summaryrefslogtreecommitdiff
path: root/day1/session3.tex
blob: 02aef4fe819c37a92bca1b781686b00b0c922d31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Tutorial slides on Python.
%
% Author: FOSSEE
% Copyright (c) 2009, FOSSEE, IIT Bombay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages} 
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]

% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
  \usetheme{Warsaw}
  \useoutertheme{infolines}
  \setbeamercovered{transparent}
}

\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}

% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\usepackage{amsmath}

\definecolor{darkgreen}{rgb}{0,0.5,0}

\usepackage{listings}
\lstset{language=Python,
    basicstyle=\ttfamily\bfseries,
    commentstyle=\color{red}\itshape,
  stringstyle=\color{darkgreen},
  showstringspaces=false,
  keywordstyle=\color{blue}\bfseries}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar} 
      {#1}
 \end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}

\newcommand{\typ}[1]{\lstinline{#1}}

\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}}  }

%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
%    language=Python,
%    basicstyle=\small\ttfamily,
%    commentstyle=\ttfamily\color{blue},
%    stringstyle=\ttfamily\color{orange},
%    showstringspaces=false,
%    breaklines=true,
%    postbreak = \space\dots
% }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[Statistics]{Python for Science and Engg:\\ Basic data processing}

\author[FOSSEE] {FOSSEE}

\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}

\date[] {SciPy 2010, Introductory tutorials,\\Day 1, Session 3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}


%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
  \begin{frame}<beamer>
    \frametitle{Outline}
    \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

\AtBeginSection[]
{
  \begin{frame}<beamer>
    \frametitle{Outline}
    \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

\newcommand{\num}{\texttt{numpy}}


% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command: 
%\beamerdefaultoverlayspecification{<+->}

%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}

\begin{frame}
  \maketitle
\end{frame}

%% \begin{frame}
%%   \frametitle{Outline}
%%   \tableofcontents
%%   % You might wish to add the option [pausesections]
%% \end{frame}

\section{Computing the mean}
\begin{frame}
  \frametitle{Value of acceleration due to gravity?}
  \begin{itemize}
    \item We already have \typ{pendulum.txt}
    \item We know that $ T = 2\pi \sqrt{\frac{L}{g}} $
    \item So $ g = \frac{4 \pi^2 L}{T^2}  $
    \item Calculate $g$ - acceleration due to gravity for each pair of
        $L$ and $T$
    \item Hence calculate mean $g$
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Acceleration due to gravity - $g$\ldots}
  \begin{lstlisting}
In []: g_list = []
In []: for line in open('pendulum.txt'):
  ....     point = line.split()
  ....     L = float(point[0])
  ....     t = float(point[1])
  ....     g = 4 * pi * pi * L / (t * t)
  ....     g_list.append(g)
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Mean $g$ - Classical method}
  \begin{lstlisting}
In []: total = 0
In []: for g in g_list:
 ....:     total += g
 ....:

In []: g_mean = total / len(g_list)
In []: print 'Mean: ', g_mean
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Mean $g$ - Slightly improved method}
  \begin{lstlisting}
In []: g_mean = sum(g_list) / len(g_list)
In []: print 'Mean: ', g_mean
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Mean $g$ - One liner}
  \begin{lstlisting}
In []: g_mean = mean(g_list)
In []: print 'Mean: ', g_mean
  \end{lstlisting}
  \inctime{10}
\end{frame}

\section{Processing voluminous data}
\begin{frame}
  \frametitle{More on data processing}
  \begin{block}{}
    We have a huge data file--180,000 records.\\How do we do
    \emph{efficient} statistical computations, i.e. find mean, median,
    standard deviation etc.;\\How do we draw pie charts?
  \end{block}
\end{frame}

\begin{frame}
  \frametitle{Structure of the file}
  Understanding the structure of \typ{sslc1.txt}
  \begin{itemize}
    \item Each line in the file has a student's details(record)
    \item Each record consists of fields separated by ';'
  \end{itemize}
\emphbar{A;015162;JENIL T P;081;060;77;41;74;333;P;;}
\end{frame}

\begin{frame}
  \frametitle{Structure of the file \ldots}
\emphbar{A;015163;JOSEPH RAJ S;083;042;47;AA;72;244;;;}
  Each record consists of:
  \begin{itemize}
    \item Region Code
    \item Roll Number
    \item Name
    \item Marks of 5 subjects: second lang, first lang., Math, Science,
        Social Studies
    \item Total marks
    \item Pass/Fail (P/F)
    \item Withheld (W)
  \end{itemize}
  \inctime{5}
\end{frame}

\begin{frame}
  \frametitle{Statistical Analysis: Problem statement}
  1. Read the data supplied in the file \typ{sslc1.txt} and carry out the following:
  \begin{itemize}
    \item[a] Draw a pie chart representing proportion of students who scored more than 90\% in each region in Science.
    \item[b] Print mean, median and standard deviation of math scores for all regions combined.
  \end{itemize}
\end{frame}

\begin{frame}
  \frametitle{Problem statement: explanation}
    \emphbar{a. Draw a pie chart representing proportion of students who scored more than 90\% in each region in Science.}
\begin{columns}
    \column{5.25\textwidth}
    \hspace*{.5in}
\includegraphics[height=2.6in, interpolate=true]{data/science}
    \column{0.8\textwidth}
\end{columns}
\end{frame}

\begin{frame}
  \frametitle{Machinery Required}
  \begin{itemize}
    \item File reading
    \item Parsing
    \item Dictionaries 
    \item Arrays
    \item Statistical operations
  \end{itemize}
\end{frame}

\subsection{Data processing}
\begin{frame}[fragile]
  \frametitle{File reading and parsing \ldots}
\emphbar{Reading files line by line is the same as we had done with the pendulum example.}

  \begin{lstlisting}
for record in open('sslc1.txt'):
    fields = record.split(';')
  \end{lstlisting}
\end{frame}

\subsection{Dictionaries}
\begin{frame}[fragile]
  \frametitle{Dictionaries: Introduction}
  \begin{itemize}
    \item Lists index using integers\\
Recall \typ{p = [2, 3, 5, 7]} and\\
\typ{p[1]} is equal to \typ{3}
    \item Dictionaries index using strings
  \end{itemize}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionaries \ldots}
  \begin{lstlisting}
In []: d = {'png' : 'image file',
      'txt' : 'text file', 
      'py' : 'python code',
      'java': 'bad code', 
      'cpp': 'complex code'}

In []: d['txt']
Out[]: 'text file'
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionaries \ldots}
  \begin{lstlisting}
In []: 'py' in d
Out[]: True

In []: 'jpg' in d
Out[]: False
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Dictionaries \ldots}
  \begin{small}
    \begin{lstlisting}
In []: d.keys()
Out[]: ['cpp', 'py', 'txt', 'java', 'png']

In []: d.values()
Out[]: ['complex code', 'python code',
        'text file', 'bad code', 
        'image file']
    \end{lstlisting}
  \end{small}
  \inctime{10}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Inserting elements into dictionary}
  \emphbar{\alert{d[key] = value}}
  \begin{lstlisting}
    In []: d['bin'] = 'binary file'
    In []: d
    Out[]: 
    {'bin': 'binary file',
     'cpp': 'complex code',
     'java': 'bad code',
     'png': 'image file',
     'py': 'python code',
     'txt': 'text file'}
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Getting back to the problem}
  Let our dictionary be:
  \begin{lstlisting}
science = {}
  \end{lstlisting}
\begin{itemize}
    \item Keys will be region codes
    \item Values will be the number students who scored more than 90\% in that region in Science
  \end{itemize}
  \begin{block}{Sample \typ{science} dictionary}
    \{'A': 729, 'C': 764, 'B': 1120,'E': 414, 'D': 603, 'F': 500\}
  \end{block}

\end{frame}

\begin{frame}[fragile]
  \frametitle{Building parsed data \ldots}
  \begin{lstlisting}
science = {}

for record in open('sslc1.txt'):
    fields = record.split(';')

    region_code = fields[0].strip()
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building parsed data \ldots}
  \begin{lstlisting}
if region_code not in science:
    science[region_code] = 0

score_str = fields[6].strip()

score = int(score_str) if \
    score_str != 'AA' else 0

if score > 90:
    science[region_code] += 1
  \end{lstlisting}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building parsed data \ldots}
  \begin{lstlisting}
print science
print science.keys()
print science.values()
  \end{lstlisting}
\end{frame}

\subsection{Visualizing data}
\begin{frame}[fragile]
  \frametitle{Pie Chart}
  \begin{lstlisting}
    pie(science.values())
  \end{lstlisting}
\includegraphics[height=2in, interpolate=true]{data/science_nolabel}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Pie chart}
  \small
  \begin{lstlisting}
pie(science.values(), 
    labels = science.keys())
title('Students scoring 90% and above 
      in science by region')
savefig('science.png')
  \end{lstlisting}
\begin{columns}
    \column{5.25\textwidth}
    \hspace*{1.1in}
\includegraphics[height=2in, interpolate=true]{data/science}
    \column{0.8\textwidth}
\end{columns}
  \inctime{10}
\end{frame}

\begin{frame}
  \frametitle{Problem statement}
    \emphbar{b. Print mean, median and standard deviation of math scores for all regions combined.}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Building data for statistics}
  \begin{lstlisting}
math_scores = []

for record in open('sslc1.txt'):
    fields = record.split(';')

    score_str = fields[5].strip()
    score = int(score_str) if \
      score_str != 'AA' else 0

    math_scores.append(score)
  \end{lstlisting}
\end{frame}

\subsection{Obtaining statistics}
\begin{frame}[fragile]
  \frametitle{Obtaining statistics}
  \begin{lstlisting}
print 'Mean: ', mean(math_scores)

print 'Median: ', median(math_scores)

print 'Standard Deviation: ',
              std(math_scores)
  \end{lstlisting}
  \inctime{10}
\end{frame}

\begin{frame}[fragile]
  \frametitle{Obtaining statistics: efficiently!}
  \begin{lstlisting}
math_array = array(math_scores)

print 'Mean: ', mean(math_array)

print 'Median: ', median(math_array)

print 'Standard Deviation: ',
              std(math_array)
  \end{lstlisting}
  \inctime{5}
\end{frame}

\begin{frame}[fragile]
  \frametitle{IPython tip: Timing}

Try the following:
  \begin{lstlisting}
In []: %timeit mean(math_scores)

In []: %timeit mean(math_array)

In []: %timeit?

  \end{lstlisting}

  \begin{itemize}
      \item \typ{\%timeit}: accurate, many measurements
      \item Can also use \typ{\%time}
      \item \typ{\%time}: less accurate, one measurement 
  \end{itemize}

  \inctime{5}
\end{frame}

\begin{frame}[fragile]
  \frametitle{What tools did we use?}
  \begin{itemize}
   \item More parsing data
   \item Dictionaries for storing data
   \item Facilities for drawing pie charts
   \item Functions for statistical computations - mean, median, standard deviation
   \item Efficient array manipulations
   \item Timing in IPython
  \end{itemize}

\end{frame}

\end{document}

%% Questions for Quiz %%
%% ------------------ %%

\begin{frame}
\frametitle{\incqno }
  A sample line from a Comma Separated Values (CSV) file:\\
  \vspace*{0.2in}
  \emph{Rossum, Guido, 42, 56, 34, 54}\\
  \vspace*{0.2in}
  What code would you use to separate the line into fields?
\end{frame}

\begin{frame}[fragile]
\frametitle{\incqno }
  \begin{lstlisting}
  In []: a = [1, 2, 5, 9]
  \end{lstlisting}
  How do you find the length of this list?
\end{frame}

\begin{frame}[fragile]
\frametitle{\incqno }
  \begin{lstlisting}
  In [1]: d = {
          'a': 1,
          'b': 2
          }
  In [2]: print d['c']
  \end{lstlisting}
  What is the output?
\end{frame}

\begin{frame}[fragile]
\frametitle{\incqno }
\begin{lstlisting}
In []: sc = {'A': 10, 'B': 20, 
             'C': 70}
\end{lstlisting}
Given the above dictionary, what command will you give to plot a
pie-chart?
\end{frame}

\begin{frame}[fragile]
\frametitle{\incqno }
\begin{lstlisting}
In []: marks = [10, 20, 30, 50, 55, 
                75, 83] 
\end{lstlisting}
Given the above marks, how will you calculate the \alert{mean} and
\alert{standard deviation}?
\end{frame}

\begin{frame}[fragile]
\frametitle{\incqno }
\begin{lstlisting}
In []: marks = [10, 20, 30, 50, 55, 
               75, 83] 
\end{lstlisting}
How will you convert the list \texttt{marks} to an \alert{array}?
\end{frame}

%% \begin{frame}[fragile]
%% \frametitle{\incqno }
%%   \begin{lstlisting}
%%   for x in "abcd":
%%       print x

%%   a
%%   b
%%   c
%%   d
%%   \end{lstlisting}
%%   How do you get the following output? 
%%   \begin{lstlisting}
%%     0 a
%%     1 b
%%     2 c
%%     3 d
%%   \end{lstlisting}
%% \end{frame}