summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/minconNLP.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'sci_gateway/cpp/minconNLP.hpp')
-rw-r--r--sci_gateway/cpp/minconNLP.hpp173
1 files changed, 173 insertions, 0 deletions
diff --git a/sci_gateway/cpp/minconNLP.hpp b/sci_gateway/cpp/minconNLP.hpp
new file mode 100644
index 0000000..df496ce
--- /dev/null
+++ b/sci_gateway/cpp/minconNLP.hpp
@@ -0,0 +1,173 @@
+// Copyright (C) 2015 - IIT Bombay - FOSSEE
+//
+// Author: R.Vidyadhar & Vignesh Kannan
+// Organization: FOSSEE, IIT Bombay
+// Email: rvidhyadar@gmail.com & vignesh2496@gmail.com
+// This file must be used under the terms of the CeCILL.
+// This source file is licensed as described in the file COPYING, which
+// you should have received as part of this distribution. The terms
+// are also available at
+// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+
+
+#ifndef __minconNLP_HPP__
+#define __minconNLP_HPP__
+#include "IpTNLP.hpp"
+
+using namespace Ipopt;
+
+class minconNLP : public TNLP
+{
+ private:
+
+ Index numVars_; //Number of input variables
+
+ Index numConstr_; //Number of constraints
+
+ Number flag1_; //Gradient of objective ON or OFF
+
+ Number flag2_; //Hessian of objective ON or OFF
+
+ Number flag3_; //Jacobian of constraints ON or OFF
+
+ Number nonlinCon_; //Number of non-linear constraints
+
+ Number nonlinIneqCon_; //Number of non-linear inequality constraints
+
+ const Number *A_= NULL; //Matrix for linear inequality constraints
+
+ const Number *b_= NULL; //Matrix for bounds of linear inequality constraints
+
+ const Number *Aeq_= NULL; //Matrix for linear equality constraints
+
+ const Number *beq_= NULL; //Matrix for bounds of linear equality constraints
+
+ Index Arows_; //Number of rows of linear inequality constraints
+
+ Index Acols_; //Number of columns of linear inequality constraints
+
+ Index brows_; //Number of rows of bounds of linear inequality constraints
+
+ Index bcols_; //Number of columns of bounds of linear inequality constraints
+
+ Index Aeqrows_; //Number of rows of linear equality constraints
+
+ Index Aeqcols_; //Number of columns of linear equality constraints
+
+ Index beqrows_; //Number of rows of bounds of linear equality constraints
+
+ Index beqcols_; //Number of columns of bounds of linear equality constraints
+
+
+ const Number *varGuess_= NULL; //varGuess_ is a pointer to a matrix of size of 1*numVars_
+ //with initial guess of all variables.
+
+ const Number *varUB_= NULL; //varUB_ is a pointer to a matrix of size of 1*numVar_
+ // with upper bounds of all variables.
+
+ const Number *varLB_= NULL; //varLB_ is a pointer to a matrix of size of 1*numVar_
+ // with lower bounds of all variables.
+
+ Number *finalZl_= NULL; //finalZl_ is a pointer to a matrix of size of 1*numVar_
+ // with final values for the lower bound multipliers
+
+ Number *finalZu_= NULL; //finalZu_ is a pointer to a matrix of size of 1*numVar_
+ // with final values for the upper bound multipliers
+
+ Number *finalLambda_= NULL; //finalLambda_ is a pointer to a matrix of size of 1*numConstr_
+ // with final values for the upper bound multipliers
+
+ Number *finalX_= NULL; //finalX_ is a pointer to a matrix of size of 1*numVars_
+ //with final value for the primal variables.
+
+ Number *finalGradient_=NULL; //finalGradient_ is a pointer to a matrix of size of numVars_*numVars_
+ //with final value of gradient for the primal variables.
+
+
+ Number *finalHessian_=NULL; //finalHessian_ is a pointer to a matrix of size of 1*numVar_
+ //with final value of hessian for the primal variables.
+
+
+ Number finalObjVal_; //finalObjVal_ is a scalar with the final value of the objective.
+
+ int iter_; //Number of iteration.
+
+ int status_; //Solver return status
+
+
+ minconNLP(const minconNLP&);
+ minconNLP& operator=(const minconNLP&);
+
+ public:
+
+ /** user defined constructor */
+ minconNLP(Index nV, Index nC, Number *x0 ,Number *A, Number *b, Number* Aeq, Number *beq, Index Arows, Index Acols, Index brows, Index bcols, Index Aeqrows, Index Aeqcols, Index beqrows, Index beqcols, Number* LB, Number* UB, Number nlC, Number nlIC, Number f1, Number f2, Number f3) : numVars_(nV), numConstr_(nC), varGuess_(x0), A_(A), b_(b), Aeq_(Aeq), beq_(beq), Arows_(Arows), Acols_(Acols), brows_(brows), bcols_(bcols), Aeqrows_(Aeqrows), Aeqcols_(Aeqcols), beqrows_(beqrows), beqcols_(beqcols), varLB_(LB), varUB_(UB), nonlinCon_(nlC), nonlinIneqCon_(nlIC), flag1_(f1), flag2_(f2), flag3_(f3), finalX_(0), finalZl_(0), finalZu_(0), finalGradient_(0), finalHessian_(0), finalObjVal_(1e20){ }
+
+ /** default destructor */
+ virtual ~minconNLP();
+
+ /** Method to return some info about the nlp */
+ virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
+ Index& nnz_h_lag, IndexStyleEnum& index_style);
+
+ /** Method to return the bounds for my problem */
+ virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
+ Index m, Number* g_l, Number* g_u);
+
+ /** Method to return the starting point for the algorithm */
+ virtual bool get_starting_point(Index n, bool init_x, Number* x,
+ bool init_z, Number* z_L, Number* z_U,
+ Index m, bool init_lambda,
+ Number* lambda);
+
+ /** Method to return the objective value */
+ virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
+
+ /** Method to return the gradient of the objective */
+ virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
+
+ /** Method to return the constraint residuals */
+ virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
+
+ /** Method to return:
+ * 1) The structure of the jacobian (if "values" is NULL)
+ * 2) The values of the jacobian (if "values" is not NULL)
+ */
+ virtual bool eval_jac_g(Index n, const Number* x, bool new_x,Index m, Index nele_jac, Index* iRow, Index *jCol,Number* values);
+
+ /** Method to return:
+ * 1) The structure of the hessian of the lagrangian (if "values" is NULL)
+ * 2) The values of the hessian of the lagrangian (if "values" is not NULL)
+ */
+ virtual bool eval_h(Index n, const Number* x, bool new_x,Number obj_factor, Index m, const Number* lambda,bool new_lambda, Index nele_hess, Index* iRow,Index* jCol, Number* values);
+
+ /** This method is called when the algorithm is complete so the TNLP can store/write the solution */
+ virtual void finalize_solution(SolverReturn status,Index n, const Number* x, const Number* z_L, const Number* z_U,Index m, const Number* g, const Number* lambda,Number obj_value,const IpoptData* ip_data,IpoptCalculatedQuantities* ip_cq);
+
+ const double * getX(); //Returns a pointer to a matrix of size of 1*numVars_
+ //with final value for the primal variables.
+
+ const double * getGrad(); //Returns a pointer to a matrix of size of 1*numVars_
+ //with final value of gradient for the primal variables.
+
+ const double * getHess(); //Returns a pointer to a matrix of size of numVars_*numVars_
+ //with final value of hessian for the primal variables.
+
+ const double * getZl(); //Returns a pointer to a matrix of size of 1*numVars_
+ // with final values for the lower bound multipliers
+
+ const double * getZu(); //Returns a pointer to a matrix of size of 1*numVars_
+ //with final values for the upper bound multipliers
+
+ const double * getLambda(); //Returns a pointer to a matrix of size of 1*numConstr_
+ //with final values for the constraint multipliers
+
+ double getObjVal(); //Returns the output of the final value of the objective.
+
+ double iterCount(); //Returns the iteration count
+
+ int returnStatus(); //Returns the status count
+
+};
+
+#endif