summaryrefslogtreecommitdiff
path: root/day1/session3.tex
blob: ae0eea2447a28e13d7f367c81d98c8a340796704 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages} 
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]

% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
  \usetheme{Warsaw}
  \useoutertheme{split}
  \setbeamercovered{transparent}
}

\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}

% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\usepackage{amsmath}

\definecolor{darkgreen}{rgb}{0,0.5,0}

\usepackage{listings}
\lstset{language=Python,
    basicstyle=\ttfamily\bfseries,
    commentstyle=\color{red}\itshape,
  stringstyle=\color{darkgreen},
  showstringspaces=false,
  keywordstyle=\color{blue}\bfseries}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar} 
      {#1}
 \end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}

\newcommand{\typ}[1]{\lstinline{#1}}

\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}}  }

%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
%    language=Python,
%    basicstyle=\small\ttfamily,
%    commentstyle=\ttfamily\color{blue},
%    stringstyle=\ttfamily\color{orange},
%    showstringspaces=false,
%    breaklines=true,
%    postbreak = \space\dots
% }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Statistics]{Python for Science and Engg. Statistics}

\author[FOSSEE] {FOSSEE}

\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009\\Day 1, Session 3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}


%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
  \begin{frame}<beamer>
    \frametitle{Outline}
    \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

\AtBeginSection[]
{
  \begin{frame}<beamer>
    \frametitle{Outline}
    \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

\newcommand{\num}{\texttt{numpy}}


% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command: 
%\beamerdefaultoverlayspecification{<+->}

%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}

\begin{frame}
  \maketitle
\end{frame}

%% \begin{frame}
%%   \frametitle{Outline}
%%   \tableofcontents
%%   % You might wish to add the option [pausesections]
%% \end{frame}

\begin{frame}
  \frametitle{More on data processing}
  \begin{block}{}
    We have a huge--1m records--data file.\\How do we do \emph{efficient} statistical computations, that is find mean, median, mode, standard deveiation etc; draw pie charts?
  \end{block}
\end{frame}


\begin{frame}
  \frametitle{Statistical Analysis and Parsing}
  Read the data supplied in \emph{sslc1.txt} and obtain the following statistics:
  \begin{itemize}
    \item Draw a pie chart representing the number of students who scored more than 90\% in Science per region.
    \item Draw a pie chart representing the number of students who scored more than 90\% per subject(All regions combined).
    \item Print mean, median, mode and standard deviation of math scores for all regions combined.
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Statistical Analysis and Parsing \ldots}
  Machinery Required -
  \begin{itemize}
    \item File reading
    \item Parsing
    \item Dictionaries
    \item NumPy arrays
    \item Statistical operations
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{File reading and parsing}
  Understanding the structure of sslc1.txt
  \begin{itemize}
    \item Each line in the file corresponds to one student's details
    \item aka record
    \item Each record consists of several fields separated by a ';'
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{File reading and parsing \ldots}
  Each record consists of:
  \begin{itemize}
    \item Region Code
    \item Roll Number
    \item Name
    \item Marks of 5 subjects: English, Hindi, Maths, Science, Social
    \item Total marks
    \item Pass/Fail (P/F)
    \item Withdrawn (W)
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{File reading and parsing \ldots}
  \begin{lstlisting}
for record in open('sslc1.txt'):
    fields = record.split(';')
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionary: Introduction}
  \begin{itemize}
    \item lists index: 0 \ldots n
    \item dictionaries index using strings
  \end{itemize}
\begin{block}{Example}
d = \{ ``Hitchhiker's guide'' : 42,
     ``Terminator'' : ``I'll be back''\}\\
d[``Terminator''] => ``I'll be back''
\end{block}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionary: Introduction}
\begin{lstlisting}
In [1]: d = {"Hitchhiker's guide" : 42,
      "Terminator" : "I'll be back"}

In [2]: d["Hitchhiker's guide"]
Out[2]: 42

In [3]: "Hitchhiker's guide" in d
Out[3]: True

In [4]: "Guido" in d
Out[4]: False
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionary: Introduction}
\begin{lstlisting}
In [5]: d.keys()
Out[5]: ['Terminator', "Hitchhiker's 
                              guide"]

In [6]: d.values()
Out[6]: ["I'll be back", 42]
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{enumerate: Iterating through list indices}
\begin{lstlisting}
In [1]: names = ["Guido","Alex", "Tim"]

In [2]: for i, name in enumerate(names):
   ...:     print i, name
   ...: 
0 Guido
1 Alex
2 Tim
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionary: Building parsed data}
    Let our dictionary be:
    \begin{lstlisting}
science = {} # is an empty dictionary
    \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionary - Building parsed data}
  \begin{itemize}
    \item \emph{Keys} of \emph{science} will be region codes
    \item Value of a \emph{science} will be the number students who scored more than 90\% in that region
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building parsed data \ldots}
  \begin{lstlisting}
from pylab import pie

science = {}

for record in open('sslc1.txt'):
    record = record.strip()
    fields = record.split(';')

    region_code = fields[0].strip()
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building parsed data \ldots}
  \begin{lstlisting}
if region_code not in science:
    science[region_code] = 0

score_str = fields[4].strip()

score = int(score_str) if
    score_str != 'AA' else 0

if score > 90:
    science[region_code] += 1
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Pie charts}
  \small
  \begin{lstlisting}
figure(1)
pie(science.values(), 
    labels=science.keys())
title('Students scoring 90% and above 
      in science by region')
savefig('/tmp/science.png')
  \end{lstlisting}
\begin{columns}
    \column{5.25\textwidth}
    \hspace*{1.1in}
\includegraphics[height=2in, interpolate=true]{data/science}
    \column{0.8\textwidth}
\end{columns}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building data for all subjects \ldots}
  \begin{lstlisting}
from pylab import pie
from scipy import mean, median, std
from scipy import stats

scores = [[], [], [], [], []]
ninety_percents = [{}, {}, {}, {}, {}]
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building data for all subjects \ldots}
  \begin{lstlisting}
for record in open('sslc1.txt'):
    record = record.strip()
    fields = record.split(';')

    region_code = fields[0].strip()
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building data for all subjects \ldots}
  \small
  \begin{lstlisting}
for i, field in enumerate(fields[3:8]):
    if region_code not in ninety_percents[i]:
        ninety_percents[i][region_code] = 0

    score_str = field.strip()
    score = int(score_str) if
      score_str != 'AA' else 0

    scores[i].append(score)

    if score > 90:
        ninety_percents[i][region_code] += 1
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Consolidating data}
  \begin{lstlisting}
subj_total = []
for subject in ninety_percents:
    subj_total.append(sum(
         subject.values()))
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Pie charts}
  \begin{lstlisting}
figure(2)
pie(subj_total, labels=['English',
    'Hindi', 'Maths', 'Science',
    'Social'])
title('Students scoring more than
      90% by subject(All regions
      combined).')
savefig('/tmp/all_regions.png')
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Pie charts}
  \includegraphics[height=3in, interpolate=true]{data/all_regions}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Obtaining statistics}
  \begin{lstlisting}
math_scores = array(scores[2])

print "Mean: ", mean(math_scores)

print "Median: ", median(math_scores)

print "Mode: ", stats.mode(math_scores)

print "Standard Deviation: ",
              std(math_scores)
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{What tools did we use?}
  \begin{itemize}
   \item Dictionaries for storing data
   \item Facilities for drawing pie charts
   \item NumPy arrays for efficient array manipulations
   \item Functions for statistical computations - mean, median, mode, standard deviation
  \end{itemize}
\end{frame}

\begin{frame}
\frametitle{L vs $T^2$ \ldots}
Let's go back to the L vs $T^2$ plot
\begin{itemize}
\item We first look at obtaining $T^2$ from T
\item Then, we look at plotting a Least Squares fit
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Dealing with data whole-sale}
\begin{lstlisting}
In []: for t in T:
 ....:     TSq.append(t*t)
\end{lstlisting}
\begin{itemize}
\item This is not very efficient
\item We are squaring element after element
\item We use arrays to make this efficient
\end{itemize}
\begin{lstlisting}
In []: L = array(L)
In []: T = array(T)
In []: TSq = T*T
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{Arrays}
\begin{itemize}
\item \typ{T} and \typ{L} are now arrays
\item arrays are very efficient and powerful 
\item Very easy to perform element-wise operations
\item \typ{+, -, *, /, \%}
\item More about arrays later
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Least Squares Fit}
\vspace{-0.15in}
\begin{figure}
\includegraphics[width=4in]{data/L-Tsq-Line.png}
\end{figure}
\end{frame}

\begin{frame}[fragile]
\frametitle{Least Squares Fit}
\vspace{-0.15in}
\begin{figure}
\includegraphics[width=4in]{data/L-Tsq-points.png}
\end{figure}
\end{frame}

\begin{frame}[fragile]
\frametitle{Least Squares Fit}
\vspace{-0.15in}
\begin{figure}
\includegraphics[width=4in]{data/least-sq-fit.png}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Least Square Fit Curve}
\begin{itemize}
\item $T^2$ and $L$ have a linear relationship
\item Hence, Least Square Fit Curve is a line
\item we shall use the \typ{lstsq} function
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{\typ{lstsq}}
\begin{itemize}
\item We need to fit a line through points for the equation $T^2 = m \cdot L+c$
\item The equation can be re-written as $T^2 = A \cdot p$
\item where A is   
  $\begin{bmatrix}
  L_1 & 1 \\
  L_2 & 1 \\
  \vdots & \vdots\\
  L_N & 1 \\
  \end{bmatrix}$
  and p is 
  $\begin{bmatrix}
  m\\
  c\\
  \end{bmatrix}$
\item We need to find $p$ to plot the line
\end{itemize}
\end{frame}

\begin{frame}[fragile]
\frametitle{Van der Monde Matrix}
\begin{itemize}
\item A is also called a Van der Monde matrix
\item It can be generated using \typ{vander}
\end{itemize}
Van der Monde matrix of order M
\begin{equation*}
  \begin{bmatrix}
  l_1^{M-1} & \ldots & l_1 & 1 \\
  l_2^{M-1} & \ldots &l_2 & 1 \\
  \vdots & \ldots & \vdots & \vdots\\
  l_N^{M-1} & \ldots & l_N & 1 \\
  \end{bmatrix}
\end{equation*}
\begin{lstlisting}
In []: A = vander(L,2)
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{\typ{lstsq} \ldots}
\begin{itemize}
\item Now use the \typ{lstsq} function
\item Along with a lot of things, it returns the least squares solution
\end{itemize}
\begin{lstlisting}
In []: coef, res, r, s = lstsq(A,TSq)
\end{lstlisting}
\end{frame}

\begin{frame}[fragile]
\frametitle{Least Square Fit Line \ldots}
We get the points of the line from \typ{coef}
\begin{lstlisting}
In []: Tline = coef[0]*L + coef[1]
\end{lstlisting}
\begin{itemize}
\item Now plot Tline vs. L, to get the Least squares fit line. 
\end{itemize}
\begin{lstlisting}
In []: plot(L, Tline)
\end{lstlisting}
\end{frame}

\end{document}