summaryrefslogtreecommitdiff
path: root/macros
diff options
context:
space:
mode:
Diffstat (limited to 'macros')
-rw-r--r--macros/qpipopt.binbin33680 -> 37220 bytes
-rw-r--r--macros/qpipopt.sci88
-rw-r--r--macros/qpipoptmat.binbin38128 -> 39808 bytes
-rw-r--r--macros/qpipoptmat.sci93
-rw-r--r--macros/symphony.binbin43868 -> 50332 bytes
-rw-r--r--macros/symphony.sci134
-rw-r--r--macros/symphonymat.binbin45960 -> 54444 bytes
-rw-r--r--macros/symphonymat.sci146
8 files changed, 333 insertions, 128 deletions
diff --git a/macros/qpipopt.bin b/macros/qpipopt.bin
index 07db2ad..6eea1fa 100644
--- a/macros/qpipopt.bin
+++ b/macros/qpipopt.bin
Binary files differ
diff --git a/macros/qpipopt.sci b/macros/qpipopt.sci
index 8f3945e..5f08067 100644
--- a/macros/qpipopt.sci
+++ b/macros/qpipopt.sci
@@ -20,19 +20,19 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
//
// Parameters
- // nbVar : a 1 x 1 matrix of doubles, number of variables
- // nbCon : a 1 x 1 matrix of doubles, number of constraints
- // Q : a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // p : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
- // conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
- // conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.
- // x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
+ // nbVar : a double, number of variables
+ // nbCon : a double, number of constraints
+ // Q : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.
+ // p : a vector of doubles, represents coefficients of linear in the quadratic problem
+ // LB : a vector of doubles, contains lower bounds of the variables.
+ // UB : a vector of doubles, where n is number of variables, contains upper bounds of the variables.
+ // conMatrix : a matrix of doubles, contains matrix representing the constraint matrix
+ // conLB : a vector of doubles, contains lower bounds of the constraints.
+ // conUB : a vector of doubles, contains upper bounds of the constraints.
+ // x0 : a vector of doubles, contains initial guess of variables.
// param : a list containing the the parameters to be set.
- // xopt : a 1xn matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
// output : Structure containing information about the optimization.
// lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
@@ -114,19 +114,31 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
conLB = varargin(8);
conUB = varargin(9);
-
+ if (size(LB,2)==0) then
+ LB = repmat(-%inf,nbVar,1);
+ end
+
+ if (size(UB,2)==0) then
+ UB = repmat(%inf,nbVar,1);
+ end
+
if ( rhs<10 | size(varargin(10)) ==0 ) then
x0 = repmat(0,nbVar,1);
else
x0 = varargin(10);
end
- if ( rhs<11 ) then
+ if ( rhs<11 | size(varargin(11)) ==0 ) then
param = list();
else
param =varargin(11);
end
+ if (type(param) ~= 15) then
+ errmsg = msprintf(gettext("%s: param should be a list "), "qpipopt");
+ error(errmsg);
+ end
+
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipopt");
error(errmsg);
@@ -137,6 +149,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
"MaxIter" , [3000], ...
"CpuTime" , [600] ...
);
+
for i = 1:(size(param))/2
select param(2*i-1)
@@ -150,6 +163,33 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
end
end
+// Check if the user gives row vector
+// and Changing it to a column matrix
+
+ if (size(p,2)== [nbVar]) then
+ p=p';
+ end
+
+ if (size(LB,2)== [nbVar]) then
+ LB = LB';
+ end
+
+ if (size(UB,2)== [nbVar]) then
+ UB = UB';
+ end
+
+ if (size(conUB,2)== [nbCon]) then
+ conUB = conUB';
+ end
+
+ if (size(conLB,2)== [nbCon]) then
+ conLB = conLB';
+ end
+
+ if (size(x0,2)== [nbVar]) then
+ x0=x0';
+ end
+
//IPOpt wants it in row matrix form
p = p';
LB = LB';
@@ -176,10 +216,17 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
error(errmsg);
end
-
- //Check the size of constraint which should equal to the number of variables
- if ( size(conMatrix,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
+ if (nbCon) then
+ //Check the size of constraint which should equal to the number of variables
+ if ( size(conMatrix,2) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
+ error(errmsg);
+ end
+ end
+
+ //Check the number of constraint
+ if ( size(conMatrix,1) ~= nbCon) then
+ errmsg = msprintf(gettext("%s: The number of constraints is not equal to the number of constraint given i.e. %d"), "qpipopt", nbCon);
error(errmsg);
end
@@ -209,9 +256,10 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
//Check the size of initial of variables which should equal to the number of variables
if ( size(x0,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipopt");
- error(errmsg);
+ warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "qpipopt");
+ warning(warnmsg);
end
+
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);
diff --git a/macros/qpipoptmat.bin b/macros/qpipoptmat.bin
index 668402c..2cb90c9 100644
--- a/macros/qpipoptmat.bin
+++ b/macros/qpipoptmat.bin
Binary files differ
diff --git a/macros/qpipoptmat.sci b/macros/qpipoptmat.sci
index 6ae20c0..7924ba6 100644
--- a/macros/qpipoptmat.sci
+++ b/macros/qpipoptmat.sci
@@ -23,18 +23,18 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
// [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
//
// Parameters
- // H : a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
- // f : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
- // A : a m x n matrix of doubles, represents the linear coefficients in the inequality constraints
- // b : a column vector of doubles, represents the linear coefficients in the inequality constraints
- // Aeq : a meq x n matrix of doubles, represents the linear coefficients in the equality constraints
+ // H : a vector of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
+ // f : a vector of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
+ // A : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // b : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
// beq : a vector of doubles, represents the linear coefficients in the equality constraints
- // LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
- // UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
- // x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
+ // LB : a vector of doubles, where n is number of variables, contains lower bounds of the variables.
+ // UB : a vector of doubles, where n is number of variables, contains upper bounds of the variables.
+ // x0 : a vector of doubles, contains initial guess of variables.
// param : a list containing the the parameters to be set.
- // xopt : a nx1 matrix of doubles, the computed solution of the optimization problem.
- // fopt : a 1x1 matrix of doubles, the function value at x.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
// output : Structure containing information about the optimization.
// lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
@@ -108,7 +108,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
nbVar = size(H,1);
- if ( rhs<2 ) then
+ if ( rhs<3 ) then
A = []
b = []
else
@@ -116,7 +116,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
b = varargin(4);
end
- if ( rhs<4 ) then
+ if ( rhs<5 ) then
Aeq = []
beq = []
else
@@ -124,7 +124,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
beq = varargin(6);
end
- if ( rhs<6 ) then
+ if ( rhs<7 ) then
LB = repmat(-%inf,nbVar,1);
UB = repmat(%inf,nbVar,1);
else
@@ -139,24 +139,32 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
x0 = varargin(9);
end
- if ( rhs<10 ) then
+ if ( rhs<10 | size(varargin(10)) ==0 ) then
param = list();
else
param =varargin(10);
end
+ if (size(LB,2)==0) then
+ LB = repmat(-%inf,nbVar,1);
+ end
+
+ if (size(UB,2)==0) then
+ UB = repmat(%inf,nbVar,1);
+ end
+
- if (modulo(size(param),2)) then
- errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat");
- error(errmsg);
+ if (type(param) ~= 15) then
+ errmsg = msprintf(gettext("%s: param should be a list "), "qpipopt");
+ error(errmsg);
end
+
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat");
error(errmsg);
end
-
options = list(..
"MaxIter" , [3000], ...
"CpuTime" , [600] ...
@@ -178,34 +186,57 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
nbConInEq = size(A,1);
nbConEq = size(Aeq,1);
+// Check if the user gives row vector
+// and Changing it to a column matrix
+
+
+ if (size(f,2)== [nbVar]) then
+ f=f';
+ end
+
+ if (size(LB,2)== [nbVar]) then
+ LB = LB';
+ end
+
+ if (size(UB,2)== [nbVar]) then
+ UB = UB';
+ end
+
+ if (size(b,2)==nbConInEq) then
+ b = b';
+ end
+
+ if (size(beq,2)== nbConEq) then
+ beq = beq';
+ end
+
+ if (size(x0,2)== [nbVar]) then
+ x0=x0';
+ end
+
//Checking the H matrix which needs to be a symmetric matrix
- if ( H~=H') then
+ if ( ~isequal(H,H')) then
errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipoptmat");
error(errmsg);
end
- //Check the size of H which should equal to the number of variable
- if ( size(H) ~= [nbVar nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of H is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
- end
//Check the size of f which should equal to the number of variable
if ( size(f,1) ~= [nbVar]) then
- errmsg = msprintf(gettext("%s: The Size of f is not equal to the number of variables"), "qpipoptmat");
+ errmsg = msprintf(gettext("%s: The number of rows and columns in H must be equal the number of elements of f"), "qpipoptmat");
error(errmsg);
end
//Check the size of inequality constraint which should be equal to the number of variables
if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
- errmsg = msprintf(gettext("%s: The size of inequality constraints is not equal to the number of variables"), "qpipoptmat");
+ errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of f"), "qpipoptmat");
error(errmsg);
end
//Check the size of equality constraint which should be equal to the number of variables
if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
- errmsg = msprintf(gettext("%s: The size of equality constraints is not equal to the number of variables"), "qpipoptmat");
+ errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of f"), "qpipoptmat");
error(errmsg);
end
@@ -224,20 +255,20 @@ function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
//Check the size of constraints of Lower Bound which should equal to the number of constraints
if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
- errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraints is not equal to the number of constraints"), "qpipoptmat");
+ errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elementsof b"), "qpipoptmat");
error(errmsg);
end
//Check the size of constraints of Upper Bound which should equal to the number of constraints
if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
- errmsg = msprintf(gettext("%s: The Upper Bound of equality constraints is not equal to the number of constraints"), "qpipoptmat");
+ errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "qpipoptmat");
error(errmsg);
end
//Check the size of initial of variables which should equal to the number of variables
if ( size(x0,1) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipoptmat");
- error(errmsg);
+ warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "qpipopt");
+ warning(warnmsg);
end
diff --git a/macros/symphony.bin b/macros/symphony.bin
index d2aa822..2ef2f57 100644
--- a/macros/symphony.bin
+++ b/macros/symphony.bin
Binary files differ
diff --git a/macros/symphony.sci b/macros/symphony.sci
index 9677720..0f57751 100644
--- a/macros/symphony.sci
+++ b/macros/symphony.sci
@@ -19,20 +19,20 @@ function [xopt,fopt,status,output] = symphony (varargin)
// [xopt,fopt,status,output] = symphony( ... )
//
// Parameters
- // nbVar : a 1 x 1 matrix of doubles, number of variables
- // nbCon : a 1 x 1 matrix of doubles, number of constraints
- // objCoeff : a 1 x n matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective
- // isInt : a 1 x n matrix of boolean, where n is number of variables, representing wether a variable is constrained to be an integer
- // LB : a 1 x n matrix of doubles, where n is number of variables, contains lower bounds of the variables. Bound can be negative infinity
- // UB : a 1 x n matrix of doubles, where n is number of variables, contains upper bounds of the variables. Bound can be infinity
- // conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
- // conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
- // conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints
- // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here
- // options : a 1xq marix of string, provided to set the paramters in symphony
- // xopt : a 1xn matrix of doubles, the computed solution of the optimization problem
- // fopt : a 1x1 matrix of doubles, the function value at x
- // status : status flag from symphony
+ // nbVar : a double, number of variables.
+ // nbCon : a double, number of constraints.
+ // objCoeff : a 1 x n matrix of doubles, where n is number of variables, represents coefficients of the variables in the objective.
+ // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
+ // LB : a vector of doubles, represents lower bounds of the variables.
+ // UB : a vector of doubles, represents upper bounds of the variables.
+ // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
+ // conLB : a vector of doubles, represents lower bounds of the constraints.
+ // conUB : a vector of doubles, represents upper bounds of the constraints
+ // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
+ // options : a a list containing the the parameters to be set.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
+ // status : status flag from symphony.
// output : The output data structure contains detailed informations about the optimization process.
//
// Description
@@ -53,11 +53,11 @@ function [xopt,fopt,status,output] = symphony (varargin)
// Examples
// //A basic case :
// // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]
+ // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
// // Lower Bound of variable
- // lb = repmat(0,1,8);
+ // lb = repmat(0,8,1);
// // Upper Bound of variables
- // ub = [repmat(1,1,4) repmat(%inf,1,4)];
+ // ub = [repmat(1,4,1);repmat(%inf,4,1)];
// // Constraint Matrix
// conMatrix = [5,3,4,6,1,1,1,1;
// 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
@@ -90,7 +90,7 @@ function [xopt,fopt,status,output] = symphony (varargin)
// 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
// 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
// 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
+ // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
// //Constraint Matrix
// conMatrix = [
// //Constraint 1
@@ -137,9 +137,9 @@ function [xopt,fopt,status,output] = symphony (varargin)
// nbCon = size(conMatrix,1)
// nbVar = size(conMatrix,2)
// // Lower Bound of variables
- // lb = repmat(0,1,nbVar)
+ // lb = repmat(0,nbVar,1)
// // Upper Bound of variables
- // ub = repmat(1,1,nbVar)
+ // ub = repmat(1,nbVar,1)
// // Row Matrix for telling symphony that the is integer or not
// isInt = repmat(%t,1,nbVar)
// // Lower Bound of constrains
@@ -185,43 +185,103 @@ function [xopt,fopt,status,output] = symphony (varargin)
objSense = varargin(10);
end
- if (rhs<11) then
+ if (rhs<11|size(varargin(11)==0)) then
options = list();
else
options = varargin(11);
end
-
-//Check the size of constraint which should equal to the number of constraints
- if ( size(conMatrix,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
+// Check if the user gives row vector
+// and Changing it to a column matrix
+
+ if (size(isInt,2)== [nbVar]) then
+ isInt = isInt';
+ end
+
+ if (size(LB,2)== [nbVar]) then
+ LB = LB';
+ end
+
+ if (size(UB,2)== [nbVar]) then
+ UB = UB';
+ end
+
+ if (size(conLB,2)== [nbVar]) then
+ conLB = conLB';
+ end
+
+ if (size(conUB,2)== [nbVar]) then
+ conUB = conUB';
+ end
+
+
+ if (size(objCoef,2)~=1) then
+ errmsg = msprintf(gettext("%s: Objective Coefficients should be a column matrix"), "Symphony");
+ error(errmsg);
+ end
+
+ if (size(objCoef,1)~=nbVar) then
+ errmsg = msprintf(gettext("%s: Number of variables in Objective Coefficients is not equal to number of variables given"), "Symphony");
+ error(errmsg);
+ end
+
+ //Check the size of isInt which should equal to the number of variables
+ if(size(isInt,1)~=nbVar) then
+ errmsg = msprintf(gettext("%s: The size of isInt is not equal to the number of variables"), "Symphony");
+ error(errmsg);
+ end
+
+ //Check the size of lower bound of inequality constraint which should equal to the number of constraints
+ if ( size(conLB,1) ~= nbCon) then
+ errmsg = msprintf(gettext("%s: The Lower Bound of constraint is not equal to the number of constraint"), "Symphony");
error(errmsg);
end
-//Check the size of Lower Bound which should equal to the number of variables
- if ( size(LB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
+ //Check the size of lower bound of inequality constraint which should equal to the number of constraints
+ if ( size(conUB,1) ~= nbCon) then
+ errmsg = msprintf(gettext("%s: The Upper Bound of constraint is not equal to the number of constraint"), "Symphony");
error(errmsg);
end
-//Check the size of Upper Bound which should equal to the number of variables
- if ( size(UB,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphony");
+ //Check the row of constraint which should equal to the number of constraints
+ if ( size(conMatrix,1) ~= nbCon) then
+ errmsg = msprintf(gettext("%s: The number of rows in constraint should be equal to the number of constraints"), "Symphony");
error(errmsg);
end
-//Check the size of constraints of Lower Bound which should equal to the number of constraints
- if ( size(conLB,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Lower Bound of constraints is not equal to the number of constraints"), "Symphony");
+ //Check the column of constraint which should equal to the number of variables
+ if ( size(conMatrix,2) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The number of columns in constraint should equal to the number of variables"), "Symphony");
error(errmsg);
end
-//Check the size of constraints of Upper Bound which should equal to the number of constraints
- if ( size(conUB,1) ~= nbCon) then
- errmsg = msprintf(gettext("%s: The Upper Bound of constraints is not equal to the number of constraints"), "Symphony");
+ //Check the size of Lower Bound which should equal to the number of variables
+ if ( size(LB,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
error(errmsg);
end
+ //Check the size of Upper Bound which should equal to the number of variables
+ if ( size(UB,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphony");
+ error(errmsg);
+ end
+
+ if (type(options) ~= 15) then
+ errmsg = msprintf(gettext("%s: Options should be a list "), "Symphony");
+ error(errmsg);
+ end
+
+ if (modulo(size(options),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "Symphony");
+ error(errmsg);
+ end
+
+ LB = LB';
+ UB = UB';
+ isInt = isInt';
+ objCoef = objCoef';
+
[xopt,fopt,status,output] = symphony_call(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options);
endfunction
diff --git a/macros/symphonymat.bin b/macros/symphonymat.bin
index 5089973..01460d6 100644
--- a/macros/symphonymat.bin
+++ b/macros/symphonymat.bin
Binary files differ
diff --git a/macros/symphonymat.sci b/macros/symphonymat.sci
index ef70b7c..87427e1 100644
--- a/macros/symphonymat.sci
+++ b/macros/symphonymat.sci
@@ -20,8 +20,8 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// [xopt,fopt,status,output] = symphonymat( ... )
//
// Parameters
- // f : a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective
- // intcon : Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable
+ // f : a vector of doubles, where n is number of variables, contains coefficients of the variables in the objective
+ // intcon : Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable.
// A : Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables
// b : Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N
// Aeq : Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables
@@ -41,7 +41,8 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// \begin{eqnarray}
// &\mbox{min}_{x}
// & f(x) \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
+ // & \text{subject to} & A.x \leq b \\
+ // & & Aeq.x \leq beq \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
@@ -50,7 +51,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
//
// Examples
// // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]
+ // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
// // Lower Bound of variable
// lb = repmat(0,1,8);
// // Upper Bound of variables
@@ -81,7 +82,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
// 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
// 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
+ // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
// //Constraint Matrix
// conMatrix = [ //Constraint 1
// 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
@@ -131,7 +132,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// // Upper Bound of variables
// ub = repmat(1,1,nbVar)
// // Lower Bound of constrains
- // intcon = []
+ // intcon = [];
// for i = 1:nbVar
// intcon = [intcon i];
// end
@@ -164,34 +165,24 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
intcon = varargin(2)
A = varargin(3)
b = varargin(4)
-
- nbVar = size(objCoef,2);
- nbCon = size(A,1);
-
- if ( rhs<4 ) then
+
+ if (size(objCoef,2)~=1) then
+ errmsg = msprintf(gettext("%s: Objective Coefficients should be a column matrix"), "Symphonymat");
+ error(errmsg);
+ end
+
+
+ nbVar = size(objCoef,1);
+
+ if ( rhs<5 ) then
Aeq = []
beq = []
else
Aeq = varargin(5);
beq = varargin(6);
-
- if (size(Aeq,1)~=0) then
- //Check the size of equality constraint which should equal to the number of inequality constraints
- if ( size(Aeq,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The size of equality constraint is not equal to the number of variables"), "Symphony");
- error(errmsg);
- end
-
- //Check the size of upper bound of inequality constraint which should equal to the number of constraints
- if ( size(beq,2) ~= size(Aeq,1)) then
- errmsg = msprintf(gettext("%s: The equality constraint upper bound is not equal to the number of equality constraint"), "Symphony");
- error(errmsg);
- end
- end
-
end
- if ( rhs<6 ) then
+ if ( rhs<7 ) then
lb = repmat(-%inf,1,nbVar);
ub = repmat(%inf,1,nbVar);
else
@@ -199,36 +190,105 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
ub = varargin(8);
end
- if (rhs<9) then
+ if (rhs<9|size(varargin(9))==0) then
options = list();
else
options = varargin(9);
end
-
-//Check the size of lower bound of inequality constraint which should equal to the number of constraints
- if ( size(b,2) ~= size(A,1)) then
- errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraint is not equal to the number of constraint"), "Symphony");
+ nbConInEq = size(A,1);
+ nbConEq = size(Aeq,1);
+
+// Check if the user gives row vector
+// and Changing it to a column matrix
+
+ if (size(lb,2)== [nbVar]) then
+ lb = lb';
+ end
+
+ if (size(ub,2)== [nbVar]) then
+ ub = ub';
+ end
+
+ if (size(b,2)== [nbConInEq]) then
+ b = b';
+ end
+
+ if (size(beq,2)== [nbConEq]) then
+ beq = beq';
+ end
+
+ for i=1:size(intcon,2)
+ if(intcon(i)>nbVar) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should not exceed total number of variable "), "Symphonymat");
+ error(errmsg);
+ end
+
+ if (intcon(i)<1) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be greater than 0 "), "Symphonymat");
+ error(errmsg);
+ end
+
+ if(modulo(intcon(i),1)) then
+ errmsg = msprintf(gettext("%s: The values inside intcon should be integer "), "Symphonymat");
+ error(errmsg);
+ end
+ end
+
+ //Check the size of inequality constraint which should equal to the number of inequality constraints
+ if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The size of inequality constraint is not equal to the number of variables"), "Symphonymat");
+ error(errmsg);
+ end
+
+
+ //Check the size of lower bound of inequality constraint which should equal to the number of constraints
+ if ( size(b,1) ~= size(A,1)) then
+ errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraint is not equal to the number of constraint"), "Symphonymat");
error(errmsg);
end
-//Check the size of Lower Bound which should equal to the number of variables
- if ( size(lb,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphony");
+ //Check the size of equality constraint which should equal to the number of inequality constraints
+ if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0) then
+ errmsg = msprintf(gettext("%s: The size of equality constraint is not equal to the number of variables"), "Symphonymat");
+ error(errmsg);
+ end
+
+ //Check the size of upper bound of equality constraint which should equal to the number of constraints
+ if ( size(beq,1) ~= size(Aeq,1)) then
+ errmsg = msprintf(gettext("%s: The equality constraint upper bound is not equal to the number of equality constraint"), "Symphonymat");
+ error(errmsg);
+ end
+
+ //Check the size of Lower Bound which should equal to the number of variables
+ if ( size(lb,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "Symphonymat");
error(errmsg);
end
-//Check the size of Upper Bound which should equal to the number of variables
- if ( size(ub,2) ~= nbVar) then
- errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphony");
+ //Check the size of Upper Bound which should equal to the number of variables
+ if ( size(ub,1) ~= nbVar) then
+ errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "Symphonymat");
error(errmsg);
end
+ if (type(options) ~= 15) then
+ errmsg = msprintf(gettext("%s: Options should be a list "), "Symphonymat");
+ error(errmsg);
+ end
+
+
+ if (modulo(size(options),2)) then
+ errmsg = msprintf(gettext("%s: Size of parameters should be even"), "Symphonymat");
+ error(errmsg);
+ end
+
+
//Changing the inputs in symphony's format
conMatrix = [A;Aeq]
nbCon = size(conMatrix,1);
- conLB = [repmat(-%inf,1,size(A,1)), beq]';
- conUB = [b,beq]' ;
+ conLB = [repmat(-%inf,size(A,1),1); beq];
+ conUB = [b;beq] ;
isInt = repmat(%f,1,nbVar);
for i=1:size(intcon,2)
@@ -236,7 +296,13 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
end
objSense = 1;
+
+ //Changing into row vector
+ lb = lb';
+ ub = ub';
+ objCoef = objCoef';
+
[xopt,fopt,status,iter] = symphony_call(nbVar,nbCon,objCoef,isInt,lb,ub,conMatrix,conLB,conUB,objSense,options);
endfunction