1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tutorial slides on Python.
%
% Author: Prabhu Ramachandran <prabhu at aero.iitb.ac.in>
% Copyright (c) 2005-2009, Prabhu Ramachandran
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[14pt,compress]{beamer}
%\documentclass[draft]{beamer}
%\documentclass[compress,handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% Modified from: generic-ornate-15min-45min.de.tex
\mode<presentation>
{
\usetheme{Warsaw}
\useoutertheme{split}
\setbeamercovered{transparent}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
%\usepackage{times}
\usepackage[T1]{fontenc}
% Taken from Fernando's slides.
\usepackage{ae,aecompl}
\usepackage{mathpazo,courier,euler}
\usepackage[scaled=.95]{helvet}
\usepackage{amsmath}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros
\setbeamercolor{emphbar}{bg=blue!20, fg=black}
\newcommand{\emphbar}[1]
{\begin{beamercolorbox}[rounded=true]{emphbar}
{#1}
\end{beamercolorbox}
}
\newcounter{time}
\setcounter{time}{0}
\newcommand{\inctime}[1]{\addtocounter{time}{#1}{\tiny \thetime\ m}}
\newcommand{\typ}[1]{\lstinline{#1}}
\newcommand{\kwrd}[1]{ \texttt{\textbf{\color{blue}{#1}}} }
%%% This is from Fernando's setup.
% \usepackage{color}
% \definecolor{orange}{cmyk}{0,0.4,0.8,0.2}
% % Use and configure listings package for nicely formatted code
% \usepackage{listings}
% \lstset{
% language=Python,
% basicstyle=\small\ttfamily,
% commentstyle=\ttfamily\color{blue},
% stringstyle=\ttfamily\color{orange},
% showstringspaces=false,
% breaklines=true,
% postbreak = \space\dots
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Title page
\title[]{Arrays \& Least Squares Fit}
\author[FOSSEE] {FOSSEE}
\institute[IIT Bombay] {Department of Aerospace Engineering\\IIT Bombay}
\date[] {31, October 2009}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\pgfdeclareimage[height=0.75cm]{iitmlogo}{iitmlogo}
%\logo{\pgfuseimage{iitmlogo}}
%% Delete this, if you do not want the table of contents to pop up at
%% the beginning of each subsection:
\AtBeginSubsection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
\end{frame}
}
\newcommand{\num}{\texttt{numpy}}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
%\beamerdefaultoverlayspecification{<+->}
%\includeonlyframes{current,current1,current2,current3,current4,current5,current6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DOCUMENT STARTS
\begin{document}
\begin{frame}
\maketitle
\end{frame}
%% \begin{frame}
%% \frametitle{Outline}
%% \tableofcontents
%% % You might wish to add the option [pausesections]
%% \end{frame}
\begin{frame}
\frametitle{Least Squares Fit}
In this session -
\begin{itemize}
\item We shall plot a least squares fit curve for time-period(T) squared vs. length(L) plot of a Simple Pendulum.
\item Given a file containing L and T values
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Least Squares Fit \ldots}
Machinery Required -
\begin{itemize}
\item Reading files and parsing data
\item Plotting points, lines
\item Calculating the Coefficients of the Least Squares Fit curve
\begin{itemize}
\item Arrays
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Reading pendulum.txt}
\begin{itemize}
\item The file has two columns
\item Column1 - L; Column2 - T
\end{itemize}
\begin{lstlisting}
In []: L = []
In []: T = []
In []: for line in open('pendulum.txt'):
.... len, t = line.split()
.... L.append(float(len))
.... T.append(float(t))
\end{lstlisting}
We now have two lists L and T
\end{frame}
\begin{frame}[fragile]
\frametitle{Calculating $T^2$}
\begin{itemize}
\item Each element of the list T must be squared
\item Iterating over each element of the list works
\item But very slow \ldots
\item Instead, we use arrays
\end{itemize}
\begin{lstlisting}
In []: array(L)
In []: T = array(T)
In []: Tsq = T*T
In []: plot(L, Tsq, 'o')
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Arrays}
\begin{itemize}
\item T is now a \typ{numpy array}
\item \typ{numpy} arrays are very efficient and powerful
\item Very easy to perform element-wise operations
\item \typ{+, -, *, /, \%}
\item More about arrays later
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Least Square Polynomial}
\begin{enumerate}
\item $T^2 = \frac{4\pi^2}{g}L$
\item $T^2$ and $L$ have a linear relationship
\item We find an approximate solution to $Ax = y$, where A is the Van der Monde matrix to get coefficients of the least squares fit line.
\end{enumerate}
\end{frame}
\begin{frame}[fragile]
\frametitle{Van der Monde Matrix}
Van der Monde matrix of order M
\begin{equation*}
\begin{bmatrix}
l_1^{M-1} & \ldots & l_1 & 1 \\
l_2^{M-1} & \ldots &l_2 & 1 \\
\vdots & \ldots & \vdots & \vdots\\
l_N^{M-1} & \ldots & l_N & 1 \\
\end{bmatrix}
\end{equation*}
\begin{lstlisting}
In []: A=vander(L,2)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Least Square Fit Line}
\begin{itemize}
\item We use the \typ{lstsq} function of pylab
\item It returns the
\begin{enumerate}
\item Least squares solution
\item Sum of residues
\item Rank of matrix A
\item Singular values of A
\end{enumerate}
\end{itemize}
\begin{lstlisting}
coeffs, res, rank, sing = lstsq(A,Tsq)
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Least Square Fit Line \ldots}
\begin{itemize}
\item Use the poly1d function of pylab, to create a function for the line equation using the coefficients obtained
\begin{lstlisting}
p=poly1d(coeffs)
\end{lstlisting}
\item Get new $T^2$ values using the function \typ{p} obtained
\begin{lstlisting}
Tline = p(L)
\end{lstlisting}
\item Now plot Tline vs. L, to get the Least squares fit line.
\begin{lstlisting}
plot(L, Tline)
\end{lstlisting}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Statistical Analysis and Parsing}
Read the data supplied in \emph{sslc1.txt} and obtain the following statistics:
\begin{itemize}
\item Average total marks scored in each region
\item Subject wise average score of each region
\item ??Subject wise average score for all regions combined??
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Statistical Analysis and Parsing \ldots}
Machinery Required -
\begin{itemize}
\item File reading and parsing
\item NumPy arrays - sum by rows and sum by coloumns
\item Dictionaries
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{File reading and parsing}
Understanding the structure of sslc1.txt
\begin{itemize}
\item Each line in the file, i.e each row of a file is a single record.
\item Each record corresponds to a record of a single student
\item Each record consists of several fields separated by a ';'
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{File reading and parsing \ldots}
Each record consists of:
\begin{itemize}
\item Region Code
\item Roll Number
\item Name
\item Marks of 5 subjects
\item Total marks
\item Pass (P)
\item Withdrawn (W)
\item Fail (F)
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{File reading and parsing \ldots}
\begin{lstlisting}
for record in open('sslc1.txt'):
fields = record.split(';')
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary}
\begin{itemize}
\item lists index: 0 \ldots n
\item dictionaries index using any hashable objects
\item d = \{ ``Hitchhiker's guide'' : 42, ``Terminator'' : ``I'll be back''\}
\item d[``Terminator''] => ``I'll be back''
\item ``Terminator'' is called the key of \typ{d}
\item ``I'll be back'' is called the value of the key ``Terminator''
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary - Building parsed data}
\begin{itemize}
\item Let the parsed data be stored in dictionary \typ{data}
\item Keys of \typ{data} are strings - region codes
\item Value of the key is another dictionary.
\item This dictionary contains:
\begin{itemize}
\item 'marks': A list of NumPy arrays
\item 'total': Total marks of each student
\item 'P': Number of passes
\item 'F': Number of failures
\item 'W': Number of withdrawls
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary - Building parsed data \ldots}
\small
\begin{lstlisting}
data = {}
for record in open('sslc1.txt'):
fields = record.split(';')
if fields[0] not in data:
data[fields[0]] = {
'marks': array([]),
'total': array([]),
'P': 0,
'F': 0,
'W': 0
}
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Dictionary - Building parsed data \ldots}
\small
\begin{lstlisting}
data[fields[0]]['marks'] = append(
data[fields[0]]['marks'],
[int(fields[3]), int(fields[4]),
int(fields[5]), int(fields[6]),
int(fields[7])
])
data[fields[0]]['total'].append(fields[8])
pfw_key = fields[9] or fields[10] or fields[11]
data[fields[0]][pfw_key] += 1
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Calculations}
\begin{lstlisting}
all_sub_avg = array([])
for k, v in data:
data[k]['avg'] = average(
data[k]['total'])
data[k]['sub_avg'] = average(
data[k]['marks'], axis=1)
\end{lstlisting}
\end{frame}
\end{document}
Least squares: Smooth curve fit.
Array Operations: Mean, average (etc region wise like district wise and state wise from SSLC.txt)
Subject wise average. Introduce idea of dictionary.
Session 3
import scipy
from scipy import linalg.
choose some meaningful plot. ??
Newton's law of cooling.
u, v, f - optics
hooke's law
Least fit curves.
Choose a named problem.
ODE - first order. Whatever.
arrays, etc etc.
sum, average, mean. whatever. statistical
sslc data
numpy load text??
|