summaryrefslogtreecommitdiff
path: root/help/en_US/fminimax.xml
blob: 84ed5bed57719126dad05460d76d9c9379110bc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from fminimax.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="fminimax" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>fminimax</refname>
    <refpurpose>Solves minimax constraint problem</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   xopt = fminimax(fun,x0)
   xopt = fminimax(fun,x0,A,b)
   xopt = fminimax(fun,x0,A,b,Aeq,beq)
   xopt = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
   xopt = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun)
   xopt = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun,options)
   [xopt, fval] = fminimax(.....)
   [xopt, fval, maxfval]= fminimax(.....)
   [xopt, fval, maxfval, exitflag]= fminimax(.....)
   [xopt, fval, maxfval, exitflag, output]= fminimax(.....)
   [xopt, fval, maxfval, exitflag, output, lambda]= fminimax(.....)
   
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Input Parameters</title>
   <variablelist>
   <varlistentry><term>fun:</term>
      <listitem><para> The function to be minimized. fun is a function that has a vector x as an input argument, and contains the objective functions evaluated at x.</para></listitem></varlistentry>
   <varlistentry><term>x0 :</term>
      <listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables.</para></listitem></varlistentry>
   <varlistentry><term>A :</term>
      <listitem><para> A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints.</para></listitem></varlistentry>
   <varlistentry><term>b :</term>
      <listitem><para> A vector of doubles, related to 'A' and represents the linear coefficients in the linear inequality constraints of size (m X 1).</para></listitem></varlistentry>
   <varlistentry><term>Aeq :</term>
      <listitem><para> A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints.</para></listitem></varlistentry>
   <varlistentry><term>beq :</term>
      <listitem><para> A vector of double, vector of doubles, related to 'Aeq' and represents the linear coefficients in the equality constraints of size (m1 X 1).</para></listitem></varlistentry>
   <varlistentry><term>lb :</term>
      <listitem><para> A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
   <varlistentry><term>ub :</term>
      <listitem><para> A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
   <varlistentry><term>nonlinfun:</term>
      <listitem><para>  A function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints (c), and the non-linear equality constraints (ceq) are defined as separate single row vectors.</para></listitem></varlistentry>
      <varlistentry><term>options :</term>
      <listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
 </variablelist>
</refsection>
<refsection>
<title> Outputs</title>
 <variablelist>
   <varlistentry><term>xopt :</term>
      <listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
   <varlistentry><term>fval :</term>
      <listitem><para> A vector of doubles, containing the values of the objective functions at the end of the optimization problem.</para></listitem></varlistentry>
   <varlistentry><term>maxfval:</term>
      <listitem><para> A double, representing the maximum value in the vector fval.</para></listitem></varlistentry>
   <varlistentry><term>exitflag :</term>
      <listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>output :</term>
      <listitem><para> A structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
   <varlistentry><term>lambda :</term>
      <listitem><para> A structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
fminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate, a problem generally referred to as the minimax problem.
   </para>
   <para>
<latex>
\min_{x} \max_{i} F_{i}(x)\\
 \textrm{Such that} \:\begin{cases}
&amp; c(x) \leq 0 \\
&amp; ceq(x) = 0 \\
&amp; A.x \leq b \\
&amp; Aeq.x = beq \\
&amp; minmaxLb \leq x \leq minmaxUb
\end{cases}
</latex>
   </para>
   <para>
Currently, fminimax calls fmincon which uses the Ipopt solver.
   </para>
   <para>
max-min problems can also be solved with fminimax, using the identity
   </para>
   <para>
<latex>
\max_{x} \min_{i} F_{i}(x) = -\min_{x} \max_{i} \left( -F_{i}(x) \right)
</latex>
   </para>

   <para>
<title>Options</title>
The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
   </para>
   <para>
options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "GradCon", ---);
   </para>
   <para>
<itemizedlist>
<listitem>MaxIter : A Scalar, specifying the Maximum Number of iterations that the solver should take.</listitem>
<listitem>CpuTime : A Scalar, specifying the Maximum amount of CPU Time in seconds that the solver should take.</listitem>
<listitem>GradObj : A function, representing the gradient function of the Objective in Vector Form.</listitem>
<listitem>GradCon : A function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate matrix (ceqg of size m2 X n or as an empty) where m2 &amp;amp; m3 are number of non-linear inequality and equality constraints respectively.</listitem>
<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
</itemizedlist>
The default values for the various items are given as:
   </para>
   <para>
options = list("MaxIter", [3000], "CpuTime", [600]);
   </para>
   <para>
The objective function must have a header :
<programlisting>
F = fun(x)
</programlisting>
where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F.
On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.
   </para>
   <para>
By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of minmaxObjfun. In case the GradObj option is off and GradCon option is on, fminimax approximates minmaxObjfun gradient using the numderivative toolbox.
   </para>
<title>Syntax</title>
<para>
Some syntactic details about fminimax, including the syntax for the gradient, defining the non-linear constraints, and the  constraint derivative function have been provided below: 
   </para>
   <para>
If the user can provide exact gradients, it should be done, since it improves the convergence speed of the optimization algorithm.
   </para>
   <para>
Furthermore, we can enable the "GradObj" option with the statement :
<programlisting>
minimaxOptions = list("GradObj",fGrad);
</programlisting>
This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function. Note that, fGrad should be mentioned in the form of N x n where n is the number of variables, N is the number of functions in objective function.
   </para>
   <para>
The constraint function must have header:
<programlisting>
[c, ceq] = confun(x)
</programlisting>
Where x is a n x 1 matrix of minimax doubles, c is a 1 x nni matrix of doubles and ceq is a 1 x nne matrix of doubles (nni : number of nonlinear inequality constraints, nne : number of nonlinear equality constraints).
On input, the variable x contains the current point and, on output, the variable c must contain the nonlinear inequality constraints and ceq must contain the nonlinear equality constraints.
   </para>
   <para>
By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of confun. In case the GradObj option is on and GradCons option is off, fminimax approximates confun gradient using numderivative toolbox.
   </para>
   <para>
If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
   </para>
   <para>
Furthermore, we must enable the "GradCon" option with the statement :
<programlisting>
minimaxOptions = list("GradCon",confunGrad);
</programlisting>
This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function.
   </para>
   <para>
The constraint derivative function must have header :
<programlisting>
[dc,dceq] = confungrad(x)
</programlisting>
where dc is a nni x n matrix of doubles and dceq is a nne x n matrix of doubles.
   </para>
   <para>
The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<itemizedlist>
<listitem> 0 : Optimal Solution Found </listitem>
<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
<listitem> 3 : Stop at Tiny Step.</listitem>
<listitem> 4 : Solved To Acceptable Level.</listitem>
<listitem> 5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
   </para>
   <para>
For more details on exitflag, see the ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/
   </para>
   <para>
The output data structure contains detailed information about the optimization process.
It is of type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.Iterations: The number of iterations performed.</listitem>
<listitem>output.Cpu_Time  : The total cpu-time taken.</listitem>
<listitem>output.Objective_Evaluation: The number of Objective Evaluations performed.</listitem>
<listitem>output.Dual_Infeasibility  : The Dual Infeasiblity of the final soution.</listitem>
<listitem>output.Message: The output message for the problem.</listitem>
</itemizedlist>
   </para>
  <para>
The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
<listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
<listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
</itemizedlist>
   </para>
   
</refsection>
<para>
A few examples displaying the various functionalities of fminimax have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
   </para>
<refsection>
   <title>Example</title>
 Here we solve a simple objective function, subjected to no constraints.
<para>
<latex>
\begin{eqnarray}
\mbox\min_{x} \max_{i}\ f_{i}(x)\\
\end{eqnarray}
\\
\begin{eqnarray}
&amp;f_{1}(x) &amp;= 2 \boldsymbol{\cdot} x_{1}^{2} + x_{2}^{2} - 48x_{1} - 40x_{2} + 304\\
&amp;f_{2}(x) &amp;= -x_{1}^{2} - 3x_{2}^{2}\\
&amp;f_{3}(x) &amp;= x_{1} + 3x_{2} - 18\\
&amp;f_{4}(x) &amp;= -x_{1} - x_{2}\\
&amp;f_{5}(x) &amp;= x_{1} + x_{2} - 8
\end{eqnarray}
</latex>
   </para>
   <para>

   </para>
   <programlisting role="example"><![CDATA[
//Example 1:
// Objective function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
// Run fminimax
[x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0)


   ]]></programlisting>
</refsection>

<refsection>
   <title>Example</title>
 We proceed to add simple linear inequality constraints.

<para>
<latex>
\begin{eqnarray}
\hspace{70pt} &amp;x_{1} + x_{2}&amp;\leq 2\\ 
\hspace{70pt} &amp;x_{1} + x_{2}/4&amp;\leq 1\\
\hspace{70pt} &amp;-x_{1} + x_{2}&amp;\geq -1\\
\end{eqnarray}
</latex>
   </para>
   <para>

   </para>
   <programlisting role="example"><![CDATA[
//Example 2:
//Objective function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
//Linear Inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1];
b=[2;1;1];
// Run fminimax
[x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0,A,b)


   ]]></programlisting>
</refsection>

<refsection>
   <title>Example</title>
Here we build up on the previous example by adding linear equality constraints.
We add the following constraints to the problem specified above:
<para>
<latex>
\begin{eqnarray}
&amp;x_{1} - x_{2}&amp;= 1 
\\&amp;2x_{1} + x_{2}&amp;= 2
\end{eqnarray}
</latex>
   </para>
   <para>

   </para>
   <programlisting role="example"><![CDATA[
//Example 3:
//Objective function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
//Linear Inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1];
b=[2;1;1];
//We specify the linear equality constraints below.
Aeq = [1,-1; 2, 1];
beq =  [1;2];
// Run fminimax
[x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0,A,b,Aeq,beq)


   ]]></programlisting>
</refsection>

<refsection>
   <title>Example</title>
In this example, we proceed to add the upper and lower bounds to the objective function.
<para>
<latex>
\begin{eqnarray}
-1 &amp;\leq x_{1} &amp;\leq \infty\\
-\infty &amp;\leq x_{2} &amp;\leq 1
\end{eqnarray}
</latex>
   </para>
   <para>

   </para>
   <programlisting role="example"><![CDATA[
//Example 4:
//Objective function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
//Linear Inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1];
b=[2;1;1];
//We specify the linear equality constraints below.
Aeq = [1,-1; 2, 1];
beq =  [1;2];
//The upper and lower bounds for the objective function are defined in simple vectors as shown below.
lb = [-1;-%inf];
ub = [%inf;1];    //
// Run fminimax
[x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0,A,b,Aeq,beq,lb,ub)


   ]]></programlisting>
</refsection>


<refsection>
   <title>Example</title>
Finally, we add the non-linear constraints to the problem. Note that there is a notable difference in the way this is done as compared to defining the linear constraints.
 <para>
<latex>
\begin{eqnarray}
x_{1}^2-1&amp;\leq 0\\
x_{1}^2+x_{2}^{2}-1&amp;\leq 0\\
\end{eqnarray}
</latex>
</para>
   <para>

   </para>
   <programlisting role="example"><![CDATA[
//Example 5:
//Objective function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
//Linear Inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1];
b=[2;1;1];
//We specify the linear equality constraints below.
Aeq = [1,-1; 2, 1];
beq =  [1;2];
//The upper and lower bounds for the objective function are defined in simple vectors as shown below.
lb = [-1;-%inf];
ub = [%inf;1];    //
//Nonlinear constraints are required to be defined as a single function with the inequality and equality constraints in separate vectors.
function [c,ceq]=nlc(x)
c=[x(1)^2-1,x(1)^2+x(2)^2-1];
ceq=[];
endfunction
// Run fminimax
[x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0,A,b,Aeq,beq,lb,ub)


   ]]></programlisting>
</refsection>

<refsection>
   <title>Example</title>
<para>
We can further enhance the functionality of fminimax by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 6. We take the following problem, specify the gradients, and the jacobian matrix of the constraints. We also set solver parameters using the options.
</para>
<para>
<latex>
\begin{eqnarray}
1.5 + x_{1} \boldsymbol{\cdot} x_{2} - x_{1} - x_{2} &amp;\leq 0\\
-x_{1}\boldsymbol{\cdot} x_{2} - 10 &amp;\leq 0
\end{eqnarray}
</latex>
</para>
   <para>

   </para>
   <programlisting role="example"><![CDATA[
//Example 6: Using the available options
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction

// Defining gradient of myfun
function G = myfungrad(x)
G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1;
2*x(2) - 40, -6*x(2), 3, -1, 1; ]'
endfunction
// The nonlinear constraints and the Jacobian
// matrix of the constraints
function [c,ceq] = confun(x)
// Inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10]
// No nonlinear equality constraints
ceq=[]
endfunction
// Defining gradient of confungrad
function [DC,DCeq] = cgrad(x)
// DC(:,i) = gradient of the i-th constraint
// DC = [
//   Dc1/Dx1  Dc1/Dx2
//   Dc2/Dx1  Dc2/Dx2
//   ]
DC= [
x(2)-1, -x(2)
x(1)-1, -x(1)
]'
DCeq = []'
endfunction
// Test with both gradient of objective and gradient of constraints
minimaxOptions = list("MaxIter", [3000], "CpuTime", [600],"GradObj",myfungrad,"GradCon",cgrad);
// The initial guess
x0 = [0,10];
// The expected solution : only 4 digits are guaranteed
xopt = [0.92791 7.93551]
fopt = [6.73443  -189.778  6.73443  -8.86342  0.86342]
maxfopt = 6.73443
// Run fminimax
[x,fval,maxfval,exitflag,output] = fminimax(myfun,x0,[],[],[],[],[],[], confun, minimaxOptions)
   ]]></programlisting>
</refsection>

<refsection>
   <title>Example</title>
Infeasible Problems: Find x in R^2 such that it minimizes the objective function used above under the following constraints:
<para>
<latex>
\begin{eqnarray}
&amp;x_{1}/3 - 5x_{2}&amp;= 11 
\\&amp;2x_{1} + x_{2}&amp;= 8
\\ \end{eqnarray}
</latex>
   </para>
<para>
</para>
   <programlisting role="example"><![CDATA[
//Example 7:
//Objective function
function f = myfun(x)
f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;     //Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1) - x(2);
f(5)= x(1) + x(2) - 8;
endfunction
// The initial guess
x0 = [0.1,0.1];
//Linear Inequality constraints
A=[1,1 ; 1,1/4 ; 1,-1];
b=[2;1;1];
//We specify the linear equality constraints below.
Aeq = [1/3,-5; 2, 1];
beq =  [11;8];
// Run fminimax
[x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0,A,b,Aeq,beq)
   ]]></programlisting>
</refsection>

<refsection>
   <title>Authors</title>
   <simplelist type="vert">
   <member>Animesh Baranawal</member>
   </simplelist>
</refsection>
</refentry>