summaryrefslogtreecommitdiff
path: root/day1/handout.tex
blob: 0bf9dc8d2a112aa3e4870550f5230d7975c3398c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
\documentclass[12pt]{article}
\title{Python Workshop\\Problems and Exercises}
\author{Asokan Pichai\\Prabhu Ramachandran}
\begin{document}
\maketitle

\section{Python}
\subsection{Getting started}
   \begin{verbatim}
>>> print 'Hello Python' 
>>> print 3124 * 126789
>>> 1786 % 12
>>> 3124 * 126789
>>> a = 3124 * 126789
>>> big = 12345678901234567890 ** 3
>>> verybig = big * big * big * big 
>>> 12345**6, 12345**67, 12345**678

>>> s = 'Hello '
>>> p = 'World'
>>> s + p 
>>> s * 12 
>>> s * s
>>> s + p * 12, (s + p)* 12
>>> s * 12 + p * 12
>>> 12 * s 
\end{verbatim}
\newpage

\begin{verbatim}
>>> 17/2
>>> 17/2.0
>>> 17.0/2
>>> 17.0/8.5
>>> int(17/2.0)
>>> float(17/2)
>>> str(17/2.0)
>>> round( 7.5 )
\end{verbatim}
  
\subsection{Mini exercises}
\begin{itemize}
  \item Round a float to the nearest integer, using \texttt{int()}?
  \item What does this do?  \\\texttt{round(amount * 10) /10.0 }
  \item How to round a number to the nearest  5 paise?
    \begin{description}
      \item[Remember] 17.23 $\rightarrow$ 17.25,\\ while 17.22 $\rightarrow$ 17.20
    \end{description}
  \item How to round a number to the nearest 20 paise?
\end{itemize}

\begin{verbatim}
    amount = 12.68
    denom = 0.05
    nCoins = round(amount/denom)
    rAmount = nCoins * denom
\end{verbatim}

\subsection{Dynamic typing}
\begin{verbatim}
a = 1
a = 1.1
a = "Now I am a string!"
\end{verbatim}

\subsection{Comments}
\begin{verbatim}
a = 1  # In-line comments
# Comment in a line to itself.
a = "# This is not a comment!"
  \end{verbatim}

\section{Data types}
\subsection{Numbers}
  \begin{verbatim}
>>> a = 1 # Int.
>>> l = 1000000L # Long
>>> e = 1.01325e5 # float
>>> f = 3.14159 # float
>>> c = 1+1j # Complex!
>>> print f*c/a
(3.14159+3.14159j)
>>> print c.real, c.imag
1.0 1.0
>>> abs(c)
1.4142135623730951
>>> abs( 8 - 9.5 )
1.5
  \end{verbatim}

\subsection{Boolean}
  \begin{verbatim}
>>> t = True
>>> f = not t
False
>>> f or t
True
>>> f and t
False
>>>  NOT True
\ldots ???
>>>  not TRUE
\ldots ???
\end{verbatim}

\subsection{Relational and logical operators}
  \begin{verbatim}
>>> a, b, c = -1, 0, 1
>>> a == b
False
>>> a <= b 
True
>>> a + b != c
True
>>> a < b < c
True
>>> c >= a + b
True
  \end{verbatim}

\subsection{Strings}
  \begin{verbatim}
s = 'this is a string'
s = 'This one has "quotes" inside!'
s = "I have 'single-quotes' inside!"
l = "A string spanning many lines\
one more line\
yet another"
t = """A triple quoted string does
not need to be escaped at the end and 
"can have nested quotes" etc."""
  \end{verbatim}

  \begin{verbatim}
>>> w = "hello"    
>>> print w[0] + w[2] + w[-1]
hlo
>>> len(w) # guess what
5
>>> s = u'Unicode strings!'
>>> # Raw strings (note the leading 'r')
... r_s = r'A string $\alpha \nu$'
  \end{verbatim}
  \begin{verbatim}
>>> w[0] = 'H' # Can't do that!
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
  \end{verbatim}

  \subsection{IPython}
  \begin{verbatim}
In [1]: a = 'hello world'
In [2]: a.startswith('hell')
Out[2]: True
In [3]: a.endswith('ld')
Out[3]: True
In [4]: a.upper()
Out[4]: 'HELLO WORLD'
In [5]: a.upper().lower()
Out[5]: 'hello world'

In [6]: a.split()
Out[6]: ['hello', 'world']
In [7]: ''.join(['a', 'b', 'c'])
Out[7]: 'abc'
In [8] 'd' in ''.join( 'a', 'b', 'c')
Out[8]: False
a.split( 'o' )}
???
'x'.join( a.split( 'o' ) )
???

In [11]: x, y = 1, 1.2
In [12]: 'x is %s, y is %s' %(x, y)
Out[12]: 'x is 1, y is 1.234'

'x is \%d, y is \%f' \%(x, y)
???
'x is \%3d, y is \%4.2f' \%(x, y)
??? 
  \end{verbatim}

\subsection{A classic problem}
    How to interchange values of two variables? Please note that the type of either variable is unknown and it is not necessary that both be of the same type even!

\subsection{Basic conditional flow}
  \begin{verbatim}
In [21]: a = 7
In [22]: b = 8
In [23]: if a > b:
   ....:    print 'Hello'
   ....: else:
   ....:     print 'World'
   ....:
   ....:
World
  \end{verbatim}

\subsection{\texttt{If...elif...else} example}
\begin{verbatim}
x = int(raw_input("Enter an integer:"))
if x < 0:
     print 'Be positive!'
elif x == 0:
     print 'Zero'
elif x == 1:
     print 'Single'
else:
     print 'More'
\end{verbatim}

\subsection{Basic looping}
  \begin{verbatim}
# Fibonacci series:
# the sum of two elements
# defines the next
a, b = 0, 1
while b < 10:
    print b,
    a, b = b, a + b
 
\end{verbatim}

\section{Problem set 1}
All the problems can be solved using \texttt{if} and \texttt{while} 
\begin{description}
  \item[1.1] Write a program that displays all three digit numbers that are equal to the sum of the cubes of their digits. That is, print numbers $abc$ that have the property $abc = a^3 + b^3 + c^3$\\
These are called $Armstrong$ numbers.
  
\item[1.2 Collatz sequence]
\begin{enumerate}
  \item Start with an arbitrary (positive) integer. 
  \item If the number is even, divide by 2; if the number is odd multiply by 3 and add 1.
  \item Repeat the procedure with the new number.
  \item There is a cycle of 4, 2, 1 at which the procedure loops.
\end{enumerate}
    Write a program that accepts the starting value and prints out the Collatz sequence.

\item[1.3]
  Write a program that prints the following pyramid on the screen. 
  \begin{verbatim}
1
2  2
3  3  3
4  4  4  4
  \end{verbatim}
The number of lines must be obtained from the user as input.\\
When can your code fail?
\end{description}

\subsection{Functions: examples}
  \begin{verbatim}
def signum( r ):
    """returns 0 if r is zero
    -1 if r is negative
    +1 if r is positive"""
    if r < 0:
        return -1
    elif r > 0:
        return 1
    else:
        return 0

def pad( n, size ): 
    """pads integer n with spaces
    into a string of length size
    """
    SPACE = ' '
    s = str( n )
    padSize = size - len( s )
    return padSize * SPACE + s
  \end{verbatim}
What about \%3d?

\subsection  {What does this function do?}
  \begin{verbatim}
def what( n ):
    if n < 0: n = -n
    while n > 0:
        if n % 2 == 1:
            return False
        n /= 10
    return True
  \end{verbatim}
\newpage

\subsection{What does this function do?}
\begin{verbatim}
def what( n ):
    i = 1    
    while i * i < n:
        i += 1
    return i * i == n, i
  \end{verbatim}

\subsection{What does this function do?}
  \begin{verbatim}
def what( n, x ):
    z = 1.0
    if n < 0:
        x = 1.0 / x
        n = -n
    while n > 0:
        if n % 2 == 1:
            z *= x
        n /= 2
        x *= x
    return z
  \end{verbatim}

\section{Problem set 2}
  The focus is on writing functions and calling them.
\begin{description}
  \item[2.1] Write a function to return the gcd of two numbers.
  \item[2.2 Primitive Pythagorean Triads] A pythagorean triad $(a,b,c)$ has the property $a^2 + b^2 = c^2$.\\By primitive we mean triads that do not `depend' on others. For example, (4,3,5) is a variant of (3,4,5) and hence is not primitive. And (10,24,26) is easily derived from (5,12,13) and should not be displayed by our program. \\
Write a program to print primitive pythagorean triads. The program should generate all triads with a, b values in the range 0---100
\item[2.3] Write a program that generates a list of all four digit numbers that have all their digits even and are perfect squares.\\For example, the output should include 6400 but not 8100 (one digit is odd) or 4248 (not a perfect square).
\item[2.4 Aliquot] The aliquot of a number is defined as: the sum of the \emph{proper} divisors of the number. For example, the aliquot(12) = 1 + 2 + 3 + 4 + 6 = 16.\\
  Write a function that returns the aliquot number of a given number. 
\item[2.5 Amicable pairs] A pair of numbers (a, b) is said to be \emph{amicable} if the aliquot number of a is b and the aliquot number of b is a.\\
  Example: \texttt{220, 284}\\
  Write a program that prints all five digit amicable pairs.
\end{description}

\section{Lists}
\subsection{List creation and indexing}
\begin{verbatim}
>>> a = [] # An empty list.
>>> a = [1, 2, 3, 4] # More useful.
>>> len(a) 
4
>>> a[0] + a[1] + a[2] + a[-1]
10
\end{verbatim}

\begin{verbatim}
>>> a[1:3] # A slice.
[2, 3]
>>> a[1:-1]
[2, 3, 4]
>>> a[1:] == a[1:-1]
False  
\end{verbatim}
Explain last result

\newpage
\subsection{List: more slices}
\begin{verbatim}
>>> a[0:-1:2] # Notice the step!
[1, 3]
>>> a[::2]
[1, 3]
>>> a[-1::-1]
\end{verbatim}
What do you think the last one will do?\\
\emph{Note: Strings also use same indexing and slicing.}
  \subsection{List: examples}
\begin{verbatim}
>>> a = [1, 2, 3, 4]
>>> a[:2]
[1, 3]
>>> a[0:-1:2]
[1, 3]
\end{verbatim}
\emph{Lists are mutable (unlike strings)}

\begin{verbatim}
>>> a[1] = 20
>>> a
[1, 20, 3, 4]
\end{verbatim}

  \subsection{Lists are mutable and heterogenous}
\begin{verbatim}
>>> a = ['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam', 'eggs', 123, 1234]
>>> a[0:2] = [1, 12] # Replace items
>>> a
[1, 12, 123, 1234]
>>> a[0:2] = [] # Remove items
>>> a.append( 12345 )
>>> a
[123, 1234, 12345]
\end{verbatim}

  \subsection{List methods}
\begin{verbatim}
>>> a = ['spam', 'eggs', 1, 12]
>>> a.reverse() # in situ
>>> a
[12, 1, 'eggs', 'spam']
>>> a.append(['x', 1]) 
>>> a
[12, 1, 'eggs', 'spam', ['x', 1]]
>>> a.extend([1,2]) # Extend the list.
>>> a.remove( 'spam' )
>>> a
[12, 1, 'eggs', ['x', 1], 1, 2]
\end{verbatim}

  \subsection{List containership}
  \begin{verbatim}
>>> a = ['cat', 'dog', 'rat', 'croc']
>>> 'dog' in a
True
>>> 'snake' in a
False
>>> 'snake' not in a
True
>>> 'ell' in 'hello world'
True
  \end{verbatim}
  \subsection{Tuples: immutable}
\begin{verbatim}
>>> t = (0, 1, 2)
>>> print t[0], t[1], t[2], t[-1] 
0 1 2 2
>>> t[0] = 1
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
\end{verbatim}  
    Multiple return values are actually a tuple.\\
    Exchange is tuple (un)packing
  \subsection{\texttt{range()} function}
  \begin{verbatim}
>>> range(7)
[0, 1, 2, 3, 4, 5, 6]
>>> range( 3, 9)
[3, 4, 5, 6, 7, 8]
>>> range( 4, 17, 3)
[4, 7, 10, 13, 16]
>>> range( 5, 1, -1)
[5, 4, 3, 2]
>>> range( 8, 12, -1)
[]
  \end{verbatim}

  \subsection{\texttt{for\ldots range(\ldots)} idiom}
  \begin{verbatim}
In [83]: for i in range(5):
   ....:     print i, i * i
   ....:     
   ....:     
0 0
1 1
2 4
3 9
4 16
\end{verbatim}

  \subsection{\texttt{for}: the list companion}
  
  \begin{verbatim}
In [84]: a = ['a', 'b', 'c']
In [85]: for x in a:
   ....:    print x, chr( ord(x) + 10 )
   ....:
a  k
b  l
c  m
  \end{verbatim}

  \subsection{\texttt{for}: the list companion}
  \begin{verbatim}
In [89]: for p, ch in enumerate( a ):
   ....:     print p, ch
   ....:     
   ....:     
0 a
1 b
2 c
  \end{verbatim}
Try: \texttt{print enumerate(a)}

\section{Problem set 3}
  As you can guess, idea is to use \texttt{for}!

\begin{description}
  \item[3.1] Which of the earlier problems is simpler when we use \texttt{for} instead of \texttt{while}? 
  \item[3.2] Given an empty chessboard and one Bishop placed in any square, say (r, c), generate the list of all squares the Bishop could move to.
  \item[3.3] Given two real numbers \texttt{a, b}, and an integer \texttt{N}, write a
  function named \texttt{linspace( a, b, N)} that returns an ordered list
  of \texttt{N} points starting with \texttt{a} and ending in \texttt{b} and
  equally spaced.\\
  For example, \texttt{linspace(0, 5, 11)}, should return, \\
\begin{verbatim}
[ 0.0 ,  0.5,  1.0 ,  1.5,  2.0 ,  2.5,  
  3.0 ,  3.5,  4.0 ,  4.5,  5.0 ]
\end{verbatim}
  \item[3.4] Use the \texttt{linspace} function and generate a list of N tuples of the form\\
\texttt{[($x_1$,f($x_1$)),($x_2$,f($x_2$)),\ldots,($x_N$,f($x_N$))]}\\for the following functions,
\begin{itemize}
  \item \texttt{f(x) = sin(x)}
  \item \texttt{f(x) = sin(x) + sin(10*x)}.
\end{itemize}

\item[3.5] Using the tuples generated earlier, determine the intervals where the roots of the functions lie.
\end{description}

\section{IO}
  \subsection{Simple tokenizing and parsing}
  \begin{verbatim}
s = """The quick brown fox jumped
       over the lazy dog"""
for word in s.split():
    print word.capitalize()
  \end{verbatim}

\section{Problem Set 4}
  \begin{description}
    \item[4.1] Given a string like, ``1, 3-7, 12, 15, 18-21'', produce the list\\
      \texttt{[1,3,4,5,6,7,12,15,18,19,20,21]}
\end{description}

  \subsection{File handling}
\begin{verbatim}
>>> f = open('/path/to/file_name')
>>> data = f.read() # Read entire file.
>>> line = f.readline() # Read one line.
>>> f.close() # close the file.
\end{verbatim}
Writing files
\begin{verbatim}
>>> f = open('/path/to/file_name', 'w')
>>> f.write('hello world\n')
>>> f.close()
\end{verbatim}

    \subsection{File and \texttt{for}}
\begin{verbatim}
>>> f = open('/path/to/file_name')
>>> for line in f:
...     print line
...
\end{verbatim}

  \begin{description}
    \item[4.2] The given file has lakhs of records in the form:
    \texttt{RGN;ID;NAME;MARK1;\ldots;MARK5;TOTAL;PFW}.
    Some entries may be empty.  Read the data from this file and print the
    name of the student with the maximum total marks.
  \item[4.3] For the same data file compute the average marks in different
    subjects, the student with the maximum mark in each subject and also
    the standard deviation of the marks.  Do this efficiently.
\end{description}

\section{Modules}
\begin{verbatim}
>>> sqrt(2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'sqrt' is not defined
>>> import math        
>>> math.sqrt(2)
1.4142135623730951

>>> from math import sqrt
>>> from math import *
>>> from os.path import exists
\end{verbatim}

  \subsection{Modules: example}
  \begin{verbatim}
# --- arith.py ---
def gcd(a, b):
    if a%b == 0: return b
    return gcd(b, a%b)
def lcm(a, b):
    return a*b/gcd(a, b)
# ------------------
>>> import arith
>>> arith.gcd(26, 65)
13
>>> arith.lcm(26, 65)
130
  \end{verbatim}
\section{Problem set 5}
  \begin{description}
    \item[5.1] Put all the functions you have written so far as part of the problems
  into one module called \texttt{iitb.py} and use this module from IPython.
  \end{description}
\newpage

\section{Data Structures}

   \subsection{Dictonary}
   \begin{verbatim}
>>>d = { 'Hitchhiker\'s guide' : 42, 'Terminator' : 'I\'ll be back'}
>>>d['Terminator']
"I'll be back"
   \end{verbatim}

\subsection{Problem Set 6.1}
\begin{description}
\item[6.1.1] You are given date strings of the form ``29, Jul 2009'', or ``4 January 2008''. In other words a number a string and another number, with a comma sometimes separating the items.Write a function that takes such a string and returns a tuple (yyyy, mm, dd) where all three elements are ints.
\item[6.1.2] Count word frequencies in a file.
\item[6.1.3] Find the most used Python keywords in your Python code (import keyword).
\end{description}
\subsection{Set}
\begin{verbatim}
>>> f10 = set([1,2,3,5,8])
>>> p10 = set([2,3,5,7])
>>> f10|p10
set([1, 2, 3, 5, 7, 8])
>>> f10&p10
set([2, 3, 5])
>>> f10-p10
set([8, 1])
>>> p10-f10, f10^p10
set([7]), set([1, 7, 8])
>>> set([2,3]) < p10
True
>>> set([2,3]) <= p10
True
>>> 2 in p10
True
>>> 4 in p10
False
>>> len(f10)
5
\end{verbatim}

\subsection{Problem Set 6.2}
\begin{description}
  \item[6.2.1] Given a dictionary of the names of students and their marks, identify how many duplicate marks are there? and what are these?
  \item[6.2.2] Given a string of the form ``4-7, 9, 12, 15'' find the numbers missing in this list for a given range.
\end{description}
\subsection{Fuctions: default arguments}
\begin{verbatim}
def ask_ok(prompt, complaint='Yes or no!'):
    while True:
        ok = raw_input(prompt)
        if ok in ('y', 'ye', 'yes'): 
            return True
        if ok in ('n', 'no', 'nop',
                  'nope'): 
            return False
        print complaint

ask_ok('?')
ask_ok('?', '[Y/N]')
\end{verbatim}
\newpage
\subsection{Fuctions: keyword arguments}
\begin{verbatim}
def ask_ok(prompt, complaint='Yes or no!'):
    while True:
        ok = raw_input(prompt)
        if ok in ('y', 'ye', 'yes'): 
            return True
        if ok in ('n', 'no', 'nop',
                  'nope'): 
            return False
        print complaint

ask_ok(prompt='?')
ask_ok(prompt='?', complaint='[y/n]')
ask_ok(complaint='[y/n]', prompt='?')
\end{verbatim}
\subsection{List Comprehensions}
Lets say we want to squares of all the numbers from 1 to 100
\begin{verbatim}
squares = []
for i in range(1, 100):
    squares.append(i * i)
# list comprehension
squares = [i*i for i in range(1, 100)
           if i % 10 in [1, 2, 5, 7]]
\end{verbatim}
\newpage
\section{Further Reference:}
\begin{itemize}
  \item Most referred and trusted material for learning \emph{Python} language is available at docs.python.org/tutorial/
  \item ``may be one of the thinnest programming language books on my shelf, but it's also one of the best.'' -- \emph{Slashdot, AccordianGuy, September 8, 2004}- available at diveintopython.org/
  \item How to Think Like a Computer Scientist: Learning with Python available at http://www.openbookproject.net/thinkcs/python/english/ \\
    ``The concepts covered here apply to all programming languages and to problem solving in general.'' -- \emph{Guido van Rossum, creator of Python}
\end{itemize}
\end{document}