1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{split}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Basic Python]{Interpolation, Differentiation and Integration}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 5}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
% \pausesections
\end{frame}
\section{Interpolation}
\begin{frame}[fragile]
\frametitle{Interpolation}
\begin{itemize}
\item Let us begin with interpolation
\item Let's use the L and T arrays and interpolate this data to obtain data at new points
\end{itemize}
\begin{lstlisting}
In []: L = []
In []: T = []
In []: for line in open('pendulum.txt'):
l, t = line.split()
L.append(float(l))
T.append(float(t))
In []: L = array(L)
In []: T = array(T)
\end{lstlisting}
\end{frame}
%% \begin{frame}[fragile]
%% \frametitle{Interpolation \ldots}
%% \begin{small}
%% \typ{In []: from scipy.interpolate import interp1d}
%% \end{small}
%% \begin{itemize}
%% \item The \typ{interp1d} function returns a function
%% \begin{lstlisting}
%% In []: f = interp1d(L, T)
%% \end{lstlisting}
%% \item Functions can be assigned to variables
%% \item This function interpolates between known data values to obtain unknown
%% \end{itemize}
%% \end{frame}
%% \begin{frame}[fragile]
%% \frametitle{Interpolation \ldots}
%% \begin{lstlisting}
%% In []: Ln = arange(0.1,0.99,0.005)
%% # Interpolating!
%% # The new values in range of old data
%% In []: plot(L, T, 'o', Ln, f(Ln), '-')
%% In []: f = interp1d(L, T, kind='cubic')
%% # When kind not specified, it's linear
%% # Others are ...
%% # 'nearest', 'zero',
%% # 'slinear', 'quadratic'
%% \end{lstlisting}
%% \end{frame}
\begin{frame}[fragile]
\frametitle{Spline Interpolation}
\begin{small}
\begin{lstlisting}
In []: from scipy.interpolate import splrep
In []: from scipy.interpolate import splev
\end{lstlisting}
\end{small}
\begin{itemize}
\item Involves two steps
\begin{enumerate}
\item Find out the spline curve, coefficients
\item Evaluate the spline at new points
\end{enumerate}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{\typ{splrep}}
To find the B-spline representation
\begin{lstlisting}
In []: tck = splrep(L, T)
\end{lstlisting}
Returns a tuple containing
\begin{enumerate}
\item the vector of knots,
\item the B-spline coefficients
\item the degree of the spline (default=3)
\end{enumerate}
\end{frame}
\begin{frame}[fragile]
\frametitle{\typ{splev}}
To Evaluate a B-spline and it's derivatives
\begin{lstlisting}
In []: Lnew = arange(0.1,1,0.005)
In []: Tnew = splev(Lnew, tck)
#To obtain derivatives of the spline
#use der=1, 2,.. for 1st, 2nd,.. order
In []: Tnew = splev(Lnew, tck, der=1)
\end{lstlisting}
\end{frame}
%% \begin{frame}[fragile]
%% \frametitle{Interpolation \ldots}
%% \begin{itemize}
%% \item
%% \end{itemize}
%% \end{frame}
\section{Differentiation}
\begin{frame}[fragile]
\frametitle{Numerical Differentiation}
\begin{itemize}
\item Given function $f(x)$ or data points $y=f(x)$
\item We wish to calculate $f^{'}(x)$ at points $x$
\item Taylor series - finite difference approximations
\end{itemize}
\begin{center}
\begin{tabular}{l l}
$f(x+h)=f(x)+h.f^{'}(x)$ &Forward \\
$f(x-h)=f(x)-h.f^{'}(x)$ &Backward
\end{tabular}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Forward Difference}
\begin{lstlisting}
In []: x = linspace(0, 2*pi, 100)
In []: y = sin(x)
In []: deltax = x[1] - x[0]
\end{lstlisting}
Obtain the finite forward difference of y
\end{frame}
\begin{frame}[fragile]
\frametitle{Forward Difference \ldots}
\begin{lstlisting}
In []: fD = (y[1:] - y[:-1]) / deltax
In []: plot(x, y, x[:-1], fD)
\end{lstlisting}
\begin{center}
\includegraphics[height=2in, interpolate=true]{data/fwdDiff}
\end{center}
\end{frame}
\begin{frame}[fragile]
\frametitle{Example}
\begin{itemize}
\item Given x, y positions of a particle in \typ{pos.txt}
\item Find velocity \& acceleration in x, y directions
\end{itemize}
\small{
\begin{center}
\begin{tabular}{| c | c | c |}
\hline
$X$ & $Y$ \\ \hline
0. & 0.\\ \hline
0.25 & 0.47775\\ \hline
0.5 & 0.931\\ \hline
0.75 & 1.35975\\ \hline
1. & 1.764\\ \hline
1.25 & 2.14375\\ \hline
\vdots & \vdots\\ \hline
\end{tabular}
\end{center}}
\end{frame}
\begin{frame}[fragile]
\frametitle{Example \ldots}
\begin{itemize}
\item Read the file
\item Obtain an array of x, y
\item Obtain velocity and acceleration
\item use \typ{deltaT = 0.05}
\end{itemize}
\begin{lstlisting}
In []: X = []
In []: Y = []
In []: for line in open('location.txt'):
.... points = line.split()
.... X.append(float(points[0]))
.... Y.append(float(points[1]))
In []: S = array([X, Y])
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Example \ldots}
\begin{itemize}
\item use \typ{deltaT = 0.05}
\end{itemize}
\begin{lstlisting}
In []: deltaT = 0.05
In []: v = (S[:,1:]-S[:,:-1])/deltaT
In []: a = (v[:,1:]-v[:,:-1])/deltaT
\end{lstlisting}
Try Plotting the position, velocity \& acceleration.
\end{frame}
\section{Quadrature}
\begin{frame}[fragile]
\frametitle{Quadrature}
\begin{itemize}
\item We wish to find area under a curve
\item Area under $(sin(x) + x^2)$ in $(0,1)$
\item scipy has functions to do that
\end{itemize}
\begin{small}
\typ{In []: from scipy.integrate import quad}
\end{small}
\begin{itemize}
\item Inputs - function to integrate, limits
\end{itemize}
\begin{lstlisting}
In []: x = 0
In []: quad(sin(x)+x**2, 0, 1)
\end{lstlisting}
\begin{small}
\alert{\typ{error:}}
\typ{First argument must be a callable function.}
\end{small}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Definition}
We have been using them all along. Now let's see how to define them.
\begin{lstlisting}
In []: def f(x):
return sin(x)+x**2
In []: quad(f, 0, 1)
\end{lstlisting}
\begin{itemize}
\item \typ{def}
\item name
\item arguments
\item \typ{return}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Functions - Calling them}
\begin{lstlisting}
In [15]: f()
---------------------------------------
\end{lstlisting}
\alert{\typ{TypeError:}}\typ{f() takes exactly 1 argument}
\typ{(0 given)}
\begin{lstlisting}
In []: f(0)
Out[]: 0.0
In []: f(1)
Out[]: 1.8414709848078965
\end{lstlisting}
More on Functions later \ldots
\end{frame}
\begin{frame}[fragile]
\frametitle{Quadrature \ldots}
\begin{lstlisting}
In []: quad(f, 0, 1)
\end{lstlisting}
Returns the integral and an estimate of the absolute error in the result.
\begin{itemize}
\item Look at \typ{dblquad} for Double integrals
\item Use \typ{tplquad} for Triple integrals
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Things we have learned}
\begin{itemize}
\item Interpolation
\item Differentiation
\item Functions
\begin{itemize}
\item Definition
\item Calling
\item Default Arguments
\item Keyword Arguments
\end{itemize}
\item Quadrature
\end{itemize}
\end{frame}
\end{document}
|