diff options
author | Puneeth Chaganti | 2010-12-09 18:46:09 +0530 |
---|---|---|
committer | Puneeth Chaganti | 2010-12-09 18:46:09 +0530 |
commit | 20b0ac376b85534e6fc7723912777b6081f639e5 (patch) | |
tree | 99e3cf33c8d94d3bdef399905b5199b59656c728 | |
parent | dc751adb7676810b2d1a897f17700c3cea03a6f5 (diff) | |
download | workshops-20b0ac376b85534e6fc7723912777b6081f639e5.tar.gz workshops-20b0ac376b85534e6fc7723912777b6081f639e5.tar.bz2 workshops-20b0ac376b85534e6fc7723912777b6081f639e5.zip |
Renamed session4.tex to session3.tex
--HG--
branch : scipyin2010
rename : day1/session4.tex => day1/session3.tex
-rw-r--r-- | day1/session3.tex (renamed from day1/session4.tex) | 137 |
1 files changed, 2 insertions, 135 deletions
diff --git a/day1/session4.tex b/day1/session3.tex index 66dd049..a0fbf26 100644 --- a/day1/session4.tex +++ b/day1/session3.tex @@ -74,13 +74,12 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Title page -\title[Matrices \& Curve Fitting]{Python for Science and Engg: Matrices -\& Least Squares Fit} +\title[Arrays]{Python for Science and Engg: Arrays} \author[FOSSEE] {FOSSEE} \institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay} -\date[] {SciPy 2010, Introductory tutorials\\Day 1, Session 4} +\date[] {SciPy 2010, Tutorials} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo} @@ -471,138 +470,6 @@ Out[]: \end{small} \end{frame} -\section{Least Squares Fit} -\begin{frame}[fragile] -\frametitle{$L$ vs. $T^2$ - Scatter} -Linear trend visible. -\vspace{-0.1in} -\begin{figure} -\includegraphics[width=4in]{data/L-Tsq-points} -\end{figure} -\end{frame} - -\begin{frame}[fragile] -\frametitle{$L$ vs. $T^2$ - Line} -This line does not make any mathematical sense. -\vspace{-0.1in} -\begin{figure} -\includegraphics[width=4in]{data/L-Tsq-Line} -\end{figure} -\end{frame} - -\begin{frame}[fragile] -\frametitle{$L$ vs. $T^2$ - Least Square Fit} -This is what our intention is. -\vspace{-0.1in} -\begin{figure} -\includegraphics[width=4in]{data/least-sq-fit} -\end{figure} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Matrix Formulation} -\begin{itemize} -\item We need to fit a line through points for the equation $T^2 = m \cdot L+c$ -\item In matrix form, the equation can be represented as $T_{sq} = A \cdot p$, where $T_{sq}$ is - $\begin{bmatrix} - T^2_1 \\ - T^2_2 \\ - \vdots\\ - T^2_N \\ - \end{bmatrix}$ -, A is - $\begin{bmatrix} - L_1 & 1 \\ - L_2 & 1 \\ - \vdots & \vdots\\ - L_N & 1 \\ - \end{bmatrix}$ - and p is - $\begin{bmatrix} - m\\ - c\\ - \end{bmatrix}$ -\item We need to find $p$ to plot the line -\end{itemize} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Getting $L$ and $T^2$} -%If you \alert{closed} IPython after session 2 -\begin{lstlisting} -In []: L = [] -In []: t = [] -In []: for line in open('pendulum.txt'): - .... point = line.split() - .... L.append(float(point[0])) - .... t.append(float(point[1])) - .... - .... -\end{lstlisting} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Getting $L$ and $T^2$ \dots} -\begin{lstlisting} -In []: L = array(L) -In []: t = array(t) -\end{lstlisting} -\alert{\typ{In []: tsq = t*t}} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Generating $A$} -\begin{lstlisting} -In []: A = array([L, ones_like(L)]) -In []: A = A.T -\end{lstlisting} -%% \begin{itemize} -%% \item A is also called a Van der Monde matrix -%% \item It can also be generated using \typ{vander} -%% \end{itemize} -%% \begin{lstlisting} -%% In []: A = vander(L, 2) -%% \end{lstlisting} -\end{frame} - -\begin{frame}[fragile] -\frametitle{\typ{lstsq} \ldots} -\begin{itemize} -\item Now use the \typ{lstsq} function -\item Along with a lot of things, it returns the least squares solution -\end{itemize} -\begin{lstlisting} -In []: result = lstsq(A,tsq) -In []: coef = result[0] -\end{lstlisting} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Least Square Fit Line \ldots} -We get the points of the line from \typ{coef} -\begin{lstlisting} -In []: Tline = coef[0]*L + coef[1] - -In []: Tline.shape -\end{lstlisting} -\begin{itemize} -\item Now plot \typ{Tline} vs. \typ{L}, to get the Least squares fit line. -\end{itemize} -\begin{lstlisting} -In []: plot(L, Tline, 'r') - -In []: plot(L, tsq, 'o') -\end{lstlisting} -\end{frame} - -\begin{frame}[fragile] -\frametitle{Least Squares Fit} -\vspace{-0.15in} -\begin{figure} -\includegraphics[width=4in]{data/least-sq-fit} -\end{figure} -\end{frame} - \section{Summary} \begin{frame} \frametitle{What did we learn?} |