summaryrefslogtreecommitdiff
path: root/day2
diff options
context:
space:
mode:
authorPuneeth Chaganti2009-10-08 15:33:41 +0530
committerPuneeth Chaganti2009-10-08 15:33:41 +0530
commitdc4325ccfd1677244e18e51e7287dfdda958fa35 (patch)
tree38f8319ff094f88c24e4d69d691684fbf885b2e8 /day2
parentae27b7e96e0eab9b835c5c14d3472ce06cca8425 (diff)
downloadworkshops-more-scipy-dc4325ccfd1677244e18e51e7287dfdda958fa35.tar.gz
workshops-more-scipy-dc4325ccfd1677244e18e51e7287dfdda958fa35.tar.bz2
workshops-more-scipy-dc4325ccfd1677244e18e51e7287dfdda958fa35.zip
Minor edits to Day2 Session2.
Diffstat (limited to 'day2')
-rw-r--r--day2/session1.tex118
-rw-r--r--day2/session2.tex18
2 files changed, 75 insertions, 61 deletions
diff --git a/day2/session1.tex b/day2/session1.tex
index 53ee07a..1d80bd4 100644
--- a/day2/session1.tex
+++ b/day2/session1.tex
@@ -146,16 +146,25 @@
\frametitle{Examples of \num}
\begin{lstlisting}
# Simple array math example
->>> from numpy import *
->>> a = array([1,2,3,4])
->>> b = array([2,3,4,5])
+>>> import numpy as np
+>>> a = np.array([1,2,3,4])
+>>> b = np.arange(2,6)
+>>> b
+array([2,3,4,5])
>>> a*2 + b + 1 # Basic math!
array([5, 8, 11, 14])
+\end{lstlisting}
+\end{frame}
+
+\begin{frame}[fragile]
+ \frametitle{Examples of \num}
+\begin{lstlisting}
# Pi and e are defined.
->>> x = linspace(0.0, 10.0, 1000)
->>> x *= 2*pi/10 # inplace.
+>>> x = np.linspace(0.0, 10.0, 1000)
+>>> x *= 2*np.pi/10 # inplace.
# apply functions to array.
->>> y = sin(x)
+>>> y = np.sin(x)
+>>> z = np.exp(y)
\end{lstlisting}
\inctime{5}
\end{frame}
@@ -178,14 +187,14 @@ array([5, 8, 11, 14])
\frametitle{More examples of \num}
\vspace*{-8pt}
\begin{lstlisting}
->>> x = array([1., 2, 3, 4])
->>> size(x)
+>>> x = np.array([1., 2, 3, 4])
+>>> np.size(x)
4
>>> x.dtype # What is a.dtype?
dtype('float64')
>>> x.shape
(4,)
->>> print rank(x), x.itemsize
+>>> print np.rank(x), x.itemsize
1 8
>>> x[0] = 10
>>> print x[0], x[-1]
@@ -196,7 +205,7 @@ dtype('float64')
\begin{frame}[fragile]
\frametitle{Multi-dimensional arrays}
\begin{lstlisting}
->>> a = array([[ 0, 1, 2, 3],
+>>> a = np.array([[ 0, 1, 2, 3],
... [10,11,12,13]])
>>> a.shape # (rows, columns)
(2, 4)
@@ -206,78 +215,85 @@ dtype('float64')
>>> a[1,3] = -1
>>> a[1] # The second row
array([10,11,12,-1])
-
\end{lstlisting}
\end{frame}
+
\begin{frame}[fragile]
\frametitle{Array math}
\begin{itemize}
\item Basic \alert{elementwise} math (given two arrays \typ{a, b}):
\typ{+, -, *, /, \%}
- \item Inplace operators: \typ{a += b}, or \typ{add(a, b, a)} etc.
- \item \typ{sum(x, axis=0)},
- \typ{product(x, axis=0)},
- \typ{dot(a, bp)}
+ \item Inplace operators: \typ{a += b}, or \typ{np.add(a, b, a)} etc.
+ \item \typ{np.sum(x, axis=0)},
+ \typ{np.product(x, axis=0)},
+ \typ{np.dot(a, bp)}
\end{itemize}
+\begin{lstlisting}
+>>> b=np.array([[0,2,4,2],[1,2,3,4]])
+>>> np.add(a,b,a)
+>>> np.sum(x,axis=1)
+\end{lstlisting}
\end{frame}
\begin{frame}[fragile]
\frametitle{Array math cont.}
\begin{itemize}
- \item Logical operations: \typ{equal (==)}, \typ{not\_equal (!=)},
- \typ{less (<)}, \typ{greater (>)} etc.
- \item Trig and other functions: \typ{sin(x),}
- \typ{arcsin(x), sinh(x),}
- \typ{exp(x), sqrt(x)} etc.
+ \item Logical operations: \typ{np.equal (==)}, \typ{np.not\_equal (!=)},
+ \typ{np.less (<)}, \typ{np.greater (>)} etc.
+ \item Trig and other functions: \typ{np.sin(x),}
+ \typ{np.arcsin(x), np.sinh(x),}
+ \typ{np.exp(x), np.sqrt(x)} etc.
\end{itemize}
+\begin{lstlisting}
+>>> np.greater(a,4)
+>>> np.sqrt(a)
+\end{lstlisting}
\inctime{10}
\end{frame}
\subsection{Array Creation \& Slicing, Striding Arrays}
\begin{frame}[fragile]
\frametitle{Array creation functions}
- \begin {block}{\typ{array(object, dtype=None, ...)}}
- \begin{lstlisting}
- >>> array( [2,3,4] )
- array([2, 3, 4])
- \end{lstlisting}
- \end {block}
- \begin{block}{\typ{linspace(start, stop, num=50, ...)}}
- \begin{lstlisting}
- >>> linspace( 0, 2, 4 )
- array([0.,0.6666667,1.3333333,2.])
- \end{lstlisting}
- \end{block}
\begin{itemize}
- \item also try \typ{arange} command
+ \item {\typ{np.array(object,dtype=None,...)}
+ \begin{lstlisting}
+>>> np.array([2,3,4])
+array([2, 3, 4])
+ \end{lstlisting}
+ \item \typ{np.linspace(start,stop,...)}
+ \begin{lstlisting}
+>>> np.linspace(0, 2, 4)
+array([0.,0.6666667,1.3333333,2.])
+ \end{lstlisting}
+ \item Also try \typ{np.arange}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Array creation functions cont.}
\begin{itemize}
- \item \typ{ones(shape, dtype=None, ...)}
+ \item \typ{np.ones(shape, dtype=None, ...)}
\begin{lstlisting}
- >>>ones([2,2])
- array([[ 1., 1.],
- [ 1., 1.]])
+>>>np.ones([2,2])
+array([[ 1., 1.],
+ [ 1., 1.]])
\end{lstlisting}
- \item \typ{identity(n)}
- \item \typ{ones\_like(x)}
+ \item \typ{np.identity(n)}
+ \item \typ{np.ones\_like(x)}
\begin{lstlisting}
- >>>a = array([[1,2,3],[4,5,6]])
- >>>ones_like(a)
- array([[1, 1, 1],
- [1, 1, 1]])
+>>>a = np.array([[1,2,3],[4,5,6]])
+>>>np.ones_like(a)
+array([[1, 1, 1],
+ [1, 1, 1]])
\end{lstlisting}
- \item check out \typ{zeros, zeros\_like, empty}
+ \item Also try \typ{zeros, zeros\_like, empty}
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Slicing arrays}
\begin{lstlisting}
->>> a = array([[1,2,3], [4,5,6],
+>>> a = np.array([[1,2,3], [4,5,6],
[7,8,9]])
>>> a[0,1:3]
array([2, 3])
@@ -327,8 +343,8 @@ array([[ 0.96276665, 0.77174861],
\item Scale the image to 50\%
\item Introduce some random noise
\item Smooth the image using a mean filter
- \\\small{Take the mean of all the neighbouring elements}
- \\\small{How fast can you do it?}
+ \\\small{Each element in the array is replaced by mean of all the neighbouring elements}
+ \\\small{How fast does your code run?}
\end{enumerate}
\inctime{15}
\end{frame}
@@ -408,7 +424,7 @@ array([[ 0.96276665, 0.77174861],
\begin{frame}[fragile]
\frametitle{Legends}
\begin{lstlisting}
->>> x = linspace(0, 2*pi, 1000)
+>>> x = linspace(0, 2*np.pi, 1000)
>>> plot(x, cos(5*x), 'r--',
label='cosine')
>>> plot(x, sin(5*x), 'g--',
@@ -435,7 +451,7 @@ array([[ 0.96276665, 0.77174861],
\end{frame}
\begin{frame}[fragile]
- \frametitle{Note: \typ{pylab} in Python scripts}
+ \frametitle{\typ{pylab} in Python scripts}
\begin{lstlisting}
import pylab
x = pylab.linspace(0, 20, 1000)
@@ -444,7 +460,7 @@ pylab.plot(x, pylab.sin(x))
# Can also use:
from pylab import linspace, sin, plot
\end{lstlisting}
-\inctime{5}
+\inctime{10}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -742,7 +758,6 @@ title('triangular head; scale '\
\tiny
For details see \url{http://matplotlib.sourceforge.net/screenshots/plotmap.py}
\end{center}
-\inctime{5}
\end{frame}
@@ -753,6 +768,7 @@ title('triangular head; scale '\
\item \url{http://matplotlib.sf.net/tutorial.html}
\item \url{http://matplotlib.sf.net/screenshots.html}
\end{itemize}
+\inctime{5}
\end{frame}
\begin{frame}
diff --git a/day2/session2.tex b/day2/session2.tex
index 07514f7..2f3d73a 100644
--- a/day2/session2.tex
+++ b/day2/session2.tex
@@ -347,14 +347,14 @@
\frametitle{Interpolation}
Try it!
\begin{lstlisting}
- >>> from scipy import interpolate
- >>> interpolate.interp1d?
- >>> x = np.arange(0,2*np.pi,np.pi/4)
- >>> y = np.sin(x)
- >>> fl = interpolate.interp1d(x,y,kind='linear')
- >>> fc = interpolate.interp1d(x,y,kind='cubic')
- >>> fl(np.pi/3)
- >>> fc(np.pi/3)
+>>> from scipy import interpolate
+>>> interpolate.interp1d?
+>>> x = np.arange(0,2*np.pi,np.pi/4)
+>>> y = np.sin(x)
+>>> fl = interpolate.interp1d(x,y,kind='linear')
+>>> fc = interpolate.interp1d(x,y,kind='cubic')
+>>> fl(np.pi/3)
+>>> fc(np.pi/3)
\end{lstlisting}
\end{frame}
@@ -424,5 +424,3 @@
- random number generation.
- Image manipulation: jigsaw puzzle.
- Monte-carlo integration.
-
-