{Scipy Methods - \typ{roots}} +\frametitle{SciPy: \typ{roots}} \begin{itemize} \item Calculates the roots of polynomials \item To calculate the roots of $x^2-5x+6$ @@ -226,7 +224,7 @@ Use \kwrd{solve()} \end{frame} \begin{frame}[fragile] -\frametitle{Scipy Methods - \typ{fsolve}} +\frametitle{SciPy: \typ{fsolve}} \begin{small} \begin{lstlisting} In []: from scipy.optimize import fsolve @@ -277,10 +275,10 @@ In []: def g(z): ....: return sin(z)+cos(z)*cos(z) \end{lstlisting} \begin{itemize} -\item \typ{def} -\item name -\item arguments -\item \typ{return} +\item \typ{def} -- keyword +\item name: \typ{g} +\item arguments: \typ{z} +\item \typ{return} -- keyword \end{itemize} \end{frame} @@ -350,17 +348,17 @@ fsolve(g, 0) \begin{frame}[fragile] \frametitle{Solving ODEs using SciPy} \begin{itemize} -\item Let's consider the spread of an epidemic in a population +\item Consider the spread of an epidemic in a population \item $\frac{dy}{dt} = ky(L-y)$ gives the spread of the disease -\item L is the total population. -\item Use L = 250000, k = 0.00003, y(0) = 250 +\item $L$ is the total population. +\item Use $L = 2.5E5, k = 3E-5, y(0) = 250$ \item Define a function as below \end{itemize} \begin{lstlisting} In []: from scipy.integrate import odeint In []: def epid(y, t): - .... k = 0.00003 - .... L = 250000 + .... k = 3.0e-5 + .... L = 2.5e5 .... return k*y*(L-y) .... \end{lstlisting} @@ -450,6 +448,71 @@ In []: pend_sol = odeint(pend_int, \end{center} \end{frame} +\section{FFTs} + +\begin{frame}[fragile] +\frametitle{The FFT} +\begin{itemize} + \item We have a simple signal $y(t)$ + \item Find the FFT and plot it +\end{itemize} +\begin{lstlisting} +In []: t = linspace(0, 2*pi, 500) +In []: y = sin(4*pi*t) + +In []: f = fft(y) +In []: freq = fftfreq(500, t[1] - t[0]) + +In []: plot(freq[:250], abs(f)[:250]) +In []: grid() +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{FFTs cont\dots} +\begin{lstlisting} +In []: y1 = ifft(f) # inverse FFT +In []: allclose(y, y1) +Out[]: True +\end{lstlisting} +\end{frame} + +\begin{frame}[fragile] +\frametitle{FFTs cont\dots} +Let us add some noise to the signal +\begin{lstlisting} +In []: yr = y + random(size=500)*0.2 +In []: yn = y + normal(size=500)*0.2 + +In []: plot(t, yr) +In []: figure() +In []: plot(freq[:250], + ...: abs(fft(yn))[:250]) +\end{lstlisting} +\begin{itemize} + \item \typ{random}: produces uniform deviates in $[0, 1)$ + \item \typ{normal}: draws random samples from a Gaussian + distribution + \item Useful to create a random matrix of any shape +\end{itemize} +\end{frame} + +\begin{frame}[fragile] +\frametitle{FFTs cont\dots} +Filter the noisy signal: +\begin{lstlisting} +In []: from scipy import signal +In []: yc = signal.wiener(yn, 5) +In []: clf() +In []: plot(t, yc) +In []: figure() +In []: plot(freq[:250], + ...: abs(fft(yc))[:250]) +\end{lstlisting} +Only scratched the surface here \dots +\end{frame} + + \begin{frame} \frametitle{Things we have learned} \begin{itemize} @@ -457,6 +520,8 @@ In []: pend_sol = odeint(pend_int, \item Defining Functions \item Finding Roots \item Solving ODEs + \item Random number generation + \item FFTs and basic signal processing \end{itemize} \end{frame} |